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Multifractality of the US Treasury Term Structure and Fed Funds Rate

Abstract

This paper identifies the Multifractal Models of Asset Return (MMARs) from the eight nodal term struc-
ture series of US Treasury rates as well as the Fed Funds rate and, after proper synthesis, simulates those
MMARs. We show that there is an inverse persistence term structure in the sense that the short term
interest rates show the highest persistence, while the long term rates are closer to the GBM’s neutral per-
sistence. The simulations of the identified MMAR are compared with the original empirical time series,
but also with the simulated results from the corresponding Brownian Motion and GARCH processes. We
find that the eight different maturity US Treasury and the Fed Funds rates are multifractal processes.
Moreover, using wavelet scalograms, we demonstrate that the MMAR outperforms both the GBM and
GARCH(1,1) in time-frequency comparisons, in particular in terms of scaling distribution preservation.
Identified distributions of all simulated processes are compared with the empirical distributions in snap-
shot and over time-scale (frequency) analyses. The simulated MMAR can replicate all attributes of the
empirical distributions, while the simulated GBM and GARCH(1,1) processes cannot preserve the thick-
tails, high peaks and proper skewness. Nevertheless, the results are somewhat inconclusive when the
MMAR is applied on the Fed Funds rate, which has globally a mildly anti-persistent and possibly chaotic
diffusion process completely different from the other nodal term structure rates.
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1 Introduction

Interest rates form some of the most important variables in finance. A change in interest rates

usually has a substantial impact on an asset investments and derivatives pricing. Therefore there is

considerable demand for well-identified interest rate models. The current discussion about interest

rate models can be summarized as follows. Most financial market models consist of an affine (=

"linear + intercept") mathematical system driven by a particular exogenous information process.

Most information processes thus far assumed are either i.i.d. processes in discrete-time Wold-

type models, or Wiener-Gauss processes in continuous time models. However, very recently the

mono- and multi-fractal information processes of Mandelbrot have again become popular, after

their initial popularity in the late 1960s and early 1970s. In addition, there is some discussion of

nonlinear continuous time models driven by Wiener-Gauss processes (See, for example, Franke,

Stapleton and Subrahmanyam, 1999). In this paper we will discuss the affine models driven

by i.i.d./Wiener-Gauss and by fractal information processes and leave the comparison with the

nonlinear models driven by i.i.d./Wiener-Gauss information processes for another paper.

The very first interest rate model, known as the one-factor affine model, or simple linear model

with intercept, driven by an i.i.d. information process, was introduced by Vasicek (1977). Since

then several models, ranging from very simple to very complex, in terms of the number of factors

or information processes employed, have been proposed. Such one- or two-factor models of interest

rate are preferred, since they can succinctly explain most of the variation of the term structure of

interest rates. Most of these simple factor models assume a geometric Brownian motion (GBM)

with a trend as their price diffusion process. This is not a coincidence, since it is imperative for

transparency and scientific logic that the proposed models are tractable. In addition, sophisticated

investors prefer the GBM, as many are already familiar with it from the Black-Scholes options

pricing formula.

But accumulating evidence in the academic financial literature indicates that these GBMs
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cannot explain several features of the empirical financial data. Already in 1970 Roll studied the

distribution of the Treasury bill yield changes using the stability index, or Zolotarev-αZ , and found

that "With a large degree of confidence, most of the distributions of interest rate changes have

α significantly lower than 2 and are thus non-Gaussian Indeed, the upper limit of the simulation

range suggests that most of the α’s are significantly lower than 1.5" (p. 73). The GBM has a

stability index equal to 2, or, what is the same, a Hurst exponent equal to the Fickian value of

0.5. Thus the characterizing feature of the GBM is that it scales the instantaneous volatility of

pricing processes according to τ0.5, the square root of the maturity or time horizon τ . This scaling

characteristic can greatly affect actual derivatives prices when the underlying asset prices do not

adhere to such time-frequency scaling (e.g., Jamdee and Los, 2005).

Following Engle’s (1982) Auto-regressive Conditional Heteroskedasticity or ARCH model,

Bollerslev (1986) proposed the Generalized ARCH or GARCH model to explain the empirically

observed time-varying volatility of financial market pricing processes, driven by i.i.d. information

processes. But the users of the GARCH model experience serious difficulties with attempting to

identify its proper lag orders. Practically, the GARCH (1, 1) is now very common in time series

modeling, but that is mainly due to its overreaching simplicity. Although they capture skewness

and kurtosis phenomena in addition to time-varying volatility, the GARCH models do not identify

other important characteristics of empirical financial data, such as time-and-frequency scaling and

long-range dependence, or "Long Memory".

To overcome the drawbacks of both the GBM and GARCH(1, 1) models, this paper uses the

Multifractal Model of Asset Return (MMAR) of Calvet, Fisher and Mandelbrot (1997) as a viable

and empirically more satisfying substitute to model each of the nine interest rates of the US term

structure. In effect, we propose a nine-factor model, where each of the nodal interest rates is a

multifractal Brownian motion, which is driven by a multifractal information process.

We implement the MMAR for the first time as the underlying process of the U.S. Treasury

interest rate series for various maturities and compare its performance with that of the affine GBM
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and GARCH models. Monte Carlo simulations are used for model performance measurement, in

the sense that we want to ensure that the identified models can reproduce the identified character-

istics of the interest rate series. It should be recognized that this study does not attempt to price

any bonds. Rather, the study focuses on the analysis of simulated fractal price diffusion processes

of the nodal market interest rates.

The main findings of this paper are that the interest rate series from the instantaneous to 10-

year maturities exhibit Long Memory and scale over frequency and time. Our simulations of the

empirically identified model suggest that the MMAR is superior to the GBM and GARCH(1, 1)

processes in modeling the time-scaling characteristics of the interest rate series, while it maintains

other desirable characteristics, like the tractability and heteroskedastic time-varying volatility of

both these models.

The paper is organized as follows. Section 2 reviews the literature about interest modeling

based on GBM and GARCH processes and enumerates their shortcomings which we try to over-

come. Section 3 explains the empirical data. Section 4 explains the MMAR methodology used. It

discusses how to detect multifractality, to identify the crucial parameters of the return series, to

reconstruct the series using the identified parameters, to simulate the return process, to measure

the model’s overall performance, and to analyze the higher moments of the simulated results.

Section 5 presents the empirical results and section 6 provides a summary and conclusions.

2 Literature Review

The very first interest rate model, a one-factor affine model, was introduced by (1977). Other

popular affine models include the two-factor model of Longstaff and Schwartz (1992) and the

one-factor model of Hull and White (1993). In particular, the two-factor model followed the

introduction of the extended Vasicek and extended Cox, Ingersöll, and Ross (CIR) one-factor

affine models. The one-factor model can only explain parallel (up-and-down) shifts of the term
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structure of interest rates. The two-factor model can explain both its parallel and slope shifts.

The next generation of three-factor affine models, was proposed by Balduzzi et al. (1996).

Based on the principal components analysis of the covariance matrix of interest rates, Brandt

and Kavajecz (2004) suggest that more than one, but not many more than three factors, can

sufficiently capture the parallel and slope and curvature changes of the term structure, i.e., more

than 90% of the term structure variation.

Besides assuming the GBM as the underlying interest rate diffusion process, some have tried

to use the GARCH process as the underlying process, e.g., Longstaff and Schwartz (1992). The

following sections review the drawbacks of the affine GBM and GARCH(1, 1) processes, which

leads us to a need for a better stochastic process for future development in interest rate modeling.

2.1 Limitation of the Affine Models

Los (1989, 2003) and Rebonato and Cooper (1996) argue that the statistical pitfalls of the principal

component analysis to identify the factors for the models create a serious model identification

problem. The percentage of variation attributable to a particular component depends on the

number of components prejudicially retained from the covariance matrix. Thus, both the size

of the covariance matrix, or the number of the term structure’s maturity segments, as well as

how many of these segments are considered significant, are crucial choices since these choices

determine the percentages of variation decomposition. In fact, this problem is inherent to all

more-than-one-factor affine models.

We mentioned that the one-factor Vasicek model only allows for parallel shifts of the term

structure (Schlögl & Sommer, 1998). In addition, Bakshi and Chen (1996) and Rogers (1996)

comment that with its assumed Gaussian distribution, the model can erroneously produce negative

interest rates.

Cox et al. (1985) solve this problem by incorporating a reflecting boundary for the diffusion

process. The resulting pricing process remains the same (an exponentially affine pricing process)
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after their adjustment, although the new bond prices (= horizon dependent deterministic func-

tions) are different. Schlögl and Sommer (1998) also argue that while the two-factor models allow

for the twists or slopes of the term structure, they still do not generate the correct third and

higher order dynamic distribution moments. Kappi (1997) uses maximum likelihood estimation

(which can be shown to be equivalent to the scientifically deficient principal components analysis)

to estimate the two-factor models and found that they can identify the level and the slope, but,

unsurprisingly, cannot identify the curvature of the term structure. With one additional factor to

explain the curvature, the three-factor models perform better than the two-factor models. How-

ever, Los (1989) and Brandt and Kavajecz (2004) clearly show that the three factors of those

three-factor models are typically not uniquely identified, even though modelers commonly think

of them as the level, slope, and curvature of the term structure.

While Duffie and Kan (1994) and Dai and Singleton (2000) correctly state that a price process

that is exponentially linear in the short rate price process with drift and variance components in

the one or two factors are features of the general class of affine models, these simple features are

incompatible with the empirical evidence and do not correctly identify the time-varying distribu-

tional stucture of the term stucture’s rates.

Johannes (2004) has recently tested both nonparametric one-factor models and the two- and

three-factor models of Andersen and Lund (1997, 1998). The results indicate that none of these

models are able to capture the ARCH and non-Gaussian long-term dependence ("scaling") features

of the empirical data. Johannes (2004) argues that a multi-factor model might be able to match

the nonlinearity of the observed data by grossly increasing the volatility in the model. However,

the cost of the modification is so severe that the simulated interest rate path becomes completely

irregular.

Thus the affine models fail correct empirical identification by the simple fact that the infor-

mation structure of the model is generated by connecting a simple affine (= "linear") stucture

and a (Fickian) GBM infomation process, that does not allow any singularities or exceptional,
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unpredictable surprises, i.e., the features that are empirically normally found in the financial

markets.

2.2 GARCH Process Models

Bollerslev (1986) introduced the GARCH (p, q) process, generalizing the 2003 Nobel Memorial

Prize winning ARCH process of Engle (1982). The GARCH (p, q) process has been found to

be very useful in modeling the time-varying price volatility of underlying assets, i.e., they are

non-stationary in the weak sense and they are now widely accepted among academicians and

practitioners.

Although GARCH can be used in any higher order of Moving Average and Autoregressive

models, in practice only GARCH (1, 1) is widely used, because the paametes of higher-order

GARCH models are vey difficult to uniquely identify and often have to be subjectively calibrated.

Andersen and Lund (1997), Dai and Singleton (2000) use GARCH to approximate a density of

short-rate series and then estimate their underlying processes. Without pricing any interest rate

options, Brenner et al. (1996) suggest that GARCH model can capture stochastic volatility and

varying serial correlation of the short-rate, the 3-month Treasury bill, series.

Longstaff and Schwartz (1992) also use GARCH to capture the underlying process of the short

rate in their two-factor model, but later found that their model inadequately reproduces reality.

Fisher et al. (1997) argue that the finite memory of the discrete time GARCH process prevents it

from replicating the long memory time-and-frequency scaling patterns found in empirical financial

market data.

Imposing multi-factor interest rate models on a GARCH information process to capture either

the short-rate process or its volatilities, Bali (2003), Heston and Nandi (2003), and Saltoglu (2003)

show that GARCH helps improve the predictability of multi-factor models, although Saltoglu

(2003) reports that GARCH model is slightly outperformed by other nonparametric methods

such as (nonlinear) Artificial Neural Networks and kernel smoothing.
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The limitations of the GARCH model, such as its the unidentifiable lag orders and its finite

short term memory, urge us to find a better identified model. One of the currently most promising

models is the MMAR.

2.3 Multifractality Modeling

The MMAR is the third generation of price diffusion models, following the multifractality theory

of Mandelbrot (Mandelbrot and Hudson, 2004). This model is based on the compounding of a

(Fickian) geometric Brownian motion interest rate pricing process with a persistent multifractal

information or news process. The infomation process is fractally clustered. This compounded

multifractal diffusion model produces a multifractal interest rate process with a proper persistence

level to match that of the empirically observed interest rate processes.

The fractal scaling property is one of the main key components that generate thick-tail and

long-term dependence phenomena in time series, as explained by Mandelbrot (2001a, 2001b, 2001c,

2001d). Mandelbrot argues that both phenomena are common in nature (Mandelbrot, 1982).

Moreover, the MMAR produces a martingale, or no-arbitrage, pricing process, in contrast to the

monofractal fractional Brownian motion, which does not produce a martingale and allows for a

limited form of arbitrage (Rogers, 1997).

Since the MMAR is partly based on the monofractal factional Brownian motion, identification

of the global degree of persistence of the financial time series is required. Table 1 provides a

summary of recent published measurements of such degrees of persistence of financial market time

series. There are two salient observations in this Table. First, none of the published measurements

include option markets. Second, many reports appeared only in 2004. This avalanche of recent

publications suggests that the topic is rapidly gaining interest in the financial community, but also

that there are still important gaps in the published empirical research.

[INSERT TABLE 1 ABOUT HERE]
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Calvet and Fisher (2002) state that the MMAR is a hybrid between jump diffusion models

and the GBM, such that the MMAR contains all necessary characteristics found in the observed

empirical data. Table 2 adapted from Mandelbrot, Fisher, and Calvet (1997) and Calvet and

Fisher (2002) suggests that the MMAR is superior to other time series models in the aspects

needed for modeling financial time series. It produces a martingale process with time-frequency

scaling and thus Long Memory.

[INSERT TABLE 2 ABOUT HERE]

Beside the MMAR, only the Fractional Integrated GARCH (or FIGARCH) and GARCH mod-

els can exhibit the empirically observed volatility clustering in return series, while preserving the

desirable no-arbitrage martingale property or One-Price-Law. The monofractal FBM, ARFIMA,

and ARMA models all exhibit correlation in the return series without this desirable martingale

property. These non-martingale models all provide arbitrage opportunities and don’t adhere to the

no-arbitrage One-Price-Law. Also, the MMAR as a continuous time model has an advantage over

its discrete model candidates, because it can be used with very high frequency (e.g., tick-by-tick)

data.

3 Interest Rate Data

The empirical U.S. Treasury interest rate series are obtained from the Federal Reserve Bank of

St. Louis web site (H.15). This paper uses the daily computational interest rate series, called

Treasury constant maturity, with 3-month, 6-month, 1-year, 2-year, 3-year, 5-year, 7-year, and

10-year maturities.1 In addition, the Fed Funds rate, which is often used as an instantaneous

rate for affine interest rate models, is also analyzed.

The interest series in this study cover the period of April 13, 1987 — December 31, 2002.

1 In addition, the secondary market rates are analyzed, and the results suggest that these rates do not exhibit
the long memory effect. The degrees of persistent H are slightly below 0.5.
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This approximate 15-year period provides 4096 daily observations. This length of the data set is

necessarily chosen such that it is conform the processing capacity of a simple personal computer.

Moreover, Los (2003) suggests business cycles last approximately 10 to 12 years. Thus, the 15-year

period is expected to cover at least one whole business cycle in the USA. Each interest rate series

for any maturity has the same number of observations. Like in McCarthy et al. (2004), missing

values were replaced with the rate from the previous day. The same length of period is used to

compute the partition function (sample sum), scaling function, Legendre multifractal spectrum,

and homogeneous or monofractal Hurst exponent.

4 MMAR: Detection, Identification, Synthesis, and Simu-
lation

The purpose of this paper is to identify the diffusion processes of the eight interest rate ("node")

series of the U.S. Treasury term structure and their coherent system, as well as of the Fed Funds

rate. Only the first five moments of the nine simulated interest rate paths are most thoroughly

analyzed.

The Multifractal Model of Asset Returns (MMAR) was initially proposed by Calvet et al.

(1997), Fisher et al. (1997), Mandelbrot et al. (1997), Calvet and Fisher (2002) and empirically

tested with the foreign exchange rate, the U.S. stock index, and the individual U.S. stocks. In

addition, Fillol (2003) has successfully applied the MMAR to the French Stock Index.

Unlike McCarthy et al. (2004) who use the Haar Wavelet to measure the degree of persistent

or (Global) Hurst exponents of the Treasury rate series across the maturities, this paper examines

the multifractal process of the Treasury rate series, identify the parameters of their corresponding

MMARs, and compare the performance of these multifractal models with the respective GBM

and GARCH(1, 1) processes.

The procedure of MMAR begins with identifying the multifractal spectra of the time series

of interest rates, computing the values of their few particular parameters, synthesizing the mul-
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tiplicative measure that preserve the multifractality properties, and simulating the compounded

processes of the pricing GBMs driven by the multifractal trading time information processes.

The MMAR is a stochastic process X(t), such that

X(t) = lnP (t)− lnP (0) (1)

where P (t); 0 6 t 6 T is the price series while t represents conventional clock time. Thus, {X(t)}

is a multifractal process that has the following properties:

Assumption 1: X(t) is a compounded process, where a Brownian Motion operates on a multi-

fractal trading time function:

X(t) ≡ BH [θ(t)] (2)

where BH [.] is a fractional Brownian Motion (FBM) and H is a Hurst exponent with 0 < H < 1,

with trading time θ(t). The θ(t) process deforms or "warps" the multifractal information process

in conventional clock time into equally-distanced trading time, while the BH [.] process operates

the interest rate pricing process.

Assumption 2: trading time θ(t) is the cumulative distribution function (c.d.f.) of a multifrac-

tal measure defined on the time axis [0, T ]. It reflects the actual news dissemination process that

affects the volume of trades on the trading floors. It changes the unequally-spaced, or clustered

trading events, into equally-distanced fractal trading events, that form the multifractal information

process that drives the GBM pricing process.

Assumption 3: the return generating pricing process BH [.] and the multifractal infomation

process, or trading time function θ(t) operate independently of each other. In other words, al-

though the interest rate markets are driven by the trading events, their pricing operation is

mechanically independent of them.

The principle here is that one can transform a monoscaling process like the monofractal Brown-

ian motion into a multiscaling process by properly mapping the one dimensional time domain

t −→ θ(t) where the trading time possesses all the multifractal properties that are expected to
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be passed on directly to the pricing FBM. The Hurst exponent of the second moment of the final

interest rate process BH [.] is then about (but not quite!) the "average" of the (second moment)

neutral Hurst exponent (H = 0.5) of the standard GBM and the persistent (second moment)

Hurst exponent (0.5 < H < 1) of the information process. The model identification begins with

determining the Hurst exponent of the interest rate process BH [.], from which the Hurst exponent

of the information process or trading time θ(t) is then inferred, based on the fitted shape of the

multifractal spectrum.

4.1 Identification of Scaling Properties and Multifractal Spectra

With the goal of tractability, the detection of the multifractality of the interest rates begins with

the use of Gibbs’ partition function

Sδ(T, q) =
n

Σ
i=1

¯̄
Xdi·δe −Xd(i−1)·δe

¯̄q
(3)

where d·e is the integer part operator, and δ is the time increment.

By the definition of multifractality, a stochastic process X(t) is multifractal if it has stationary

increments and satisfies the fractional moment relationship

E{|X(t)|q} = c(q)tτ(q)+1 (4)

for all t ∈ B, q ∈ Q, where E{·} is the expectation operator and c(q) is called a prefactor. B and

Q are positive real numbers where 0 ∈ B and [0, 1] ⊆ Q . In other words, the movements of the

process X(t) are clearly scaled with the scaling exponent τ(q). The moments, q, can theoretically

be negative. According to Mandelbrot et al. (1997) negative moments do not occur in financial

data, but others (Los & Yalamova, 2003) found differently for some empirical stock market prices

immediately after stock market crashes, when the "randomness" of the after-shock stock market

pricing process is exceptionally high.

By logarithmic transformation, the partition function can be rewritten as

log(Sδ(T, q)) ≈ τ(q) log(δ) + log[c(q)] + log(T ) (5)
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Clearly, this is a approximately linear relationship. This equation also implies that if any function

has scaling properties, the logarithmic plot of the partition functions against the time increment

should be approximately linear. With various moments, q, and incremental time, δ, one can iden-

tify the scaling function, bτ(q) , using various simple projection methods. Then, using the Legendre
transform on the identified scaling function bτ(q) one can identify the multifractal spectrum bf(α)
from this scaling function as

bf(α) = min
q
[qαL − bτ(q)] (6)

where αL is a localized Hurst exponent, or Lipschitz-αL.

4.2 Identified Hurst Exponents and Parameters of the Cascading Mea-
sures

Given that interest rate series shows such time-frequency scaling, Mandelbrot et al. (1997) and

Fisher and Calvet (2002) have proven that the following identities hold.

bτX( 1
H
) = τθ(1) = 0 (7)

τX(q) = τP (q) = τθ(Hq) (8)

fX(αL) = fP (αL) = fθ(
αL
H
) (9)

The first identity allows the identification of the Hurst exponent bH of the log price series. This

identification can be done by finding the partition function plot at a particular moment q that

is approximately parallel to the horizontal axis. In other words, the partition function plot of a

particular q and δ that has a zero slope can be used to solve backward for the Hurst Exponent of

the interest rate process BH [.].

The second identity suggests that the log price and price processes, X(t) and P (t), respectively,

have the same scaling function, while the scaling function of the trading time has the same shape,

but is shifted by the factor of Hq.

The third identity indicates that the multifractal spectra of the processes X(t) and P (t), each

computed by using the Legendre transformation of the scaling function, are the same. Again, the
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multifractal spectrum of the trading time has the same shape, but shifted by a factor of αLH . This

last identity is very important for constructing the MMAR and will be used in next section.

4.3 Synthesizing the Lognormal Measures

Multiplicatively cascading probability measures are a key for reconstructing the MMAR from

the identified parameters. They have all ideal scaling properties that will be transferred to the

simulated FBM, exhibiting the identified long-term dependence when the two processes are com-

pounded. The cascading probability measures are normally used to generate positive multifrac-

tality using iteration techniques. The value of the multiplicative measure, µk,bk built on a single

mass M0
0 , after k iterations at interval Bk, is given by

µk,bk =Mk
bk
·Mk−1

bk−1 · · ·M1
b1 ·M0

0 (10)

for any dyadic (= by a factor of 2) partitioning of the intervals. The initial probability mass M0
0

is "divided" up by multiplying by a cascade of probability measures to result in a final empirically

realistic distributional measure µk,bk .

There are several extensions of these multiplicatively cascading probability measures. One

can introduce stochastic probability measures by using any known distribution, e.g., the Gaussian

distribution. Empirically, one can ascertain, by examining their multifractal spectra, that most

financial time series, including interest rates, exhibit multifractal spectra with humped shapes,

while their trading time is the cumulative distribution function (c.d.f.) of multiplicative random

probability measures with simple lognormal masses (c.f. Bailli et al., 1996; Bollerslev, 1986; Calvet

et al., 1997; Calvet and Fisher, 2002; Mandelbrot et al., 1997).

Calvet et al. (1997) proved that the multifractal spectrum function of trading time with

lognormally distributed masses is

fθ(αL) = 1− (αL − λ)2

4(λ− 1) (11)

where f is hump-shaped and symmetric around its maximum or most probable Hurst exponent,

13



bαL0 = λ.2 The first two moments of the lognormal distribution are as follows;

bλ =
bαL0
H
, and (12)

bσ2 =
2(bλ− 1)
log b

(13)

where b = 2. This suggested closed form solution is very useful for the synthesis of the measure

that leads to obtaining trading time in the MMAR.

With the identified mean and variance, the multiplicative lognormal probability measure path

can be synthesized for a length of 2K , which should be greater than the desired length of simulated

interest rate series. For each step of the construction of the multifractal lognormal probability

measure path, we draw the masses M where − logbM ∼ N(bλ, bσ2).
According to the MMAR architecture, the key parameter is bλ. There are two methods that

can be used to identify bλ. The first method uses the relation bλ = αL0
H and obtains the first moment

bλ directly from the multifractal spectrum of the log price process fX(αL) (Fillol, 2003).

Calvet and Fisher (2002) propose a second method by fitting the fX(αL) for the bλ. Let the
most probable exponent αL0 = λH, then the log-price series X(t) has the following quadratic

multifractal spectrum

fx(αL) = 1− (αL − αL0)
2

4H(αL0 −H)
(14)

Thus, if the Hurst exponent H is known, the only free parameter αL0 can be obtained by a simple

nonlinear fitting process. The identified bαL0 then leads to the calculation of bλ and bσ2 using the
equation 12 and 13. After a proper synthesis of the multiplicative lognormal probability measure

path, the next step is to compute the c.d.f. of the synthesized measures. The resulting time

function is then called the trading time, θ(t).

4.4 Simulation of the MMAR

The simulation of the MMAR can be conducted by compounding an FBM with the corresponding

trading time. Calvet and Fisher (2002) and Fillol (2003) obtain a simulated FBM by comput-

2 See proof in Calvet et al. (1997)
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ing the cumulative sum of the simulated fractional Gaussian Noise (FGN) with respect to the

identified mono-fractal Hurst exponent bH. The authors do not explicitly describe the particular
simulation algorithm and interpolation of the FBM process and the MMAR used in their studies.

Nevertheless, the overall scheme of the MMAR construction is as follow.

A finite-stage synthesis of a multifractal probability measure is obtained following the preceding

section. The length of synthesized measure path must be corresponding with the desired length of

the MMAR. For example, under the dyadic base of 2, if a simulated MMAR of length T is required,

the length of measures will have a minimum integer number of stages k such that 2k ≥ T . At each

stage k, independent log-normal multipliers, or masses M , that have distribution with respective

to those mean and variance obtained from the empirical series, are drawn. Once all k stages are

finished, the cumulative sum of the measures, a discrete approximation to the quadratic variation

of a multifractal path, provides the accumulated trading time θ(t).

A discretized path of an FBM BH [.] in this study is generated by simulating the first differences

of FBM BH(t)−BH(t− 1), which is called fractional Gaussian Noise (FGN) with parameter H.

The covariance at lag k of FGN follows:

γ(k) = Cov[BH(t)−BH(t− 1), BH(t+ k)−BH(t+ k − 1)] (15)

=
σ2

2
(|k + 1|2H − 2|k|2H + |k − 1|2H), and (16)

for 0.5 < H < 1, the process is persistent, while for 0 < H < 0.5, the process is anti-persistent.

Thus, one can simulate either the FBM BH [.] directly, or the FGN and compute its cumulative

sum to obtain the FBM. The simulated FBM then can be compounded with the trading time

using any proper interpolation.

5 Empirical Results

Our empirical analysis begins with the plot of the US term structure across nine maturities. Figure

1 shows the time series plot of the eight Treasury rate and Fed Funds rate series altogether. This
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plot suggests various shapes of the term structures over time. First, consider only the constant

maturity rates. For most of the time period, the US Treasury term structure exhibits an upward-

slope, where in the picture the band of the plots is wide. The slope of the term structure becomes

less and possibly flattens out in the first quarter of years 1989, 1995, 1997, and 2000. The flat

slope with a potential of humped shape of the term structure can be seen over the period between

years 1989 and 1990.

[INSERT FIGURE 1 ABOUT HERE]

The Fed Funds rate behaves differently during the studied period. In late 1980s, the Fed

Funds rate does not conform with the constant maturity term structure. During the period

between 1987 and 1990 the Fed Funds rate, which is an overnight borrowing rate, is higher than

the 3- and 6-month as well as 10-year constant maturity Treasury rates. However, after year

1990, the Fed Funds rate conforms more with the whole term structure. The plot reflects these

discernible interventions by the Federal Reserve in the Fed Funds market. In addition, the Fed

Funds plot contains more spikes and jumps than the Treasury rates do. This may be because

financial institutions like commercial banks have to determine their reserves at the end of the

two-week reserve settlement periods. They can end up with very high interest rate borrowing

transactions in order to meet the legal bank reserve requirements by their bi-weekly deadlines.

Figure 2 plots the logarithmic first difference of all nine return series with their identified

monofractal price and trading time Hurst exponents. Since the Hurst exponent is a measure of

persistence (where the higher the Hurst exponent, the more persistent the interest rate series),

the fact that the short-rate series are more persistent (H > 0.5) than the long-rate is (H = 0.5)

is one of our unexpected findings. But notice that the Fed Funds rate that has an anti-persistent

H = 0.48 < 0.5. Our explanation for this anti-persistence, or fast mean-reversion, is that the

Fed Funds rate is an overnight rate on irregular interbank bank repurchase agreements, which are

reversed within the time unit of this paper, which is one day (= 24 hours).
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[INSERT FIGURE 2 ABOUT HERE]

The 10-year maturity Treasury rate series explicitly shows the neutral mean reversion over

the studied period and hardly indicates any singularities (or jumps). Apparently, this behavior

is similar to that of a standard GBM and is supported by the calculated Hurst exponent of

0.5. Moving to the shorter maturity rates of return, the Hurst exponent monotonically increases

from 0.5 to 0.57, except the jump of Hurst exponent at the 6-month return series to H = 0.59.

Moreover, the plots themselves reveal a very stunning picture of the singularities or jumps and

heteroskedastic volatility clustering (= "intermittency") in short maturity Treasury interest rate

series, e.g., the time series plot of the 3-month and Fed Funds return series.

A possible behavioral explanation for the observed persistence of most of the interest rates, in

particular at the short term end, may be that the Federal Reserve auctions the Treasury papers

in auctions with about 40 primary dealers. In contrast, the Fed Funds market is an open market

with hundreds of commercial banks.

5.1 Time-Scale Analyses of Empirical Treasury Rates

The time-scale analysis begins with the longest maturity Treasury rate series. Figure 3 provides

the analytical profile of the 10-year Treasury rates including in panel a) the rebased partition

function Sq(T, δ); in panel b) the scaling function τ(q), in panel c) the multifractal spectrum

f(αL); and in panel d) the quadratic fitting of the multifractal spectrum. Panel (a) in figure

3 exhibits the partition functions, Sq(T, δ), plotted against the base-2 logarithm of investment

horizon, log2 δ, covering the first five integer moments of the distributions including the zeroth

moment. This time-scale analysis allows an investigation of fractional moments. However, this

paper focuses on the first few integer moments common in the financial literature. The plot starts

from the zeroth moment q = 0 (the lowest line) with a unit increment and ends at the fifth moment

q = 5 (the highest line). The nearly straight plot suggests that a particular scaling of moments

exists and can be identified.
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[INSERT FIGURE 3 ABOUT HERE]

Notice that the partition functions of the first three moments are nearly straight with some

increasing variation when the investment horizon (δ) becomes longer. The increasing variation of

the higher order moments can affect the accuracy of the analysis and the MMAR parameters. It

also suggests that the moment range of the scaling is limited. To sustain the accuracy this study

uses the 26 = 64 business days or the investment horizon of one quarter to obtain the MMAR

parameters for all nodal market maturities unless otherwise stated.

Panel (b) provides the scaling function τ(q) plotted against the first five moments, q = 1, 2, 3, 4

and 5. The scaling function is obtained from the slopes of the partition functions in panel (a).

The 10-year series scaling function is concave upward. It deviates from the straight line with the

neutral H = 0.5 slope, which is the neutral scaling function slope of the GBM. By definition, the

value of the scaling function is always equal to −1 at the zeroth moment. Evidently, when the

moments are less than 2, the scaling function of the 10-year rate is slightly higher than that of the

GBM. When the moments are greater, the scaling function becomes somewhat lower than that

of the GBM. The neutral Hurst exponent of 0.5 the GBM is directly obtained from the scaling

function using the relationship shown in the previous section, indicating the near GBM of the

10-year series. But the slight concavity of the 10-year scaling function τ(q) shows that there exists

even a bit multifractality in the 10-year interest rate series.

As shown, panel (c) indicates the quadratic-like multifractal spectrum, f(αL), of the 10-year

rate series obtained from Legendre transformation of its scaling function. The multifractal spec-

trum is simply the entire distribution of the Hurst exponents of the series with a humped shape

and maximum of unity by default. A complete, parabola-like multifractal spectrum containing

negative slopes can be obtained using a different method (Los, 2003).

Since the quadratic multifractal spectrum of the Treasury rate also implies the quadratic

multifractal spectrum of its trading time, panel (d) assures us that the multifractal spectrum
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f(αL) of the 10-year Treasury rate is almost perfectly quadratic. The fitted line lies almost exactly

on top of the empirical multifractal spectrum, but slightly deviates when the Hurst exponents are

less than 0.4. Using the multifractal spectrum of the rate series and the closed form solution of the

lognormally distributed multifractal spectrum of trading time in the preceding section, the most

probable Hurst exponent of its trading time is calculated to be αL0 = 0.56, which helps to identify

the first two moments of lognormally distributed measures, which are bλ = 1.11 and bσ = 0.22,

respectively. These two moments will be used later in the synthesis of measures and simulation of

the MMARs. Notice that the trading time shows more persistence than the Brownian motion of

the interest rates, since that has a neutral Hurst exponent of H = 0.5.

The results of other maturity Treasury term structure rates are quite similar. The only dif-

ferences include the greater increasing variation found in the partition functions and the larger

deviations between the fitting and empirical multifractal spectra. Somewhat to our surprise, the

Fed Funds rate series show partition functions over a very limited range of moments, suggesting

that it hardly scales, with some globally identifiable anti-persistence (H < 0.5). In other words,

the Fed Funds market is highly idiosyncratic (or chaotic?), due to its ever-changing absolute re-

serve requirements (which are volume constraints and not price constraints), and it does not allow

for much distributional consistency over time.

Table 3 provides all necessary MMAR parameters for each maturity. This is the collection of the

time series models for each of the nine nodal interest rates in its simplest parametrization. Being

able to handle the heteroskedasticity of the time series and preserving the correct scaling properties

of the empirical data, the MMAR requires only four unambiguously identifiable parameters: the

Hurst exponent H of the interest ate process, the most probable Hurst exponent of trading time

αL0, and the first two moments bλ and bσ2 of the lognormal distribution of the multiplicative
probability measures. The list of MMAR’s parameters begins from those series with the longest

maturity, 10-year, to the shortest maturity, Fed Funds rate.
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[INSERT TABLE 3 ABOUT HERE]

The persistence of interest rates is attributed to the highly persistent Hurst exponents αL0

of the multifractal trading time, i.e., the exogenous news information process. In other words,

while the theoretical pricing process may be a theoretical, neutral GBM, the empirically observed

persistence of the process is caused by the clustering of the actual trading events, which is induced

by the exogenous clustering of news events (Mandelbrot & Hudson, 2004).

The 10-year rate has the lowest αL0 = 0.56 while the 6-month rate shows the highest value

of 0.67. The value decreases slightly to 0.66 for the 3-month series and dramatically drops to

0.57 for the Fed Funds rate. One wonders if this phenomenon is related to the frequency of the

respective Treasury auctions, or to the number of trading participants, or both. We know that a

degree of persistence in a system process, like the beat of a healthy human heart, is determined by

the degrees of freedom of the trading process, but we still don’t know how these two are precisely

related. This is an important potential market micro-structure research problem, ideal for another

PhD candidate.

The first moments of the lognormally distributed measures bλ do not show any systematic

characteristic. Evidently bλ’s across maturities are larger than one, since the series of trading
events show more clustering than the actual interest rate pricing. The maximum of the bλ’s is
1.183, which is for the Fed Funs rate series, suggesting that the Fed Funds market has the most

tenuous relationship between the degree of persistence of its market and the degree of persistence

of its information process.

Interestingly, the variances bσ2 of those log normal probability measures seem to indicate a

possible system for the multifractal spectra. The shorter maturity Treasury rates show a more

dispersion of their multifractal spectra than those of interest rates with the longer maturities.

This suggests that the shorter maturity markets are impacted by a wider variety of news events

(including "rumors") than the longer maturity markets, which are dominated by the analytic
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portfolio management of long term institutional investors.

Overall, all studied interest rate series show Long Memory, except the 10-year rate, which is

very close to the neutral memory of the GBM, and the Fed Funds rate, which is anti-persistent

and has a "negative memory." Moreover, the results indicate the non-Gaussian distribution, the

existence of higher moments, nonlinearity, and time-and-frequency scaling properties in the Trea-

sury series. These findings provide rather conclusive empirical evidence against the popular GBM

driven low-factor models in the current term structure literature, which assume a neutral Hurst

exponent H = 0.5. As a part of MMAR’s performance measurement relatively to those of GBM

and GARCH(1, 1) processes, the parameters of the GARCH(1, 1) models for all studied Treasury

rate and the Fed Funds rate series are collected in Table 4, while those of the GBM simply are

the first two moments of the studied return series.

[INSERT TABLE 4 ABOUT HERE]

5.2 Comparative Analysis of Simulated Results

First, the performance of MMAR is tested by investigating how effectively it can preserve the

Long Memory found in the empirical series. The monofractal Hurst exponent for each simulated

MMAR is identified for each maturity. The resulting Hurst exponents are then averaged for each

maturity and then reported in Table 5.

[INSERT TABLE 5 ABOUT HERE]

As expected, the average Hurst exponents for all Treasury maturities are identical to those

Hurst exponents fed into the simulation algorithm, except the 10-year rate, where the average

Hurst exponent is 0.4% larger than the corresponding input. Notice that the average of the

simulated MMARs of the Fed Funds rate has a quite different degree of anti-persistence than

found in the empirical series. It is very difficult to comparatively simulate anti-persistent series

than persistent series, because the anti-persistent series mean-reverts within the observational time
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unit of one day. In short, these results provide numerical support that the MMAR can effectively

preserve the monofractal Hurst exponent for studied Treasury rate series across maturities. But,

like the GBM and the GARCH(1, 1) models the MMAR has difficulty with the simulation of the

anti-persistent and highly idiosyncratic Fed Funds series.

Table 6 presents the identified scaling exponents or slopes of the partition functions for the

first five integer moments of the empirical Treasury rates and the mean scaling exponents of those

simulated MMAR, GBM, and GARCH(1, 1) series with the maturities longer than two years.

Tables 7 and 8 present the scaling exponents for those Treasury series with the maturities less

than three years and the Fed Funds rate series, respectively. The mean scaling exponent of the

simulated series is calculated by averaging those scaling exponents of the 1, 000 simulated series

for each process. The mean scaling exponents of the simulated GBM series for all maturities

are almost exactly the same. Their scaling exponents increase approximately by 0.5 for each

moment order q. Although the results are not surprising, they ensure that the scaling analysis

and simulation methods in this study are reliable and mutually compatible. In addition, the

scaling functions of the simulated GBM for the studied maturities obviously deviate from those

of empirical Treasury rate series.

[INSERT TABLE 6 ABOUT HERE]

[INSERT TABLE 7 ABOUT HERE]

[INSERT TABLE 8 ABOUT HERE]

Moving to the simulated GARCH(1, 1), their scaling exponents for the first two moments are

almost constantly at−0.5 and 0, respectively. The scaling exponents of higher moments show some

minor deviations from those of simulated GBM series as well as from those of the empirical series.

In fact, the average of the identified slopes of the simulated GARCH(1, 1) series seems to follow

those of the GBM for all studied moments. Thus, the results again suggest that the GARCH(1, 1)

model does not properly identify the empirical Treasury rate processes. In particular, the scaling
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exponents of the fourth and fifth moments are higher than those of the empirical interest rate

series for most maturities.

Only the mean scaling exponents of the simulated MMAR represent the scaling exponents of

empirical series well. The MMARs preserve the scaling properties accurately for the low moments

across maturities, while the mean scaling exponents of the fourth and fifth exponents are lower

than those of empirical series across maturities, except in the case of the exceptional Fed Funds

rate. Remarkably, the mean scaling exponents of the simulated MMARs almost perfectly match

those of empirical series for 1-year, 2-year, and 3-month maturity rates. More interestingly, the

mean estimated slopes of MMARs for the second moment across all studied maturities are very

accurate and far superior to those of simulated GBM and GARCH(1, 1), except for the Fed Funds

series where the mean estimated slope of GBM is closer to that of the empirical series. Both

simulated GBM and GARCH(1, 1) processes can closely preserve only the estimated slope of

second moment for the 10-year maturity only.

In Tables 6, 7, and 8 the minimum and maximum of the 1, 000 simulated scaling exponents

for each process across maturities are reported in parentheses. Another measure of performance

is to measure the range (maximum - minimum) of the simulated scaling exponents. All simulated

processes show that their ranges grow very slowly from the first to fifth moments, and similar

results appear across all maturities, except for the Fed Funds rate where the range is significantly

wider.

For the first moment, the uncertainty ranges of the GBM and GARCH(1, 1) are very similar.

However, on average the ranges become wider for higher moments relative to those of the simulated

GBM series. The range of the GARCH(1, 1) process seems to expand when the maturities become

shorter. Although having a narrow range of uncertainty over the five moments, both simulated

GBM and GARCH(1, 1) series do not exhibit correctly identified slopes of partition functions found

from the empirical series for most of maturities. Unlike the GBM and GARCH(1, 1), the MMAR

converges on average to the correct scaling functions, although it exhibits wider uncertainty ranges.
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The difference between uncertainty ranges among the three processes are more pronounced for

the third to the fifth moments in which these ranges expand more quickly, particularly when the

moments increase. Also, the ranges of the simulated GARCH(1, 1) series seem to expand rapidly

and become close to those of the MMARs when the maturities become shorter. An exception

occurs in the case of the Fed Funds rate, where the uncertainty range of the GARCH(1, 1) for the

higher moments is very close to that of the MMAR. This casts also doubt on the performance of

the GARCH(1, 1) model as a correct model for the Fed Funds rate.

Although the deficiency of the MMARs relative to the other two processes appears to be their

wider uncertainty ranges of its simulated scaling exponents, their averages of identified slopes for

each moment are very accurate relative to the empirical series.

5.3 Snapshot vs. Time-Frequency Distributions

In this section, the best candidate of 1, 000 simulated series from each process is identified using

wavelet multiresolution analysis (MRA). The performance measurement of the MMAR and com-

parative models begins with the investigation of how effectively the models preserve the entire

time-frequency distribution found in the empirical series.

5.3.1 Frequency Distributions

Figure 4 provides the snapshot distribution comparisons between those of the empirical Treasury

rate series with maturities longer than 2 years and their corresponding simulated series.

[INSERT FIGURE 4 ABOUT HERE]

As seen from panel a, the solid line exhibits the wavelet compiled density function (distribution)

of the 10-year Treasury return series. With a high peak around mean, thick tails, and a small hump

at each side of the tails, the empirical distribution clearly deviates from the Gaussian distribution

shown by the dotted-dashed line, while the dashed line shows the compiled distribution of the

corresponding simulated GARCH(1, 1) series. Although very similar to each other, neither the
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simulated GBM nor the GARCH(1, 1) distribution is similarly shaped as the empirical distribution.

Only the dotted line indicating the compiled distribution of the simulated MMAR has a shape that

is similar to that of the empirical distribution. But the peak of the simulated MMAR distribution

is still too high. The MMAR does get the kurtosis around the central tendency correct, but

deviates from the empirical in the moderate tails.

Panels b, c, and d provide the comparisons of those compiled densities with the density of the

7−, 5−, and 3−year maturities. The overall result is similar to that of the 10-year maturity series.

Only the simulated MMAR distribution can replicate the shape of the empirical distribution,

while the distributions of the GBM and GARCH(1, 1) are very close to each other (= Gaussian

distribution, unsurprisingly, since both are linear models of Gaussian distributions).

Figures 5 shows the comparison of the compiled distributions for the Fed Funds rate and its

corresponding simulated series. Although the identification of the MMAR of the Fed Funds series

faces some difficulties, its compiled distribution of the MMAR is very similar to the empirical

distribution and clearly superior to those of the GBM and GARCH(1, 1).

[INSERT FIGURE 5 ABOUT HERE]

The figures suggest that the peakedness of the empirical distributions seems to be slightly

higher when the maturities become longer. Also, the dispersion width is less when the maturities

increase. Moreover, the plots make the scaling distribution preservation of MMARs more visible.

Nevertheless, these plots are only a snapshot of the time-varying distributions. Wavelet MRA is

used to thoroughly investigate the MMAR’s performance overtime and scale.

5.3.2 Scalograms: Time-Scale (Frequency) Distributions

The continuous wavelet MRA of the interest rate series results in a scalogram that is a graph

with time on the horizontal axis and different scales (= inverses of frequencies) on the vertical

axis. It traces the second moment, variance, or energy of the interest rate series over a certain

time period of 4, 096 days and over scales 1 − 64 except the scales of the Fed Funds that range
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from 1 − 256. The absolute values or magnitudes of the localized wavelet resonance coefficients,

generated by the wavelet transform at a certain scale and at a given time, are represented by

color corresponding to the 128-color bar ranging from red (smallest variance) to blue and pink

(largest variance). Analogously to the coefficients of determination R2 of bivariate regression

projections, the reddish-pink color on the scalogram indicates the highest correlation between the

mother wavelet and the interest rate series at a particular time and scale.

Figure 6 provides the scalogram profiles for those empirical and simulated series with the 3-

month maturities. The top left scalogram shows the localized variance of the empirical series

at particular time moment on certain scales (or investment horizons). The top right scalogram

plot belongs to the simulated GBM series. The lower right plot provides the scalogram of the

simulated GARCH(1, 1) series, while the lower left scalogram plot shows the local variance analysis

of the simulated MMAR. The scalogram of the simulated GBM series is clearly white noise. The

scalogram of the GARCH(1, 1) shows some similarity to that of the empirical series. Nevertheless,

the scalogram of the MMAR indicates its superiority over both the GBM and GARCH(1, 1) in

being able to replicate the scaling properties of the empirical series.

[INSERT FIGURE 6 ABOUT HERE]

Examining other maturities of the Treasury rate series, the scalograms of the simulated GBM

series are still white noise. The differences are obvious for the scalograms of the empirical series,

where the red area appears more often over a time period relative to the longer maturity Treasury

return series. The shorter the maturities, the more red areas appear on the scalograms. In addition,

when the maturities become shorter, the magnitudes of the wavelet resonance coefficients seem to

be smaller on average at all scales and at all times.

The scalograms of simulated GARCH(1, 1) indicate improvement, as more intermittent red

areas begin to appear when the maturities are shorter. However, the color of the wavelet resonance

coefficients is still different and indicates larger magnitudes than those of their corresponding
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empirical series. As expected, the scalogram of simulated MMAR shows superiority over those of

the simulated GBM and GARCH(1, 1) models by having a similar pattern of colors and clusters

found in the empirical return series for these maturities. Nevertheless, the simulated MMAR

scalograms still show too many yellow breaks at all times.

The scalogram analysis of the Fed Funds rate is shown in figure 7. The Fed Funds return

series behaves very differently from the constant maturity Treasury return series in the preceding

time-scale analysis and identification of the corresponding MMAR. The plot hardly indicates any

clear singularities except some yellow background at the high scales, while the wavelet resonance

coefficients seem to be very small as shown by the large red areas.

[INSERT FIGURE 7 ABOUT HERE]

But the Fed Funds rate is clearly not white noise. The empirical scalogram suggests even some

periodicity and cyclicity. The horizontal line at the scale a = 207 over the period of 500−2, 900 days

suggests a periodicity (= spectral line), while the horizon dashed line at the scale a = 170 running

almost across the entire time period indicates a cyclicity (= periodically interrupted spectral line).

Such cyclicity is usually an indication of chaos (= multiple coexisting price equilibria), in particular

when combined with some periodicity. The Fed Funds market may periodically (bi-weekly?) cycle

through a whole set of coexisting price equilibria.

Unlike the scalograms of the Treasury return series, where the simulated MMAR is always

superior to the GBM and GARCH(1, 1), the scalogram of the Fed Funds rates appears different.

In this exceptional case, the scalogram of the simulated MMAR no longer replicates that of

the empirical series. Its background suggests too large magnitudes of the wavelet resonance

coefficients. In contrast, the simulated GARCH(1, 1) scalogram seems to provide a better pattern

of colors and, on average, has smaller wavelet resonance coefficients than the scalogram of the

MMAR. This result might be attributed to an inaccurate identification of the MMAR in the

preceding analysis due to the "randomness" of Gibbs’ partition function at almost all moment
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orders, while it exhibits some global anti-persistence.

Our modeling approach has one major drawback: theoretically, there should be a coherent

forward relationship among all Treasury term structure nodes, as prescribed by the rational ex-

pectations theory, but this forward relationship is not explicitly modeled in the case of our 9-factor

MMAR system. By construction, the MMARs are not designed to capture and reserve any mul-

tivariate interaction.

The top panel in Figure 8 presents the empirical term structure over the studied time period.

One of 1, 000 simulated series for each maturity is selected and plotted in the bottom panel. It

is clear that the design of the current term structure as a system of univariate MMARs does

not provide the needed coherent relationship among the nodal maturities. The resulting term

"structure" lacks the empirically observed coherence of Figure 1. Thus it appears that still better

modeling of the nonlinear interaction between the nodal maturity markets is required.

[INSERT FIGURE 8 ABOUT HERE]

6 Conclusions

Treasury rates are the basis default risk-free rates in finance. A change in the levels and volatilities

of these interest rates has a substantial impact on rational financial decision-making. Many

theories have been proposed to explain the changes of level and the volatility of the term structure.

Asset pricing modelers attempt to identify price diffusion processes from empirical financial market

data. In particular, the Geometric Brownian Motion and the GARCH models are currently

popular in these efforts.

This paper identifies Multifractal Models of Asset Return (MMARs) - recently introduced in

the finance literature by Mandelbrot et al. (1997) - from the eight nodal maturities of the US

Treasury rates and from the Fed Funds rate. The study shows that the Treasury rate and the

Fed Funds series can be uniquely identified as multifractal Brownian motions. This study also

improves the current MMARs with better numerical methodologies for the corroboration of the
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identified Hurst exponents by wavelet multiresolution analysis.

After analytical, numerical, and graphical analyses of the Treasury rate series, the correspond-

ing MMARs are synthesized and simulated with the exact Monte Carlo method, following the

advice of Los (2003), who requires that every identified model be simulated to ensure that it can

replicate the empirical features of the empirical data. The model performance results of these

Monte Carlo simulations are then compared with not only the original empirical time series, but

also with the simulated results from the corresponding GBM and GARCH(1, 1) processes. More-

over, this study visualizes, analyzes and compares the simulated results using wavelet scalograms,

which allow the corroboration to be simultaneously conducted over time and frequency.

All eight maturity Treasury rates and Fed Funds rate series are identified as multifractal

processes. The measures of their degree of persistence suggests that all eight Treasury rate series

are persistent with respect to their time to maturity, while the Fed Funds rate series is globally

mildly anti-persistent (It is also highly idiosyncratic and, probably, chaotic). It was surprising to

find that, on average, the longer its maturity, the less persistent an interest rate process is.

Most of the time, the simulated MMARs outperform the corresponding identified and simulated

GBM and GARCH(1, 1) models. The MMARs are clearly superior in preserving the distributional

scaling of the empirical data. In addition, the simulated MMARs can closely trace the volatility

of the empirical Treasury series for all eight maturities.

However, the MMAR, by default, cannot represent a complete model for the term structure.

It fails to provide coherence to the dynamic term structure system among the nine maturities.

Since there is considerable evidence suggesting that the term structure forms a coherent system, a

multivariate system MMAR is needed for testing Los’ (2003) cash flow theory of the term structure

of interest rates. As of now, the univariate MMAR can only be an advanced model of the Market

Segmentation Theory of the term structure of interest rates.
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7 Figures

Figure 1: The Term Structure of Constant Maturity US Treasury and Fed Funds Rates. The US Treasury
rates for eight maturities and the Fed Funds rate are plotted over time beginning from April 21, 1987 to
December 31, 2002. For example, when the 10-year line is above the 3-month line, the term structure is
upward-sloping. Vice versa, it is downward sloping. FF stands for Fed Funds.
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Figure 2: The Time Series Plot of Individual Return Series of the US Treasury and Fed Funds Rates
(First Differences of the Logarithm of the Original Series). The left column indicates the maturity for each
plot starting from the longest, 10-year maturity, to the shortest, Fed Funds, rates. The right two column
next to the plots provides the degree of persistence or monofractal Hölder-Hurst Exponent identified by
the Power Spectrum (Slope of Power Spectrum) method for each return series across studied maturities
and its corresponding trading time, respectively.
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Figure 3: The Time-Scale Analytical Profile of 10-Year US Treasury Rate: April 1987 - December 2002.
Panel (a) shows the partition function plots for the first five integer moments including zero. The function
intercepts are normalized for comparison purpose. The highest line is for the fifth moment while the lowest
line is for the zeroth moment. Panel (b) shows the scaling function plot of the Treasury rate across the
five moments. Panel (c) provides the Multifractal Spectrum obtained from the Legendre Transformation
of the Scaling function. Panel (d) shows that the Multifractal spectrum can be fitted by the quadratic
function that leads to the detection of the MMAR’s parameters.
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Figure 4: The Comparison of the Density Functions Identified by the Wavelet Transformation. The solid
line indicates the density function of the empirical series. The dashed-dotted line indicates the density
function of the simulated GBM. The dotted line indicates the density function of the simulated MMAR.
The dashed line indicates the density function of the simulated GARCH (1, 1). Panel (a) shows the
comparison of the densities for those series with 10-Year maturity. Panel (b) shows the comparison of the
densities for those series with 7-Year maturity. Panel (c) shows the comparison of those densities from
those series with 5-Year maturity. Panel (d) shows the comparison of those densities from those series
with 3-Year maturity.
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Figure 5: The Comparison of the Density Functions Identified by the Wavelet Transformation. The solid
line indicates the density function of the empirical series. The dashed-dotted line indicates the density
function of the simulated GBM. The dotted line indicates the density function of the simulated MMAR.
The dashed line indicates the density function of the simulated GARCH (1,1).
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Figure 6: Scalograms of the 3-Month Treasury Return Series and Its Corresponding Simulated Processes.
The upper left plot shows the scalogram of the empirical rate over the 4,096-day period and across the
1-64 scales. The magnitude of wavelet coefficients are colorized with a 128-color scheme. The wavelet
used in the transformation process is the Morlet(6). The upper right scalogram is calculated from the
simulated GBM having the empirical mean and variance. The lower right plot shows the scalogram of
the simulated GARCH(1,1) return series while the lower left plot shows the scalogram of the simulated
MMAR series.
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Figure 7: Scalograms of the Fed Funds Return Series and Its Corresponding Simulated Processes. The
upper left plot shows the scalogram of the empirical rate over the 4,096-day period and across the 1-64
scales. The magnitude of wavelet coefficients are colorized with a 128-color scheme. The wavelet used in
the transformation process is the Morlet(6). The upper right scalogram is calculated from the simulated
GBM having the empirical mean and variance. The lower right plot shows the scalogram of the simulated
GARCH(1,1) return series while the lower left plot shows the scalogram of the simulated MMAR series.
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Figure 8: The Resulting Term Structure of Simulated MMAR. These graphs compare the empirical term
structure with a simulated MMAR term structure.
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Hurst Exponents
Author Year Stock Term Structure Futures Cash Forex

Karuppiah & Los 2005 X
Gil-Alana 2004 X
Lillo & Farmer 2004 X
McCarthy et al. 2004 X
Morana & Beltratti 2004 X
Matteo et al. 2004 X X X
Mulligan 2004 X
Mulligan & Lombardo 2004 X
Corazza & Malliaris 2002 X X
Henry & Olekalns 2002 X
Cheung & Lai 2001 X
Lee et al. 2001 X
Crato & Ray 2000 X
Grau-Carles 2000 X
Lien & Tse 1999 X X
Opong et al. 1999 X
Hauser 1998 X
Barkoulas & Baum 1998 X X X
Barkoulas et al. 1997 X
Jacobsen 1996 X
Cheung & Lai 1995 X
Evertsz 1995a,b X X
Evertsz & Berkner 1995 X

Table 1: Studies of Long Memory Published in "A" Level Finance Journals Since 1994. (Source:
Jamdee and Los, Working Paper, 2005)

8 Tables
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Models
Volatility Clustering, Volatility Clustering, Properties
Martingale Pricing Arbitrage Opportunities

MMAR FBM Long Memory
Scale Consistency

FIGARCH ARFIMA Long Memory
Scale Inconsistency

GARCH ARMA Short Memory
Scale Inconsistency

Table 2: The Comparison Between MMAR And Other Time Series Models. Source: Mandelbrot,
Fisher, and Calvet (1997) and Calvet and Fisher (2002).

Pricing Trading Time
Maturity Hurst (H) Alpha Zero (α0) Mean (bλ) Variance (bσ2)
10-Year 0.504 0.56 1.110 0.221
7-Year 0.516 0.57 1.104 0.208
5-Year 0.537 0.59 1.099 0.199
3-Year 0.548 0.61 1.113 0.226
2-Year 0.548 0.62 1.132 0.264
1-Year 0.568 0.64 1.127 0.253
6-Month 0.592 0.67 1.132 0.265
3-Month 0.572 0.66 1.153 0.306
Fed Funds 0.482 0.57 1.183 0.365

Table 3: The Parameters of Treasury Rate MMARs. Hurst is the monofractal Hurst Exponent of
the empirical interest rate process. Alpha zero is the most probable Hurst exponent of the trading
time’s multifractal spectrum. Mean and variance are the first two moments of the lognormally
distributed multinomial measures, respectively.

Maturity c k a b
10-Year -0.0002587 0.0000012 0.9434 0.0441
7-Year -0.000262 0.0000011 0.9444 0.0454
5-Year -0.0002326 0.0000015 0.9372 0.0515
3-Year -0.0002262 0.0000013 0.9367 0.0563
2-Year -0.0001589 0.0000015 0.9285 0.0643
1-Year -0.000026 0.0000012 0.9273 0.0694

6-Month 0.0000067 0.0000014 0.9069 0.091
3-Month 0.0002927 0.0000038 0.8362 0.1638

Fed Funds 0.0031 0.000627 0.2906 0.638

Table 4: The Parameters of GARCH(1,1). c is the coefficient of the constant term in mean
equation. k is the coefficient of the constant term in the variance equation. a is the coefficient of
the GARCH effect in the variance equation. b is the coefficient of the ARCH effect in the variance
equation.
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Maturity Average Hurst Input Hurst
(MMAR) (Empirical)

10-Year 0.51 0.50
7-Year 0.52 0.52
5-Year 0.54 0.54
3-Year 0.55 0.55
2-Year 0.55 0.55
1-Year 0.57 0.57
6-Month 0.59 0.59
3-Month 0.57 0.57
Fed Funds 0.45 0.48

Table 5: Averaged Hurst Exponents of 1,000 Simulated MMARs. The average Hurst (MMAR)
column provides the average of Hurst exponents from the 1,000 simulated MMARs for each matu-
rity. The Input Hurst (Empirical) column shows the detected Hurst exponents from the empirical
data for each maturity.
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10-Year 7-Year
Mean τ(q) Mean τ(q)

Sim. Sim. Sim. Sim.
Moment Emp. MMAR Sim. GARCH Emp. MMAR Sim. GARCH
(q) Series Cholesky GBM (1, 1) Series Cholesky GBM (1, 1)
1 -0.47 -0.45 -0.50 -0.50 -0.46 -0.44 -0.50 -0.50

[- 0 .5 4 , - 0 .3 7 ] [ - 0 .5 8 , - 0 .4 1 ] [ - 0 .5 8 , - 0 .4 1 ] [ - 0 .5 5 , - 0 .3 6 ] [ - 0 .5 7 , - 0 .4 2 ] [ - 0 .5 8 , - 0 .4 1 ]

2 0.01 0.01 0.00 0.01 0.03 0.04 0.00 0.00
[- 0 .2 0 , 0 .2 3 ] [ - 0 .1 6 , 0 .1 6 ] [ - 0 .1 7 , 0 .1 8 ] [ - 0 .1 8 , 0 .2 1 ] [ - 0 .1 4 , 0 .1 6 ] [ - 0 .1 7 , 0 .2 0 ]

3 0.44 0.41 0.49 0.50 0.47 0.45 0.50 0.50
[- 0 .3 0 , 0 .8 8 ] [ 0 . 2 3 , 0 .7 5 ] [ 0 . 2 0 , 0 .8 2 ] [ - 0 .1 5 , 0 .8 0 ] [0 .2 9 , 0 .7 4 ] [0 .2 1 , 0 .8 2 ]

4 0.81 0.74 0.98 0.98 0.86 0.81 0.99 0.98
[- 0 .0 8 , 1 .4 8 ] [ 0 . 6 0 , 1 .3 5 ] [ 0 . 5 2 , 1 .5 4 ] [ - 0 .3 0 , 1 .4 0 ] [0 .6 9 , 1 .3 2 ] [0 .4 9 , 1 .5 4 ]

5 1.13 1.04 1.47 1.44 1.21 1.14 1.48 1.44
[- 0 .1 7 , 2 .0 2 ] [ 0 . 9 4 , 1 .9 7 ] [ 0 . 7 6 , 2 .2 5 ] [ - 0 .4 9 , 1 .9 8 ] [1 .0 7 , 1 .9 8 ] [0 .6 8 , 2 .2 6 ]

5-Year 3-Year
Mean τ(q) Mean τ(q)

Sim. Sim. Sim. Sim.
Moment Emp. MMAR Sim. GARCH Emp. MMAR Sim. GARCH
(q) Series Cholesky GBM (1, 1) Series Cholesky GBM (1, 1)
1 -0.44 -0.43 -0.50 -0.50 -0.42 -0.41 -0.50 -0.50

[-0 .5 2 , - 0 .3 3 ] [ - 0 .5 9 , - 0 .4 3 ] [ - 0 .5 9 , - 0 .4 3 ] [ - 0 .4 8 , - 0 .3 2 ] [ - 0 .5 9 , - 0 .4 3 ] [ - 0 .5 8 , - 0 .4 1 ]

2 0.07 0.07 0.00 0.00 0.09 0.09 0.00 0.00
[- 0 .1 7 , 0 .2 9 ] [ - 0 .1 4 , 0 .1 3 ] [ - 0 .1 9 , 0 .2 3 ] [ - 0 .1 0 , 0 .2 9 ] [ - 0 .1 6 , 0 .1 5 ] [ - 0 .1 8 , 0 .2 0 ]

3 0.52 0.51 0.50 0.49 0.52 0.50 0.50 0.48
[0 .0 5 , 0 .9 7 ] [ 0 . 2 7 , 0 .7 0 ] [ 0 . 1 8 , 1 .0 0 ] [ 0 . 1 1 , 0 .9 2 ] [0 .2 7 , 0 .7 2 ] [0 .0 7 , 0 .9 8 ]

4 0.93 0.88 0.99 0.96 0.89 0.85 1.00 0.95
[0 .0 3 , 1 .6 0 ] [ 0 . 6 6 , 1 .3 0 ] [ 0 . 4 2 , 1 .7 6 ] [ 0 . 0 9 , 1 .5 2 ] [0 .6 8 , 1 .2 9 ] [0 .2 4 , 1 .8 3 ]

5 1.30 1.22 1.48 1.42 1.21 1.15 1.49 1.39
[- 0 .1 3 , 2 .2 0 ] [ 1 . 0 4 , 1 .9 2 ] [ 0 . 6 2 , 2 .4 7 ] [ - 0 .0 3 , 2 .1 4 ] [1 .0 5 , 1 .9 1 ] [0 .3 8 , 2 .6 5 ]

Table 6: The Comparison Between Scaling Exponents of Empirical Treasury Rates and Mean
Scaling Exponents of Corresponding Simulated Processes. The results are for Treasury rates with
longer than 2-year maturities. The first left column under each maturity provides the scaling
exponents for the first five integer moments. The next three columns provide the average scaling
exponents from 1,000 simulations for the MMAR, GBM, and GARCH(1,1) processes, respectively.
The minimum and maximum values of the exponents are reported in parentheses. Emp. means
’Empirical’ while Sim. means ’Simulated’.
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2-Year 1-Year
Mean τ(q) Mean τ(q)

Sim. Sim. Sim. Sim.
Moment Emp. MMAR Sim. GARCH Emp. MMAR Sim. GARCH
(q) Series Cholesky GBM (1,1) Series Cholesky GBM (1,1)
1 -0.41 -0.40 -0.50 -0.50 -0.40 -0.38 -0.49 -0.50

[-0 .4 8 , - 0 .3 1 ] [ - 0 .5 8 , - 0 .4 1 ] [ - 0 .6 1 , - 0 .4 2 ] [ - 0 .4 6 , - 0 .2 9 ] [ - 0 .5 8 , - 0 .4 2 ] [ - 0 .6 1 , - 0 .4 2 ]

2 0.09 0.09 0.01 -0.01 0.13 0.13 0.01 -0.01
[- 0 .1 0 , 0 .3 3 ] [ - 0 .1 6 , 0 .1 6 ] [ - 0 .2 5 , 0 .1 9 ] [ - 0 .1 0 ,0 .3 2 ] [ - 0 .1 5 ,0 .1 8 ] [ - 0 .2 7 , 0 .2 6 ]

3 0.50 0.49 0.51 0.47 0.55 0.54 0.52 0.46
[0 .0 1 , 1 .0 1 ] [ 0 . 2 5 , 0 .7 4 ] [ 0 . 0 2 , 0 .8 9 ] [0 .0 7 ,1 .0 0 ] [0 . 2 8 ,0 .7 7 ] [ - 0 .0 1 , 1 .0 7 ]

4 0.83 0.81 1.00 0.93 0.89 0.88 1.01 0.89
[- 0 .1 1 , 1 .6 9 ] [ 0 . 6 4 , 1 .3 2 ] [ 0 . 2 0 , 1 .6 3 ] [0 .0 5 ,1 .5 8 ] [0 . 7 1 ,1 .3 5 ] [0 .0 8 , 1 .8 6 ]

5 1.13 1.10 1.49 1.36 1.19 1.18 1.50 1.30
[- 0 .2 2 , 2 .3 2 ] [ 1 . 0 2 , 1 .9 4 ] [ 0 . 3 5 , 2 .3 4 ] [ - 0 .0 3 ,2 .1 5 ] [1 . 1 2 ,1 .9 3 ] [0 .1 1 , 2 .6 0 ]

6-Month 3-Month
Mean τ(q) Mean τ(q)

Sim. Sim. Sim. Sim.
Moment Emp. MMAR Sim. GARCH Emp. MMAR Sim. GARCH
(q) Series Cholesky GBM (1,1) Series Cholesky GBM (1,1)
1 -0.38 -0.36 -0.49 -0.50 -0.40 -0.37 -0.50 -0.49

[-0 .4 4 , - 0 .2 5 ] [ - 0 .5 9 , - 0 .4 3 ] [ - 0 .5 8 , - 0 .4 0 ] [ - 0 .4 5 , - 0 .2 7 ] [ - 0 .5 7 , - 0 .4 3 ] [ - 0 .5 3 , - 0 .4 7 ]

2 0.17 0.16 0.01 -0.01 0.14 0.13 0.01 -0.01
[- 0 .0 5 , 0 .4 3 ] [ - 0 .1 5 , 0 .1 5 ] [ - 0 .2 5 , 0 .3 2 ] [ - 0 .1 3 , 0 .3 7 ] [ - 0 .1 6 , 0 .1 6 ] [ - 0 .2 7 , 0 .0 8 ]

3 0.61 0.56 0.52 0.45 0.53 0.51 0.51 0.39
[0 .0 1 , 1 .1 1 ] [ 0 . 2 5 , 0 .7 6 ] [ - 0 .0 7 , 1 .1 3 ] [ - 0 .0 6 , 1 .0 8 ] [0 .2 4 , 0 .7 6 ] [ - 0 .1 4 , 0 .6 0 ]

4 0.95 0.88 1.02 0.86 0.81 0.83 1.01 0.73
[- 0 .0 4 , 1 .7 9 ] [ 0 . 6 4 , 1 .3 8 ] [ 0 . 0 2 , 1 .9 0 ] [ - 0 .2 2 , 1 .7 7 ] [0 .6 4 , 1 .3 6 ] [ - 0 .0 5 , 1 .1 0 ]

5 1.25 1.17 1.51 1.25 1.06 1.10 1.50 1.04
[- 0 .1 5 , 2 .4 2 ] [ 1 . 0 3 , 1 .9 9 ] [ 0 . 0 9 , 2 .6 2 ] [ - 0 .3 9 , 2 .4 2 ] [1 .0 3 , 1 .9 6 ] [0 .0 2 , 1 .5 8 ]

Table 7: The Comparison Between Scaling Exponents of Empirical Treasury Rates and Mean
Scaling Exponents of Corresponding Simulated Processes. The results are for Treasury rates
with less than 3-year maturities. The first left column under each maturity provides the scaling
exponents for the first five integer moments. The next three columns provide the average scaling
exponents from 1,000 simulations for the MMAR, GBM, and GARCH(1,1) processes, respectively.
The minimum and maximum values of the exponents are reported in parentheses. Emp. means
’Empirical’ while Sim. means ’Simulated’.
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Fed Funds
Mean τ(q)

Sim. Sim.
Emp. MMAR Sim. GARCH
Series Cholesky GBM (1, 1)
-0.46 -0.5 -0.51 -0.41

[- 0 .6 2 , - 0 .3 4 ] [ - 0 .6 4 , - 0 .3 7 ] [ - 0 .5 9 , - 0 .2 6 ]

-0.03 -0.07 -0.02 0.06
[-0 .4 1 , 0 .2 3 ] [ - 0 .2 9 , 0 .2 2 ] [ - 0 .3 4 , 0 .3 1 ]

0.3 0.29 0.46 0.37
[-0 .5 3 , 0 .8 2 ] [0 .0 5 , 0 .8 4 ] [ - 0 .4 5 , 0 .8 3 ]

0.56 0.58 0.92 0.59
[-0 .7 6 , 1 .3 3 ] [0 .3 8 , 1 .4 5 ] [ - 0 .7 1 , 1 .3 5 ]

0.79 0.84 1.37 0.78
[-1 .0 0 , 1 .7 8 ] [0 .6 8 , 2 .0 7 ] [ - 0 .9 8 , 1 .8 4 ]

Table 8: The Comparison Between Scaling Exponents of Empirical Fed Funds Rates and Mean
Scaling Exponents of Corresponding Simulated Processes. The results are for Fed Funds rates.
The first left column provides the scaling exponents for the first five integer moments. The next
three columns provide the average scaling exponents from 1,000 simulations for the MMAR, GBM,
and GARCH(1,1) processes, respectively. The minimum and maximum values of the exponents
are reported in parentheses. Emp. means ’Empirical’ while Sim. means ’Simulated’.
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