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1 Introduction

In this survey we discuss the application of some nonparametric techniques to time series.

There is indeed a long tradition in applying nonparametric methods in time series analysis,

and this holds not only true for certain test situations, as, e.g. runs tests for randomness

of a stochastic sequence, permutation tests or certain rank tests.

An old and established technique in time series analysis is periodogramme analysis. Alt-

hough the periodogramme is an asymptotically unbiased estimate of the spectral density

of an underlying stationary process, it is well known that it is not consistent. Therefore

already in the early �fties smoothing the periodogramme directly with a so-called spectral

window or using a system of weights, according to a lag window with which the empirical

autocovariances are multiplied in the calculation of the Fourier transform, was introdu-

ced. Quite a number of di�erent windows were proposed and with respect to the window

width similar rules hold for achieving consistent estimates as the ones we will shortly dis-

cuss in the context of nonparametric regression later in this text. Nonparametric spectral

estimation is extensively treated in many textbooks on time series analysis to which the

interested reader is refered. Hence it will not be treated further in this survey.

Another area, where nonparametric ideas are being applied since a long time is smoothing

and decomposing seasonal time series. Local polynomial regression can be traced back

to 1931 (R.R. Macaulay). A. Fisher (1937) and H.L. Jones (1943) discussed a local least

squares �t under the side condition that a locally constant periodic function (for model-

ling seasonal uctuations) be annihilated and already in 1960 J. Bongard developped a

uni�ed principle for treating the interior and the boundary part (with and without sea-

sonal variations) of a time series derived from a local regression approach. These ideas

will be taken up later again in section 8, since they represent an attractive alternative to

smoothing and seasonal decomposition procedures based on linear time series models.

The aim of this survey is to present some basic concepts of nonparametric regression in-

cluding locally weighted regression with the special emphasis on their application to time

series. Nonparametric regression has become an area with an abundance in new metho-

dological proposals and developments in recent years. It is not the intention of this paper

to give a comprehensive overview on the subject. We rather want to concentrate on the

basic ideas only. The reader interested in some di�erent aspects may be refered to a survey

paper by H�ardle, L�utkepohl and Chen (1997), where more speci�c areas, proposals and

further references can be found.

The ARMA model is a typical linear time series model. Threshold autoregression (TAR)

models and its variates are speci�c types of nonlinear models. ARCH and GARCH type

models are also of a very speci�c nonlinear type to capture volatility phenomena. In con-

trast to that in nonparametric regression no assumption is made about the form of the

regression function. Only some smoothness conditions are required. The complexity of the

model will be determined completely by the data. One lets the data speak for themselves.
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Thereby one avoids subjectivity in selecting a speci�c parametric model. But the gain in

exibility has a price. One has to choose bandwidths. We come back to this later. Besides

this, a higher complexity in the mathematical argumentation is involved. However, asym-

ptotic considerations will not be discussed in detail in this survey.

Because of their exibility nonparametric regression techniques may serve as a �rst step

in the process of �nding an adequate parametric model. If no such one can be found which

describes the underlying structure adequately, then the results of nonparametric estima-

tion may be used directly for forecasting or for describing the characteristics of the time

series.

2 Nonparametric regression

Since forecasting is an important objective of many time series analyses, estimating the

conditional distribution, or some of its characteristics play a considerable role. For point

prediction the conditional mean or median is of particular interest. In order to obtain

con�dence or prediction intervals also estimates of conditional variances or conditional

quantiles are needed. The latter ones are also of interest in studying volatility in �nancial

time series.

The �rst step to go is therefore to look at nonparametric estimation of densities and condi-

tional densities. Let x 2 IR be a random variable whose distribution has a density f and

let x1; : : : ; xn be a random sample from x . Then a kernel density estimator for f is

given by

fn(x) =
1

nhn

nX
i=1

K
�
xi � x

hn

�
: (2.1)

Here K is a so-called kernel function, i.e. a symmetric density assigning weights to

the observations xi which decrease with the distance between x and xi. Some popu-

lar kernel functions are listed in Table 2.1 and exhibited in Figure 2.1. The �rst 5 have

the interval [�1; 1] as support, whereas the Gaussian kernel has in�nite support. hn is

the bandwidth which drives the size of the local neighbourhood being included in the

estimation of f at x . The bandwidth depends on the sample size n and has to ful�l

hn ! 0 and nhn !1 for n!1 as necessary condition for consistency. But for prac-

tical applications this asymptotic condition is not very helpful. A very small bandwidth

will lead to a wiggly course of the estimated density, whereas a large bandwidth yields a

smooth course but will possibly atten out interesting details. Bandwidth selection will
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be dealt with in section 7.

A kn � nearest neighbour (kn �NN) estimator of f is obtained by substituting the

Table 2.1: Selected kernel functions

Name Kernel

Uniform 1
2
1I[�1;1](u)

Triangle (1� juj)1I[�1;1](u)
Epanechnikov 3

4
(1� u2)1I[�1;1](u)

Bisquare 15
16 (1� 2u2 + u4)1I[�1;1](u)

Triweight 35
32

(1� 3u2 + 3u4 � u6)1I[�1;1](u)
Gaussian 1p

2�
exp(�1

2
u2)

�xed bandwidth hn in (2.1) by the random variable Hn;kn(x) measuring the distance

between x and the kn-nearest observation among the xi; i = 1; : : : ; n:

Nearest neighbour estimators have the property that the number of observations used for

the local approach is �xed. This is an advantage if the x-space shows a greatly unbalanced

design. On the other hand the bias varies from point to point due to the variable local

bandwidth.

For x 2 IR
p a kernel K : IRp ! IR is needed in (2.1). In this case either product kernels

K(u) =
dY

j=1

Kj(uj)

with kernels Kj and Kj : IR ! IR, bandwidth hj in coordinate j, and hn = h1 �: : :�hp or

norm kernels

K(u) = K (jjujj)

with a suitable norm on IR
p are used. In connection with time series applications fre-

quently product kernels are applied,

fn(x) =
1

n

nX
i=1

pY
j=1

1

hj
Kj

 
xij � xj
hj

!
(2.2)

and hj = �̂j �h with an estimated standard deviation in the j-th coordinate is a popular

choice for the bandwidths.

Let now (y; x) with y 2 IR; x 2 IR
p be a random vector with joint density f(y; x) and

let fX(x) be the marginal density of x. Then the conditional density g(yjx) =

f(y; x)=fX(x) can be estimated by inserting a kernel density estimator or a corresponding
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Figure 2.1. Some popular kernel functions in practice

nearest neighbourhood estimator in the nominator and denominator of g(yjx). With the

choice of a kernel function

K = IR
p+1 ! IR; K(y; x) = K1(y)K(x)

and bandwidths h1 resp. h we obtain the kernel estimator for the conditional density

gn(yjx) =
h�11

nP
i=1

K1

�
yi�y
h1

�
K
�
xi�x
h

�
nP
i=1

K
�
xi�x
h

� : (2.3)

An estimator for the conditional mean m(x) =
1R
�1

yg(yjx)dy is obtained when we replace
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g in the integral by its estmator gn. For K1 being a symmetric density this immediately

yields

mn(x) =

nP
i=1

yiK
�
x�xi
h

�
nP
i=1

K
�
x�xi
h

� : (2.4)

This is the well-knownNadaraya-Watson nonparametric regression estimator (NW-estimator,

Nadaraya, 1964; Watson, 1964). We see that it can be written as a weighted mean

mn(x) =
nX
i=1

yiwn;i(x;x1; : : : ; xn); (2.5)

where the random weights depend on the point x and the random variables x1; : : : ; xn.

Apart from conditional means also conditional quantiles are of interest in various time

series applications. Let

F (yjx) =

yZ
�1

g(yjx)dy (2.6)

denote the conditional distribution function of y given x. Then the conditional �-

quantile at x; q�(x) is de�ned as

q�(x) = inffy 2 IRjF (yjx) � �g; 0 < � < 1: (2.7)

If g(�jx) is strictly positive, then of course q�(x) is the unique solution of F (yjx) = �,

i.e. q�(x) = F�1(�jx). One possible procedure for estimating q� is to take the empirical

�-quantile of an estimator Fn = (�jx) according to (2.7).

Let F1(z) =
zR

�1
K1(u)du be the distribution function pertaining to the kernel K1. Then

the estimated conditional distribution, obtained by integrating gn(�jx) from �1 to y,

is given by

Fn(yjx) =

nP
i=1

K
�
xi�x
h

�
F1

�
y�yi
h1

�
nP
i=1

K
�
xi�x
h

� : (2.8)
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Let us assume that K1 has support [�1; 1]. Then we have

F1

�
y � yi
h1

�
=

(
1 ; for yi � y � h1
0 ; for yi � y + h1

;

so that in this case

Fn(yjx) =
1

nP
i=1

K
�
xi�x
h

�
(

nX
i=1

1(�1;y�h1 ](yi)K
�
xi � x

h

�

+
nX
i=1

1(y�h1;y+h1)(yi)F1

�
y � yi
h1

�
K
�
xi � x

h

�)
: (2.9)

One can see that the estimation contains only observations in the regressor space laying

in a band around x. The �rst sum on the right hand side includes observations, whose

y-values are less than or equal to y � h1. The second sum contains observations with

yi-values in a neighbourhood of y. In contrast to a usual empirical distribution function

here also observations greater than y obtain a positive weight.

Of particular interest may be the median regression function q1=2 for asymmetric distri-

butions as an alternative to ordinary regression based on the mean. Another interesting

application may be the estimation of q�=2 and q1��=2 in order to get predictive intervals.

These can be compared with intervals obtained from parametric models, which lack the

possibility to evaluate the bias due to mis-speci�cation of the model.

Taking some boundary corrections into account, for a not too unbalanced design the se-

cond sum in (2.9) can be approximated by
nP
i=1

1(y�h1 ;y]K
�
xi�x
h

�
, so that the conditional

distribution function is estimated by

~Fn(yjx) =

nP
i=1

1(�1;y](yi)K
�
xi�x
h

�
nP
i=1

K
�
xi�x
h

� : (2.10)

This estimator was for x 2 IR considered by Horvath and Yandell (1988) who proved

asymptotic results for the i.i.d. case. Abberger (1996) derives from (2.10) the empirical

quantile function

qn;�(x) = inffy 2 IRj ~Fn(yjx) � �g ; 0 < � < 1 (2.11)
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and investigates the behaviour of ~Fn and qn;� in applications to stationary time series.

3 Kernel estimation in time series

When a kernel- or NN -estimator is applied to dependent data, as it is the case in time

series, then it is e�ected only by the dependence among the observations in a small window

and not by that between all data. This fact reduces the dependence between the estimates,

so that many of the techniques developed for independent data can be applied in these

cases as well. This fact was called the whitening by windowing principle by Hart (1996).

A typical situation for an application to a time series fztg is that the regressor vector

x consists of past time series values

xt = (zt�1; : : : ; zt�p); (3.1)

which leads to the very general nonparametric autoregression model

zt = m(zt�1; : : : ; zt�p) + at; t = p + 1; p + 2; : : : (3.2)

with fatg a white noise sequence. Of course xt might also include time series values of

other predictive variables like leading indicators.

An indispensable requirement for proving asymptotic properties of kernel estimates in this

and related situations is that the underlying processes are stationary. Another condition

is that the memory of these underlying processes decreases with distance between events

and that the rate of decay can be estimated from above by so-called mixing conditions.

So-called strong mixing conditions are used by Robinson (1983, 1986). Collomb (1984,

1985) worked with so-called �-or uniform mixing conditions.

We will not present these fairly complicated asymptotic considerations here. But we would

like to remark that these mixing conditions are hard to check in practice.

In contrast to linear autoregressive models of the form zt = �1zt�1+ : : :+�pzt�p+at; and
in a certain sense also to threshold autoregression where the autoregressive parameters

vary according to some threshold variable the model (3.2) is more general and exible

and its estimation may lead to insights which can be helpful in choosing an appropriate

parametric (possibly nonlinear) model afterwards.
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For x 2 IR
p; xt as in (3.1) and weights

wn;t = K
�
xt � x

h

�
=

nX
s=p+1

K
�
xs � x

h

�

the Nadaraya-Watson estimator in model (3.2) is given by

mn(x) =
nX

s=p+1

ztwn;t(x): (3.3)

For x equal to the last observed pattern, x = (zn; zn�1; : : : ; zn�p+1)0 this provides a

one-step ahead predictor for zn+1 which allows a very intuitive interpretation. Given the

course of the time series observed over the last p instants, the predictor is a weighted

mean of all those time series values in the past, which followed a course pattern that is

similar to the last observed one. The weights depend on how close the pattern observed

in the past comes to the pattern given by (xn; : : : ; xn�p+1)0.
A k-step ahead predictor is given if zt in (3.3) is replaced by zt�k+1:

mn;k =
n�k+1X
t=p+1

zt+k�1wn;t(x) ; k = 1; 2; : : : : (3.4)

This predictor does not use the variables zn+1; : : : ; zn+k, which are unknown, but may con-

tain information about the conditional expection E(zn+kj(zn; : : : ; zn�p+1)0). They might

be replaced by estimates in a multistep procedure which consists in a succession of one-

step ahead forecasts. This procedure can lead to a smaller mean squared error than the

multistep procedure (3.4). For a di�erent proposal see Chen (1996).

Up to now we have only considered the autoregressive case where the regressor vector

contains past time series values. The case of vector autoregression, where for each indi-

vidual (scalar) time series also past values of related time series or leading indicators are

included in the regression vector, can be treated in a similar way as nonparametric auto-

regression, although the number of components in x is restricted due to the "curse of

dimensionality", to which we come back later.

If the regressor vector xt = (zt�1; : : : ; zt�p)0 is used in estimating conditional distribution

functions and conditional quantiles, as e.g. in (2.10) and (2.11), then we arrive at quantile

autoregression. The median autoregression qn;1=2 may serve as an alternative to the mean

autoregression (3.3). In �nancial data one is often interested in the behaviour of quantiles

in the tails. For instance the value at risk of a certain asset is measured by looking at

low quantiles (� = 0:01 or � = 0:05) of the conditional distribution of the corresponding

series of returns.
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Abberger (1996) applied quantile autoregression to time series of daily stock returns. In

order to assess such models forecast error cannot serve as a criterion, since quantiles are

not observable. Abberger proposed the criterion

�� = 1�
nX
t=1

�� (zt � q�(xt)) =
nX
t=1

�� (zt � q�) ; (3.5)

where

��(u) = �1[0;1)(u)u+ (�� 1)1(�1;0)(u)u (3.6)

is the loss function introduced by Koenker and Basset (1978) in their seminal paper on

quantile regression and q� is the unconditional �-quantile of the corresponding distri-

bution.

�� is constructed according to the R2-criterion in ordinary regression. It assumes va-

lues between zero and one, where �� = 0 if q�(xt) = q� for all xt and �� = 1 if

zt = q�(xt) for all t and all � , i.e. if the distribution of fzjxg is a one-point distribution.

The following Figure 3.1 and Table 3.1 illustrate the behaviour of �� with a simulated

conical data set of 500 observations.

The observations are heteroscedastic and have mean zero. The correlation between x and

y is �0:002. In Table 3.1 empirical ��-values for di�erent � are exhibited. They are

calculated by replacing in (3.5) q�(xt) by its kernel estimator qn;�(xt) and q� by the

empirical unconditional quantile of the �rst t�1 data values z1; : : : ; zt�1. The latter can
be interpreted as a naive forecast of q�(xt).

The �ndings of Abberger (1996, 1997) for several German stock returns were �� -values

close to zero for the median and increasing in a U -shaped form towards the boundary

areas around � = 0:01 respectively � = 0:99.

ARCH- and GARCH models represent a very speci�c kind of parametric modeling for stu-

dying the phenomenon of volatility. A exible alternative to the combination of an ARMA-

Table 3.1. ��-values for the data in Figure 3.1

� 0.01 0.05 0.10 0.25 0.50 0.75 0.90 0.95 0.99

�� 0.43 0.36 0.27 0.10 0.01 0.11 0.26 0.34 0.41

model with ARCH- or GARCH-residuals is given by the conditional heteroscedastic autoregressive

) model
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Figure 3.1. Simulated heteroskedastic data, n=500

zt = m(xt) + �(xt)�t; (3.7)

studied by H�ardle and Yang (1996) or H�ardle, Tsybakov and Yang (1997). Here xt =

(zt�1; : : : ; zt�p)0 is again the autoregressive vector (3.1), �t is a random variable with

mean zero and variance one. �2(x) is called the volatilityfunction. Given an estimator

for m , e. g. the NW-estimator mn according to (3.3), it was suggested that �2(x) can

be estimated by

�2
n(xt) = gn(xt)�m2

n(xt); (3.8)

where

gn(x) =

nP
t=1

K
�
xt�x
h

�
z2t

nP
t=1

K
�
xt�x
h

� =
nX
t=1

z2twn;t(x): (3.9)

Since the estimator (3.8) is based on a di�erence, it can happen that from time to time a

negative variance estimator results. This can be avoided if the volatility function is estima-

ted on the basis of residuals. See (7.10), the discussion there and Feng and Heiler (1998a).
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In the context of time series analysis not only past values of the time series itself or of

related series may occur as regressor variables, but also the time index itself, in which case

xt = t , or some functions of the time index like polynomials or trigonometric functions.

This leads to smoothing approaches. In the case m(xt) = m(t) the NW estimator at

t consists in a weighted mean of the time series values in a neighbourhood [t�h; t+h] of

zt with nonrandom weights. Polynomials and trigonometric functions in t are used in

decomposing a seasonal time series into trend- cyclical and seasonal components according

to an unobserved components model. This application will be studied in section 8 after

the discussion of locally weighted regression.

In the area of quantile estimation the regressor xt = t leads to quantile smoothing.

This technique was used by Abberger (1996, 1997) in order to compare the results of

a nonparametric procedure for stock returns with those of a GARCH-model, evalua-

ted with an S{Plus package under the standard assumption of an underlying Gaussi-

an distribution. As an example we take daily discrete DAX returns, de�ned as zt =

(pricet � pricet�1)=pricet�1, exhibited in Figure 3.2.

Since the Gaussian distribution is completely determined by mean and variance, conditio-

nal quantiles can easily be calculated from the outcomes of the GARCH model estimation.

The results are depicted in Figure 3.3 and 3.4 for the lower and upper quartiles and for the

0:1 and 0:9 quantiles, respectively. Two messages can be learned from the results. The

�rst is that the asymmetric behaviour of volatility, which is revealed by the nonparametric

approach, will remain completely hidden by the choice of a wrong parametric model which

is being o�ered as the default option by the package. In the presented example, which is

not untypical for stock returns, volatility is a phenomenon which has mainly to do with

movements in the lower tails of the conditional distributions. The second �nding in the

�gures is that kernel smoothing is very robust towards aberrant and erratic observations

in the course of the time series, whereas GARCH models react very sensitively to them.
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Figure 3.2 Time series of daily DAX returns from Jan. 2, 1986 to Aug. 13, 1991
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Figure 3.3 Estimation of 0.25- and 0.75-quantiles of daily DAX returns

4 Problems of simple kernel estimation and restricted

approaches

The nonparametric approaches we have treated so far su�er from two drawbacks. One is

the so-called "curse of dimensionality", the other is increased bias in cases of a highly-

clustered design density and particularly at the boundaries of the x-space. Curse of dimen-

sionality describes the fact that in higher dimensional regression problems the subspace

of IR
p+1 spanned by the data is rather empty, i.e., there are only few observations in the

neighbourhood of a point x 2 IR
p . In practice this happens to be the case already for

p > 2 .

Several proposals have been made to cope with the curse of dimensionality problem. We

will describe only two of them very shortly. The �rst consists in decomposing IR
p into a

class of J disjoint course patterns, Aj; j = 1; : : : ; J with the aid of a non-hierarchical

cluster analysis. These J disjoint sets serve then as the states of a homogeneous Markov

chain. In the model

m(xt) = E[ztjxt 2 Aj] for xt 2 Aj; j = 1; : : : ; J
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Figure 3.4 Estimation of 0.10- and 0.90-quantiles of daily DAX returns

with xt being the autoregressive vector (3.1) m is estimated by

mn(xt) = N�1
j

nX
s=1

zs1Aj
(xs);

where Nj is the number of course patterns of length p from the time series in Aj . Here

the estimator is an unweighted mean of all values following courses in pattern class Aj .

Markov chain models of this type were �rst used by S. Yakowitz (1979b) for analysing time

series of water runo� in rivers. Asymptotic properties for this type of model are discussed

by Collomb (1980, 1983).

Gouriroux and Montfort (1992) examined a corresponding model for economic time series

by incorporating volatility. They called their model

zt =
JX

j=1

�j1Aj
(xt) +

JX
j=1

�j1Aj
(xt)�t

a qualitative threshold ARCH model.

Another proposal in order to cope with the curse of dimensionality is given by the so-called

generalized additive models, studied by Hastie and Tibshirani (1990), which are de�ned
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as

zt = m0 +
pX

j=1

mj(zt�ij) + at:

The components mj are again of a general form. For estimation so-called back�tting al-

gorithms such as the alternating conditional expectation algorithm (ACE) of Breiman and

Friedman (1985) or the BRUTO algorithm of Hastie and Tibshirani (1990) may be used.

The main idea of back�tting goes as follows. In the above model E[zt�m0�
P
j 6=k

mj(zt�ij)] =

mk(zt�ik): Hence the variable in square brackets can be used to obtain a nonparametric

estimate for mk(zt�ik) . But of course, the other mj are unknown as well, so that the

estimation procedure has to be iterated until all the mn;j converge. For a more detai-

led study of generalized additive models the reader is refered to the book of Hastie and

Tibshirani as well as to the two interesting papers by Chen and Tsay in JASA (1993). For

further discussion and other approaches see also H�ardle, L�utkepohl and Chen (1997).

Quite a few proposals can be found in the literature dealing with the bias problem of NW-

estimators close to the boundary and in cases of an unbalanced design in the x-space.

Gasser and M�uller (1979, 1984) suggested for the case p = 1 a system of variable weights,

Gasser, M�uller and Mammitzsch (1985) developed asymmetric boundary kernels and Mes-

ser and Goldstein (1993) suggested variable kernels which automatically get deformed and

thus reduce the bias in the boundary area.

Yang (1981) and Stute (1984) suggested a symmetrized k �NN estimator and Michels

(1992) proposed boundary kernels for bias reduction which can be carried over to the

case p > 1 . We do not discuss the above mentioned proposals in more detail since the

mentioned disadvantages can be repaired by using locally weighted regression.

5 Locally weighted regression

Locally weighted respectively local polynomial regression was introduced into the stati-

stical literature by Stone (1977) and Cleveland (1979). The statistical properties were

investigated since then in papers by Tsybakov (1986), Fan (1993), Fan and Gijbels (1992,

1995), Ruppert and Wand (1994) and many others. A detailed description may be found

in the book of Fan and Gijbels (1996).

For the sake of simplicity we start with the assumption that the regressor x is a scalar.

For a better understanding we regard the data as being generated by a location-scale model

y = m(x) + �(x)� (5.1)
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akin to the one considered in (3.7), where the � are independent with E(�) = 0; V ar(�) =

1 and m(x0) = E(yjx = x0). m is assumed to be smooth in the sense that the (p+1)th

derivative exists at x0, so that it can be expanded in a Taylor series around x0 .

m(x) = m(x0) + (x� x0)m
0(x0) + : : :+ (x� x0)

rm
(r)(x0)

r!
+Rr(x) (5.2)

with the remainder term

Rr(x) = (x� x0)
r+1m(r+1)

�
x0 + �(x� x0)

�
=(r � 1)!; 0 < � < 1: (5.3)

With

�j(x0) = m(j)(x0)=j!; j = 0; 1; : : : ; r (5.4)

we arrive at a local polynomial representation for m,

m(x) �
rX

j=0

�j(x0)(x� x0)
j: (5.5)

This approach motivates the nonparametric estimation of m as a local polynomial by

solving the least squares problem

min
�2IRr+1

8><>:
nX
i=1

24yi � rX
j=0

(xi � x)j�j

352K �
xi � x

h

�9>=>; :
With the design matrix Xx having the n rows [1; xi � x; : : : ; (xi � x)r], the diagonal

weight matrix Wx = diag
�
K(xi�x

h
)
�

and the vector y = (y1; : : : ; yn)0 the solutions at

x is given by

�̂(x) = (X 0
xWxXx)

�1X 0
xWxy; (5.6)

and with ej being the j-th unit vector in IR
r+1 we see immediately that
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m̂(x) = �̂0 = e01(X
0
xWxXx)

�1X 0
xWxy; (5.7)

and that with

m̂(j)(x) = �̂j(x)j! = j!e0j+1(XxWxXx)
�1X 0

xWxy; j = 1; : : : ; r (5.8)

an estimator for the j-th derivative of m is given.

The case r = 0 yields the Nadaraya-Watson estimator (3.3).

Let u = (rr(x1))ni=1 be the residual vector containing the remainder terms according to

(5.3) at the data points. Then the conditional bias of �̂(x) is given by

B
�
�̂(x)

�
= (X 0

xWxXx)
�1X 0

xWxu;

and with �x = W (x)2diag
�
�2(xi)

�
its conditional covariance

matrix is

V ar
�
�̂(x)

�
= (X 0

xWxXx)
�1(X 0

x�xXx)(X
0
xWxXx)

�1:

The above two expressions cannot be used directly since they contain the unknown vector

u of remainder terms and the unknown diagonal matrix �x:

A �rst order asymptotic expansion of the variance and the bias term uses the moments of

K and K2 , denoted by

�j =
Z
ujK(u)du and �j =

Z
ujK2(u)du;

which are contained in the matrices

S = (�j+l)0�j;l�r; ~S = (�j+l+1)0�j;l�r; S� = (�j�l)0�j;l�r

and the vectors cr = (�r+1; : : : �2r+1); ~cr = (�r+2; : : : ; �2r+2): For an i. i. d. sam-

ple (y1; x1); : : : ; (yn; xn) with the marginal density f(x) > 0 and with f;m(r+1) and
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�2 continous in a neighbourhood of x we obtain for h �! 0 and nhn �! 1 the

asymptotic conditional variance

V ar
�
m̂(j)(x)

�
= e0j+1S

�1S�S�1ej+1
(j!)2�2(x)

f(x)nh1+2j
+ op

� 1

nh1+2j

�
: (5.9)

For the asymptotic conditional bias we have to distinguish between the cases where r�j is

odd and where r � j is even.

For r � j odd we have

Bias
�
m̂(j)(x)

�
= e0j+1S

�1cr
j!

(r + 1)!
m(r+1)(x)hr+1�j + op(h

r+1�j): (5.10)

For (r � j) even the asymptotic bias is

Bias
�
m̂(j)(x)

�
= e0j+1S

�1 ~cr
j!

(r + 2)!
�

n
m(r+2)(x) + (r + 2)m(r+1)(x)

f 0(x)
f(x)

o
hr+2�j + op(h

r+2�j); (5.11)

provided that f 0 and m(r+2) are continuous in a neighbourhood of x and nh3 �!1: As

a very interesting fact we notice the di�erence in asymptotic bias between r� j odd and

r � j even. For instance we have for the NW-estimator (r = 0; j = 0) ,

B(mn(x)) = h2[m00(x)=2 +m0f 0(x)=f(x)]�2 + op(h
2);

whereas for the local linear approach we obtain

B(m̂(x)) = h2m00(x)�2=2 + op(h
2):

We see that the bias of the local linear estimator has a simpler structure. The linear term

in the bias expansion vanishes, whereas the expression for the variance is the same in both

cases and given by �0�
2(x)=nh: The bias of the NW-estimator does not only depend on

m0 , but also on the score function �f 0=f . This is the reason why an unbalanced design

leads to an increased bias.

Similar considerations hold for higher order polynomials. In practice this means that for
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estimating m it is su�cient to consider r = 1 or r = 3; and for m0 only r = 2 or

r = 4 should be considered. In many applications r = j + 1 su�ces. Fitting a higher

order polynomial will possibly reduce the bias, but on the other hand the variance will

increase since more parameters have to be estimated locally.

If the regressor x is a vector rather than a scalar in most cases a local linear approach

is chosen since in this case the step from r = 1 to r = 3 leads to strong increase of

parameters to be estimated locally which entails an inacceptable increase in variance.

Since

�̂j(x) = e0j+1�̂ = e0j+1(X
0
xWxXx)

�1X 0
xWxy =

nX
i=1

wj
ni

�xi � x

h

�
yi (5.12)

for estimating �j(x) = m(j)(x)=j! we have a similar expression as a weighted mean like for

the NW-estimator (3.3). The weights depend on the observations xi and on the location

of x in the design space.

It can be seen easily that the weights wj
ni(ut) = wj

ni

�
xi�xo
nh

�
satisfy the discrete moment

conditions

nX
i=1

�
xi � x

�q
wj
ni

�xi � x

h

�
= �jq with 0 � j; q � r:

As a consequence of this the sample bias for estimating a polynomial with degree less than

or equal to r is zero.

The variance of m̂(j)(x) is given by

V ar
�
m̂(j)(x)

�
=

nX
i=1

wj
ni

�xi � x

h

�2
�2(xi):

The kernel with the weights wj
ni(ut) is called the active kernel.

A �rst order approximation to the wj
ni is given if (X 0

xWxXx) is replaced by the kernel

moments matrix S .

The according kernel

~K(j)(u) = e0j+1S
�1(1; u; : : : ; ur)0K(u) (5.13)
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is called the equivalent kernel. It satis�es the corresponding moment conditions

Z
uq ~K(j)(u)du = �jq 0 � j; q � r: (5.14)

For instance, for the case r = 1; j = 0 we have ~K(u) = K(u); and for r = 2; j = 1 (esti-

mation of m0) ~K(1)(u) = ��12 uK(u): This means that for estimating m itself in the

interior of the x-space the e�ective kernel is equal to the chosen symmetric kernel function

itself whereas for estimating the �rst derivative ~K(1) is a skew function. As a general

result ~K(j) is symmetric for j even and skew for j odd.

In terms of equivalent kernels the asymptotic conditional variance and the asymptotic

conditional bias (for r � j odd) are

V ar
�
m̂(j)(x)

�
=

(j!)2�2(x)

f(x)nh1+2j

Z
~K(j)2(u)du+ op(nh

�1�2j); (5.15)

Bias
�
m̂(j)(x)

�
=

j!

(r + 1)!
m(r+1)(x)hr+1�j

Z
ur+1 ~K(j)(u)du+ op(h

�r�1+j): (5.16)

The big advantage of local polynomial regression over other smoothing methods consists

in the automatic adaptation of the active resp. equivalent kernel to the estimation si-

tuation in the boundary area. If x is scalar and x� = min(xi); x� = max(xi); then

for a given bandwith h the interior of the x-space is given by all observations in the

interval
h
x� + h; x� � h

i
: For all x in this interval the equivalent kernels ~K(j) ha-

ve the above mentioned symmetry resp. asymmetry property. In the left boundary parth
x�; x�+ h

i
the number of left neighbours in a local neighbourhood of a point x will be

small compared to the number of right neighbours and for x = x� we have only right neigh-

bours. Corresponding considerations hold for the right boundary part
h
x� � h; x�

i
: For

x 2 IR
p; (p > 1) the boundary area will often cover an important part of the whole design

space. For (r � j) odd the active resp. equivalent kernels automatically adapt to the

skew data situation in the boundary area. The situation in the right boundary area is

illustrated in Figure 5.1 for the Epanechnikov kernel K(u) = 3
4(1 � u2)+ for a local li-

near estimation of m (r = 1; j = 0) and a local quadratic estimation of m0 (r = 2; j = 1):

We see how the weighting systems get deformed towards the boundary. The pictures for

the left boundary area are symmetric to those in Figure 5.1. Since the size of the local

neighbourhood shrinks towards the boundary the bias part of the mean squared error

(MSE) will be lower in the boundary area than in the interior. On the other hand the

variance part will increase since less observations are included in the local estimation and
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Figure 5.1 Active kernels derived from the Epanechnikov kernel with nh = 30 at the

right boundary for (a) r = 1; j = 0 and (b) r = 2; j = 1: Estimation at interior points

(short dashes), at x = x� � 15 (dashes and points), at x� � 6 (long dashes) and at the

boundary point x� (solid line).

also due to the increasing deformation of the weighting system towards the boundary.

Usually, the increase in variance overcompensates the reduction of the bias, particularly

if m00 remains roughly the same in the boundary area. As a conseqence, the MSE will

increase towards the boundary. The increase will be even more pronounced for higher order

polynomials.

For x 2 IR
p the local linear �t is given as the solution of the least squares criteri-

on

nX
i=1

h
yi � �0 � �0(xi � x)

i2
K
�xi � x

h

�
;

where K is a p{variate kernel. With the design matrix Xx with rows�
1; (xi1 � x1); : : : ; (xip � xp)

�
the solution has the same form as in (5.7).

Let K be a product kernel composed of the same univariate kernel and bandwidth h in

each coordinate and let Hm(x) be the Hessian matrix of the second derivatives of m.

Then we get an asymptotic expression for the variance and the bias in the interior (see

Ruppert and Wand, 1994)

V ar
�
m̂(x)

�
=

�0�
2(x)

f(x)nhp
+ op(nh

p); (5.17)
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and

Bias
�
m̂(x)

�
=
h2

2
�2trfHm(x)g+ op(ph

2): (5.18)

The above considerations about the advantage of a local linear approach compared to the

local constant estimation, about its design adaptation property and its automatic boun-

dary adaptation hold for the multivariate case in a similar way.

Up to now we considered local least squares regression to estimate the mean function

m: But the idea of locally weighted regression turns out to be a very versatile tool for

estimation in a variety of situations.

Yu and Jones (1998) consider the estimation of the conditional distribution function

F (yjx): Let F1(u) =
uR

�1
K1(v)dv be the distribution function pertaining to a sym-

metric kernel density K1 and let h2 be a bandwidth. Yu and Jones consider a local

linear approach for F (yjx) which is motivated by the approximations

E
h
F1(

y � y0
h2

)jx0
i
� F (y0jx0)

and

F (y0jx0) � F (y0jx) + _F (y0jx)(x� x0) = �0 + �
0

1(x� x0);

where _F (y0jx) = @F (y0jx)=@x:

This suggests the least squares approach

nX
i=1

h
F1(

yi � y

h2
)� �0 � �0(xi � x)

i2
K(

xi � x

h1
);

where K is a second kernel with bandwidth h1: The solution

~Fh1;h2(yjx) = �̂0 = e
0

1(X
0

xWxXx)
�1X

0

xWx~y (5.19)

with ~y =
�
F1(

y1�y
h2

); : : : ; F1(
yn�y
h2

)
�0

is called a local linear double-kernel smoothing by the

authors. The estimator is continuous and has zero as left boundary value (for y �! �1)

and 1 as right boundary value. It can happen that the estimator ranges outside [0; 1]: But

this does not, as the authors say, give problems estimating q� by
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~q�(x) = ~F�1
h1;h2

(�jx):

This estimator involes the problem that two bandwidths h1 and h2 have to be chosen.

For a possible procedure with h2 < h1 we refer to the paper.

Fan, Yao and Tong (1996) considered a related idea for estimating the conditional density

itself.

E
�
1

h2
K1

�
y � y0
h2

��
� g(y0jx) + _g(y0jx)(x� x0)

= �0 + �0(x� x0)

with _g(yjx) = @g(yjx)=@x leads to the least squares criterion

nX
i=1

�
1

h2
K1

�
yi � y

h2

�
� �0 � �0(x� x0)

�2
K
�
xi � x

h1

�
(5.20)

with the solution ĝ(yjx) = �̂0 as in (5.19), where now the vector ~y is

~y =
1

h2

�
K1

�
y1 � y

h2

�
; : : : ;K1

�
yn � y

h2

��0
:

The local constant approach leads to the traditional estimator (2.3). Fan, Yao and Tong

also consider the case of a local quadratic approach for estimating the �rst derivative.

We will not pursue this case further here, since for the quadratic term p(p + 1)=2 more

parameters have to be estimated.

In all local regression approaches so far we used the least squares criterion. Let us now look

at cases were instead of the square function another convex loss function � : IR ! IR is

used which has a unique minimum at zero and let m�(x) = argmin�0E [�(y � �0)jx].

�(u) = u2 yields the conditional expectation which we analyzed mostly so far. �(u) =

juj yields the conditional median. This is just a special case for � = 1=2 of the loss

function ��(u) = juj + (2� � 1)u, already mentioned in (3.6) . �� was introduced by

Koenker and Basset for parametric quantile estimation. The function 2��(u) for various

� is exhibited in Figure 5.2.
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Figure 5.2 2���(u) according to Koenker and Basset for several �

In robustness considerations �-functions were introduced which increase less rapidly than

the square function and for which �0 is the so-called  -function. See Huber (1981) or

Hampel et al (1986).

A local constant estimator for m� is

m̂�(x) = argmin�0

nX
i=1

�(yi � �0)K(
xi � x

h
):

The known drawbacks of a local constant approach is that it cannot adapt to unbalanced

design situations and that it has adverse boundary e�ects which require boundary correc-

tions.

This idea leads to the estimator

m̂�(x) = �̂0

where

(�̂0; �̂) = argmin�0;�
nX
i=1

�
�
yi � �0 � � 0(x� x0)

�
K
�x� x0

h

�
: (5.21)
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For a �-function belonging to a robustness class, such as Huber's M-type estimators known

methods for robust estimation can be applied in order to solve the minimum problem

(5.21). We would like to remark that the use of kernels automatically safeguards against

large deviations in the design space. For nonparametric robust M-, L- and R-estimation

in a time series setting see Michels (1992).

For a local �-quantile regression with the �� function (3.6) the local solution in (5.18)

can be evaluated by solving a linear programming problem, as was shown in the paper of

Koenker and Basset (1978). An algorithm for evaluating this can be found in Koenker and

Dorey (1987).

For the case of a general convex �-function and i. i. d. observations asymptotic normality

is proved in Fan, Hu and Truong (1994). The �-quantile estimation according to (5.21)

is also considered by Yu and Jones (1998) and compared with the estimator (5.19). For

reasons of practical performance the authors prefer the double smoothing approach (5.19).

They also give an asymptotic expression for the mean squared error for x scalar, which

for the solution of (5.21) is given by

MSE
�
q̂�(x)

�
= Bias2

�
q̂�(x)

�
+ V ar

�
q̂�(x)

�
=

1

4
h4�22q

00
�(x) +

�0�(1� �)

nhf(x)f(q�(x)jx)2
:

These expressions are used for suggestions of bandwidth choice.

The cases of robust locally linear regression and of quantile regression are also considered

in Fan and Gijbels (1996).

6 Applications of locally weighted regression to time

series

Local linear or higher order polynomial regression, originally mainly considered for inde-

pendent data, can be applied in the same way to stationary processes with certain memory

restrictions. The reasons are the same as those mentioned at the beginning of section 3.

Given two (dependent) random variables xs and xt and a point x in the design space,

the random variables 1
h
K(xs�x

h
) and 1

h
K(xt�x

h
) are nearly uncorrelated as h ! 0. This is

the whitening by windowing principle and it is worthwile mentionening that this property

is not shared by parametric estimators. To handle memory restrictions in the proofs of

consistency and asymptotic normality mixing conditions (strong mixing, uniform mixing

or �-mixing) are used. They give a bound to the maximal dependence between events

being at least k instants apart from each other. Short term dependence does not have
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much e�ect on local regression. But local polynomial techniques are also applicable under

weak dependence in medium or long term. If suitable mixing conditions are ful�lled, local

polynomial estimators for dependent data have the same asymptotic properties as for in-

dependent data. Of course the bias is not inuenced by dependence, whereas the variance

terms are a�ected. In proving asymptotic equivalence then the task consists in showing

that the additional terms due to nonvanishing covariances between the variables are of

smaller order asymptotically.

For a local linear estimation of m(x) = m(x1; : : : ; xp) in the autoregressive model (3.2)

the design matrix and the vector y have the form

Xx =

0BB@
zp � x1; : : : z1 � xp

...

zn�1 � x1; : : : zn�p � xp

1CCA ; y =

0BB@
zp+1
...

zt�1

1CCA ;

and with (xt � x)0 = (zt�1 � x1; : : : ; zt�p � xp)0 the esimator can be evaluated as in (5.7).

For x = xn+1 = (zn; : : : ; zn�p+1)0,

m̂(xn+1) = �̂0

yields the one-step ahead predictor. A direct k-step ahead predictor is given if y =

(zp+k; : : : ; zn)0 and if the last row of the Xx-matrix is (zn�k� zn; : : : ; zn�k�p+1� zn�p+1).

But in this case a succession of one-step ahead predictions seems preferable, as already

mentioned in section 3.

Asymptotic normality results for locally linear autoregression can be found in H�ardle,

Tsybakov an Yang (1997) and in Fan and Gijbels (1996).

For the CHARN model zt = m(xt) + �(xt)�t the function g(xt) according to (3.9)

can be estimated in a similar way as above, where only in the vector y the time series

values are replaced by the squares. Asymptotic normality for this case is shown in H�ardle

and Tsybakov (1997). For a residual based estimator of �2(x) see (7.10) or Feng and

Heiler (1998a).

The local linear estimation of a conditional density in a time series setting with the before

mentioned double smoothing procedure as in (5.19) is considered in Fan, Yao, and Tong

(1996) and in Fan and Gijbels (1996), where also asymptotic results can be found.

For the estimation of of the conditional distribution function according to the propo-

sal of Yu and Jones (1998) as in (5.19) and for a general solution of (5.21) asymptotic
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results are known for independent data. See the papers of Yu and Jones (1998), H�ardle and

Gasser (1984) and Tsybakov (1986). For dependent data, we have not found yet formally

puplished proofs. But considering the whitening by windowing e�ect makes it clear that

for these cases consistently results will hold under suitable mixing conditions.

7 Parameter selection

One of the �rst questions to be answered in the application of kernel smoothing is which

type of kernel to use for di�erent choices of r and j. It is well known that for r� j odd

in the interior of the x-space the Epanecknikov kernel K(u) = 3
4
(1 � u2)+ is the one

which minimizes the mean squared error in the class of all nonnegative, symmetric and

Lipschitz continuous functions and that for the endpoints x� and x� the triangular

kernels (1�u)1[0;1](u) resp. (1+u)1[�1;0] are optimal. For other points in the boundary

area optimal solutions are not known.

It is easy to see that when looking at variance only the uniform kernel 1
2
1[�1;1](u) is the

one minimizing the variance.

It is well known that in practice the choice of the kernel is not very important compa-

red to the choice of the bandwidth. The Epanecknikov kernel will therefore be a good

choice in many cases. Nonetheless in practice often higher oder kernels like the Bisquare

or the Triweight are prefered. This has to do with the degree of smoothness, since the

kernel estimates inherit the smoothness properties of the kernel. According to the degree

of smoothness as introduced by M�uller (1984), the uniform kernel has degree zero (not

continuous), the triangle and the Epanecknikov kernel have degree 1 (continuous, but �rst

derivate not continuous), the Bisquare and the Triweight have degrees 2 and 3, respective-

ly, and the Gaussion kernel has degree 1.

The most crucial task in kernel smoothing is bandwidth selection. Much ink has been

spoiled on papers concerning this problem. It is hence impossible to give a comprehensive

survey here. Instead we will discuss only a few basic ideas. The aim is to choose band-

widths such that the conditional mean squared error, given by

MSE(m̂(j)(x)) = Bias2(m̂(j)(x)) + V ar(m̂(j)(x)) (7.1)

becomes minimal. We have to distinguish between a locally optimal banwidth and a glo-

bally optimal, constant banwidth.

It is clear that a large bandwidth will lead to a low variance, but a high bias. Decreasing

the bandwidth will increase the variance, but reduce the bias. An optimal bandwidth is
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achieved when the changes in bias and variance balance.

Using the asymptotic expressions (5.15) and (5.16) for the conditional variance and bias,

then minimizing (7.1) with respect to h yields for the (asymptotically) optimal band-

width at x for a scalar x

h�n = Cr;j(K)

"
�2(x)

(m(r+1)(x))2f(x)
�
1

n

#1=(2r+3)

; (7.2)

where the constant

Cr;j(K) =

264 ((r + 1)!)2 (2j + 1)
R ~K(j)(u)2du

2(r + 1 � j)
nR
ur+1 ~K(j)(u)du

o2
375
1=(2r+3)

(7.3)

depends only on r; j and the used kernel and can be calculated beforehand.

In time series applications we are mainly interested in a constant, global bandwidth, for

which the integrated mean squared error (IMSE)

Z h
Bias(m̂(j)(x))2 + V ar(m̂(j)(x))

i
w(x)dx

is chosen as criterion, where w is a weight function going to zero at the bounderies to

avoid boundery e�ects. Minimizing the IMSE with respect to h yields the optimal

global bandwidth

h�n = Cr;j(K)

24 R �2(x)
f(x) w(x)dxR

fm(r+1)(x)g
2
w(x)dx

�
1

n

351=(2r+3)

: (7.4)

For local linear estimation of m when x is a p-vector and the same bandwidth is chosen

in each coordinate a similar expression can be derived (see Feng and Heiler, 1998a). Here

h�n = c0

�
p

n

� 1
(p+4)

where
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c0 =

"
�0
�22

�2(x)

f(x)trfHm(x)g

# 1
(p+4)

and Hm(x) is the matrix of second derivatives of m. All these expressions contain quan-

tities which are unknown and are therefore not amenable in practice. So called plug-in

techniques substitute these quantities by pilot estimates. For more details see Ruppert,

Sheather and Wand (1995).

A simple procedure of bandwidth selection for independent data, �rstly developed to �nd

the smoothing parameter in spline smoothing, is cross validation. Let m̂h;i(xi) be the

so-called leave one out estimator of m at xi, where the observation (yi; xi) is not

used in the estimation procedure. Then the criterion is

CV (h) = n�1
nX
i=1

[yi � m̂h;i(xi)]
2 (7.5)

and hCV = argmin CV (h) is the cross validation bandwidth selector. The idea can

also be used for x 2 IR
p and for estimating derivatives. See H�ardle (1990) for details.

It can be shown that it converges almost shurely to the IMSE optimal bandwidth,

but the convergence rate is with n�1=10 very low. The cross validation idea was deve-

loped for independent data. In a time series setting it is suggested to replace the leave

one out estimator by a "leave block out" estimator, where for estimating at xi not only

the ith observation is omitted, but a whole block of data around (yi; xi). This idea was

used by Abberger (1995, 1996) in smoothing the conditional �-quantile, where the square

function is replaced by the ��-function (3.6).

Let �2 be the variance of the residuals in an i.i.d. sample and in the time series case the

unconditional variance of the stationary process. Rice (1983, 1984) proposed a criterion

R which for a general linear smoother is given by

R(h) = RSS(h) � �̂2 + 2�̂2n�1
nX
i=1

wni(xi); (7.6)

where the wni are the actual weights for estimating m(xi), �̂2 is an estimate for �2 and

RSS(h) = n�1
nX
i=1

[yi � m̂h(xi)]
2 (7.7)
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is the mean residual sum of squares. Under the assumption that �̂2 is a consistent

estimator Rice (1984) showed that the proposed estimator hR = argmin R(h) is asym-

ptotically optimal in the sense that (hR � h0)=h0 ! 0 in probability, where h0 is the

minimizer of the mean averaged squared error

MASE(h) = n�1E

(
nX
i=1

[m̂h(xi)�m(xi)]
2

)
:

The rate of convergences of hR is the same low rate n�1=10 as for the cross validation

solution hCV . The main di�erences between the two is that R involves an estimate of

�2, whereas CV does not.

For �̂2 Rice proposed an estimator based on �rst di�erences, whereas Gasser et al. (1986)

suggested to take second di�erences (since they annihilate a local linear mean value func-

tion),

�̂2
G =

2

3(n � 2)

n�2X
i=1

�
yi+1 �

1

2
(yi + yi+2)

�2
: (7.8)

An estimator based on a general difference sequence Dm = fd0; d1; : : : ; dmg such thatPm
0 dj = 0 and

Pm
0 d

2
j = 1 was considered by Hall et al. (1990) . The variance estimator

based on Dm is then

�̂2
m = (n�m)�1

n�mX
i=1

0@ mX
j=0

djyj+i

1A2

: (7.9)

Fan and Gijbels (1995) suggest the residual sum ofsquares criterion (RSC), which is

based on a local estimator of the conditional variance derived under a local homogeneity

assumption,

�̂2(x) =

nP
i=1

(yi � ŷi)2K
�
xi�x
h

�
tr [Wx �Wx(X 0

xWxXx)�1X 0
xWx]

: (7.10)

With this the RSC is de�ned as

RSC(x;h) = �̂2(x) [1 + (r + 1)V ] ; (7.11)



7 PARAMETER SELECTION 32

where V is the �rst diagonal element of the matrix (X 0
xWxXx)�1(X 0

xW
2
xXx)(X 0

xWxXx)�1:
V �1 reects the e�ective number of local data points. RSC admits the following in-

terpretation. If h is too large, then the bias is large and hence also �̂2(x). When the

bandwidth is too small, then V will be large. Therefore RSC protects against extreme

choices of h.

The minimizer of E[RSC(x;h)] can be approximated by

hn0(x) =

"
a0�

2(x)

2Cr�
2
r+1nf(x)

#1=(2r+3)

; (7.12)

where a0 denotes the �rst diagonal element of the matrix S�1S�S�1, i.e. a0 =R ~K2(u)du and Cr = �2r+2 � c0rS
�1cr with the de�nitions given in section 5 and

�r+1 = m(r+1)(x)=(r + 1)!. hn0(x) di�ers from the optimal bandwidth in (7.3) by an

adjusting constant which only depends on r; j, and the kernel used. Hence the latter one

can be evaluated,

h�n(x) = Adj;rhn0(x); (7.13)

where

Adj;r =

264 (2j + 1)Cr

R
( ~K(j)(u))2du

(r + 1� j)
nR

ur+1 ~K(j)(u)du
o2 R ~K(u)2du

375
1=(2r+3)

:

For the Epanechnikov and the Gaussian kernel these constants are tabulated for various

r and j in Fan and Gijbels (1996).

For a global bandwidth the minimizer ĥ of the integrated RSC,

IRSC(h) =
Z
RSC(x;h)dx

is taken, which in practice breaks down to evaluating a mean over certain grid points

xi1; : : : ; xim. ĥ is also selected from among a number of grid points in an interval

[hmin; hmax]. The global bandwidth is then given by
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ĥj;r = Adj;rĥ: (7.14)

The RS criterion su�ers also from having a low convergence rate. Therefore the fol-

lowing re�ned bandwidth selection procedure is suggested. It is a double smoothing (DS)

procedure. The pilot smoothing consists in �tting a polynomial of order r + 2 and se-

lecting ĥj;r as above . With the bandwidth ĥr+1;r+2 estimates of �̂r+1; �̂r+2 and

�̂2(x) are evaluated. With these pilot estimates in a second stage the dMSE(j;r)(x;h) =dBias2j;r(x) + dV arj;r(x) is evaluated, where dBiasj;r(x) denotes the (j + 1)th element of

the estimated bias vector and dV ar(j;r)(x) is the (j+1)th diagonal element of the matrix

(X 0
xWxXx)�1(X 0

xW
2
xXx)(X 0

xWxXx)�1�̂2(x). With Sn;l =
nP
i=1

K
�
xi�x
h

�
(xi � x)l the bias

vector is estimated by

b̂r(x) = (X 0
xWxXx)

�1

0BB@
�̂r+1Sn;r+1 + �̂r+2Sn;r+2

...

�̂r+1Sn;2r+1 + �̂r+2Sn;2r+2

1CCA :

In order to avoid collinearity e�ects it is suggested to modify the vector on the right side

by putting Sn;r+3 = : : : = Sn;2r+2 = 0, which yields

b̂r(x) = (X 0
xWxXx)

�1

0BBBBBBBB@

�̂r+1Sn;r+1 + �̂r+2Sn;r+2

�̂r+1Sn;r+2

0
...

0

1CCCCCCCCA
:

The global re�ned bandwidth selector is then given by the minimizer ĥRj;r of

Z
^MSEj;r(x;h)dx: (7.15)

This re�ned technique leads to an important improvement over the RSC bandwidth

selector.

For a balanced design, i.e. for equally spaced x values, Heiler and Feng (1998) propose

a simple double smoothing procedure, where in the pilot estimation step the R-criterion
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is used. In Feng and Heiler (1998b) a further improvement of this proposal can be found,

where a variance estimator based on the bootstrap idea is used. Equally spaced x va-

lues are for instance given in a time series setting where the regressor is the time index

or a function of the time index. This kind of smoothing will be discussed in the next section.

For order selection in a time series autoregression model with xt = (zt�1; : : : ; zt�p) and

m̂t(x) being the leave one out estimator according to (5.7), Cheng and Tong (1992) use

the cross validation criterion

CV (p) = (n� r + 1)�1
X
t

[zt � m̂t(xt)]
2w(xt): (7.16)

where w is a weight function to avoid boundary e�ects.

Due to the curse of dimensionality problem it may be advisable not to take all lagged

values zt�1; : : : ; zt�p into account but to look for a subset of lagged values which yields

the best forecasts. For a lag constellation xt(i) = (zt�i1 ; : : : ; zt�ip)
0 Ti�stheim and Aue-

stad (1994) propose to use the �nal prediction error

FPE(xt(i)) = n�1
X
t

[zt � m̂(xt(i))]
2 f(i); (7.17)

where the factor

f(i) =
1 + (nhp)�1�0bp(i)

1 � (nhp)�1 [2Kp(o)� �po ] bp(i)
;

and �o =
Z
K2(u)du; bp(i) = n�1

X w2(xt(i))

f̂(xt(i))
;

f̂(xt(i)) being a multivariate kernel density estimator. FPE in (7.16) is essentually a

sum of squares of one-step ahead prediction errors multiplied with a factor that penalizes

small bandwidths and a large order p.
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8 Time series decomposition with locally weighted

regression

As already mentioned in section 3, if xt is the time index itself or a polynomial in t,

then we arrive at trend smoothing. In a simple trend model

zt = m(t) + at

the considerations at the beginning of section 5 deliver an estimator of the smooth trend

function or its derivatives. Now the matrix Xt has the rows (1; s � t; : : : ; (s � t)r) for

s = 1; : : : ; n and Wt = diag(K( s�t
h
)) . As an interesting fact one can easily see that in

the interior of the time series, i.e. for h � t � n� h the weights given in (5.8),

wj
nt(s) = e0j+1(X

0
tWtXt)

�1 (1; s � t; : : : ; (s� t)r)K
�
s� t

h

�
;

are shift invariant in the sense wj
n;t+1(s+ 1) = wj

nt(s) . This means that in the interior of

the time series the local polynomial �t works like a moving average. But the big advantage

over other trend smoothing techniques lies in the automatic boundary adaptation of the

procedure. This property makes the idea of extending the local regression approach to

so-called unobserved components models very appealing.

Nonparametric estimation of trend-cyclical movements and of seasonal variations and their

separation by local regression represents an interesting alternative to procedures based on

parametric models like X{12 or TRAMO{SEATS. These involve extrapolation methods

on either end of the time series in order to be able to estimate the components also in the

boundary parts of a time series. This can lead to serious problems if unusual observations

in the end parts of time series yield grossly erroneous forecasts. The latter problem will

not appear with a local regression approach. Note also that with a data driven parameter

selection the procedure works in a fully automatic way.

The decomposition of a time series into trend{cyclical and seasonal components by LOcally

WEighted Scatterplot Smoothing (LOWESS) was suggested by Cleveland et al. (1990).

The procedure discussed here is di�erent from their procedure in essential features.

We consider the additive (unobserved) components model

zt = T (t) + S(t) + at; t = 1; 2; : : : (8.1)
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For the sake of simplicity we assume that fatg is a white noise sequence with mean zero

and constant variance �2. T (t) represents the trend cyclical and S(t) the seasonal

component. The usual assumption with respect to T is that it has certain smoothness

properties so that the considerations at the beginning of section 5 apply, leading to a local

polynomial representation of order r. With respect to the seasonal variations the usual

assumption is that they show a similar pattern from one seasonal period to the next, but

they are allowed to vary slowly in the course of time. Hence a natural assumption is that

they can locally be approximated by a Fourier series, containing the seasonal frequency

and its harmonics,

S(s) =
qX

j=1

[�j(t) cos 2��j(s � t) + j(t) sin 2��j(s� t)] ; (8.2)

where � is the seasonal frequency, � = 1=P and P is the period of the season. Of

course �q � 1=2 (and for �q = 1=2 the last sine term has to be omitted).

Let

ut(s) = (cos 2��(s� t); sin 2��(s� t); : : : ; cos 2q��(s� t); sin 2q��(s� t))0 ;

�(t) = (�1(t); 1(t); : : : ; �q(t); q(t))
0 :

Then S(s) = �(t)0ut(s).
With the local polynomial representation for the trend-cyclical part

T (s) =
rX

j=0

�j(t)(s� t)j = �(t)0xt(s);

where �(t) = (�0(t); : : : ; �r(t))
0 ; xt(s) = (1; s� t; : : : ; (s� t)r)0, the local least squares

criterion is

nX
s=1

[zt � �(t)0xt(s)� �(t)0ut(s)]
2
K
�
s� t

h

�
: (8.3)

With the design matrices X1t with rows xt(s)0, X2t with rows ut(s)0, Xt = (X1t
...X2t), the

composed vector (t)0 = (�(t)0; �(t)0) and the weight matrix Wt = diag
�
K
�
s�t
h

��
the

solution is



8 TIME SERIES DECOMPOSITIONWITH LOCALLYWEIGHTED REGRESSION37

̂(t) = (X 0
tWtXt)

�1
X 0

tWty (8.4)

T̂ (t) = e01 (X
0
tWtXt)

�1
X 0

tWty (8.5)

Ŝ(t) = (o0; �0s) (X
0
tWtXt)

�1
X 0

tWty; (8.6)

where o0 is a row of zeroes of length r + 1 and �0s is a row vector of length 2q with

entries �0s = (1 0 1 0 : : : 1 0). It picks out the �̂j(t), pertaining to the cosine terms in Ŝ(t).

The estimator for the jth derivative T (j) of T is

T̂ (j) = j!e0j+1 (X
0
tWtXt)

�1
X 0

tWty: (8.7)

All the above estimators work as moving averages in the interior part of the time series

and have for r � j odd the simple boundary adaptation property discussed in section 5.

The decomposition m̂(t) = T̂ (t) + Ŝ(t) is not unique, since the matrix X
0

tWtXt is

not block diagonal. This could of course be achieved by an orthogonalization procedure

but seems not to be compelling for practical purposes. We call the above decompostion a

natural decomposition.

For parameter selection �rst a decision has to be made about the degree of the trend

polynomial T and the trigonometric polynomial S. Since the seasonal variations are

involved in the local approach the bandwidths should be such that at least three to �ve

periods of the season are included. In order to achieve this, the modelization of T should

be rather exible. Hence for the interior part of the time series the polynomial degree

r = 3 may be preferable to the choice r = 1. A data driven choice for a joint selecti-

on of r and bandwidth h is a very di�cult task since the two parameters are highly

correlated. A higher r allows a larger bandwidth and vice versa. In our experience col-

lected so far a data driven procedure for the interior part always opted for the highest

allowed degree rmax that was put beforehand even if the MSE criterion included a penalty

term for overparameterization. As far as the trigonometric polynomial is concerned, all

harmonic terms should be included, unless an inspection of the periodogramme or the esti-

mated spectrum reveals that one or even more of the seasonal frequences can be ommitted.

After this preselection of parameters a procedure for bandwidth selection is needed. Since

for an equidistant time series the "design density" f is a constant the procedure is so-

mehow simpler than in the general situation discussed in section 7.

A variate of a double smoothing procedure is recommended. In the pilot stage a poly-
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nomial of degree r + 2 is �tted and the bandwidth is selected with the Rice criterion

with respect to m̂ = T̂ + Ŝ. But due to seasonal variations the di�erence based varian-

ce estimator (7.8) has to be altered. Heiler and Feng (1996) and Feng (1998) propose a

seasonal di�erence based variance estimator of the form in (7.9), where not only a local

linear function, but also a local periodic function is allowed for.

An example for monthly data (P = 12) is

D26;12 = c�1f�1; 2;�1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 2;�4; 2; 0; 0; 0; 0; 0; 0; 0; 0; 0;�1; 2;�1g;

where c is determined such that
mP
j=0

d2j = 1:

D26;12 annihilates a local linear trend and a local periodic function with periodicity

P = 12. Similar sequences can easily be constructed.

Let �̂2
G be the resulting estimator and let g be the minimizer of the R-criterion(7.6).

With m̂g = T̂g + Ŝg the resulting estimator is denoted.

For an arbitrary h the weights wh
t (s) for estimating T̂h(t) + Ŝh(t) are the com-

ponents of the vector (1 0; : : : ; 0; �0s) (X
0
tWtXt)

�1X 0
tWt, where for Wt a kernel with

bandwidth h is taken.

Using the pilot estimates m̂g(t) the bias part of the MSE at t for an estimator with

bandwidth h is estimated by

dBias(m̂h(t)) =
nX

s=1

wh
t (s)m̂g(s)� m̂g(t)

which yields for the bias part of the mean averaged squared error MASE(h)

B(h) = n�1
nX
t=1

dBias2(m̂h(t))

= n�1
nX
t=1

(
nX

s=1

wh
t (s)m̂g(s)� m̂g(t)

)2

: (8.8)

The variance is estimated by

V (h) = n�1�̂2
nX
t=1

nX
s=1

wh
t (s)

2; (8.9)
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where �̂2 should be a suitable root-n consistent estimator of �̂2.

After the �rst pilot step a minimizer ~h of the criterion

MASE(h) = B(h) + V (h) (8.10)

is evaluated over a grid, where in the second step the estimator �̂2
G is used in V (h).

This second step leads already to a considerable improvement over the simple R-criterion,

but the estimator �̂2
G is still not very good. Hence an improved estimation with a lower

polynomial degree and a bandwith gv larger than g is proposed. For details see Feng

and Heiler (1998). According to considerations therein an estimator for gv can easily be

found by multiplying the minimizer ~h of (8.10) with a correction factor. This factor only

depends on the used kernel and on the polynomial degree r, ĝv = CFr~h:

For instance, we get for the Epanechnikov kernel CF1 = 1:431, CF3 = 1:291, for the Bi-

square kernel CF1 = 1:451, CF3 = 1:300 and for the Gaussian kernel CF1 = 1:489 and

CF3 = 1:305. See Table 5.1 in M�uller (1988) or Table 1 in Feng and Heiler (1998).

Let now m̂gv = T̂gv + Ŝgv be an estimator with bandwidth gv . Then an improved

variance estimator is obtained by taking the mean squared residuals

�̂2
B = n�1

nX
t=1

[zt � m̂gv(t)]
2: (8.11)

In a third step this variance estimator is plugged into (8.9) for �̂2 and with this again a

minimizer h� of the MASE (8.10) is evaluated.

In principle this procedure can be iterated several times, where in the next step with a

polynomial of degree r + 2 a new bias estimator is evaluated.

The above described procedure yields a bandwidth h� for the interior part of the time

series, where after the selection of h� the interior is given by [h� + 1; n� h�]. As descri-
bed in section 5 the procedure automatically adapts towards the boundaries. But as also

described there due to increasing variance the MSE will increase as well, particularly if

r = 3 is chosen, as was recommended at the beginning of this section.

One possibility to at least partly compensate for that is to switch to a nearest neighbour

estimator in the boundary area, that is, to keep the total bandwidth hT = 2h�+1 constant

at both ends of the time series. This means that for estimating from t = n � h� + 1 to

t = n the same local neighbourhood is used (and similarly for the left boundary).

Instead or in addition to that a switch from a local polynomial of order 3 to a local linear
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approach (for T ) may be recommended whenever the MSE for r = 1 becomes smaller

than that for r = 3. In order to do that, for the given bandwidth and the asymmetric

neighbourhood situation at each time point in the boundary area with the corresponding

active weighting systems the MSE 0s for r = 3 and r = 1 have to be evaluated according

to the procedure described above. As soon as MSE1 < MSE3, a local linear approach is

chosen for T and maintained to the end point. According to practical experiences collected

so far such a switch happened to come to e�ect close to the end points in almost all cases.

In Figures 8.1 and 8.2 we present two examples where the discussed decomposition proce-

dure is applied. The �rst time series is the quarterly series of the German GDP from 1968

to 1994. In the top panel in Figure 8.1 the time series itself and the estimated trend-cyclical

component are exhibited. In the middle the estimated seasonal component is shown and in

the bottom panel the �rst derivative of the trend-cyclical is exhibited. This latter picture

shows clearly the temporary boom after German reuni�cation. The double smoothing pro-

cedure with bootstrap variance estimator selected h = 11 as bandwidth. The polynomial

degree was two for estimating the �rst derivative and three for the other estimations.

The second example presented in Figure 8.2 shows corresponding results for the monthly

series of the German unemployment rates (in per cent) from January 1977 to April 1995.

Here the selected bandwidth is h = 21. The polynomial degrees are the same as in the

previous example.

Cleveland (1979) proposed an iterative robust locally weighted regression in a general

regression context and in Cleveland et al. (1990) this idea is also used in time series

decomposition. It can easily be adapted to the procedure discussed here, although in their

proposal the subseries of equal weeks, month, quarters etc. are treated separately.

The idea consists in looking at the residuals rt = zt�m̂(t) of a �rst, nonrobust procedure

and to evaluate a robust scale measure � for the residuals. Cleveland suggests to take the

median of the jrtj. Since in many time series variability is di�erent for di�erent periods

within the season depending on the size of the seasonal component, it seems reasonable

to evaluate di�erent scale measures for the di�erent periods of the season.

For t = 1; : : : ; n let j =
h
t�1
P

i
+ 1 be the year index, j = 1: : : : ; J =

h
n�1
P

i
+ 1, where

[:] denotes the integer part and let i = t� P (j � 1) be the season index, i.e. zt �! zij.

Then for all i = 1; : : : ; P a robust scale measure

�i = medianj (jrijj)

is evaluated. From this so-called robustness weights are derived, which according to Cle-

veland's proposal are given by
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Figure 8.1. Decomposition results for the time series of the German GDP from 1968 to

1994. (a) The data and T̂ , (b) Ŝ and (c) T̂ 0
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Figure 8.2. Decomposition results for the time series of the German unemployment rates

(in %) from January 1977 to April 1995. (a) The data and T̂ , (b) Ŝ and (c) T̂ 0
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�ij = K
�
rij
6�i

�
;

where K is a kernel function (the bisquare kernel is being suggested).

In a second step the local estimation procedure is repeated, where the neighbourhood

weights kst = K
�
s�t
h

�
in the diagonal weight matrices Wt are multiplied with the

corresponding robustness weights �ij, where i and j are the season- and year index cor-

responding to s. Of course with the time dependent robustness weights the procedure is

no more shift invariant, so that the least squares solution has to be evaluated for each t

explicitely.

Starting with the new residuals the procedure can be iterated until the estimates stabilize.

Since the robustness weights will change the active kernels, di�erent bandwidths should

be used in each iteration step. Cleveland (1979) claimed that two robust iterations should

be adequate for almost all situations. In Feng (1998) with a stability criterion a higher

number of iteration steps occured in most cases.
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