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Abstract 
 

This paper investigates association between portfolio returns and higher-order 

systematic co-moments at different timescales obtained through wavelet multi-

scaling- a technique that decomposes a given return series into different timescales 

enabling investigation at different return intervals. For some portfolios, the relative 

risk positions indicated by systematic co-moments at higher timescales is different 

from those revealed in raw returns. A strong positive (negative) linear association 

between beta and co-kurtosis and portfolio return in the up (down) market is 

observed in raw returns and at different timescales. The beta risk is priced in the up 

and down markets and the co-kurtosis is not. Co-skewness does not appear to be 

linearly associated with portfolio returns even after the up and down market split 

and is not priced.  
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1. Introduction 

The capital asset pricing model (CAPM) developed by Sharpe (1964) and Lintner (1965) 

relates the expected rate of return of an individual security to a measure of its systematic risk 

known as the beta risk.1 The CAPM has become an important tool in finance for assessment of 

cost of capital, portfolio performance, portfolio diversification, valuing investments and 

choosing portfolio strategy, among others.  Building on Markowitz’s (1959) work, Sharpe 

(1964) and Black (1972) developed various versions of the CAPM that can be empirically 

tested.  The last half-century has witnessed the proliferation of empirical studies testing on (i) 

the validity of CAPM and the stability of beta and (ii) whether or not the cross-asset variation 

in expected returns could be explained by the market beta alone.  

A growing number of studies found that the variation in expected security returns cannot be 

explained by the market beta alone. It is clear from well-established stylised facts that the 

unconditional security return distribution is not normal (see, for example, Ané and Geman, 

2000 and Chung et al, 2001) and the mean and variance of returns alone are insufficient to 

characterise the return distribution completely. This has led researchers to pay attention to the 

third moment – skewness – and the fourth moment – kurtosis. Early studies examined the 

empirical relation of ex post returns to total skewness (see, for example, Arditti, 1967). 

Subsequent studies argue that systematic skewness is more relevant to market valuation rather 

than total skewness (see, for example, Kraus and Litzenberger, 1976) refuting the usefulness of 

quadratic utility as a basis for positive valuation theory. The experimental evidence that most 

                                                 
1 The CAPM with respect to security i can be written as ( ){ }fmifi RRERRE −+= β)(  where, 
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return mR ,  iσ  is the standard deviation of security i returns and mσ  is the standard deviation of market 

returns. The iβ  (referred to as the beta) can be interpreted as the amount of non-diversifiable risk inherent 

in security i relative to the risk of the market portfolio.   
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individuals have concave utility displaying absolute risk aversion also supports inclusion of 

higher-order co-moments in risk-return analysis (see, for example Gordon et al, 1972).2  

Further, empirical evidence suggests that skewness and kurtosis of security returns 

distribution become prominent when high frequency data is used to model them. Studies have 

shown that it is possible to obtain different estimates for the beta for the same security if 

different return intervals are considered (Handa et al, 1989; Gençay et al, 2003). For further 

evidence, see Cohen et al (1986) and the references there in. In an investigation of impact of 

return interval and estimation period on beta estimation, Daves et al (2000) report that for a 

given estimation period, daily returns provide a smaller standard error of the estimated beta 

than do weekly, two-weekly or monthly returns. These revelations suggest that the width of the 

chosen return interval could influence the results of empirical investigations of the CAPM. For 

example, Brailsford and Faff (1997) tested the CAPM with daily, weekly and monthly returns 

and found evidence that supports the CAPM only in the monthly and weekly returns with the 

latter providing stronger evidence. As we shall see later in Section 6.1, it is also possible to 

obtain different estimates for higher-order systematic co-moments when different return 

intervals are used.  

The wavelet technique, discussed later in Section 3 is another method to analyse a time 

series. Wavelets allow the time series to be viewed in multiple resolutions such that each 

resolution reflects a different frequency. Recently, Gençay et al (2003) estimated the beta in a 

sample of stocks in the US market using the decomposed return series obtained through wavelet 

analysis. Wavelet analysis decomposes a time series into different time horizons (scales). 

Gençay et al (2003) observe that the relationship between return of a portfolio and its beta 

becomes stronger as the wavelet scale increases and is nonlinear at lower scales. We argue that 

                                                 
2 Some studies reveal that fundamental variables such as size, book-to-market value, macroeconomic 

variables and price-to-earnings ratio account for a sizeable portion of the cross-sectional variation in 

expected returns.  
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their observations are somewhat hampered due to the aggregation of results in the up market 

(market return in excess of the risk-free rate is positive) and down market (market return in 

excess of the risk-free rate is negative).         

In this paper we investigate risk-return relationship conditional on the market movements 

using wavelet timescales in the two-, three- and four-moment asset pricing models. The aim is 

to estimate beta, systematic co-skewness and systematic co-kurtosis in daily returns and at 

different levels of resolution and (i) investigate whether they are significantly different in 

different scales, (ii) investigate their association with portfolio returns and (iii) test whether 

systematic risks as measured by co-moments are priced or not. In a sample of sixteen 

Australian industry portfolios we observe that portfolio beta and co-kurtosis have a strong 

positive (negative) linear association with portfolio returns in the up (down) market. The 

association between portfolio return and co-skewness appears to be nonlinear.   

The paper is organised as follows. In Section 2, a version of higher-order CAPM is 

presented. The wavelet technique is explained in Section 3. Section 4 gives an outline of the 

methodology and Section 5 describes the data. The empirical results are reported and analysed 

in Section 6 followed by concluding remarks. 

 

2. Four-moment CAPM 

The following is a brief outline of the Kraus and Litzenberger (1976) version of the four-

moment CAPM, in which it is assumed that only the risks measured by systematic variance, 

systematic skewness and systematic kurtosis are priced.  

                                  imimimfi RRE θλγλβλ 321)( ++=−                                                  (1) 

where, fR  and iR  are returns on the risk-free asset and risky asset i respectively, 
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Due to the desirable properties of the utility function, we expect the market price of beta 

reduction by one unit to be 1λ , which is expected to be positive as in the conventional CAPM. 

The market price of co-skewness is 2λ , which is expected to have the opposite sign to the 

skewness of the market return distribution. The market price of co-kurtosis is 3λ , which is an 

additional measure of degree of dispersion in returns and is expected to be positive.  

A derivation of (1) is available in Hwang and Satchell (1999). 

 

2.1 Four-moment conditional model 

When testing the two-moment CAPM, Pettengill et al (1995) argue that the use of the realized 

return in the market model instead of the expected can induce some form of bias in the estimates 

due to aggregation of results in the up and down markets. They point out that in the up market 

(down market), portfolio betas and returns should be positively (negatively) related. Galagedera 

et al (2004) in a study of higher-order CAPMs suggested that in the down market the beta, 

gamma and theta and returns should be inversely related. To test whether beta, gamma and theta 

are priced or not, Galagedera et al (2004) estimate the cross-sectional regression model given by 
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where 1=δ  for up market, 0=δ  for down market and ( )2,0~ iit N σε  for each day in the testing 

period. They refer to (5) as the conditional four-moment risk-return relationship.3  

 

2.2 Hypotheses of interest 

Galagedera et al (2004) postulate that in the time periods where the market return in excess of 

the risk-free rate is negative, it is reasonable to infer inverse relationships between realized 

return and beta, gamma and theta. In order to see if there is supportive empirical evidence of a 

conditional relationship between expected return and higher-order co-moments, the following 

pairs of hypotheses are tested. 

Test for a systematic conditional relationship between beta and realized returns:                                 

{ 0: 10 =UH λ , 0: 1 >U
AH λ } and { 0: 10 =DH λ , 0: 1 <D

AH λ }. If the null hypotheses in both are 

rejected, then a systematic conditional relationship between beta and realized return is 

supported. 

Test for a systematic conditional relationship between gamma and realized returns when 

the up market return distribution is positively skewed: { 0: 20 =UH λ , 0: 2 <U
AH λ } and 

{ 0: 20 =DH λ , 0: 2 >D
AH λ }. If the null hypotheses in both are rejected, then a systematic 

conditional relationship between gamma and realized return is supported. 

Test for a systematic conditional relationship between gamma and realized returns when 

the up market return distribution is negatively skewed: { 0: 20 =UH λ , 0: 2 >U
AH λ } and 

{ 0: 20 =DH λ , 0: 2 <D
AH λ }. If the null hypotheses in both are rejected, then a systematic 

conditional relationship between gamma and realized return is supported. 

                                                 
3 When imθ  is assumed zero, we obtain the conditional three-moment risk-return relationship and when 

imθ  and imγ  are assumed zero, we obtain the conditional two-moment risk-return relationship.  
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Test for a systematic conditional relationship between theta and realized returns:                                 

{ 0: 30 =DH λ , 0: 3 <D
AH λ } and { 0: 30 =UH λ , 0: 3 >U

AH λ }. If the null hypotheses in both are 

rejected, then a systematic conditional relationship between theta and realized return is 

supported. 

Assuming that the market movements (up or down) do not have asymmetric effects on risk 

premiums, we can obtain the symmetric model, which is (5) with DU
11 λλ = , DU

22 λλ =  and 

DU
33 λλ = . We estimate the symmetric and asymmetric models and compare the results.   

 

3. Wavelet analysis 

Wavelet analysis is applicable to any type of time series and is a windowing technique with 

variable size regions. It allows the use of long time intervals when more precise low-frequency 

information is needed, and short time intervals when more precise high-frequency information 

is needed. In the time domain, if we want to examine the features of a daily time series in 

different time intervals such as weekly or monthly, the series will have to be aggregated and 

this would result in loss of useful data. In wavelet analysis, this can be done without 

aggregation and hence no data will be lost (Gençay et al, 2003).  In what follows, a brief 

description of the wavelet analysis of a time series is presented. See Percival and Walden 

(2000) for more details.   

Given a signal represented by { }∞<<∞− ttx ),( , the collection of coefficients 

( ){ }∞<<∞−> ttW ,0:, λλ  known as the continuous wavelet transform (CWT) of x(.), is such 

that  

( ) ( ) ( )duuxutW t∫
∞

∞−

= ,, λψλ                                                        (6) 

and      



 8

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −

≡
λ

ψ
λ

ψ λ
tuut

1
,                                                        (7) 

where λ is the scale associated with the transformation and t is its location. The function ( ).ψ  is 

a wavelet filter that satisfies the properties 

( ) 0=∫
∞

∞−

duuψ                                                             (8)   

and    

( ) 12 =∫
∞

∞−

duuψ  .                                                         (9) 

In an application of wavelet analysis to a series ( )tx  observed over a discrete set of times 

,,,2,1 Tt K=  we would be interested in the discrete wavelet transform (DWT). The DWT can 

be thought of as sensible sub-sampling of ),( tW λ  where a number of ‘dyadic’ scales are 

viewed with a varying number of wavelet coefficients at each scale. This means that we need to 

pick a scale λj to be of the form 2j-1, Jj ,,2,1 L=  where J is the number of scales and then 

within a given dyadic scale 2j-1, we pick Tj observation points in time that are separated by 

multiples of 2j. For a series of length T and the scale λj corresponding to 2j-1, there are Tj = T/2j 

observation points at which wavelet coefficients can be defined. For example, consider a time 

series of length T = 256 = 28.  We would then have eight dyadic scales available: 20, 21, 22, 23, 

24, 25, 26 and 27 and at these scales there are 128, 64, 32, 16, 8, 4, 2 and 1 wavelet coefficients 

respectively. The wavelet coefficients for the eight scales account for the DWT coefficients, the 

number of which is equal to one less than the length of the time series. The single remaining 

coefficient is known as the scaling coefficient. In practice, we may choose to decompose a time 

series using a fewer number of scales depending on the length of the series. For example, in a 

time series of length 256 if we pick 5 scales (that is, 20, 21, 22, 23 and 24) there will be 128, 64, 
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32, 16 and 8 wavelet coefficients totalling 248 and the remaining 8 coefficients would be the 

scaling coefficients.  

The wavelet coefficients are associated with the frequencies of ( )tx . The wavelet 

coefficients at scale λj are associated with frequencies in the interval [1/2(j+1), 1/2j]. Hence at the 

first scale λ1, the wavelet coefficients are associated with frequencies in the interval [1/4, 1/2], 

whereas at the second scale λ2, the coefficients are associated with frequencies in the interval 

[1/8, 1/4] and so on. If the time series under consideration consists of daily data, then the first 

scale captures the behaviour of the time series within a 2-4 day period, the second scale 

captures the behaviour of the time series within a 4-8 day period and so on. 

The wavelet coefficients are proportional to the differences of averages of the time series 

observations at each scale, whereas the scaling coefficients are proportional to the averages of 

the original series over the largest scale. The scaling coefficients reflect long-term variations, 

which would exhibit a trend similar to that in the original series. Long timescales give more 

low-frequency information about the time series whereas short timescales give more high 

frequency information about the time series. DWT re-expresses a time series in terms of 

coefficients that are associated with a particular time and a particular dyadic scale. These 

coefficients are fully equivalent to the information contained in the original series in that a time 

series can be perfectly reconstructed from its DWT coefficients.  

Many families of wavelet filters whose qualities vary according to a number of criteria are 

available. Some commonly used filters of order N are from the Daubechies family abbreviated 

as DB(N). These filters have length 2N and are asymmetric. The Haar filter which is the 

simplest wavelet filter is a DB(2) filter. Another family of filters which is a modification of the 

Daubechies family is the least asymmetric family LA(N) and is also of length 2N. These filters 

are nearly symmetric and have the property of aligning the wavelets coefficients very well with 

the given time series. The coiflets family of filters denoted by CF(N) is of length 2N and like 
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LA(N) possess the property of aligning the wavelets coefficients very well with the given time 

series.  CF(N) are symmetric filters. 

 

Discrete wavelet transform 

The DWT of a time series { }Ttxt ,,2,1: L=  is an orthonormal transform of the original 

series. If { }nnWn ,,2,1: L=  represents the set of wavelet coefficients, then it follows that  

    XW F=                                                                   (10) 

where X  is a column vector of time series elements, W is a column vector of length 2J whose 

nth element is the nth DWT coefficient Wn, and F is a TT ×  real-valued matrix defining the 

DWT.  This means that F contains the elements of the filter that transform the time series to 

wavelet coefficients, such that TIFF =' where IT is a TT ×   identity matrix.   

The elements of the vector W can be decomposed into J+1 sub-vectors. The first J sub-

vectors are denoted by Wj, Jj ,,2,1 K=  and the jth such sub-vector contains all the DWT 

coefficients for scale λj
 . Each Wj, Jj ,,2,1 L= , is a column vector with Tj = T/2j elements. The 

(J+1)th sub-vector, which is denoted by VJ, contains the scaling coefficients. The wavelet 

synthesis WX F ′= , which is the reconstruction of the time series from the wavelet 

coefficients, can be expressed as 

   JJj

J

j
j FFF VWWX ′+′=′= ∑

=1

                                            (11)  

where the Fj and FJ matrices partition the rows of  F according to the partitioning of  W into 

W1, W2, . . . , WJ and VJ .   

Now define jjj FD W′=  for Jj ,,2,1 K= , which is a T dimensional column vector whose 

elements are associated with changes in X at scale λj. This means that XW jj F= represents the 
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portion of the analysis XW F=  attributed to the scale λj, whereas jjj FD W′= is the portion of 

the synthesis WX F ′=  attributable to scale λj . By defining JJJ FS V′= , we obtain 

    J

J

j
j SD +=∑

=1

X                                                         (12) 

which defines a multi-resolution analysis of X. That is, the time series X is expressed as the 

sum of a constant vector SJ and J other vectors Dj , j = 1, 2, . . . , J, each of which contains a 

time series related to variations in X at a certain scale. Dj is referred to as the jth level wavelet 

detail. If  

   J

J

jk
kj SDS += ∑

+= 1

                                                        (13) 

for 10 −≤≤ Jj , then for 1≥j   

    .
1
∑
=

=−
j

k
kj DSX                                                          (14) 

Sj can be regarded as a smoothed version of X, since the difference between the two vectors 

involves only details at scale λj = 2j-1 and smaller. As the index j increases, Sj (which is referred 

to as the jth level wavelet smooth for X) should be smoother in appearance. Similarly, the jth 

level wavelet rough for X is defined as  

       ∑
=

=
j

k
kj DR

1

                                                          (15) 

for Jj ≤≤1 . Hence, the time series can be expressed as X = Sj + Rj for Jj ,,2,1 L= .  For 

example, if we decompose the time series of length 28 using only j = 5 scales (that is, up to  λj = 

2j-1 = 24) then X can be expressed in terms of the 5th level smooth and rough, which gives 

    .
5

1
555 ∑

=

+=+=
k

kDSRSX                                               (16)  
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Hence, a time series can be expressed at different resolutions. In this particular case, the time 

series is expressed at up to five different resolutions. The non-decimated wavelet 

transformation or the stationary wavelet transform (MODWT) is a modification of the DWT in 

that while it can be thought of as a sub-sampling of the CWT at dyadic scales, it now deals with 

all times t and not just multiples of 2j. For example, if a series of length 256=T is considered, 

there would be 256 wavelet coefficients at each scale.  Retaining all possible times at each scale 

of the MODWT decomposition has the advantage of retaining the time invariant property of the 

original series. The MODWT can be used in a similar manner to the DWT in defining a multi-

resolution analysis of a given time series.  In what follows, we will use the MODWT multi-

resolution analysis. 

 For a detailed discussion on discrete wavelet transform see Percival and Walden (2000). 

 

4. Methodology 

The analysis of the risk-return relationship is based on a two-stage procedure. In the first stage 

of the analysis, the systematic risks beta, gamma and theta, are estimated. In the second stage we 

test whether the systematic risks are priced or not.  

 

Stage-I: Beta, gamma and theta estimation using time series data 

We estimate the beta, gamma and theta in sample portfolios using time series data in the first 

256-day (1 year) period.  
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Stage-II: Estimation of cross-sectional relationship between returns and betas  

In each group of 256 days (one year) that follows the sample period used in the estimation of 

the beta, gamma and theta in Stage-I, the daily industry portfolio returns are regressed on the 

beta, gamma and theta estimates obtained in Stage-I, according to the cross-sectional 

relationships:  

                      itiiiitR εθλγλβλλ ++++= 3210                                                    (17)                                

where ( )2,0~ σε Nit  and the conditional relationship (5). It is assumed here that the sector beta, 

gamma and theta estimated in Stage-I proxy beta, gamma and theta of Stage-II. To ascertain 

whether beta, gamma and theta are priced in the unconditional model, the hypotheses 

{ }0:,0:0 ≠= iAi HH λλ  for i=1,2,3 are tested for the averages of the slope coefficients in (17).  

The above procedure will uncover possible non-stationarities of the regression coefficients 

– risk premiums – within the 256-day period.  The two-stage estimation procedure is repeated 

using a rolling window technique, rolling forward one year at a time. Our sample period allows 

seven repetitions of the two-stage procedure and enables estimation of beta, gamma and theta 

risk premium in 1792 consecutive days.  

 

5. Data  

The data set includes the daily price series of sixteen industry portfolios in Australia. The daily 

returns are calculated as the change in the logarithm of the closing prices of successive days. 

Although there is information on twenty-four industry portfolios in Australia, eight were 

omitted from the analysis due to the non-availability of data for the entire sample period of our 

study. The time period we investigate is from 28 August 1988 to 29 October 1996. The return 

series on the Australian All Ordinaries Index is used as a proxy for the market return. Some 

summary statistics of the return distributions are presented in Table 1. The excess kurtosis of 
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the media sector is 16.34, which is very high compared to the rest. When the media sector is 

excluded, the excess kurtosis then ranges only from -1.25 to 5.83. The media sector earned the 

highest and the lowest returns compared to the other portfolios studied here. Ten of the sixteen 

sector return distributions are negatively skewed. The return distribution of the Australian All 

Ordinaries Index is also negatively skewed. The risk-free rate is assumed to be the 90-day 

Treasury bond rate.  

 

6. Empirical results 

We begin the analysis by estimating the co-moments: beta, gamma and theta for each industry 

portfolio using raw returns according to the formulae given in (2-4) in each of the seven 256-

day estimation period.  Thereafter, we decompose the raw return series of the market and the 

sixteen industry portfolios by employing the LA(8) filter and obtain wavelet coefficients; 

wavelet beta, wavelet gamma and wavelet theta as in the case with raw returns. The length of 

our rolling period is one year (256 days) and therefore wavelet coefficients in scales seven and 

eight are not used in the analysis. Scale 7 corresponds to 128-256 day dynamics and therefore it 

is together with scale 8 are inappropriate for the analysis.  

 

6.1 Co-moments and timescales 

The betas, gammas and thetas estimated in each of the seven estimation periods separately are 

averaged and presented in Figure 1. In two portfolios namely, Solid Fuels and Gold the beta 

estimated with wavelet coefficients at scale 6 is different from the betas estimated with the raw 

returns and at other scales. Raw returns indicate that Solid Fuel has a low market risk with beta 

at 0.69 compared to Gold with beta at 0.93. However, wavelet analysis indicates that the beta of 

Solid Fuels is 1.01 and Gold has a much lower beta risk (beta = 0.45) at dyadic scale 6 which is 
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the 64-128 day period. This suggests that, for Gold and Solid Fuels sectors the relative beta-risk 

positions assessed by an investor operating at scale 6 would be opposite to the relative beta-risk 

positions assessed by an investor with raw returns. 

 The gamma estimated at wavelet scale 5 which is the 32-64 day period is different from the 

other wavelet gammas and the gamma estimated with the raw returns in five portfolios namely, 

Chemicals, Diversified Resources, Media, Retail and Oil & Gas. Column 2 entries in Table 1 

reveal that four of these five portfolios record the top four mean returns and the other the 

second lowest mean return in the sample of sixteen portfolios. Panel B in Figure 1 indicates that 

wavelet gamma in Chemicals, Diversified Resources and Oil &Gas is much lower at scale 5 

than those at other dyadic scales and in the Media and Retail sectors wavelet gamma is much 

higher at scale 5 than those at other dyadic scales.     

 None of the thetas estimated at different scales and with the raw returns dominates the other 

estimated thetas in any of the sixteen portfolios. Further, the patterns in the curves plotted in 

panels (a) and (c) in Figure 1 are similar suggesting that the correlation between beta and theta 

estimates is high. An interpretation of this observation is that the co-moments of portfolio and 

market returns that the beta and theta captures have comparable characteristics and as a 

consequence one co-moment might dominate or complement the other.4  

 In general, at the individual portfolio level there is no significant difference in the co-

moments estimated with raw returns and with wavelet coefficients at the lower scales.  In some 

portfolios the co-moments estimated with wavelet coefficients in high scales are different in 

                                                 
4 The variance and kurtosis both measure dispersion and therefore in some situations kurtosis could 

become an additional risk measure for assets which variance alone fails to explain (Hwang and Satchell, 

1996). 
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magnitude from those estimated with raw returns and at low wavelet scales.  However, these 

differences are not large enough to affect a significant change in the respective overall means.5  

 

6.2 Association between co-moments and returns  

For each portfolio, we calculate (i) the average of the beta, gamma and theta estimated in the 

seven estimation periods and (ii) the average return in the seven risk premium estimation 

periods. Panels (a)-(c) in Figure 2 shows the scatter plots of average portfolio returns and 

average beta, gamma and theta computed with raw returns and panels (a)-(c) in Figures 3 and 4 

shows the same computed with two sets of wavelet coefficients corresponding to scale 1 and 

scale 6. These plots indicate that the association between portfolio return and portfolio beta, 

gamma and theta appears to be non linear.  However, when we plot the average beta and theta 

against the average portfolio up (down) market returns we observe a strong positive (negative) 

linear association between them. The corresponding scatter plots are displayed in panels (d), (f), 

(g) and (i) in Figures 2-4.  There is no evidence of a linear association between portfolio 

gamma and return even after the up and down market separation. However the scatter plots in 

panels (e) and (h) in Figures 2-4 suggests that the hypothesis that gamma is inversely related to 

returns in the down market appears to hold in our data set. For the sake of brevity we do not 

report the plots corresponding to wavelet scales 2-5. The results in these cases are similar to 

those observed at scales 1 and 6. 

                                                 
5 When we perform F-tests on the means: 610 ...: scalescalerawH βββ ===  

against differentis,...,,ofoneleastat: 61 scalescalerawAH βββ , 61 ...: scalescalerawAH γγγ ===  against 

differentis,...,,ofoneleastat: 61 scalescalerawAH γγγ  and 610 ...: scalescalerawH θθθ ===  against 

different,is,...,,ofoneleastat: 61 scalescalerawAH θθθ  the null hypothesis is not rejected in any of the three 

pairs of hypothesis. This shows that even though notable differences in co-moments in some portfolios 

are observed (see panel (b), Figure 1) they do not affect the overall mean.  
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6.3 Pricing of co-moments 

Here, adopting the two-stage procedure outlined in Section 4 we examine whether the 

systematic risks are priced or not in the two-, three- and four-moment unconditional and 

conditional models. The results in the unconditional models reveal that none of the risk 

premiums are significantly different from zero at the five percent level of significance 

suggesting that the systematic risks are not priced in unconditional models.6 We do not report 

these results for brevity.  

The risk premium estimated in the two moment conditional pricing model is reported in 

Table 2. As evidenced in Table 2, the beta risk premium in the up (down) market is positive 

(negative) and significant as expected. This is observed with the raw returns (panel A, Table 1) 

as well as at different wavelet scales generated from the LA(8) filter (panel B, Table 2).7  

The risk premium estimated in the three-moment conditional pricing model reported in 

Table 3 reveals that (i) the beta is priced in the up and down markets and (ii) the gamma risk is 

priced in the raw return series in the up market and in wavelet coefficients only at scale 5 which 

is the 32-64 day period.8,9 A reason for this might be that in each portfolio, there is not much 

difference among the gamma estimated with raw returns and at timescales 1-4 and 6. This can 

                                                 
6 This is not surprising in the light of the arguments put forward by Pettengill et al, (1995) and 

Galagedera et al, (2004) and the empirical observations of many others that aggregation of results in the 

up and down markets could affect empirical results.  

7 The beta estimated with raw returns and at different wavelet scales are not different from each other in 

most of the portfolios. This might be the reason for observing similar results in the test of the beta risk 

premium in panels (A) and (B) in Table 2.    
8 The beta is positive in the up market and negative in the down market and is significant at the one 

percent level. 
9 In the sample data set the skewness in the market return distribution in the up (down) market is positive 

(negative). Therefore, gamma risk premium is expected to be negative in the up market and positive in 

the down market.  
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be seen in panel (b) in Figure 1. Our data therefore do not provide evidence of pricing of co-

skewness in the three-moment pricing model.  

Finally, we estimate the conditional four-moment pricing model. The results are reported in 

Table 4. Here too, the beta is priced in the up and down markets. Inclusion of co-kurtosis does 

increase the explanatory power as measured by adjusted R-square but the sign of the gamma 

and theta risk premiums are not always as expected and the estimates are not significant. A 

reason for the lack of evidence for co-kurtosis as an appropriate additional risk measure may be 

attributed to the high correlation between beta and theta as discussed in Section 6.1.10  

Overall our data support the two-moment conditional pricing model and fail to support the 

unconditional pricing models and the conditional three- and four-moment pricing models. It 

appears that when the raw data (return) supports a conditional model so does the returns at 

different timescales corresponding to the LA(8) wavelet filter.   

 We examined the sensitivity of the results with the LA(8) filter to two alternative filter 

families namely, Daubechies and coiflets. We find that when the Daubechies DB(2), DB(4), 

DB(6) and DB(8) and coiflets CF(2), CF(4), CF(6) and CF(8) are used in the analysis, the 

conclusions with the LA(8) filter is largely unchanged.  

 

 

                                                 
10 We repeated the analysis with two other conditional pricing models, (1) including the beta and theta as 

risk measures: ( ) ( ) ( ) itim
D

im
U

im
D

im
UDU

itR εθδλδθλβδλδβλλδδλ +−++−++−+= 111 331100  and (2) 

including only the theta as a risk measure: ( ) ( ) itim
D

im
UDU

itR εθδλδθλλδδλ +−++−+= 11 3300 . As 

expected, the results when only the theta is included are consistent with what is observed in the 

conditional two-moment pricing model where only the beta is included. In the other case where only the 

beta and theta are included in the pricing model the results are inconclusive- the signs for the risk 

premiums obtained with raw returns and at some scales are contrary to what is expected and 

insignificant.    
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7. Concluding remarks 

Computation of weekly, fortnightly and monthly return results in loss of data due to 

aggregation. In wavelet analysis however, returns can be examined at different timescales 

without any loss of data.  

 In some portfolios systematic co-moments estimated at higher scales indicate risk levels 

different from what is estimated in raw data suggesting that riskiness is timescale dependent. 

Therefore, investors operating at a larger timescale should evaluate such portfolios with the risk 

levels estimated at such timescales. 

We examine the association between systematic risks as measured by the beta, co-skewness 

and co-kurtosis and returns using raw returns and wavelet coefficients obtained through 

decomposition of the returns with the LA(8) filter. A strong positive linear association between 

beta and co-kurtosis and portfolio return in the up market and a strong inverse linear association 

between the beta and co-kurtosis and portfolio return in the down market is observed. These 

associations are observed in raw returns and at all wavelet scales. The linear association 

between the systematic risks and portfolio returns without conditioning on market movement is 

weak. Co-skewness does not appear to be linearly associated with portfolio returns even after 

the up and down market split.  

Tests of risk-return relationship in the two-, three- and four-moment pricing models, reveal 

that (i) there is no evidence in support of the unconditional pricing models and (ii) when market 

movement is accommodated in the pricing model, only the two-moment pricing model is 

supported. There is evidence of a systematic relationship between market beta and portfolio 

returns in raw returns and at different resolutions of the raw returns. The gamma and theta risk 

premium in some instances are priced but their sign is often contrary to what is expected. In the 

sampled data set we find no evidence to suggest co-skewness and co-kurtosis as additional risk 
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measures. Nevertheless, risk as measured by co-moments is timescale dependent and this 

should be taken into account when testing the validity of asset pricing models. 
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Table 1. Descriptive statistics of the distribution of the continuously compounded 
               daily returns of Australian industry portfolios 

Industry portfolio Mean Max Min Standard 
deviation Skewness Kurtosis 

(1)   Alcohol & tobacco 0.0092 5.1600 -6.0148 1.1798 -0.1765 2.4195
(2)   Banks & finance 0.0254 4.4348 -7.1480 1.0464 -0.1974 2.2972
(3)   Building materials 0.0041 3.8593 -7.9626 0.9470 -0.2608 3.0867
(4)   Chemicals 0.0360 6.5418 -9.1292 1.1518 -0.1494 3.7821
(5)   Developers & 
        contractors 0.0158 3.4345 -6.1888 0.9016 -0.3880 3.4065
(6)   Diversified resources 0.0396 4.9845 -7.5387 1.1725 -0.0875 1.7466
(7)   Engineering 0.0077 5.2928 -8.2022 1.0386 -0.2041 3.2953
(8)   Food & household 
        goods 0.0339 10.6032 -6.4921 0.9491 0.6231 8.8350
(9)   Media 0.0412 22.9683 -15.4941 1.8414 0.4537 19.3390
(10) Paper & packaging 0.0067 5.3922 -8.1917 1.0553 -0.1349 2.9369
(11) Retail -0.0043 4.8496 -7.0938 0.9965 -0.3021 3.5141
(12) Transport 0.0090 5.8343 -7.0321 1.0751 -0.0909 2.7925
(13) Solid fuels 0.0206 11.5480 -6.4683 1.3454 0.2025 4.4870
(14) Oil & gas 0.0443 6.0482 -8.4277 1.0000 -0.1574 4.3807
(15) Gold -0.0003 9.1467 -12.6451 1.4494 0.1144 6.2019
(16) Insurance -0.0065 7.5473 -10.4533 1.3169 -0.6636 6.7240
All Ords 0.0183 3.7817 -8.4411 0.8017 -0.6046 6.9425

 
Notes: Sample period is 29 August 1988 - 29 October 1996. The figures are given as daily 

percentages. Statistics are based on 2048 observations. Skew is computed as ∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −T

t R

t RR
T 1

3

ˆ
1

σ
 

where tR  is the return in day i and Rσ̂ is the standard deviation of return. Kurtosis is computed 

as 
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −∑
=

4

1
ˆ

1 T

t R

t RR
T σ

 where tR  is the return in day i and Rσ̂ is the standard deviation of return. 
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Table 2. Estimates of risk premium in two-moment conditional pricing model  

Up market Down market 
Model U

0λ  U
1λ  D

0λ  D
1λ  

Panel A Raw return  
Up market days = 880, down market days = 912, 2

upR = 0.10 and 2
downR =0.10 

Estimate 0.1559 0.4587 -0.1128 -0.4503 
t-value 4.0424* 10.6989* -3.0033* -10.8639* 
Panel B Scales  from LA(8) filter 
Scale 1: up market days = 922, down market days = 870, 2

upR = 0.10 and 2
downR =0.09 

Estimate 0.1118 0.4201 -0.1185 -0.4452 
t-value 3.4723* 12.052* -3.7038* -12.817* 
Scale 2:  up market days = 917, down market days = 875, 2

upR = 0.10 and 2
downR =0.10 

Estimate 0.1992 0.4224 -0.2088 -0.44262 
t-value 5.5487* 10.432* -5.5101* -10.261* 
Scale 3:  up market days = 920, down market days = 872, 2

upR = 0.11 and 2
downR =0.12 

Estimate 0.3503 0.3118 -0.3696 -0.3289 
t-value 9.0449* 7.4083* -9.2538* -7.4445* 
Scale 4: up market days = 888, down market days = 904, 2

upR = 0.10 and 2
downR =0.09 

Estimate 0.3059 0.2961 -0.3005 -0.2909 
t-value 11.035* 9.9708* -10.930* -10.152* 
Scale 5: up market days = 921, down market days = 871, 2

upR = 0.11 and 2
downR =0.13 

Estimate 0.3528 0.3264 -0.3730 -0.3452 
t-value 12.370* 10.604* -13.594* -11.260* 
Scale 6: up market days = 964, down market days = 828, 2

upR = 0.12 and 2
downR =0.12 

Estimate 0.3249 0.2988 -0.3782 -0.3479 
t-value 13.631* 11.315* -14.008* -12.157* 

 

Notes: * Significant at the 1 percent level and ** significant at the 5 percent level. The conditional 
model estimated is ( ) ( ) itim

D
im

UDU
itR εβδλδβλλδδλ +−++−+= 11 1100  where 1=δ  for up market 

(market return in excess of the risk-free rate is positive), 0=δ  for down market (market return 
in excess of the risk-free rate is negative) and ( )2,0~ iit N σε .   
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Table 3. Estimates of risk premium in three-moment conditional pricing model  

Up Market Down Market 
Model U

0λ  U
1λ  U

2λ  D
0λ  D

1λ  D
2λ  

Panel A Raw return 
Up market days = 880, down market days = 912, 2

upR = 0.19 and 2
downR =0.18 

Estimate 0.1679 0.5544 -0.1035 -0.1007 -0.4923 0.0280
t-value 4.2307* 11.590* -3.0930* -2.5608** -11.111* 0.8541
Panel B  Scales  from LA(8) filter  
Scale 1: up market days = 922, down market days = 870, 2

upR = 0.19 and 2
downR =0.18 

Estimate 0.0831 0.4237 0.0246 -0.0881 -0.4490 -0.0261
t-value 2.5548** 12.308* 1.2201 -2.6291* -12.388* -1.1819
Scale 2: up market days = 917, down market days = 875, 2

upR = 0.18 and 2
downR =0.18 

Estimate 0.1941 0.4959 -0.0630 -0.2034 -0.5197 0.0660
t-value 5.0528* 10.538* -1.8980 -4.8308* -10.464* 1.7839
Scale 3: up market days = 920, down market days = 872, 2

upR = 0.19 and 2
downR =0.20 

Estimate 0.3707 0.3079 -0.0203 -0.3911 -0.3248 0.0214
t-value 9.5508* 6.7924* -1.6775 -9.8003* -6.9112* 1.7638
Scale 4: up market days = 888, down market days = 904, 2

upR = 0.18 and 2
downR =0.18 

Estimate 0.3158 0.2801 0.0004 -0.3102 -0.2752 -0.0004
t-value 10.462* 7.5060* 0.0330 -10.335* -7.2634* -0.0308
Scale 5: up market days = 921, down market days = 871, 2

upR = 0.22 and 2
downR =0.22 

Estimate 0.3729 0.3653 -0.0634 -0.3943 -0.3862 0.0671
t-value 12.420* 11.189* -5.3251* -13.882* -11.8789* 5.4776*

Scale 6: up market days = 964, down market days = 828, 2
upR = 0.21 and 2

downR =0.22 
Estimate 0.3252 0.2518 0.0278 -0.3786 -0.2931 -0.0323
t-value 13.265* 8.5577* 1.4056 -13.388* -10.605* -1.4428

 

Notes: * Significant at the 1 percent level and ** significant at the 5 percent level. The conditional 
model estimated is ( ) ( ) ( ) itim

D
im

U
im

D
im

UDU
itR εγδλδγλβδλδβλλδδλ +−++−++−+= 111 221100  where 

1=δ  for up market (market return in excess of the risk-free rate is positive), 0=δ  for down 
market (market return in excess of the risk-free rate is negative) and ( )2,0~ iit N σε .   
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Table 4. Estimates of risk premium in conditional four-moment pricing model  

Up Market Down Market 
Model U

0λ  U
1λ  U

2λ  U
3λ  D

0λ  D
1λ  D

2λ  D
3λ  

Panel A Raw return 
Up market days = 880, down market days = 912, 2

upR = 0.26 and 2
downR =0.26 

Estimate 0.1950 0.5903 0.4842 -0.6591 -0.1028 -0.5086 -0.3696 0.4203 
t-value 5.1218* 4.9378* 2.9760* -3.3375* -2.7126* -4.7429* -2.7426* 2.5412** 
Panel B  Scales from LA(8) filter  
Scale 1: up market days = 922, down market days = 870, 2

upR = 0.27 and 2
downR =0.26 

Estimate 0.1026 0.6836 0.0250 -0.2725 -0.1087 -0.7244 -0.0265 0.2888 
t-value 2.8810* 7.1978* 1.1988 -2.8358* -3.1238* -7.2374* -1.1972 2.8716* 
Scale 2: up market days = 917, down market days = 875, 2

upR = 0.25 and 2
downR =0.24 

Estimate 0.1767 0.7757 -0.0404 -0.2819 -0.1852 -0.8129 0.0423 0.2954 
t-value 4.6217* 5.4321* -1.0825 -2.0470** -4.3847* -5.5589* 0.9925 2.1011 
Scale 3: up market days = 920, down market days = 872, 2

upR = 0.26 and 2
downR =0.27 

Estimate 0.3952 -0.0186 -0.0342 0.3239 -0.4170 0.0196 0.0361 -0.3417 
t-value 9.7871* -0.1284 -2.4147** 2.2627** -10.050* 0.1339 2.5494** -2.3587** 
Scale 4: up market days = 888, down market days = 904, 2

upR = 0.25 and 2
downR =0.25 

Estimate 0.3137 0.2244 0.0285 0.0334 -0.3082 -0.2205 -0.0280 -0.0328 
t-value 10.350* 2.4550** 1.5606 0.3406 -10.234* -2.3786** -1.5098 -0.3337 
Scale 5: up market days = 921, down market days = 871, 2

upR = 0.31 and 2
downR =0.31 

Estimate 0.4210 0.9245 -0.0736 -0.6157 -0.4452 -0.9776 0.0778 0.6510 
t-value 11.823* 7.3102* -6.5788* -4.7216* -13.761* -7.4974* 7.0739* 4.9214* 
Scale 6: up market days = 964, down market days = 828, 2

upR = 0.31 and 2
downR =0.30 

Estimate 0.3528 0.3198 0.0844 -0.1384 -0.4107 -0.3724 -0.0983 0.1611 
t-value 14.773* 2.1671** 5.3239* -0.9007 -14.506* -2.8461* -4.5866* 1.1212 

 

Notes: * Significant at the 1 percent level and ** significant at the 5 percent level. The conditional 

model estimated is 
( ) ( ) ( )

( ) itim
D

im
U

im
D

im
U

im
D

im
UDU

itR

εθδλδθλ

γδλδγλβδλδβλλδδλ

+−++

−++−++−+=

1

111

33

221100      where 

1=δ  for up market (market return in excess of the risk-free rate is positive), 0=δ  for down 
market (market return in excess of the risk-free rate is negative) and ( )2,0~ iit N σε .   
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    Figure 1. Portfolio beta, gamma and theta estimated with raw data and wavelet coefficients 
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    Note: The portfolios are described in Table 1. 
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   Figure 2. Average daily portfolio returns versus average portfolio beta, gamma and theta 
                   with raw data  
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    Figure 3. Average daily portfolio returns versus average portfolio beta, gamma and theta 
                    with LA(8) scale 1 coefficients  
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  Figure 4. Average daily portfolio returns versus average portfolio beta, gamma and theta 
                 with LA(8) scale 6 coefficients 
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