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Abstract

We propose a fast algorithm for computing the expected tranche
loss in the Gaussian factor model with arbitrary accuracy using Her-
mite expansions. No assumptions about homogeneity of the portfolio
are made. The algorithm is a generalization of the algorithm pro-
posed in [4]. The advantage of the new algorithm is that it allows us
to achieve higher accuracy in almost the same computational time.
It is intended as an alternative to the much slower Fourier transform
based methods [2].

1 The Gaussian Factor Model

Let us consider a portfolio of N loans. Let the notional of loan i be equal to
the fraction fi of the notional of the whole portfolio. This means that if loan
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i defaults and the entire notional of the loan is lost the portfolio loses fraction
fi or 100fi% of its value. In practice when a loan i defaults a fraction ri of
its notional will be recovered by the creditors. Thus the actual loss given
default (LGD) of loan i is

LGDi = fi(1 − ri) (1)

fraction or
LGDi = 100fi(1 − ri)% (2)

of the notional of the entire portfolio.
We now describe the Gaussian m-factor model of portfolio losses from

default. The model requires a number of input parameters. For each loan i we
are give a probability pi of its default. Also for each i and each k = 1, . . . , m
we are given a number wi,k such that

∑m
k=1

w2

i,k < 1. The number wi,k is
the loading factor of the loan i with respect to factor k. Let φ1, . . . , φm and
φi, i = 1, . . . , N be independent standard normal random variables. Let Φ(x)
be the cdf of the standard normal distribution. In our model loan i defaults
if

m
∑

k=1

wi,kφk +

√

√

√

√1 −
m

∑

k=1

w2

i,kφ
i < Φ−1(pi) (3)

This indeed happens with probability pi. The factors φ1, . . . , φm are usually
interpreted as the state of the global economy, the state of the regional econ-
omy, the state of a particular industry and so on. Thus they are the factors
that affect the default behavior of all or at least a large group of loans in the
portfolio. The factors φ1, . . . , φN are interpreted as the idiosyncratic risks of
the loans in the portfolio.

Let Ii be defined by
Ii = I{loan i defaulted} (4)

We define the random loss caused by the default of loan i as

Li = fi(1 − ri)Ii, (5)

where ri is the recovery rate of loan i. The total loss of the portfolio is

L =
∑

i

Li (6)

An important property of the Gaussian factor model is that the Li’s are
not independent of each other. Their mutual dependence is induced by the
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dependence of each Li on the common factors φ1, . . . , φm. Historical data
supports the conclusion that losses due to defaults on different loans are
correlated with each other. Historical data can also be used to calibrate
the loadings wi,k.the Li’s are not independent of each other. Their mutual
dependence is induced by the dependence of each Li on the common factors
φ1, . . . , φm. Historical data supports the conclusion that losses due to defaults
on different loans are correlated with each other. Historical data can also be
used to calibrate the loadings wi,k.

2 Conditional Portfolio Loss L

When the values of the factors φ1, . . . , φm are fixed, the probability of the
default of loan i becomes

pi = Φ−1





pi −
∑

k wi,kφk
√

1 − ∑

k w2

i,k



 (7)

The random losses Li become conditionally independent Bernoulli vari-
ables with the mean given by

Econd(Li) = fi(1 − ri)p
i (8)

and the variance given by

V ARcond(Li) = f 2

i (1 − ri)
2pi(1 − pi) (9)

By the Central Limit Theorem the conditional distribution of the portfolio
loss L, given the values of the factors φ1, . . . , φm, can be approximated by
the normal distribution with the mean

Econd(L) =
∑

i

Econd(Li) (10)

and the variance

V ARcond(L) =
∑

i

V ARcond(Li) (11)

In [4] it was shown that for portfolios of 125 names this approximation
leads to accurate results.
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When the approximation to the conditional distribution of L given by
the Central Limit Theorem is deemed insufficiently accurate, an arbitrarily
accurate representation of the conditional distribution of the portfolio loss
L can be obtained from its Hermite series expansion. For historical reasons
this expansion is also known as the Charlier series expansion [3], [1].

3 The Hermite Expansion of the Conditional

Distribution of the Portfolio Loss L

Let F (x) be the c.d.f. of the conditional distribution of the portfolio loss L.
So that

P (L ≤ x) = F (x) (12)

For each fixed value of the factors φ1, . . . , φm we define the normalized con-
ditional loss L̃ by

L̃ =
L − Econd(L)
√

V ARcond(L)
(13)

Let F̃ (x) be the c.d.f. of the distribution of the normalized conditional
portfolio loss L̃. So that

P (L̃ ≤ x) = F̃ (x) (14)

We define the Hermite polynomial Hn(x) of degree n by

Hn(x) = (−1)ne
x
2

2
dn

dxn
e

−x
2

2 (15)

Let cn be defined by

cn =
(−1)n

n!

∫ ∞

−∞
Hn(x)dF̃ (x) (16)

Then we have

F̃ (x) =
∞
∑

i=0

∫ x

−∞
ciHi(t)

e
−t

2

2

√
2π

dt (17)

The series above converges in the sense of distributions (generalized func-
tions) [5]. A good reference on the theory of distributions (generalized func-
tions) is [5]. Let us pick a finite N . Then we have

F̃ (x) ≈
N

∑

i=0

ci

∫ x

−∞
Hi(t)

e
−t

2

2

√
2π

dt (18)
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As before the approximation is in the sense of generalized functions. Equation
(18) implies that the distribution of the normalized conditional portfolio loss
L̃ can be approximated by a distribution with the density

ρ̃(x) =
N

∑

i=0

ciHi(x)
e

−x
2

2

√
2π

(19)

The function ρ̃(x) is not necessarily nonnegative and therefore may not be
a probability density in the strict sense. However, as is explained in [5], this
does not affect the validity of our final result (24). Therefore we may treat
ρ̃(x) as a real probability density.

The distribution of the unnormalized loss L can be approximated by a
distribution with density

ρ(x) =
N

∑

i=0

ci
√

V ARcond(L)
Hi





x − Econd(L)
√

V ARcond(L)





e

−

(

x−Econd(L)√
V ARcond(L)

)2

2

√
2π

(20)

The joint distribution of the factors φ1, . . . , φm and the portfolio loss L

can be approximated by a distribution with density

ρjoint(φ1, . . . , φm, L) = ρ(L)
m
∏

k=1

ρG,0,1(φk), (21)

where ρG,0,1(x) stands for the Gaussian density with mean 0 and variance 1.
Observe that the coefficient cn depends only on the moments of the dis-

tribution F̃ (x). Since Li’s are independent Bernoulli random variables these
moments are known analytically. Thus in the case under consideration all
the cn’s are known analytically.

If in equation (20) we set N = 1 we obtain the standard approximation
by the normal density proposed in [4]. Thus the algorithm proposed here
is a generalization of the algorithm in [4]. We show later that it gives good
numerical results even when the portfolio size is too small for the normal
approximation to be accurate.
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4 Expected Loss of a Tranche of Loan Port-

folio

Let 0 ≤ a < b ≤ 1. We define a tranche loss profile T la,b(x) by

T la,b(x) =
min(b − a, max(x − a, 0))

b − a
(22)

Number a is called the attachment point of a tranche, while b is called the
detachment point of a tranche. The expected loss of a tranche is then

TLoss(a, b) =
∫

T la,b(L)ρjoint(φ1, . . . , φm, L)dφ1 . . . φmL (23)

This can be rewritten as a double integral

TLoss(a, b) =
∫ ∫

T la,b(L)ρ(L)dL
m
∏

k=1

ρG,0,1(φk)dφ1 . . . φm (24)

The inside integral with respect to L can be done analytically for fixed values
of the factors φ1, . . . , φm. The outside integral has to be computed numer-
ically. However, since it is an integral of a bounded smooth function with
respect to m-dimensional Gaussian density, it is one of the simpler integrals
to compute numerically.

5 Numerical Example

In this section we test the proposed algorithm on several portfolios of smaller
size. For these portfolios the approximation to the conditional distribution of
the portfolio loss L given by the Central Limit Theorem is not very accurate,
because of their small size. However, the Hermite expansion produces very
good results. We apply the proposed algorithm to the single factor Gaussian
model of a portfolio with n names. We take n to be 25 (size of DJ iTraxx
Australia), 30 (size of DJ iTraxx ex Japan), 50 (size of DJ iTraxx CJ) and
100 (size of DJCDX.NA.HY). We choose a single factor model because it is
the one most frequently used in practice. For each n we compute the loss
of the equity tranche with the attachment point a = 0 or a = 0% and the
detachment point 3%. The parameters of the porfolio are

fi =
1

n
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pi = 0.015 +
0.05(i − 1)

n − 1

ri = 0.5 − 0.1(i − 1)

n − 1

wi1 = 0.5 − 0.1(i − 1)

n − 1
, (25)

where i = 1, . . . , n. Finally, we choose N = 5 in (18).
In Figure 1 we compare the expected loss computed using 106 Monte

Carlo samples with the expected loss computed using formula (24).1 The
agreement between the two is good.

Figure 1: Equity Tranche Loss in the Gaussian Single Factor Model

20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

number of names in portfolio

lo
ss

 %

MC Simulations
Proposed Fast Algorithm

1The author has the code implementing the algorithm described here in MATLAB,
VBA for Excel and C.
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6 Conclusions.

To obtain the results in Figure 1 we only needed to perform a single one
dimensional numerical integration for each tranche. This is an improvement
over the Fourier transform based methods [2] which require computing a
large number of Fourier transforms for each tranche. Each individual Fourier
transform is as computationally expensive as (24).

The Hermite expansion (18) can be used to achieve arbitrary accuracy
when the normal approximation is insufficiently accurate. The proposed
algorithm is as fast as the algorithm proposed in [4] because the inside integral
in (24) can be done analytically.

We also comment that the algorithm can be extended trivially to the case
of non-constant recovery rates and recovery rates correlated with the state
of the factor variables.
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