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Abstract. The popular press attaches particular signiÞcance to certain numerical values of the Dow-Jones index. Thesemagic numbers
are referred to as Ôresistance levelsÕ or Ôpsychological barriers.Õ In this note we examine 41 years of closing values of the Dow-Jones
index to see if it is useful for predicting future stock market returns.
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On April 17, 1991, the Dow-Jones Industrial Average (djia) closed above 3,000 for the Þrst time. This
occurrence was widely reported in the Þnancial press; see Norris (1991) or Sease and Dorfman (1991) for
examples. Prior to this event, some observers claimed that 3,000 was a Ôresistance levelÕ or a Ôpsychological
barrier.Õ (See, e.g., Torres (1991).)
The Þnancial press contained similar reports when the djia crossed 1,000 and 2,000, although the be-

haviour was somewhat different in each case. The djia Þrst touched 1,000 in early 1966; it didnÕt cross that
level again until nearly 17 years later, in late 1982. In 1987 the djia passed through 2,000 and continued to
3,000 in 4 years. It appears that 1,000 was a Ôresistance levelÕ while 2,000 was not.
Figure 1 shows 2,163 weekly closing prices of the djia from 1/52 to 6/93.1 One could interpret this Þgure

as showing that 500 and 1,000 were Ôresistance levels;Õ however, one could also argue that the behavior
exhibited in this Þgure could have been due to chance alone. In this paper we try to determine which of
these two claims are more consistent with the evidence: does the numerical value of the djia help predict
future returns, or has the historical behavior been due to chance alone?
This is purely an empirical investigation; we want to Þnd out what the evidence says, and we have no

particular theory in mind about why Ôresistance levelsÕ may or may not occur. All we can offer in this regard
is a paragraph from theWall Street Journal:

ÒHow can a Ôresistance levelÕ exist? Because traders believe it is there. Resistance levels
in market benchmarks can occur when thereÕs a consensus that the market canÕt go much
higher. Stock index or average levels become sentiment signals. As market barometers
approach those levels, stock buyers become less aggressive, fearing a turn in the market,
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Fig. 1. djia (weekly close): January 1952ÐJune 1993.

while sellers need less coaching to drop their prices a notch or two.Ó [Torres (1991).]

This passage appears to claim that traders may believe that the level of the djia helps to forecast future
returns in stock prices. If this view is correct, it would be a clear violation of market efÞciency.
Donaldson and Kim (1991) have independently investigated some related issues issues involving numer-

ical patterns in the closing prices of the DJIA. However, they do not focus on questions of market efÞciency,
which is the main concern of this paper. We discuss the relationship between their results and our results
in section 4.

1. Distribution of the DJIA’s digits

We being by examining the distribution of the djia index by the last two digits to the left of the decimal
point. Table 1 summarizes the frequency with which the djia closed at a value whose last two digits were
ij. For example, the entry in row 4, column 3 is p43 = 1.03; this means that the djia closed at a value ending
in Ò43Ó 1.03 percent of the time.

Table 1. Percent of times that the djia Index ends in ij (pij).
January 1952ÐJune 1993: N = 10, 449.

i ↓ j → 0 1 2 3 4 5 6 7 8 9 pi·
0 0.82 0.93 0.96 1.15 1.00 0.99 1.08 1.09 0.91 1.00 9.93

1 0.92 1.04 0.97 1.04 0.92 0.88 1.15 0.87 1.00 0.84 9.63

2 0.98 0.88 1.00 0.93 1.09 0.92 1.06 0.95 0.91 0.88 9.60

3 1.05 0.99 1.03 0.85 0.88 0.96 0.95 1.10 0.98 1.04 9.83

4 1.02 0.83 0.87 1.03 0.89 1.07 1.13 1.05 0.86 0.85 9.62

5 0.94 0.89 0.91 0.82 1.05 1.08 0.81 0.81 1.02 1.15 9.49

6 1.03 0.99 0.97 1.24 0.95 1.12 0.96 0.93 1.17 1.10 10.45

7 1.18 1.19 1.04 1.00 1.26 1.31 1.19 1.12 1.08 1.07 11.44

8 0.84 1.03 1.15 1.13 0.96 1.26 1.23 1.21 0.98 0.84 10.63

9 0.97 1.07 1.17 1.03 0.92 0.80 1.00 0.91 0.74 0.78 9.38

p·j 9.75 9.84 10.07 10.23 9.92 10.39 10.56 10.04 9.64 9.56 100.00

We Þrst test the null hypothesis that pij = 1 for all i, jÑi.e., that all two-digit terminations are equally
likely. The sample chi-square statistic is χ2(99) = 153.57. This value is more than adequate to reject the null
hypothesis. Table 1 shows that the terminations in 60Õs, 70Õs, and 80Õs are too frequent; the most frequent
termination of all, 75, occurs 1.31% of the time. Furthermore, the terminations in 89, 98, 99 and 00 are
abnormally rare.
We next test the hypothesis that closings in all deciles are equally likely. The chi-square statistic for testing

the hypothesis that p·j = 10 for all i is χ2(9) = 48.47. Again, we clearly reject the null hypothesis. On the
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basis of this evidence we conclude that the closing values of the djia are not uniformly distributed: some
patterns of digits occur signiÞcantly more often than others.

2. Distribution of Returns

We next turn to the relation between stock market returns and the djiaÕs last two digits. If century marks
(closing prices at 1100,1200, etc.) are Òpsychological barriersÓ or Òresistance pointÓ then we might expect
that the mean return following a close in the 90s would be lower than the mean return following closes in
other deciles.
The one-day return, rt, is deÞned as

rt =
ln pt+1 − ln pt

dt
× 100,

where pt is the djia at time t, and dt is the number of days between trading dates t and t+1. If t corresponds
to a Friday and Monday is the next trading day, then dt = 3.2 Wewant to test whether the last two digits of
pt have any predictive power for rt. Table 2 shows summary statistics for rt by the corresponding digit in
the 10Õs position of pt.

Table 2. One-day percent return statistics by digit in 10Õs position.

10’s quantiles
mean variance n

digit max 75% median 25% min

0 4.6034 0.3782 0.0252 -0.3231 -4.9349 0.0157 0.6117 1,038

1 4.0476 0.4128 0.0264 -0.3428 -2.5457 0.0365 0.5142 1,006

2 4.1595 0.3392 0.0207 -0.3107 -3.8926 0.0083 0.4583 1,003

3 5.7154 0.4368 0.0191 -0.3000 -2.9985 0.0783 0.6075 1,027

4 9.6662 0.3781 0.0131 -0.3162 -8.5440 0.0342 0.6804 1,005

5 3.9670 0.3788 0.0029 -0.3465 -7.1555 0.0157 0.7032 992

6 3.1101 0.3868 0.0473 -0.3118 -4.0061 0.0337 0.4947 1,092

7 4.5787 0.3529 0.0282 -0.3104 -4.7177 0.0189 0.4740 1,195

8 3.2216 0.3649 0.0234 -0.2953 -3.0376 0.0353 0.4376 1,111

9 4.7814 0.4134 0.0300 -0.2883 -2.4200 0.0894 0.5305 980

All 9.6662 0.3857 0.0245 -0.3140 -8.5440 0.0362 0.5485 10,449

The largest mean return (0.0894%) following a day when the djia closes in the 90Õs; the smallest occurred
when the djia closed in the 20Õs. The mean return following a close in the 90Õs is 2.5 times as large as the
unconditional mean return. This is a large effect: on an annualized basis the unconditional mean returnwas
about 14% while the annualized mean return following a close in the 90Õs was about 38%. Contrary to our
initial expectations, the century marks do not seem to represent a ÒbarrierÓ or a Òresistance point;Ó rather
they seem to represent a Òlaunch pad!Ó
In order to test the signiÞcance of the difference of means, we assume that the returns in each decile are

independent Normal draws from populations with known variance equal to the estimated variance. As we
have seen themean return if the djia ended in the 90Õs was 0.0894%; the mean return if it ended in any other
decile was 0.0307%. The test statistic is

r̄90 − r̄other
σ̂90√
n90

+ σ̂other√
nother

= 1.90,

2 Since pt+1 = pt exp{ln(pt+1/pt)} it follows that rt is the continuous-time rate of return for the period between t and t + 1. Since we
want to have periods of equal length, we divide by the number of days between trading daysÑi.e., whenever we have a holiday or
weekend the computed rt is an average rate of return. Out of the 10,449 observations, 8,130 (77.81%) have dt = 1 (1.69% have dt = 2,
18.35% have dt = 3, 2.12% have dt = 4 and 0.04% have dt = 5). We think that calendar returns are the theoretically correct measure of
returns, however since trading-day returns are widely used in the literature we also computed all the tables using trading-day returns
Þnding no qualitative differences.
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which has a p-value of 0.0287.3

3. Robustness of the Results

The results of the last section suggest that the growth of the djia accelerates when it moves into the 90Õs.
We found this surprising; even more surprising was the magnitude of the effect. We decided to see if the
results stood up to variation in the sample period. Accordingly, we computed the values of pij in four non-
overlapping sub-samples, eachwith 2,612 observations. While the conclusion that not all terminations occur
with the same frequency still holds for each of the four samples, the most and least frequent terminations
vary with the sample chosen. This means that the results from the previous section are not robust with
respect to the sample interval. Table 3 shows a summary.

Table 3. Percent of times that the tenÕs digit of the djia ends in i.
Four non-overlapping samples, each with N = 2, 612.

Sample 1 Sample 2 Sample 3 Sample 4

i 1/1/52–4/18/62 4/19/62–10/5/72 10/6/72–2/9/83 2/10/83–6/10/93

0 10.38 9.95 9.15 10.22

1 9.57 9.95 8.46 10.53

2 8.50 9.26 10.15 10.49

3 6.55 9.49 12.29 10.99

4 7.62 10.49 11.41 8.96

5 7.01 9.61 11.79 9.57

6 13.06 8.81 9.84 10.11

7 15.39 10.68 10.15 9.53

8 12.86 11.37 8.46 9.84

9 9.07 10.38 8.31 9.76

χ2(9) 200.04 13.33 49.18 8.16

p-values 0.00 0.15 0.00 0.52

While in the Þrst sample, the djia ends in the 60Õs 13.06% of the time, in the second sample it does so
only 8.81% of the time. Similar signiÞcant variations can be observed for most digits and positions. The χ2

statistics reject the hypothesis that the tenÕs digit is distributed uniformly in two of the four subsamples.
Several interesting hypothesis suggested by table 2 are rejected for, at least, three of the four samples

considered.4 It appears that the high mean return following closes in the 90Õs is only supported by a small
fraction of the data, namely, the behavior of the market during the Òroaring Eighties.Ó We concluded that
this effect does not appear to be a stable representation of the underlying data-generating process. Table 4
shows the descriptive statistics for the return series in each of the four samples. Again, there seems to be no
particular pattern that holds across the four subsets.

4. Ignorance and Randomness

Wenow have an apparent anomaly: the digits of the djia appear to exhibit certain patterns, while the returns
conditional on the digit realization are more-or-less random. Perhaps we should reconsider our initial null
hypothesis. Is there any reason to expect that the digits of a market index should be uniformly distributed?
To develop some intuition, consider a standardized Normal variable. One might Þrst expect that each of

the ten possible values of the Þrst decimal digit, say, is equally likely. However, since the density function is
monotonicallydecreasingwhenwemove away fromzero, it follows that thedigitmost likely to appear in any
position is 0, then 1, and so onup to 9. Exact probabilities can easily be computed froma standardprobability

3 This is the simplest possible test we could imagine; we also estimated a dummy-variable ARIMA (i.e., intervention) model (Box
and Tiao (1975)) which led to the same conclusion.

4 Both ANOVA and nonparametric (Wilcoxon) tests were done to test various hypothesis regarding different returns, different
absolute movements |rt|, different variance of the returns, etc. We couldnÕt Þnd any appealing regularity across the four samples.
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Table 4. One-day return statistics by digit in 10Õs position:
Four non-overlapping samples.

10’s Quantiles
Mean Variance N

i Max 75% Median 25% Min

Sample 1: 1/2/52—4/18/62

0 1.8096 0.3689 0.0241 -0.2360 -2.2231 0.0557 0.2922 271

1 4.0476 0.3700 0.0570 -0.2610 -1.8669 0.0731 0.3371 250

2 2.6313 0.2432 0.0533 -0.2019 -2.1451 0.2320 0.3072 222

3 2.4259 0.4677 0.0269 -0.2250 -1.8044 0.0821 0.3576 171

4 1.5840 0.3171 0.0408 -0.2555 -2.0553 0.0049 0.3082 199

5 2.2508 0.4285 0.0565 -0.2349 -2.1700 0.0981 0.3707 183

6 1.8743 0.2917 0.0451 -0.1736 -1.7015 0.0623 0.2851 341

7 1.7264 0.2972 0.0425 -0.1927 -1.6305 0.0536 0.2522 402

8 1.4785 0.3264 0.0534 -0.2682 -2.2553 0.0275 0.2506 336

9 2.0053 0.3607 0.0084 -0.2541 -1.5353 0.0638 0.3140 237

All 4.0476 0.3319 0.0436 -0.2290 -2.2553 0.0531 0.2979 2,612

Sample 2: 4/19/62—10/5/72

0 1.4688 0.3247 0.0313 -0.2772 -1.9038 0.0160 0.3227 260

1 1.6417 0.3945 0.0350 -0.2784 -2.5457 0.0341 0.3302 260

2 2.1438 0.3000 0.0423 -0.2222 -1.7304 0.0500 0.2551 242

3 4.9517 0.4007 -0.0132 -0.2666 -2.9307 0.0485 0.5020 248

4 1.7469 0.3135 0.0128 -0.2343 -1.9068 0.0665 0.2910 274

5 3.2821 0.3235 -0.0120 -0.2979 -2.0741 0.0358 0.3757 251

6 3.1101 0.3532 0.0035 -0.3166 -2.2613 0.0266 0.4194 230

7 4.5787 0.3030 0.0090 -0.2875 -1.9419 0.0050 0.3926 279

8 2.7125 0.3112 0.0211 -0.2671 -1.7583 0.0189 0.3456 297

9 1.8001 0.2911 0.0176 -0.2483 -2.4200 0.0228 0.3268 271

All 4.9157 0.3301 0.0160 -0.2678 -2.9307 0.0320 0.3541 2,612

Sample 3: 10/6/72—2/9/83

0 4.6034 0.3653 -0.2800 -0.5205 -2.5630 -0.0107 0.9575 239

1 2.8970 0.5177 -0.0233 -0.5174 -2.4186 0.0010 0.7862 221

2 4.1595 0.4599 -0.0275 -0.4542 -2.1218 -0.0048 0.6178 265

3 3.9443 0.5079 0.0311 -0.3541 -2.8514 0.0842 0.7414 321

4 3.4521 0.5414 0.0204 -0.4968 -2.9340 0.0502 0.7031 298

5 3.9670 0.3930 -0.0749 -0.5601 -2.4773 -0.0135 0.8704 308

6 2.6122 0.4981 0.0197 -0.5177 2.6122 -0.0206 0.6908 257

7 3.0269 0.3976 -0.0373 -0.5213 -2.2675 -0.0459 0.6376 265

8 3.2216 0.4355 0.0192 -0.4644 -3.0376 0.0012 0.6415 221

9 4.7814 0.6102 0.0280 -0.3954 -2.4023 0.1322 0.9046 217

All 4.7814 0.4641 -0.0041 0.4805 -3.1820 0.0175 0.7528 2,612

Sample 4: 2/10/83—6/10/93

0 4.4665 0.4768 0.0416 -0.3905 -4.9349 -0.0018 0.9146 267

1 3.0541 0.4458 0.0000 -0.3832 -2.5424 0.0340 0.6342 275

2 2.9675 0.3472 0.0265 -0.4523 -3.8926 -0.0277 0.6076 274

3 5.7154 0.4170 0.0160 -0.3172 -2.9985 0.0952 0.7027 287

4 9.6662 0.3790 -0.0090 -0.3735 -8.5440 0.0009 1.4292 234

5 2.7379 0.4009 0.0351 -0.3515 -7.1555 -0.0290 1.0688 250

6 3.0406 0.4643 0.0986 -0.2758 -4.0061 0.0559 0.6413 264

7 2.9127 0.4517 0.0433 -0.3318 -4.7177 0.0476 0.7481 249

8 2.6792 0.4269 0.0142 -0.3257 -2.0704 0.0936 0.6137 257

9 3.1619 0.4685 0.0867 -0.2853 -1.9243 0.1474 0.6261 255

All 9.6662 0.4257 0.0378 -0.3461 -8.5440 0.0420 0.7895 2,612
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table. For instance, for the Þrst digit to the right of the decimal point the probabilities for i = 0, 1, . . . , 9 are
(in percentages): 13.61, 12.89, 12.07, 11.25, 10.43, 9.55, 8.75, 7.94, 7.14, and 6.38. The frequency of occurrence
of the various digits in a Normal random variable is far from uniform!
Of course, a sequence of IID draws of aNormal randomvariable is not a very goodmodel for the behavior

of a stockmarket index. Instead let us consider themost popular and simplest possiblemodel used for stock
returns, a random walk with drift of the form

ln qt − ln qt−1 = µ+ at, at ∼ IID N(0, σa). (1)

This is a Geometric RandomWalkModel; it implies that the one-day return, st = ln qt− ln qt−1, is Normally
distributed around its expectation, µ. Equivalently, we can write

qt = qt−1e
µ+at (2)

We generated Þve hundred series of 10,000 observations each for qt according to equation (2) for different
values of (µ, σa, q0).5 We then examined this simulated data to see if there were any ÒpatternsÓ in the
distribution of digits. The simulation results that we present in the next sections are not sensitive to the
values of the parameters so we only show the results for µ = 0.025/100 and σa = 0.80/100 (in line with the
statistics shown on table 2) and q0 = 250 (since it was approximately the level of the djia at the beginning
of our sample).
It is important to recognize that we are not claiming that a Geometric Random Walk is a good model

for the djia. We know that it can be improved upon. We are simply claiming that if an extremely simple
model like (1) can reproduce the observed anomalities displayed by the actual djia, then we do not have
any reason to believe that these anomalities are evidence of market inefÞciencyÑthey could easily be due
to chance alone.

4.1. Simulation Results

We applied a χ2 test for a uniform distribution of tenÕs digit to these 500 series of 10,000 observations. At
a 5% signiÞcance level we rejected the uniform distribution hypothesis 98.4% of the time. Even though
the simulated returns follow a random walk by construction, the tenÕs digit is distributed in a decidedly
non-uniformway! Apparently the observed ÒpatternÓ in the distribution of the tenÕs digit could easily arise
if the djia followed a pure random walk.

Table 5. Observed distribution of pi· in the simulations.
Quantiles Observed

i Mean Std Dev DJIA
95% 75% Median 25% 5% pi·

0 11.69 10.62 9.81 9.05 7.90 9.82 1.17 9.85

1 12.07 10.54 9.74 8.98 7.81 9.79 1.23 9.46

2 11.96 10.55 9.82 9.03 7.85 9.85 1.23 9.53

3 12.50 10.65 9.95 9.18 8.10 10.03 1.27 9.78

4 13.86 10.93 10.10 9.34 8.26 10.18 1.25 9.56

5 12.54 11.04 10.18 9.42 8.29 10.25 1.28 9.48

6 12.25 10.92 10.15 9.35 8.24 10.18 1.23 10.50

7 12.18 10.89 9.98 9.24 8.16 10.08 1.22 11.68

8 11.90 10.75 9.93 9.24 7.95 9.96 1.19 10.74

9 11.94 10.58 9.86 9.08 7.99 9.87 1.15 9.41

What about the high excess return when the djia closes in the 90Õs? Could this be the result of chance
alone? We have already shown that we can reject the hypothesis that the mean return conditioned on decile

5 The routines ran1 and gasdev from Press et al. (1986), pp. 714Ð16, were used to generate the Normal variates.
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is the same for all deciles andwe saw earlier that the return when the djia lands in the 90Õs is ÒsigniÞcantlyÓ
greater than when it lands elsewhere.
However, it is not obvious that this is the correct comparison. The one-day expected (i.e., mean) returns

conditioned on closing digits of the djia comprise a set of 10 random numbers. In our sample, the largest of
these numbers was the one associated with closing prices in the 90Õs andwe showed that this was unusually
large compared to average return. But of course it is unusually largeÑwe performed this test precisely
because the return in the 90Õs was the largest return! The relevant sampling distribution to use is not the
distribution of the average return, but rather the distribution of the maximum of the 10 conditional returns.
It is not difÞcult to compute this distribution. Let f(r) be a probability density for the one-day return.

Draw 10,000 realizations of r and compute the mean one-day returns by decile. Look at the value of the
maximum of these ten numbers. Now repeat this 500 times and plot the distribution of this maximum. This
is the relevant sampling distribution with which to compare the Òunusually largeÓ return of 0.0894.
We performed this experiment using two different choices for the density f(r). One was the Normal

distribution used in the previous section. The other was the actual frequency distribution of one-day
returns. The use of the frequency distribution is essentially a bootstrap method; see Efron and Tibshirani
(1986) for discussion of this statistical technique. We used a bootstrap method because it is well-known that
the distribution of one-day returns has fatter tails than a Normal distribution, andwewere worried that this
would affect the distribution of our test statistic.
Table 6 shows the distribution of themaximum of themean simulated returns when the underlying return

is taken to be drawn from the Normal distribution and the empirical distribution.

Table 6. Distribution of the maxima of the means by digit from simulation (N = 500).

Quantiles Normal Empirical

5% 0.0565 0.0558

10% 0.0604 0.0590

25% 0.0667 0.0654

50% 0.0742 0.0731

75% 0.0842 0.0826

90% 0.0934 0.0919

95% 0.0989 0.0982

Mean 0.0756 0.0745

Std Err 0.0006 0.0006

Variance 0.0002 0.0002

A remarkable feature of table 6 is that both distributionsÑNormal and empiricalÑ are very similar. This
occurs despite the fact that the observed distribution of returns from which weÕre sampling is clearly non-
Normal. Figure 2 shows a Normal probability graph for the observed returns on the djiaÑ the sampled
distribution on the horizontal axis and the standard normal on the vertical one.6 It is evident that the
distribution of returns is very leptokurtic. (The empirical distribution has a bigger mass until somewhere
between 1.5 and 2 standard deviations from the mean; after that point, the normal has a higher mass in any
symmetric interval from the mean.) Apparently the symmetry and the large number of observations are
more powerful than the fat tails. In other words, the central limit theorem is at work; at least in this instance
a test based on Normal sampling theory is a valid tool, despite the fact that the returns are not Normally
distributed.
Table 2 showed that the mean return when the djia ended in the 90Õs was 0.0894. Table 6 shows that

a value smaller than this will be observed about 86% of the time. This means that the observed return of
0.0894 is not signiÞcant at the the conventional levels of statistical signiÞcance. Remember that this mean
return is computed using a sample of about ten thousand observations. A test that is not signiÞcant with

6 In a normal probability graph we have values from the sample and from the normal distribution paired by fractiles. If the sampled
values had been generated by a normal distribution, weÕd expect to see a straight line. Formal statistical tests can be based on the
correlation coefÞcient between the two series.

7



this many observations must be considered relatively weak evidence against the null hypothesis. Coupled
with the fact that the 90Õs decile did not have unusually high returns in our four subsamples, we have little
conÞdence that the closing prices of djia provide much predictive power for future returns.
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Fig. 2. Normal probability graph for the djia return.

Donaldson and Kim (1991) independently examined the question of market efÞciency using regression
analysis. They found no signiÞcant relationship between the returns in period t and the last two-digits of
the closing price in period t− 1. They conclude that Ò. . . knowing what value the djia closed yesterday . . .
does not help predict the return Rt for today.Ó This is certainly consistent with our Þndings. However, our
Þndings are considerably stronger: the Donaldson-Kim regression analysis assumes a linear relationship
between closing prices and next-day returns, while our analysis allows for an arbitrary relationship.

5. Conclusion

In our initial investigationwe found that the distribution of theDow-JonesÕ digitswas decided non-uniform,
and that the mean return conditional on ending in the ninth decile was three times as large as the mean
return elsewhere. We then asked whether this evidence was signiÞcant in the statistical sense.
First we showed that the phenomenon was not robust in subsamples: the mean return varies with the

closing decile, but in a decidedly non-uniform way. When we looked at the data from a simulated random-
walk model we found that it looked very much like the actual data: the distribution of the closing decile is
simply not uniform. The observed distribution of closing values of the djia does not appear to be unusual
compared to the distribution resulting from a geometric random walk.
We then examined the distribution of the returns. Although we could easily reject the hypothesis that

the returns were the same for each decile, which return was largest seems to vary with the sample. The
observed mean return of 0.0894 was large compared to the average return, but it was not signiÞcant at
the usual conÞdence level using the distribution of the maximum of the returns in the ten deciles. Our
conclusion from all this is that, contrary to initial impressions, there is little if any predictive power in the
closing values of the djia.
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