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Variance Risk Premia

ABSTRACT

We propose a direct and robust method for quantifying theamae risk premium on financial
assets. We theoretically and numerically show that them@ktral expected value of the return
variance, also known as the variance swap rate, is well appeted by the value of a particular
portfolio of options. Ignoring the small approximation artrthe difference between the realized
variance and this synthetic variance swap rate quantifeegdtiance risk premium. Using a large
options data set, we synthesize variance swap rates arstigate the historical behavior of vari-

ance risk premia on five stock indexes and 35 individual stock

JEL CLASSIFICATION CODES: G10, G12, G13, C51.

KEY WORDS. Stochastic volatility; variance risk premia; variance swap; volatility swagipopric-

ing; expectation hypothesis; leverage effect.



Variance Risk Premia

1. Introduction

The grant of the 2003 Nobel prize in economics has made available to teeagjpablic the well-
documented observation that return variances are random over timeefdiee when investing in
a security such as a stock or a stock portfolio, an investor faces attteastources of uncertainty,
namely the uncertainty about the return as captured by the return varartc¢he uncertainty about

the return variance itself.

It is important to know how investors deal with the uncertainty in return vagao effectively
manage risk and allocate assets, to accurately price and hedge derbetivities, and to understand
the behavior of financial asset prices in general. We develop a dirdebaust method for quantifying
the return variance risk premium on an asset using the market pricesiai®gritten on this asset.
Our method uses the notion of a variance swap, which is an over-théecaramtract that pays the
difference between a standard estimate of the realized variance ancetheviap rate. Since variance
swaps cost zero to enter, the variance swap rate represents theuts&texpected value of the realized
return variance. We theoretically and numerically show that the varianap sate can be synthesized
accurately by a particular linear combination of option prices. Ignoringrtredl approximation error,
the difference between the ex-post realized variance and this synthgtinee swap rate quantifies the
variance risk premium. Using a large options data set, we synthesize vwagaap rates and analyze

the historical behavior of variance risk premia on five stock indexes &madsszidual stocks.

If variance risk is not priced, the time series average of the realizechretiiance should equal the
variance swap rate. Otherwise, the difference between the expettiedofdhe return variance under
the statistical probability measure and the variance swap rate reflects theudagn the variance risk
premium. Therefore, by comparing the variance swap rate to the exgadzted return variance, we

can empirically investigate the behavior of the variance risk premium.

Widespread appreciation of the significance of variance risk by thdifgwaer community has

recently engendered the introduction of a slew of financial products \aitbffs that are directly tied



to estimates of realized variance or volatility. Nowadays, variance and volatiigps trade actively
over the counter on major stocks, stock indexes, and currencies. @engeer 22, 2003, the Chicago
Board Options Exchange (CBOE) redefined its well-known volatility indeXj\in such a way that
it approximates the 30-day variance swap rate of the S&P 500 index réuriarch 26, 2004, the
CBOE launched a new exchange, the CBOE Futures Exchange (CRBjttorading futures on VIX.
These futures contracts represent a simple way to trade variance dealezea future time period. At

the time of this writing, options on the VIX are also planned.

Despite the recent surge in liquidity in volatility contracts, high-quality histoticad-series data

on variance swap rates are not yet available. In this paper, we circitmgissue by synthesizing re

turn variance swap rates. Working in complete generality, we show hovathaff a return variance
swap can be accurately approximated theoretically by combining the pagoffd static position in
a continuum of European options with a dynamic trading strategy in the unmagflytures. We show
that a sufficient condition for our replication strategy to be exact is thatitidkerlying asset'’s return
dynamics are continuous over time. It is important to appreciate that no testssumptions are
necessary on the dynamics followed by the return variance. In partithéaimstantaneous variance

rate can jump and it need not even be observable. In this sense, thatinglgtrategy is robust.

When the underlying asset price can jump, the strategy fails to replicageperiVe show that the
instantaneous approximation error is third order in the size of the jump. Wipyirag the theoretical
relation in practice, we also introduce an approximation error due to the atédigg and extrapolation
needed to generate the required continuum of option prices from the fimitber of available option
guotes. We numerically show that both sources of approximation ersvaall under realistic price

processes and market settings.

Variance swaps are not the only volatility derivatives that can be robregilicated. Carr and Lee
(2003a) develop robust replicating strategies for any contracts with takpearyoffs that are functions
of the realized variance and final price. In particular, they developghlecating strategy for a volatility
swap, the payoff of which is linear in the square root of the realizedvegiaT hey argue that the Black
and Scholes (1973) at-the-money implied volatility is an accurate approximdtiba wolatility swap

rate. We numerically confirm the accuracy of their theoretical argumengscaiclude that variance



swap rates and volatility swap rates can both be accurately approximatgdanesiket prices of options

and their underlying assets.

Given these conclusions, we synthesize variance and volatility swapusatesoptions data on five
of the most actively traded stock indexes and 35 of the most actively tradie@iual stocks during the
past seven years. We compare the synthetic variance swap rates toréspaonding realized return
variance and investigate the historical behavior of the variance risk pfendédferent assets. We find
that the average risk premia on return variances are strongly negatitheefS&P 500 and 100 indexes
and for the Dow Jones Industrial Average. The variance risk premidg@éoNasdaq 100 index and for
most individual stocks are also negative, but with a smaller absolute magnitié negative sign on
the variance risk premia indicates that variance buyers are willing to sufiegative average excess

return to hedge away upward movements in the index return variance.

We investigate whether the classical Capital Asset Pricing Model (CARNEgplain the negative
variance risk premia. We find that the well-documented negative correlaiwreen index returns and
volatility generates a strongly negative beta, but this negative beta carexpilyin a small portion
of the negative variance risk premia. The common risk factors identifiecalnaFand French (1993)
cannot explain the strongly negative variance risk premia, either. fidniereve conclude that either
the market for variance risk is highly inefficient or else the majority of theavae risk is generated by

an independent risk factor, which the market prices heavily.

We further analyze the dynamics of the variance risk premia by formulatgrgssions based on
various forms of the expectation hypothesis that assume constant oenutsy variance risk premia.
Under the null hypothesis of constant variance risk premia, a regreséithe realized variance on
the variance swap rate will result in a slope estimate of one. We find thatrit@esastimates of the
regression slope are positive for all stocks and stock indexes, dgigrificantly lower than the null

value of one for over half of the stocks and stock indexes.

The distributions of the return variance and variance risk premia are highhnarmal. The dis-
tribution becomes much closer to normal when we represent the variancgterhes and the variance
risk premia in log differences. Under the null hypothesis of constantdependent log variance risk

premia, a regression of the log realized variance on the log varianceratesghould result in a slope of



one. We find that this hypothesis is supported by the data. At the 95 pexadidence level, the null

hypothesis cannot be rejected for any of the five stock indexes ar2d foirthe 35 individual stocks.

Since the floating part of the variance swap payoff is just the squaresdidhting part of the
volatility swap payoff, Jensen’s inequality dictates that the variance satajisrgreater than the square
of the volatility swap rate. The difference between the variance swapmdttha volatility swap rate
squared measures the risk-neutral variance of the return volatility. treergynthesized variance swap
rate and the at-the-money implied volatility, we obtain a time series of the risk-heatiance of the
return volatility for each of the five stock indexes and the 35 stocks. Siagance or volatility risk
premia compensate for uncertainty in return volatility, we hypothesize thatat@nee risk premia
become more negative when the variance of the return volatility is high. Reggethe negative of
the variance risk premia on the variance of volatility, we obtain positive slsippmates for most of the

stock indexes and individual stocks, with more than half of them statisticalyfisignt.

Finally, we run an expectation hypothesis regression that uses the laga@and controls for the
variation in the variance of volatility. The regression slope estimate on the t@nea swap rate is no

longer significantly different from its null value of one for all but fivetbe individual stocks.

In the vast literature on stock market volatility, the papers most germane siualyr are the recent
works by Bakshi and Kapadia (2003a,b). These studies considerdfiegnd loss (P&L) arising from
delta-hedging a long position in a call option. They persuasively argai¢hiseP&L is approximately
neutral to the directional movement of the underlying asset return, behstve to the movement
in the return volatility. By analyzing the P&L from these delta-hedged positiBakshi and Kapadia
are able to infer some useful qualitative properties for the variance réskip without referring to a
specific model. Our approach maintains and enhances the robustnesgs apftroach. In addition,
our approach provides a quantitative measure of the variance risk pra@maresult, we can analyze
not only the sign, but also the quantitative properties of the premia. Thatification enables us to
investigate whether the magnitude of the variance risk premia can be fullyrstectfor by the classical
CAPM or by Fama-French factors, and whether the variance risk pretigdysvarious forms of the

expectation hypothesis.



Chernov (2003), Eraker (2003), Jones (2003), and Pan (28@&yze the variance risk premia
in conjunction with return risk premia by estimating various parametric option gritiadels. Their
results and interpretations hinge on the accuracy of the specific modethelgaise in the analysis.
Ang, Hodrick, Xing, and Zhang (2003) form stock portfolios rankeutiieir sensitivity to volatility
risk and analyze the difference among these different portfolios. REhemanalysis, they can infer
indirectly the impact of volatility risk on the expected stock return. Also relateédesvork by Coval
and Shumway (2001), who analyze how expected returns on optiorssrimeet vary with strike choices

and whether the classic capital asset pricing theory can explain thetedpmgation returns.

The underlying premise for studying variance risk premia is that returanae is stochastic. Nu-
merous empirical studies support this premise. Prominent empirical evitheiseel on the time se-
ries of asset returns includes Andersen, Benzoni, and Lund (2802)ersen, Bollerslev, Diebold,
and Ebens (2001), Andersen, Bollerslev, Diebold, and Labys (28W3), Ding, Engle, and Granger
(1993), Ding and Granger (1996), and Eraker, Johannes, dadrf@003). Evidence from the options
market includes Bakshi, Cao, and Chen (1997, 2000a,b), Bakst{apaia (2003a,b), Bates (1996,
2000), Carr and Wu (2003), Eraker (2001), Huang and Wu (2G0%) Pan (2002).

Our analysis of the variance risk premia is based on our theoretical wsdhesizing a variance
swap using European options and futures contracts. Carr and M&888)( Demeterfi, Derman,
Kamal, and Zou (1999a,b), and Britten-Jones and Neuberger (2@0€)used the same replicating
strategy, but under the assumption of continuity in the underlying asset @iar derivation is under
the most general setting possible. As a result, our theoretical work gearitigé approximation error

induced by jumps. In a recent working paper,

Also relevant is the large strand of literature that investigates the informatiotertt of Black-
Scholes implied volatilities. Although conclusions from this literature have at timesadicted each
other, the present consensus is that the at-the-money Black-Scholeglingiadlity is an efficient,
although biased, forecast of the subsequent realized volatility. Exanflesse studies include Latane
and Rendleman (1976), Chiras and Manaster (1978), Day and Le®988),1Day and Lewis (1992),
Lamoureux and Lastrapes (1993), Canina and Figlewski (1993)abdy.ewis (1994), Jorion (1995),
Fleming (1998), Christensen and Prabhala (1998), Gwilym and Buckig9j1 Hol and Koopman



(2000), Blair, Poon, and Taylor, (2000a,b), Hansen (2001), €&msen and Hansen (2002), Tabak,
Chang, and de Andrade (2002), Shu and Zhang (2003), and Ne€g)

The remainder of this paper is organized as follows. Section 2 shows tiret éx which the pay-
off to a variance swap can be theoretically replicated by combining the fofagof a static position
in European options with the gains from a dynamic position in futures on therlyinthy asset. We
also discuss the relation between volatility swaps and variance swaps indtisseSection 3 uses
three standard models of return dynamics to numerically investigate the maguittideapproxima-
tion error due to price jumps and discrete strikes. Section 4 lays down theeticabfoundation for
various expectation hypothesis regressions. Section 5 discussesalamdahe methodologies used to
synthesize variance and volatility swap rates and to calculate realizedogri@action 6 empirically

investigates the behavior of the variance risk premia. Section 7 concludes.

2. Synthesizing a Return Variance Swap

A return variance swap has zero net market value at entry. At matuityaioff to the long side
of the swap is equal to the difference between the realized varianceheviie of the contract and a
constant fixed at inception called the variance swap ratedéhotes the entry time afiddenotes the

payoff time, the terminal payoff to the long side of the swap &:
[RM1 —SWr]L, (1)

whereRV 1 denotes the realized annualized return variance betweert ameT, andSWt denotes
the fixed swap rate, which is determined at titnand is paid at timél'. The letterL denotes the
notional dollar amount that converts the variance difference into a daiafp Since the contract has
zero market value at initiation, no-arbitrage dictates that the variancersteapquals the risk-neutral

expected value of the realized variance,

SWt =EZ RV 1], 2)



whereE{ [-] denotes the expectation operator under some risk-neutral me@same conditional on

the information up to time.

In what follows, we show that under relatively weak assumptions on ihe process of the under-
lying, the risk-neutral expected value of the return quadratic variatam fimet to T can be approx-
imated from the time-prices of out-of-the-money European options maturing at fiméNumerical
calculations from realistic price processes and strike spacings indicatkehiatal approximation error
is small. Hence, the risk-neutral expected valueddithe increase in the return quadratic variation over
[t, T] can be effectively determined tafrom an implied volatility smile of maturityr. Thus, assuming
continuous monitoring of the underlying asset’s price path, we havetigfigcdetermined the fixed

rate for a variance swap.

2.1. Synthesizing the return quadratic variation by tragloptions and futures

It is well known that the geometric mean of a set of positive numbers is maeee than the
arithmetic mean. Furthermore, the larger the variance of the numbers, titergsethe difference
between the arithmetic mean and the geometric mean. This section exploits thesatiduss to

extract the risk-neutral expected value of realized variance fromroptices.

To fix notation, we letS denote the spot price of an asset at time [0,7 |, whereT is some
arbitrarily distant horizon. We Id% denote the time-futures price of maturityl > t. For simplicity,
we assume that the futures contract marks to market continuously. Wesalgo@that the futures price
is always positive, although it can get arbitrarily close to zero. No agstimplies that there exists a
risk-neutral probability measur@ defined on a probability spa¢®, 7 ,Q) such that the futures price

R solves the following stochastic differential equation:

dR = Ft—o-t,dW'i‘/Ro R- (ex_ 1) “.l(dX7dt) —Vt(X)dth], te [077]7 (3)

starting at some fixed and known valbg> 0. In equation (3)W\\ is aQ standard Brownian motion,
RO denotes the real line excluding zef, denotes the futures price at tirhgust prior to any jump
att, and the random counting measyu(@x, dt) realizes to a nonzero value for a giveiif and only

if the futures price jumps fronf_ to R = R_€* at timet. The procesgv;(x),x € R%t € [0, 7]}



compensates the jump procelss= fé Jro (€= 1) u(dx, ds), so that the last term in equation (3) is the
increment of &)-pure jump martingale. This compensating procg$s) must satisfy (Prokhorov and
Shiryaev (1998)):

/RO (X2 A1) v(xdx< e, te[0,T].

In words, the compensator must integrate the square of the small jixngsl() to have a well-defined
quadratic variation. Furthermore, large jumpg £ 1) must not be so frequent as to have infinite ag-
gregate arrival rate. Thus, equation (3) models the futures pricegetemthe sum of the increments
of two orthogonal martingale components, a purely continuous martingala guodely discontinu-
ous (jump) martingale. This decomposition is generic for any continuous-timingele (Jacod and

Shiryaev (1987)).

To avoid notational complexity, we assume that the jump component of thesgitacess exhibits
finite variation:

/RO(’X’/\]-)Vt(X)dX< w, tel0,7].

The time subscripts og;_ andv;(x) indicate that both are stochastic and predictable with respect to
the filtration 7;. We further restrict;_ andv;(x) so that the futures pridg is always positive. Finally,
we assume deterministic interest rates so that the futures price and thedfpmnica are identical. So

long as futures contracts trade, we need no assumptions on dividends.

Under the specification in equation (3), the quadratic variation on the &utatern from time to
Tis
T T
Vit :/t c5§7ds+/t /Roxzp(dx,ds). (4)

The annualized quadratic variationR¥ T = %VLT. We show that this return quadratic variation can
be replicated up to a higher-order error term by a static position in a portdgbiptions of the same
horizonT and a dynamic position in futures. As futures trading is costless, the rigkahexpected
value of the quadratic variation can be approximated by the forward vathe portfolio of European
options. The approximation is exact when the futures price processety/mantinuous. When the

futures price can jump, the instantaneous approximation error at isref orderO((‘F’t—'f)3).

1We can alternatively assume the weaker condition of zero quadraticiaiioa between the futures price and the price
of a pure discount bond of the same maturity.



Theorem 1 Under no arbitrage, the time-t risk-neutral expected value of the requadratic variation
of an asset over horizon Ft defined in (4) can be approximated by the continuum of European out-

of-the-money option prices across all strikes-k0 and with maturity T:

2 wet(KaT)

Q —
BRI =773 )0 mmKe

dK +¢, (5)

whereg denotes the approximation error; (B ) denotes the time-t price of a bond paying one dollar
at T, and®; (K, T) denotes the time-t value of an out-of-the-money option with strike priseédkand
maturity T >t (a call option when K> R and a put option when K R). The approximation error

€ is zero when the futures price process is purely continuous. When thesfytice can jump, the
approximation erro is of order Q(gt—'f)e’) and is determined by the compensator of the discontinuous
component,

€=

) T X2

Q —1l—x—
—= 5 /t /RO [e?‘ 1-x z]vs(x)dxds ©6)
Proof. Let f(F) be a twice differentiable function &f. By Itd’s lemma for semi-martingales:

(Fr) = 1)+ [ 1R )0R+ [ 1"(Fe )02 ds

T
[ (R~ 1(Fe) — /(R )R- (€'~ L)lu(dx ds), ()
t JR

Applying equation (7) to the functioh(F) = InF, we have:

T T T
In(Fr) = In(Ft)+/t édFs%/t cr§,ds+/t /Ro[x—exqtl]u(dxds). (8)

Adding and subtracting[% -1+ ftT x°u(dx, ds) and re-arranging, we obtain the following represen-

tation for the quadratic variation of returns:

T T T
o < [ [owmon=ofFron()] o[ [2- o

_2/tT/RO [ex_l_x_x—ﬂ W(dx ds). 9)



A Taylor expansion with remainder of by about the poink implies:

_ 1 R 1 + e 1 +
InFr=Inf i (Fr—F)— [ (K- Frfak— [ (R K)ok (10)

Combining equations (9) and (10) and noting that= Sy, we have:

R 1 © 1
Wi = 2| [l sntae [ s KK

+2/ {? - —] dR
—2/t /RO [e?‘—l—x—xzz] w(dx ds). (11)

Thus, we can replicate the return quadratic variation up to Tfinlg the sum of (i) the payoff from a
static position inzlg—;< European options on the underlying spot at sthkand maturityT (first line), (ii)

the payoff from a dynamic trading strategy holdinBseT ) [% — %} futures at times (second line),
and (iii) a higher-order error term induced by the discontinuity in the fstymgce dynamics (third
line). The options are all out-of-the money forward, i.e., call options when K and put options

whenK < R.

Taking expectations under meas@eon both sides, we obtain the risk-neutral expected value of
the quadratic variation on the left hand side. We also obtain the forward ghlthhe sum of the startup

cost of the replicating strategy and the replication error on the right hidad s

Ei@[\/t;] =/, Zst((KT dK — ZEt/ / [e" 1—x— ] vs(x)dxds

By the martingale property, the expected value of the gains from dynamie$utading is zero under
the risk-neutral measure. Dividing b¥ (t) on both sides, we obtain the result on the annualized

return quadratic variationm

Equation (5) forms the theoretical basis for our empirical study. We will migaky illustrate that
the approximation error is small. Then we use the first term on the right hidedosdetermine the
synthetic variance swap rate on stocks and stock indexes. The reletamt variance underlying the

variance swap is that of the futures, which is equal to that of the forwadiér our assumption of

10



deterministic interest rates. Comparing the synthetic variance swap rate &éalized return variance,

we will investigate the behavior of the variance risk premia on differenkstand stock indexes.

2.2. Volatility swaps

In many markets especially currencies, an analogous volatility swap cbatsacexists that pays

the difference between the realized volatility and a fixed volatility swap rate,

[\/R\LT —VS;} L, (12)

whereV § 1 denotes the fixed volatility swap rate. Since the contract has zero valueegtion, no-
arbitrage dictates that the volatility swap rate equals the risk-neutral exipeadtee of the square root

of the realized variance,
VSt =E [/RU1]. (13)

Volatility swaps and variance swaps serve similar purposes in hedgingsagaicertainty in return
volatility. Carr and Lee (2003b) show that there is a robust replicatintfghior for a volatility swap
under the sufficient conditions of continuous futures prices and aadtichvolatility process whose
coefficients and increments are independent of returns. The repliqadiiglio requires dynamic
trading in both futures and options, rendering the replication much moreutlificcpractice than the
replication of a variance swap. However, it is actually much easier to tiglajgproximate the initial
price of a volatility swap than a variance swap. Carr and Lee (2003#&) ttat the volatility swap rate
is well approximated by the Black and Scholes (1973) implied volatility for theextatbney forward
(K = F) option of the same maturitT MV,

VST =ATMV . (14)

This approximation is accurate up to the third or@o?) when the underlying futures price is purely
continuous and the volatility process is uncorrelated with the return innovatlemat-the-money im-
plied volatility remains a good first-order approximation in the presence of jamgseturn-volatility

correlations. Appendix A provides more details on the derivation.

11



Comparing the definitions of the variance swap rate in equation (2) and lddityoswap rate in

equation (13), we observe the following relation between the two:

Var (/R 1) = SWt -V, (15)

whereVarZ(-) denotes the conditional variance operator under the risk-neutral reede standard
quotation convention for variance swaps and volatility swaps is to quote buthatlity terms. Using
this convention, the variance swap rate should always be higher thanltiiity swap rate by virtue
of Jensen’s inequality. When the variance swap rate and the volatility swapne both represented in
terms of variance, the difference between the two is just the risk-neatriaince of realized volatility.

The two swap rates coincide with each other when return volatility is constant.

Remark 1 The difference between the variance swap rate and the volatility swap raseeshmea-

sures the degree of randomness in return volatility.

The remark is an important observation. The existence of risk premiattonreariance or volatil-
ity hinges on the premise that the return variance or volatility is stochastic in $hplfice. The remark
provides a direct measure of the perceived riskiness in return volatitydoan observations from the
options market. Using the market prices of options of the same maturity butediffstrikes, we can
approximate the variance swap rate according to equation (5). We caapgsmximate the volatility
swap rate using the Black-Scholes implied volatility from the at-the-money opfioadifference be-
tween the two swap rates reveals the (risk-neutral) variance of the ratlatility and hence provides

a direct measure of the perceived riskiness in return volatility.

3. Numerical lllustration of Standard Models

The attempted replication of the payoff to a variance swap in equation (8hastantaneous error
of orderO((g‘—ﬁ)3). We refer to this error gsimp erroras it vanishes under continuous path monitoring
if there are no jumps. Even if we ignore this jump error, the pricing of a veeiawap still requires

a continuum of option prices at all strikes. Unfortunately, option priceegiare only available in

12



practice at a discrete number of strike levels. Clearly, some form of iftgipo and extrapolation
is necessary to determine the variance swap rate from the available gudtesnterpolation and
extrapolation introduce a second source of error, which we tisaretization error The discretization

error would disappear if option price quotes were available at all strikes.

To gauge the magnitude of these two sources of approximation error, merizally illustrate
three standard option pricing models: (1) the Black-Scholes model (BShd& Merton (1976) jump-
diffusion model (MJD), and (3) a combination of the MJD model with Hest@&®8) stochastic volatil-
ity (MJDSV). The MIDSV model is due to Bates (1996), who estimates it aeay options. Bakshi,
Cao, and Chen (1997) estimate the models on S&P 500 index options.

The risk-neutral dynamics of the underlying futures price processrthdse three models are:

BS: drR/R = odW,
MID:  dR/R- = odW-+dJ(\)—Agdt, (16)
MIDSV: dR/R- = /MdW+dJ(\)—Agdt,

whereW denotes a standard Brownian motion al{dl) denotes a compound Poisson jump process
with constant intensity. Conditional on a jump occurring, the MJD model assumes that the size of the
jump in the log price is normally distributed with meppand variance?, with the mean percentage
price change induced by a jump givendpy 3% _ 1. In the MIDSV model, the diffusion variance

ratev; is stochastic and follows a mean-reverting square-root process:
dv =k (8 —w)dt+ oy /WwdZ, 17)

wherez; is another standard Brownian motion, correlated Witby EQ [dZdW] = pdt.

The MJDSV model nests the MJD model, which in turn nests the BS model. Wealithggprogres-
sion from BS to MJD and then from MJD to MJDSV as one of increasing coxitpléll three models
are analytically tractable, allowing us to numerically calculate risk-neutradet®gd values of variance
and volatility, without resorting to Monte Carlo simulation. The difference in tlenBodel between
the synthetic variance swap rate and the constant variance rate dyedugr#o the discretization error,

since there are no jumps. The increase in the error due to the use of thenbld€) instead of BS

13



allows us to numerically gauge the magnitude of the jump error in the presedidte strikes. The
change in the approximation error from the MJD model to the MIJDSV model allsto numerically
gauge the impact of stochastic volatility in the presence of discrete strikegigpd. In theory, the
addition of stochastic diffusion volatility does not increase the approximation i the presence of
a continuum of strikes. However, the reality of discrete strikes force® mmerically assess the

magnitude of the interaction effect.

In the numerical illustrations, we normalize the current futures price to $h@iGssume a constant
riskfree rate ar = 5.6 percent. We consider the replication of a return variance swap rateaove
one-month horizon. The option prices under the Black-Scholes modddleanmputed analytically.
Under the MJD model, they can be computed using a weighted average dattie®:holes formula.
For the MJDSV model, we rely on the analytical form of the characteristictiom of the log return,
and compute the option prices based on the fast Fourier inversion meti@atradnd Madan (1999).
Table 1 summarizes the model parameter values used in the numerical illustrati@ss parameters
reflect approximately those estimated from S&P 500 index option prices, e.Bakishi, Cao, and

Chen (1997).

3.1. Variance swap rate

Under the BS model, the annualized return variance rate is constafit dhder the MJD model,
this variance rate is also constantagt+ A (uf+012). Under the MJDSV model, the realized return
variance rate is stochastic. The risk-neutral expected value of theléedivariance rate, hence the

variance swap rate, depends on the current level of the instantaveatarsce ratey,
Ef [RV 7] = of +A (K +07), (18)

wherea? is given by

(w—8). (19)
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Our replicating strategy implicit in equation (5) is exact when the underlyimguhjcs are purely
continuous, but has a higher order approximation error in the presémpaeeps. Thus, under the BS
model, the theoretical approximation error is zege: 0. Under the other two jump models MJD and

MJDSYV, the compound Poisson jump component has the following compensator

! ze_ o} (20)
1/2Trcrj

We can compute the approximation eredrom equation (6):

v(X) =A

e=2\(g— 1 —0%/2). (21)

Thus, the approximation error depends on the jump param@tgis o).

The other obvious source of error is from the interpolation and extrapolaeeded to obtain a
continuum of option prices from the finite number of available option quotesaumerically gauge
the impact of this discretization error, we assume that we have only five ajptiotes at strike prices
of $80, $90, $100, $110, and $120, based on a normalized futuceslevel of $100. All the stock
indexes and individual stocks in our sample average no less than fivessatileach chosen maturity.

Hence, the choice of just five strike prices is conservative.

To gauge the magnitude of the total approximation error, we first computepttm grices under
the model parameters in Table 1 and compute the option implied volatility at the fivesstiikien,
we linearly interpolate the implied volatility across the five strikes to obtain a findrajrimplied
volatilities. For strikes below $80, we use the implied volatility level at the strike86k $Similarly,
for strikes above $120, we use the implied volatility level at the strike of $TREs interpolation and
extrapolation scheme is simple and conservative. There might exist mareasecschemes, but we

defer the exploration of such schemes for future research.

With the interpolated and extrapolated implied volatility quotes at all strikes, wiy #pp Black-
Scholes formula to compute the out-of-the-money option prices at eachlstrédte Then, we approx-
imate the integral in equation (5) with a sum over a fine grid of strikes. We sdoter and upper

bounds of the sum at8 standard deviations away from at the money, where the standard deviatio
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is based on the return variance calculation given in equation (18). Taeffid used to compute the
sum employs 2,000 strike points within the above bounds. We perform thigsanbased on a one-
month horizon T —t = 1/12). Following this numerical approximation procedure, we compute the
synthesized annualized variance swap rate over this horﬁ\m{(rg, where the hat stresses the approxi-
mations involved. The difference between this approximate variance m&éi\/vand the analytically

computed annualized varianE@[R\.{}T] represents the aggregate approximation error.

Table 2 summarizes our numerical results on the approximation error of tlamea swap rates
under the title “Variance Swap.” Under the BS model, the analytical apprdiximarror is zero.
Furthermore, since the implied volatility is constant and equaldball strikes, there is no interpolation
or extrapolation error on the implied volatility. The only potential error can ctrova the numerical
integration. Table 2 shows that this error is not distinguishable from zeno the fourth reported

decimal point.

Under the MJD model, the analytical error due to jumps is 0.0021, about &rs&mt of the total
variance (0.1387). The aggregate error via numerical approximatiolsas0e0021. Hence again,

numerical approximation via five strike levels does not induce noticeabléaud errors.

Under the MJDSV model, we consider different instantaneous varianels |eepresented as its log
difference from the mean, (% /6). As the current instantaneous variance ley®fries, the analytical
error due to the jump component is fixed at 0.0021, because the aaieabir the jump component
does not change. But as the aggregate variance level varies fr@m20t0 2.3782, the percentage
error due to jumps varies accordingly from 7.72 percent to 0.09 pertbataggregate numerical error
also varies at different volatility levels, but the variation and the magnituel®ath fairly small. The
interpolation across the five option strikes does not add much additiorabamation error, indicating

that our simple interpolation and extrapolation strategy works well.

Our numerical results show that the jump error is small under commonly usied ppicing models
and reasonable parameter values. The additional numerical errordigerigtization is also negligible.
Hence, we conclude that the synthetic variance swap rate matches claselyatytical risk-neutral

expected value of the return variance.
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3.2. Volatility swap rate

Under the BS model, the volatility swap rate and the variance swap rate coimitideach other
and with the realized return varianod when they are represented in the same units. Under the MJD
model, the return quadratic variativhr as defined in (4) is random due to the random arrival of jumps
of random size. Under the MJDSV mod®g},t has another source of randomness due to stochastic
volatility. The randomness i 1 under these two models generates a difference between the variance

swap rate and the volatility swap rate due to Jensen’s inequality, as capjuegdation (15).

To compute the analytical volatility swap rate under the MJD and MJDSV modelsjse the

following mathematical equality for any positive numlogr

1 ©]—eSa

\/622\/17[ o 2

ds (22)

Appendix B provides the proof for this equality. Then, by replagvgth \; 1 and taking expectations
on both sides, we can represent the volatility swap rate as a function ofaifflade transform of the

guadratic variation,

1 (=1-E2[e s\
B2 [\ :2\/1_'[/0 ‘SGEZ ds 23)

Under the MJD model, this Laplace transform can be represented asrareiafim:

npjzs
. 1+2crzs

2g oS (24)

(<) }\ T _ n
E;@ [e—s\h] _ e—soz(T—t) ZOG)\(T—t)< ( t)) (l+2028)
n! J
n=
where the first term is due to the constant diffusion component. Under #iSM model, this first

term changes due to stochastic volatility,

0 n . nujzs
EP [e—s\{‘r} — @ P(T-Hv—c(T-1) Z)e)\(Tft) (AT —1)) (1+2023)—2 e 1420%s (25)
n! J ’
n=
where
_ 2s(1-e
b(t) - 2r|7(n7K)(1,efrlt ) (26)
o) = 9[2m(1-TEa-e)+n-w).
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and
n=4/k?+202s.

Given these two Laplace transforms, we can solve for the volatility swagoatee two models via
numerical integration of equation (23). We use an adaptive Lobatto guusemethod to evaluate this
integral numerically with a tolerance level of 10 We then compare how the volatility swap rates

match the at-the-money implied volatility from each model.

Under the title “Volatility Swap,” Table 2 reports the accuracy of using the etrtioney implied
volatility to approximate the volatility swap rate. For ease of comparison to theneariswap rate,
we report the squares of the volatility. Under the Black-Scholes modelpolhagélity swap rate and the

implied volatility coincide because = 0.37 is constant.

Under the MJD and MJDSV models, we observe some differences betheat-the-money im-
plied volatility and the analytical volatility swap rate. But in all cases, the diffees are fairly small,

with the magnitudes similar to the approximation errors for the variance swap rate

Historically, many studies have used at-the-money implied volatilities as proxigeftrue volatil-
ity series to study its time series property and forecasting capabilities. Ouricahresults, together
with the theoretical results in Carr and Lee (2003a), show that theseshalie indeed chosen a good
proxy. Although it is calculated using the Black-Scholes formula, the atrtbeey implied volatility
represents an accurate approximation for the risk-neutral expedtexlofathe return volatility under

much more general settings.

4. Expectation Hypotheses

If we uselP to denote the statistical probability measure, we can link the variance swanchtiee

annualized realized variance as follows:

B M TRMT]

SWt = =K’ R 27
W.,T E%P [MLT} t [l'TLT V,T]v ( )
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whereM; 1 denotes a pricing kernel amd  represents its normalized version, which B-enartingale,

Ef [m 1] = 1. Assuming a constant interest rate, we have:
Ef Mer] =B(T)=e "1, (28)
For traded assets, no-arbitrage guarantees the existence of atrleastich pricing kernel (Duffie

(1992)).

We decompose equation (27) into two terms:
SWr =E{ [m 1RV 7] = E{ [RV 1]+ CoV (M 1,RVT). (29)

The first termEf [R\ 1] represents the time-series conditional mean of the realized variance. The
second term captures the conditional covariance between the normailizad gernel and the realized

variance. The negative of this covariance defines the return vaniskgeremium.

Dividing both sides of (29) bW 1, we can also represent the decomposition in excess returns:

} +CoV (mT, g\,c—’i). (30)

RV 1 } _RP [R\LT

1=F; -
t [m” SWr SWr

If we regardSW t as the forward cost of our investmefR\ 1 /SWt — 1) captures the excess return
from going long the variance swap. The negative of the covariancemtezguation (30) represents the
variance risk premium in terms of the excess return. Based on the dedtionsois equations (29) and
(30), we analyze the behavior of the variance risk premia. We also testaséorms of the expectation

hypothesis on the variance risk premia.

Using the volatility swap rate, we can analogously define the volatility risk prenainanalyze
its empirical properties. We have done so. The results are qualitatively stmithe results on the
variance risk premia. We only report the results on the variance risk prentias paper to avoid

repetition.
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4.1. The average magnitude of the variance risk premia

From equation (29), a direct estimate of the average variance risk preisiilne sample average
of the difference between the variance swap rate and the realizedo@rRRT = RM 1 — SWr.
This difference also measures the terminal capital gain from going longvaniance swap contract.
From equation (30), we can also compute an average risk premia in egt@ssform by computing
the average excess return of a long swap position. To make the distriblgger o normality, we
represent the excess return in continuously compounded form anditl@sethe log variance risk

premium,LRR = In(RM v /SWr).

The most basic form of the expectation hypothesis is to assume zero riigiapremium. There-
fore, the null hypothesis ifRR 1 = 0 andLRR 1 = 0. We empirically investigate whether the average

(log) variance risk premium is significantly different from zero.

4.2. Expectation hypothesis on constant variance risk @em

A weaker version of the expectation hypothesis is to assume that the \eariakgremium is
constant or independent of the variance swap rate. Then, we cdhetiollowing regressions to test

the hypothesis:

Rt = a+bSWr+ar, (31)

INRMT = a+bInSWt+earT. (32)

The null hypothesis underlying equation (31) is tR& t is constant or independent of the variance
swap rate. Under this null hypothesis, the slope estirbateould be one. The null hypothesis under-
lying equation (32) is that the log variance risk prerhRR 1 is constant or independent of the log
variance swap rate. The null value of the slope estimate is also one. Uedaultihypothesis of zero

risk premia, the intercepts of the two regressions should be zero. dherédsts of these expectation

hypotheses amount to tests of the null hypotheaes0 andb = 1 for the two regressions.
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4.3. Hypothesis on the link between the variance risk premcvariance of volatility

The existence of nonzero variance risk premia hinges on the existenmedaimness in volatility.
In a world where return variances are constant, no risk and henceenoym would exist on volatil-
ity. We hypothesize that the magnitude of the variance risk premium is positieelglated with the

magnitude of the uncertainty in the return volatility.

Remark 1 proposes an observable measure for the uncertainty in retatitity. The difference
between the variance swap rate and the volatility swap rate squared nsghsuwariance of the return

volatility under the risk-neutral measure. Therefore, we can run theafimlipregression:

IN(RV1/SWt) =a+b(SWt V) +e (33)

and test whether the slope coefficient differs from zero.

4.4. Expectation hypothesis under the Heston model

To illustrate the economic intuition behind the average variance risk premia arekfiectation
hypothesis regression slope estimates, we go through a simple exampleb#sedtochastic volatility
model of Heston (1993). This model assumes that the instantaneous vatiance,v;, follows a

square-root process under the risk-neutral meagure
dv =K (6 —w)dt+ oy /wdZ, (34)

whereZ; denotes a standard Brownian motiéris the long-run mean instantaneous variance rate,

the mean-reversion speed, amds a parameter governing the instantaneous volatility of variance.
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A common assumption for the square-root model is that the market pricdolfrgsto shocks in the

Brownian motiorZ is proportional to the diffusion component of the instantaneous variancegs*

Y(\Mt) = YOou/\t. (35)

In words, a zero cost portfolio with unit exposure to the increntfatwould be expected to change
in value as compensation for uncertainty in the realizatiod.obnder the statistical measule the
assumed absolute appreciation rate for this portfoljois/V; per unittime, wherg s real and possibly

negative.

Under assumption (35), Girsanov’s theorem implies that the diffusion of; ihecess remains the

same under the statistical measBrdut the drift of; changes to the following,
M) =K (8—w) +yoow = k" (8" —w), (36)

which remains affine in the instantaneous variancesatEheP-long-run mean and the mean-reversion

speed are
P K P 2
=——0, K =Kk-yoj. 37
o Yo, (37)
When the market price d risk is positive § > 0), the long-run mean of the variance rate under the
statistical measur®, 67, becomes larger than the long-run méannder the risk-neutral measuge
The mean-reversion speefl under measur® becomes smaller (slower). The opposite is true when

the market price oZ risk is negative.

2Examples of square-root stochastic volatility models with proportionaketarice of risk include Pan (2002) and Eraker
(2003). Many term structure models also assume proportional natiketof risk on square-root factors. Examples include
Cox, Ingersoll, and Ross (1985), Duffie and Singleton (1997), Risband Whiteman (1999), Backus, Foresi, Mozumdar,
and Wu (2001), and Dai and Singleton, (2000, 2002).
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Assuming the square-root process in (34) and the proportional mariketof Z risk in (35), we

can derive the conditional expected value of the realized aggreg@&#ecaunder the two measures:

0 1— efK(Tft)
SW_’T = Et [R\‘T] = 9 + ﬂ (Vt — 9) s (38)
1— —KP(T—t)
Ef R¥7] = 6°+ ﬁ (vt — ep) . (39)

Both are affine in the current level of the instantaneous variance;rafberefore, the conditional vari-
ance risk premium as measured by the difference between the two expalttesRR = Ef [RV 1] —

Ei@ [RV 1], is also affine ing and is hence also given by a stochastic process.

The long-run mean of; is 6” and® under measurégandQ, respectively. The unconditional mean

of the variance risk premium under measkris equal to:

EF[RR] = EP[RT-SWt]=6"—

1 (40)

1-e*T-Y | yo2
k(T —-t) |k—yo2

Therefore, the average variance risk premium is positive when the tr@ark&e of Z risk y is positive
and negative when the market pricedfisk y is negative. The average risk premium becomes zero

wheny = 0.

Now we consider the expectation hypothesis regression:
Rt =a+bSWt+e (41)

The missing variable in the expectation regression is the variance risk preRRywhich is affine in
Vt. Since the swap ra®\W t is also affine int, the missing risk premium in the regression is correlated

with the regressor. Thus, the slope estimatesfaiill deviate from its null value of one.

From equations (38) and (39), we can derive the population valuedaetiression slope:

_ CoV' (E{ [RM7],SWr) K (1_ e—KP(T_t))

b var? (SW,T) - kP (1_ e—K(T—t)) ’

(42)
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whereVvar®(-) andCoV'(-,-) denote variance and covariance under meaBurespectively. The slope
is equal to the null value of one only when= k". To see exactly how the slope deviates from the null

value, we Taylor expand the two exponential functions up to second andieobtain:
_ —KF’<H>>
K<1 e _1_% P(T—t))

K
= = . 43
PI_exT0)  1-IqT—1) (43)

Therefore, the slope is less than one wk8n> k, or wheny < 0. The slope is greater than one when

kP <k, ory>0.

The relation becomes complicated when the regression is on log variangder &gpanding the
logarithms ofSWt andEf’ [RV 1] around their respective long-run means generates the following first-

order approximations:

InSW+r = |ne+ﬂ(v -9) (44)
T Bk(T—t)
5 . b 1_efKP(Tft) b
InE; [R\LT] = In6" + m (Vt -0 ) . (45)

The regression slope on the log variances is approximately,

b CoV (INEf [RV7],InSWr) . 6(1—3k°(T —1)))

Varf (InSWr) TP (1_ %K(T —t)) : (46)

Whether this slope is greater or less than the null value of one becomes amshi§oo example, when
y> 0, we haved < 87, but (1— 2kP(T —t))) > (1— 3k(T —t)). The two conflicting impacts generate

ambiguous regression slopes that will depend on the exact value of thed paodmeters.

Finally, under the Heston model with proportional market pricg aék, the variance risk premium
is proportional to the instantaneous variance rate. Therefore, any\@hable that is related (and
ideally proportional) to the instantaneous variance rate would also halenexqry power for the risk
premium. Equation (33) proposes to use the risk-neutral variance afi neidlatility, Varé@ (\/Wt:) as
the explanatory variable. Under the Heston model and the proportionkéhpaice of risk assumption,

this conditional variance of volatility is indeed relatedvtpbut in a complicated nonlinear way. Thus,
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we expect the variable to have some explanatory power for the variskqaemium at least under the

Heston example.

5. Data and Methodologies

Our options data are from OptionMetrics, a financial research andiltimgsfirm specializing in
econometric analysis of the options markets. The “lvy DB” data set fromio@detrics is the first
widely-available, up-to-date, and comprehensive source of higlibgbastorical price and implied
volatility data for the U.S. stock and stock index options markets. The lvy DBbdae contains
accurate historical prices of options and their associated underlyingrimestits, correctly calculated
implied volatilities and option sensitivities, based on closing quotes at the ChRaayal of Options

Exchange (CBOE). Our data sample starts from January 1996 anihdrelsruary 2003.

From the data set, we filter out market prices of options on five stock isdend 35 individ-
ual stocks. We choose these stocks and stock indexes mainly basedgquoteeavailability, which
approximates the stocks’ trading activity. Table 3 provides the list of thestivek indexes and 35
individual stocks in our sample, as well as the starting and ending datesrtipe lengthN), and the
average number of strikeBlK) at the chosen maturities for each stock (index). The list includes op-
tions on the S&P 500 index (SPX), the S&P 100 index (OEX), the Dow Jortesstrial Index (DJX),
and the Nasdag-100 index (NDX). The index options on SPX, DJX, dDX Bre European options
on the spot indexes. The OEX options and options on the other 35 indigtheks and the QQQ (the

Nasdag-100 tracking stock) are all American options on the underlyioly sp

Index options are more active than the individual stock options. On geenaore than 20 strikes
are available at the chosen maturity for the S&P index options, but the numbeaitdble strikes at
the chosen maturity for individual stock options is mostly within single digits. @loee, inferences
drawn from the index options data could be more accurate than those ficawihe individual stock

options.

The data set includes closing quotes for each option contract (bid knalasg with Black-Scholes

implied volatilities based on the mid quote. For the European options, implied volatilieefiractly
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inferred from the Black-Scholes option pricing formula. For the Americptioaos, OptionMetrics
employs a binomial tree approach that takes account of the early exprers@&um. The data set also

includes the interest rate curve and the projected dividend yield.

In parallel with our numerical studies in the previous section, we choosernghiyidorizon for
the synthesis of variance swap rates. At each date for each stockckristiex, we choose to the
two nearest maturities, except when the shortest maturity in within eight daglsy which scenario
we switch the next two maturities to avoid the potential microstructure effecteofdty short-dated
options. We only retain options that have strictly positive bid quotes andentherbid price is strictly

smaller than the ask price.

Analogous to the numerical illustrations, at each maturity, we first linearlygdotate implied
volatilities at different moneyness levels, definedkas In(K/F), to obtain a fine grid of implied
volatilities. For moneyness leveksbelow the lowest available moneyness level in the market, we use
the implied volatility at the lowest strike price. Fkrabove the highest available moneyness, we use
the implied volatility at the highest strike. Using this interpolation and extrapolatiooeplure, we
generate a fine grid of 2,000 implied volatility points with a strike range-8fstandard deviations

from at-the-money. The standard deviation is approximated by the avienagied volatility.

Given the fine grid of implied volatility quotesy, we compute the forward price of a European

option of strikeK and maturityT using the Black (1976) formula,

G(K,T) | RN(di)—KN(dy) K>hR
= ; (47)
B(T) ~RN(=d) +KN(-d2) K<FR
with
B In(R/K)+IV2(T —t)/2 B
di = IV\/ﬁ , do=d1—IVVT —t. (48)
We can rewrite the initial cost of the approximate replicating portfolio in equd&&pas
0 00
ERRVr] = 2 [ [ (e N0+ (o) ) dicr [ (e N(h(k) — N(—ca(k) dk} ,
(49)
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with
K+ IVE(K)(T —t)/2
duk) = IV (K)/T —t

, da(K) = dy(K) — IV (K)V/T —t. (50)

Therefore, the value of this portfolio does not depend directly on thé @ptorward price of the

underlying, but only on the moneyness lekeind the implied volatility at each moneyness lekel

Based on the implied volatilities at the two nearest maturities that are no shomezigtd days,
we compute the synthetic variance swap rates at these two maturities. Théneavly interpolate
to obtain the variance swap rate at a 30-day horizon. We also linearly aofeezgo obtain the at-the-
money implied volatility over a 30-day horizon as an approximation for the volatilitypsrate. We
do not extrapolate. When the shortest maturity is over 30 days, we usairiaace swap rate and

at-the-money implied volatility at the shortest maturity.

At each day, we also compute the relevant forward pFcef each stock based on the interest
rates, dividend yields, and the spot price level. Then, we match the gargavap rate with an ex-post

annualized realized variance estimate over the next 30 calendar days,

365 30 <Ft+i7t+30 - I:t+i—1,t+3o> 2 7 (51)

RMera0 = 30 i; R+i-1t+30
wherek 1 denotes the timéforward price with expiry at tim@ . The estimation of the ex-post real-
ized variance defined in equation (51) is similar to the way that the floating auenpof the payoff to
a variance swap contract is calculated in practice. A small differencesdxdsveen the return variance
defined in equation (51) and the quadratic variation in (4) due to the differbetween daily moni-
toring and continuous monitoring. The forward price has a fixed maturityatatenence a shrinking
time-to-maturity as calendar time rolls forward. Since the stock prices in the Ofeivics data set
are not adjusted for stock splits, we manually adjust the stock splits forstack in calculating the
realized variance. We have also downloaded stock prices from Blognibexheck for robustness.
Furthermore, we have also computed alternative realized variancesdraspot prices, and based on
demeaned returns. These variations in the definition of the realized vardaneot alter our conclu-

sions. We report our results based on the realized variance definitiguatien (51).

At each day, we have computed a 30-day variance swap rate, a 3@iddlity swap rate, and a

30-day ex-post realized variance (the realized variance from tiyabdz0 days later). In our analysis,
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we apply the following filters to delete inactive days that occur mainly for iddil stock options: (1)
The nearest available maturity must be within 90 days. (2) The actual stoeki@vel must be greater
than one dollar. (3) The number of strikes is at least three at each of theesrest maturities. For a
stock with active options trading, the most active options are usually thettwstamature in the current
or next month. Hence, an absence of quotes for these short-termjstian indication of inactivity.
Furthermore, since a stock will be delisted from the stock exchange if thie gtize stays below one
dollar for a period of time, options trading on such penny stocks are norvejyinactive. The last
filter on the number of strikes at each maturity is needed to accurately estimatgithece swap rate.

None of these filters are binding for the S&P 500 and 100 index options.

Table 4 reports the summary statistics for the realized variaR\¢g (he synthetic variance swap
rate W), and the synthetic volatility swap raté¢ §. For ease of comparison, we represent all three
series in percentage volatility units. Of the three series, the average vaheerealized variance is the
lowest, and the variance swap rate is the highest, with the volatility swap ratenmddée. All three

rates exhibit positive skewness and positive excess kurtosis for tnokssand stock indexes.

6. The Behavior of Variance Risk Premia

In this section, we empirically investigate the behavior of the variance rigkipreFirst, we es-
tablish the existence, sign, and average magnitude of the variance nmelapréhen, we investigate
whether the classical capital asset pricing theory (CAPM) and Famecifrmmarket factors can fully
account for the premia. Finally, we analyze the dynamic properties of thpnésnia using the various

expectation hypotheses formulated in Section 4.

6.1. Do investors price variance risk?

If investors price the variance risk, we expect to see a differenceseetiihe sample averages of the
realized variance and the variance swap rate. Table 5 reports the sustat#stics of the difference
between the realized variance and the variance swapRBte,100x (R 1 —SWr), in the left panel

and the log differenc&RP = In (R 1 /SW) in the right panel. We labeRP as the variance risk
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premia and_RP the log variance risk premia. The variance risk preRRshow large kurtosis and
sometimes also large skewness. The skewness and kurtosis are much femtdkefog variance risk

premiaLRP.

The mean (log) variance risk premia are negative for all of the stock @sdard for most of the

individual stocks. To test its statistical significance, we constrtiegtatistic for the risk premia,
t-stat =+Npj/oj, j=RPRLRP (52)

whereN denotes the sample length,denotes the sample average, andenotes the Newey and
West (1987) serial-dependence adjusted standard error, compitheal lag of 30 days. We report the
estimated-values in Table 5. The largetsstatistics come from the S&P 500 and S&P 100 indexes and
the Dow Jones Industrial Average, which are strongly significantdtin kariance risk premia and log
variance risk premia. The Nasdaqg-100 index and its tracking stock @fehestatistics that are much
lower. Thet-statistics on the two Nasdaq indexes are not statistically significant for tremea risk

premiaRP, albeit significant for the log variance risk prenhiRP.

Thet-statistics on the log variance risk premia are also negative for most of tivedimal stocks,
but the magnitudes are smaller than that for the S&P indexes. The mean lagcearnisk premia are
significantly negative for 21 of the 35 individual stocks. However, thameriance risk premidrP)

are insignificant for all but three of the 35 individual stocks.

If an investor creates the fixed part of the variance swap payoff bghpsing at time the proper
portfolio of options with expiry datd and then dynamically trading futures, the initial cost of this
trading strategy is given b (T)SW and the terminal payoff of this strategy at tifiids the realized
varianceR\ t. Therefore, the log risk premiutbRP = In(R 1 /SW) captures the continuously
compounded excess return to such a trading strategy. The mean valLRP iof Table 5 show that
on average, the investors are willing to accept a negative excess fefms investment strategy,
especially on the S&P and Dow indexes. This excess return is-e88rpercent per month for the
two S&P 500 indexes and for Dow Jones. Therefore, we conclude thestors price heavily the

uncertainty in the variance of the S&P and Dow indexes.
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However, the average variance risk premia on the Nasdag-100 indekaindividual stocks are
much smaller. The average capital gains from going long the variancecswéact RP) are mostly
insignificant for Nasdaq-100 index and individual stocks. Thus, amgecture that the market does
not price all return variance variation in each single stock, but only gribe variance risk in the
stock market portfolio. Based on this hypothesis, the average variehkggremium on each stock is
not proportional to the total variation of the return variance, but priogaal to the covariation of the
return variance with the market portfolio return variance. To test this tgsis, we use the realized

variance on S&P 500 index return as the market portfolio variance, dingads the “variance beta” as
B\]/ = COV(R\/J ) R\/SPX>/Var(R\/SPX)7 J = 17 T 7407 (53)

where the variance and covariance are measured using the common stitmplevo realized variance
series. Then, we expect the average variance risk premium on eaklj $k&RP;) is positive related to

its variance beta. The regression estimates are as follows,

[RP| = 00201 + 02675 BY +e RC=159%
(0.34) (2.72)

(54)

with t-statistics reported in the parentheses below the estimates. The slope estintatistisadly

significant and positive at 95 confidence level. Here, we estimate botlatizmge risk premia and the
variance beta using log variance. Figure 1 plots the scatter plot of thissmégn, from which we also
observe an apparent positive relation. Thus, the market chargegupnenot on the total variance risk

for each stock, but on its covariance with a common variance risk factor.

Given the large magnitudes of the variance risk premia on S&P and Dow isdi¢xe natural
to investigate whether shorting variance swaps on these indexes consiutétsactive investment
strategy. To answer this question, we measure the annualized informditofora short position in a
variance swap. Figure 2 plots the information ratio estimates. The left pmelipe raw information
ratio, defined as the mean excess log return over its standard deviasitea ls;z\/TZ for annualization.
The standard deviation is the simple sample estimate on the overlapping dailyrdtta right panel,
we adjust the standard deviation calculation for serial dependence iimdjovewey and West (1987)

with 30 lags.
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By going short the variance swap contracts on the S&P and Dow indexesptain very high
raw information ratios (over three). After adjusting for serial dependethe Sharpe ratios are still
higher than an average stock portfolio investment. Nevertheless, gigarottiinear payoff structure,
caution should be applied when interpreting Sharpe ratios on derivaiiag strategies (Goetzmann,

Ingersoll Jr., Spiegel, and Welch (2002)).

Overall, we find that the market prices heavily the uncertainties in the retuiance of the S&P
and Dow indexes. The variance risk premia on the Nasdag index and igitirad stocks are smaller.
The negative sign of the variance risk premia implies that investors are willipgyt@ premium, or
receive a return lower than the riskfree rate, to hedge away upwaredmeonts in the return variance of
the stock indexes. In other words, investors regard market volatilityasereas extremely unfavorable

shocks to the investment opportunity and demand a heavy premium fordpsadh shocks.

6.2. Can we explain the variance risk premia with classical feskors?

The variance risk premia are strongly negative for S&P and Dow indekks. classical capital
asset pricing theory (CAPM) argues that the expected excess retuamn asset is proportional to the
beta of the asset, or the covariance of the asset return with the marttetipoeturn. Qualitatively, the
negative excess return on the variance swap contract on the stogksrideonsistent with the CAPM,
given the well-documented negative correlation between the index reamhéndex volatility? If
investors go long stocks on average and if realized variance is ndgatreclated with index returns,
the payoff to the long side of a variance swap is attractive as it acts aamtsuagainst an index

decline. Therefore, investors are willing to receive a negative exe&ss for this insurance property.

Can this negative correlation fully account for the negative variankeprsmia? To answer this

question, we estimate the following regressions,

|nR\4_’T/SVV7T = G—I—BjEF{]T—i-e, (55)

3Black (1976) first documented this phenomenon and attributed it to therdge effect.” Various other explanations have
also been proposed in the literature, e.g., Haugen, Talmor, andsT(i®91), Campbell and Hentschel (1992), Campbell and
Kyle (1993), and Bekaert and Wu (2000).
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for the five stock indexes and 35 individual stocks. In equation (BR" denotes the excess return
on the market portfolio. Given the negative correlation between the inetexnr and index return
volatility, we expect that the beta estimates are negative for at least theistites. Furthermore,
if the CAPM fully accounts for the variance risk premia, the intercept of dggassiora should be
zero. This intercept represents the average excess return of atynatkeal investment strategy that
goes long one unit of the variance swap and sparhits of the market portfolio. Under CAPM, all

market-neutral investment strategies should generate zero expeotss estuirns.

To estimate the relation in equation (55), we consider two proxies for thegxetirn to the market
portfolio. First, we use the S&P 500 index to proxy for the market portfolid eompute the excess

return based on the forward price on the index,

ER =InST/RT. (56)

Since we have already constructed the forward price on S&P 500 inder wk construct the time
series on the realized variance, we can readily obtain a daily series ofkt¢bssereturnsgR") that

match the variance data series.

Our second proxy is the value-weighted return on all NYSE, AMEX, aA@GDNAQ stocks (from
CRSP) minus the one-month Treasury bill rate (from Ibbotson Associdtb® excess return is pub-
licly available at Kenneth French’s data library on the Wékhe data are monthly. The sample period

that matches our options data is from January 1996 to December 2002.

We estimate the regressions using the generalized methods of moments (GMiiheweighting
matrix computed according to Newey and West (1987) with 30 lags for théapypéng daily series and

six lags for the non-overlapping monthly series.

Table 6 reports the estimates (anstatistics in parentheses) on the CAPM relation. The results
using the daily series on S&P 500 index and the monthly series on the valugltedemarket portfolio
are similar. The estimates are strongly negative for all the stock indexes and most of thvéduneli

stocks. The estimates are the most negative for S&P and the Dow indexes. These eexitinates

4The web address i$it t p: / / mba. t uck. dart mout h. edu/ pages/ f acul ty/ ken. french/data_l i brary. htni.
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are consistent with the vast empirical literature that documents a negatietation between stock
index returns and return volatility. The negative beta estimates are alsisteomsvith the average

negative variance risk premia observed the most strongly on S&P and Diexas.

Nevertheless, the interceptestimates remain strongly negative, especially for the S&P and Dow
indexes, implying that the negative beta cannot fully account for therebdaegative variance risk
premia. Indeed, the estimates forare not much smaller than the mean variance risk premia reported
in Table 5, indicating that thp risk does not tell the full story of the variance risk premia. The results

call for additional risk factors.

Fama and French (1993) identify two additional risk factors in the stockehénlat are related to
the firm size 8MB) and book-to-market valu¢iML), respectively. We investigate whether these addi-
tional common risk factors help explain the variance risk premia. We estimatellibwing relations

on the five stock indexes and 35 individual stocks,
INnR1/SWt = o+BERT+sSMBt+hHMLT+e (57)

Data on all three risk factors are available on Kenneth French’s dataylibvée refer the interested
readers to Fama and French (1993) for details on the definition and wottr of these common
risk factors. The sample period that overlaps with our options data is momtty January 1996 to
December 2002. Agaiti; R" denotes the excess return to the market portfolio. FurthermoreSihoBh
andHML are in terms of excess returns on zero-cost portfolios. Therefaaentdrcepn represents
the expected excess return on an investment that goes long one univafitrece swap contract, short
[ of the market portfolios of the size portfolio, anth of the book-to-market portfolio. This investment

strategy is neutral to all three common risk factors.

We use GMM to estimate the relation in (57), with the weighting matrix constructednfiokp
Newey and West (1987) with six lags. Table 7 reports the parameter estiaratestatistics. The
intercept estimates for the indexes remain strongly negative, the magnitiglesightly smaller than
the average variance risk premia reported in Table 5. Therefore, tha-Feench risk factors can only

explain a small portion of the variance risk premia.

33



In the joint regression, both the market portfoliéR™ and the size portfoli®@MBgenerate signif-
icantly negative loadings, indicating that the return variance is not onlgtivegy correlated with the
index returns but also negatively correlated with §MBfactor. Hence, going long the variance swap
contract also serves as an insurance againsEMB factor going up. The loading estimates on the

HML factor are mostly insignificant.

Fama and French (1993) also consider two bond-market factors,drétateaturity T ERM) and
default DEF) risks. Furthermore, Jegadeesh and Titman (1993) identify a momentumorpkaon
that past winner often continue to outperform past losers. Later sfueligs Rouwenhorst (1998,
1999) and Jegadeesh and Titman (2001), have confirmed the rolsustiies results. We construct the
TERMandDEF factors using Treasury and corporate yield data from the FederahReStatistical
Release. Kenneth French'’s data library also provides a momentum fadd) similar to that from
Carhart (1997). However, single-factor marginal regressions esetlthree factors show that none
of these three factors have a significant loading on the variance rigkiqorél herefore, they cannot

explain the variance risk premia, either.

The bottom line story here is that neither the original capital asset pricinglnmad the Fama-
French factors can fully account for the negative variance risk premthae stock indexes. Therefore,
either there exist a large inefficiency in the market for index variancésertee majority of the vari-
ance risk is generated by an independent risk factor that the markes peavily. Investors are willing
to receive a negative excess return to hedge against market volatility gpjmot only because mar-
ket volatility movement is negatively correlated with stock market portfolio retbut also because
investors regard market volatility hikes by themselves as unfavorabléshod demand a high com-

pensation for bearing such shocks.

We leave the study of economic foundations for the negative variancemskia for future re-
search. Here, we propose several potential reasons for theveggiaimia. We consider the holding of
the market portfolio of stocks. With the same expected return, the increastiin variance implies
an decline in performance in terms of the information ratio. Hence, one wayai@gtee a minimum
performance is to buy options to hedge against return variance insre@ike fact that shorting the
variance swap contract generates high information ratios indicates thagtheegative premia are not

justified based purely on the information ratio measure. Nevertheless, lpoigghe variance swap
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contrast is also an effective strategy to hedge against the risks dedogith the random arrival of
discontinuous price movements. These risks are not well measured bydheation ratio. Further-
more, considerations on meeting value-at-risk requirements and prevshtrtéalls and draw-downs

also make long variance swap an attractive strategy that could genegateveeariance risk premia.

6.3. Are variance risk premia constant?

To understand the dynamic behavior of the variance risk premia, we rémlltheing two expectation-

hypothesis regressions,

RV 1

INRV1 = a+bInSWt+e (59)

a+bSWr +e, (58)

Under the null hypothesis of constant variance risk premia, the slope ésfion@quation (58) should
be one. Under the null hypothesis of constant log variance risk premsialdpe estimate for equation
(59) should be one. We estimate the regressions using the generalized mwiethochents (GMM),
with the weighting matrix computed according to Newey and West (1987) withg¥0tteaccount for

the overlapping sample.

Table 8 reports the estimates anstatistics under the null hypothesisaf 0,b = 1. The columns
on the left side summarize the estimation results on equation (58). All of the ekippeates are
positive, but many of them are lower than one. Tistatistics show that over half of the stock indexes
and individual stocks generate regression slopes that are signifitaméy than the null value of one.
Our previous analysis shows that under the Heston (1993) stochdstitityamodel, these lower-than-

one slope estimates lend support to negative market price of varian¢egigition (43)).

The columns on the right side of Table 8 report the estimation results on eg@aépbased on
log variances. For all the stock indexes and 24 of the 35 individual stdlok slope estimates are no

longer significantly different from one at the 95 confidence level.

The difference between the slope estimates of the two regressions indltatt¢ise risk premia

defined in log returns is closer to a constant or independent series theskipremia defined in level
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differences. The Heston (1993) stochastic volatility model with a negatprelyortional market price

of risk can qualitatively match the results on these two regressions.

6.4. Do variance risk premia increase with variance risk?

Variance risk premia arise as compensation for bearing the uncertaintyuin kariance. When
going shorting a variance swap contract, the investor receives a pasitvage premium as a compen-

sation for bearing the risk of facing market volatility going up.

We hypothesize that the absolute magnitude of the variance risk premiasesn@#h the riskiness
in the return volatility. To test this hypothesis, we use GMM to estimate the follovélagions on the

five stock indexes and 35 stocks,

IN(SWr/R\M1) = a+b(SWr-VSr)+e (60)
IN(SW+/R\¥1) = a+bin(SWt/VS7)+e (61)

The left hand side of the two equations represents the log excess rgttinesnvestor who goes short
a variance swap. The right hand side measures the difference betfne®ariance swap rate and
the volatility swap rate, which captures the variance of return volatility. Wethisedifference as a
measure of the riskiness in return volatility. In equation (61), we use theiff@geshce to replace the

level difference to obtain better distributional properties.

Table 9 reports the estimation results. Consistent with our hypothesis, the edtimates are
predominantly positive for most stocks and stock indexes.t¥31atistics of the slope estimates show
that the S&P and Dow indexes, as well as many individual stocks, gersbopes that are significantly
positive. Therefore, the absolute magnitude of the variance risk premeases with the riskiness in

return volatility, as measured by the risk-neutral conditional varianceeofaturn volatility.

Given the explanatory power of the variance of volatility on the varianéepiemia, we further
hypothesize that if we control for the variance of volatility in the expectatigpethesis regression as

follows,

INRV 1 =a+bInSWr+cln(SWr/VF7) +e, (62)
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the slope estimate fdrwould become closer to its null hypothesis value of one. We choose to use the

log difference I(SWt /V 32T) instead of the level difference for better distributional properties.

Table 10 reports the GMM estimation results. Consistent with our hypothesigstimates for
b become closer to one than in the case without controlling for variance dilitplalhe t-statistics
suggest that for all the stock indexes and all but five of the individiwaks, the estimates fdrare not

significantly different from its null value of one.

7. Conclusion

In this paper, we propose a direct and robust method to quantify theeaniessk premia on financial
assets underlying options. Our method uses the notion of a variancevghiab is an over-the-counter
contract that pays the difference between a standard estimate of thedeaiiance and the fixed swap
rate. Since variance swaps cost zero to enter, the variance swagpnatsants the risk-neutral expected
value of the realized return variance. We theoretically and numerically sfaivthe variance swap rate
is well approximated by a particular linear combination of option prices. Hehealifference between
the ex-post realized variance and this synthetic variance swap ratiéfiggahe variance risk premium.
Using a large options data set, we synthesize variance swap rates & aaaiance risk premia on

five stock indexes and 35 individual stocks.

We find that the variance risk premia are strongly negative for the S&Pm®dDQ@0 indexes and for
the Dow Jones Industrial Average. The magnitude of the premia are snmaltbefNasdaq 100 index
and for individual stocks. Investors are willing to pay a large premiumegoeive a negative excess
return, to take the long option position implicit in a long variance swap. Theffest ®f doing so is to
hedge against market volatility going up. The negative risk premia imply thasiaks regard market

volatility going up as unfavorable shocks.

We investigate whether the classical capital asset pricing theory carirekpanegative variance
risk premia. We find that the well-documented negative correlation betwder ieturns and volatility
generates a strongly negative beta, but this negative beta can onlinexpiaall portion of the negative

variance risk premia. The Fama-French factors cannot accountdatribngly negative variance risk

37



premia, either. Therefore, we conclude that either there is a large iaefficin the market for index
variance or else the majority of the variance risk is generated by an indiepernsk factor that the

market prices heavily.

To analyze the dynamic properties of the variance risk premia, we formudaiteug forms of
expectation-hypothesis regressions. When we regress the realifmuteson the variance swap rate,
we obtain slope estimates that are all positive, but mostly significantly lowerathenthe null value
under the hypothesis of constant or independent variance risk préraslope estimates become
closer to one when the regression is on the logarithm of variance. Tégsssion results indicate that
although the log variance risk premia are strongly negative, they are atogttiongly correlated with

the expected log variance.

Like variance swaps, volatility swaps also trade over the counter and neytiessized by trading
in options. The difference between the variance swap rate and thessofutre volatility swap rate
measures the risk-neutral variance of volatility. Since we can readily egizeh both variance swap
rates and volatility swap rates, this risk-neutral variance of volatility is easdyrabustly determined
from option prices. We regress the negative of the variance risk preyaias this estimate of variance
of volatility and find that the slope estimates are mostly positive. This resultromnfiur hypothesis

that the variance risk premia become more negative when the variancktlityas high.

When we use the log of variance and control for the variance of volatilityenettpectation hy-
pothesis regression, the regression slope estimates on the varianaatae no longer significantly
different from the null value of one for all the five stock indexes andalbbut five of the individual
stocks. Hence, an observed relative increase in the variance si@dp o@ average associated with a
subsequent relative increase in realized variance of the same sieeyweraontrol for the variance of

volatility.

The simple and robust method that we propose to measure the risk-neptratad value of return
variance and variance risk premium opens fertile ground for futuarel. On top of our research
agenda is to understand the dynamics of return variance and the econoanimgseof the variance
risk premia. In particular, given the predominant evidence on stochastanee and strongly negative

variance risk premia, it is important to understand the pricing kernel liehas a function of both the
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market portfolio returns and return variances. Recent studies, ecgweadh (2000) and Engle and
Rosenberg (2002) have found some puzzling behaviors on the priemnglkprojected on the equity
index return alone. Accurately estimating the pricing kernel as a joint fumcfithe index return and
return variance represents a challenging task, but accomplishing thisalagikove to be very fruitful
not only for understanding the behavior of the variance risk premiaglbatfor resolving the puzzling

behaviors observed on the pricing kernels projected on the index idtura.

The empirical analysis in this paper focuses on the variance swap rata fixed 30-day horizon.
Since we observe option prices at many different maturities, we can gongéiriance swap rates at
these different maturities and construct a term structure of variange rawes at each day. An impor-
tant line for future research is to design and estimate stochastic returnosarizodels to capture the
dynamics of the term structure. The key advantage of doing so is thathgaoaa better understanding

of the return variance dynamics without the interference from the retaovation specification.

39



Appendix A. Approximating the Volatility Swap Rate

Most of the results in this appendix are from Carr and Lee 20)0We provide them here for completeness.

Carr and Lee assume the followif@ydynamics for the futures pridg,

dR /R = o dW. (A1)

Compared to equation (3), they make the extra assumptioro ¢gfimps. They further restrict the diffusion

volatility o; to be independent of the Brownian motidh.

Under these assumptions, Hull and White (1987) show thatahee\of a call option equals the risk-neutral
expected value of the Black-Scholes formula value, comsitlas a function of the random realized volatility. In
the special case when the call is at-the-mon€y=(F), the timet value of a European call option maturing at

timeT becomes,

ATMG 7 = By(T)ES {H [N (LWT —U) _N (_ VR (T —t))] } (A2)

2 2

whereRV 7 is the random annualized realized return variance oveiirtee periodt, T],

RVT=_1_ / " o2ds (A3)
7T_T*t.t S

As first shown in Brenner and Subrahmanyam (1988), a Tayl@sexpansion of each normal distribution

function in (A2) around zero generates,

N<M>_N<_W>ZW+O((T—U%). (a4)
2 2 V2n

Substituting (A4) in (A2) implies that:

ATMGr = By(T)ES [%[ RVr(T 1) +O((T —t)%] , (A5)
and hence the volatility swap rate is given by:
_ wQ . \/ZT . 3
V1 =E"/RVYT= 7&(T)HmATMQ’T +O((T-1)2). (A6)
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. _ . . . e \/Z-[ . . . _
Since an at-the-money call is concave in volatllgyWAT MG 1 |33a slightly downward biased approx
imation of the volatility swap rate. As a result, the coeéiiti on(T —t)2 is positive. However, Brenner and

Subrahmanyam show that the at-the-money implied volatilf MV) is also given by:

v2n

B[(T)H\/T—ATMQT+O((T t)2). (A7)

ATMV 1 =

Once agam,WT\;ﬁAT MGt is a slightly downward biased approximation of the at-themey implied

volatility and hence the coefficient ofT —t)% is positive. Subtracting equation (A7) from (A7) shows that

the volatility swap rate can be approximated by the at-tlomay implied volatility,

Nl

VST =ATMV1+O((T—1)2). (A8)

In fact, the leading source of error in (A6) is partially calied by the leading source of error in (A7). As a
result, this approximation has been found to be extremeatyrate. The shorter the time to maturity, the better

the approximation.

Appendix B. Approximating the Volatility Swap Rate

This appendix follows from an appendix in Carr and Lee (2008t I (a) = fé”t“‘le“dt be the gamma

function witha a positive real number. Then, it is well known that

00 ot
V= r(%) :./O %dt. (B9)

Consider the change of variables- t/q for q > 0, we have = sg dt = qds and
0 7sq
Vi va [ e (B10)

from which we obtain one representation {gg:

SR
= (B11)
\/_ fO NG ds
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Another representation is obtained by integrating (B1Opénts. Let

u=-1  dv=eltdt

VO
du=—-L.dt, v=1—-et.

2t3/2
Hence,
1-et l-e ‘
V= N 2/ t3/2 2/ ez (B12)
Again, consider the change of variab&es t/q for g > 0,
l-e Sq l-e Sq
2/ sq)3/2 2\[/ 3/2 4 (B13)

from which we can solve foy/q as
1 ©]—eSd
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Fig. 2. Information ratios from short variance swap investments. Wealtfaraw information ratios
in the left panel as the sample mean excess log return over its sample st@datidn, scaled by/12
for annualization. In the right panel, we use the Newey-West stan@aidtibn with 30 lags to adjust
for serial dependence.
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Table 1

Model parameters used in the numerical illustration

Under MJDSV = /8.

Model (o) A H; Oj K Oy p
BS 0.37

MJD 0.35 040  -0.09 0.18

MJDSV 0.35 0.40  -0.09 0.18 1.04 0.90 -0.70
Market R =100, r =5.6%.
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Table 2

Numerical illustration of the approximation error for variance and volatilityfsvedes

Entries under the title “Variance Swap” report the expected value of theadized variance computed
based on the analytical valuE®[RV]), the synthetic approximation of the annualized variance swap
rate é\\/\/) based on five European option implied volatility quotes, and the approximationa this
synthetic swap rate (Error E2[RV] — §\7V) The columre reports the analytical approximation error
due to the jump component in the asset price process. Entries under thedltlity Swap” reports

the square of the expected value of the realized volatilB#(v/RV]] ?) based on numerical integration,
the at-the-money implied volatilityXT MV?) as an approximation, and the approximation error (Error
= [IE@[\/W]Z — AT MV?). Option prices are computed based under three option pricing models with
model parameters listed in Table 1, assuming an 30-day option maturity. Fotswdgtlestochastic
volatility, the first column denotes the log difference between the curretantasneous variance level

v; and its long-run mea@.

Inv /6 Variance Swap \olatility Swap
EC[RV] SW Error £ [ES[VRV]]®  ATMV2 Error

A. Black-Scholes Model
0.0 0.1369 0.1369 0.0000 0.0000 0.1369 0.1369 0.0000

B. Merton Jump-Diffusion Model
0.0 0.1387 0.1366 0.0021 0.0021 0.1306 0.1319 -0.0012

C. MJD-Stochastic Volatility

-3.0 0.0272 0.0273 -0.0001 0.0021 0.0113 0.0125 -0.0012
-2.5 0.0310 0.0313 -0.0003 0.0021 0.0151 0.0162 -0.0011
-2.0 0.0372 0.0376 -0.0004 0.0021 0.0213 0.0225 -0.0011
-1.5 0.0475 0.0477 -0.0001 0.0021 0.0319 0.0331 -0.0012
-1.0 0.0645 0.0637 0.0008 0.0021 0.0494 0.0507 -0.0013
-0.5 0.0925 0.0905 0.0020 0.0021 0.0782 0.0794 -0.0012
0.0 0.1387 0.1356 0.0031 0.0021 0.1254 0.1262 -0.0008
0.5 0.2148 0.2107 0.0041 0.0021 0.2026 0.2024 0.0002
1.0 0.3403 0.3353 0.0051 0.0021 0.3293 0.3273 0.0020
15 0.5472 0.5410 0.0062 0.0021 0.5373 0.5323 0.0050
2.0 0.8884 0.8799 0.0085 0.0021 0.8795 0.8697 0.0098
2.5 1.4509 1.4377 0.0132 0.0021 1.4428 1.4253 0.0175
3.0 2.3782 2.3561 0.0221 0.0021 2.3708 2.3410 0.0298
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Table 3

List of stocks and stock indexes used in our study

Entries list the ticker, the starting date, the ending date, the sample |lexigtthé average number
of available strikes per maturityNK), and the full name for each of the five stock indexes and 35

individual stocks used in our study.

No Ticker  Starting Date EndingDate N NK Name
1 SPX 04-Jan-1996  28-Feb-2003 1779 26  S&P 500 Index
2 OEX 04-Jan-1996  28-Feb-2003 1780 27  S&P 100 Index
3 DJX 06-Oct-1997  28-Feb-2003 1333 12  Dow Jones Industriat#@ge
4 NDX 04-Jan-1996  28-Feb-2003 1722 19 Nasdaqg 100 Stock Index
5 QQQ 10-Mar-1999  28-Feb-2003 978 22  Nasdag-100 Index Tra&tock
6 MSFT 04-Jan-1996  28-Feb-2003 1766 9 Microsoft Corp
7 INTC 04-Jan-1996  28-Feb-2003 1653 8 Intel Corp
8 IBM 04-Jan-1996  28-Feb-2003 1768 9 International Busihéachines Corp
9 AMER 04-Jan-1996  28-Feb-2003 1648 9 Nanobac Pharmaatulic
10 DELL 04-Jan-1996  28-Feb-2003 1650 7 Dellinc
11 CSCO 04-Jan-1996 28-Feb-2003 1554 7  Cisco Systems Inc
12 GE 04-Jan-1996 28-Feb-2003 1458 6 General Electric Co
13 CPQ 04-Jan-1996 03-May-2002 1272 6 Compag Computer Corp
14 YHOO  09-Sep-1997  28-Feb-2003 1176 14 Yahoo! Inc
15 SUNW 04-Jan-1996  28-Feb-2003 1395 8  Sun Microsystems Inc
16 MU 04-Jan-1996 28-Feb-2003 1720 8  Micron Technology Inc
17 MO 04-Jan-1996  28-Feb-2003 1474 5  Altria Group Inc
18 AMZN  19-Nov-1997  28-Feb-2003 1078 12 Amazon.Com Inc
19 ORCL 04-Jan-1996  28-Feb-2003 1104 6 Oracle Corp
20 LU  19-Apr-1996  28-Feb-2003 981 7  Lucent Technologies Inc
21 TRV 04-Jan-1996  28-Feb-2003 1279 5 Thousand Trails Inc
22 WCOM 04-Jan-1996 21-Jun-2002 1104 6 WorldCom Inc
23 TYC 05-Jan-1996 28-Feb-2003 979 6 Tyco International Ltd
24 AMAT 04-Jan-1996  28-Feb-2003 1671 8 Applied Materiats In
25 QCOM 04-Jan-1996 28-Feb-2003 1613 8 Qualcomm Inc
26 TXN 04-Jan-1996 28-Feb-2003 1610 7  Texas Instruments Inc
27 PFE 04-Jan-1996  28-Feb-2003 1420 6 PfizerInc
28 MOT 04-Jan-1996  28-Feb-2003 1223 6 Motorola Inc
29 EMC 04-Jan-1996  28-Feb-2003 1188 7 EMC Corp
30 HWP 04-Jan-1996  28-Feb-2003 1395 6 Hewlett-Packward Co
31 AMGN 04-Jan-1996  28-Feb-2003 1478 6 Amgeninc
32 BRCM 28-Oct-1998  28-Feb-2003 1003 12 Broadcom Corp
33 MER 04-Jan-1996  28-Feb-2003 1542 6  Merill Lynch & Co Inc
34 NOK 04-Jan-1996  28-Feb-2003 1176 6 Nokia OYJ
35 CHL 04-Jan-1996  28-Feb-2003 1422 5 China Mobile Hong Kdrdg
36 UNPH 16-Sep-1996  28-Feb-2003 745 12  JDS Uniphase Corp
37 EBAY 01-Feb-1999 28-Feb-2003 1000 12 eBayInc
38 JNPR 07-Oct-1999  28-Feb-2003 627 15  Juniper Networks Inc
39 CIEN  14-May-1997  28-Feb-2003 998 9 Ciena Corp
40 BRCD  30-Nov-1999 28-Feb-2003 693 10 Brocade Commuicaibystems Inc
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Table 4

Summary statistics for the realized variance, the variance swap rate, avalatiity swap rate

Entries report summary statistics for the realized vagaR¥, the synthetic variance swap redV, and the
synthetic volatility swap rate[S. Columns under Mean, Std, Skew, Kurt report the samplesaeerstandard
deviation, skewness, and excess kurtosis, respectivelye&se of comparison, we represent all three series in
percentage volatility units.

Ticker vRV v SW VS
Mean Std Skew Kurt Mean Std Skew  Kurt Mean Std Skew Kurt

SPX 1882 7.23 120 1.57 2441 6.21 114 204 2128 530 10464 1
OEX 1988 7.67 115 134 2461 6.04 1.00 1.16 2227 564 108621
DJX 19.67 7.26 141 1.69 2471 572 130 1.69 2250 5.02 13341
NDX 37.54 16.13 1.18 1.43 40.19 1257 0.50 -0.68 38.19 12.2457 0-0.54
QQQ 4496 1550 098 0.31 49.47 10.36 0.44 -0.46 47.07 9.9%9 0:0.36

MSFT 38.31 13.83 132 2.04 42.68 10.60 1.56 4.97 39.38 8.8121 1.1.97
INTC 49.33 18.27 1.44 1.86 48.57 1246 0.99 0.83 46.42 11.6009 0 0.89
IBM 36.66 13.07 0.92 0.61 39.72 934 156 534 3691 7.99 1.1333
AMER 61.20 19.18 0.44 -0.27 64.98 1459 0.65 0.33 60.90 13.4668 0.59
DELL 54.71 17.23 0.93 0.49 59.06 11.87 0.98 1.34 56.00 11.2597 0 1.45
CSCO 5136 21.75 116 1.17 55.50 15.87 1.14 1.04 52.00 14.944 11.08
GE 3264 11.22 1.07 0.89 3597 931 0.63 0.08 3352 839 0.682 0
CPQ 5290 1740 0.88 0.58 55.20 13.16 1.04 222 51.71 12.134 0.0.79
YHOO 81.20 25.14 0.33 -0.58 83.22 20.67 1.09 143 78.98 18.804 0.70
SUNW 57.31 19.67 1.07 0.84 59.05 1550 154 3.38 55.94 14.3314 1 2.48
MU 7278 19.26 0.73 0.43 75.28 1499 0.75 1.20 71.67 13.84 3 00.26
MO 34.46 13.25 0.93 0.86 37.56 10.44 1.08 1.95 35.00 9.34 0.8H4
AMZN 90.32 26.56 -0.00 -0.55 98.65 24.27 097 1.05 9242 @1.81.02 1.48
ORCL 62.07 22.80 0.94 0.50 65.63 21.85 237 9.27 62.92 22.2(B4 213.18
LU 5182 2140 1.68 3.68 52.78 19.17 3.18 21.55 50.21 16.9536 2.8.51
TRV 41.00 1599 152 242 42.04 10.28 1.65 4.54 39.33 9.045 1.8.13
WCOM 48.07 19.34 126 2.36 4986 16.33 158 3.34 46.81 15.3%0 1.3.48
TYC 50.20 27.24 131 1.33 5727 2832 235 7.09 52.93 24.6(60 2.8.85
AMAT 63.73 18.10 1.03 1.30 66.05 13.77 0.93 0.92 62.91 13.11980 1.31
QCOM 64.93 2196 0.69 -0.14 68.07 1550 091 0.72 64.62 14002 0.84
TXN 58.10 18.67 0.99 1.13 57.81 14.16 0.76 0.11 54.66 13.0266 0-0.10
PFE 34.03 10.36 0.69 0.81 36.62 6.90 0.37 0.25 34.62 6.35 0008
MOT 50.29 19.98 121 1.18 50.20 16.11 1.13 1.52 48.21 15.0901 1.0.93
EMC 6046 2320 1.63 2.90 60.17 16.32 1.15 0.92 57.21 15.037 1.1.06
HWP 47.60 1590 0.73 -0.10 48.46 1210 1.09 1.14 46.45 11.4109 0.0.40
AMGN 4591 1643 091 0.77 48.56 13.69 1.02 0.36 45.93 13.0307 1 0.43
BRCM 9159 27.08 0.99 0.70 91.71 20.82 097 1.16 88.06 18.5(8B8 0 0.94
MER 46.09 14.21 0.86 0.87 47.70 1055 0.64 0.97 45.60 10.081 0.1.52
NOK 55.31 17.53 0.43 -0.62 5540 13,57 0.71 1.15 53.82 12.2H9 0-0.22
CHL 40.74 16.23 144 3.29 4257 1311 139 2385 40.32 11.8240 1.3.28
UNPH 86.31 3043 0.65 0.11 84.05 2211 0.64 -0.44 80.71 20.085 -0.30
EBAY 7594 3391 0.56 -0.49 81.24 24.04 0.29 -0.65 77.70 24.®.28 -0.65
JNPR 98.83 26.55 0.53 -0.38 10456 21.27 0.50 -0.28 99.28019.0.52 -0.01
CIEN 9290 3158 0.56 -0.21 92.29 24.08 0.23 -0.29 89.40 £2.0.27 -0.06
BRCD 100.52 30.14 0.45 -0.46 97.88 20.25 0.02 -0.63 94.195618.0.11 -0.46
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Table 5

Summary statistics for variance risk premia

Entries report summary statistics for variance risk prehdined as the difference between the realized variance
and the variance swap rate in the columns on the left side sitliedog difference in the columns on the right
side. Columns under Mean, Std, Skew, Kurt report the sanvglge, standard deviation, skewness, and excess
kurtosis, respectively. Columns undereport thet-statistics of the mean risk premia. In calculating the
statistics, we adjust for serial dependence using the Na&Mest standard deviation with a lag of 30 days.

Ticker 100(RV — SW) In(RV/SW)
Mean Std  Skew Kurt t Mean Std  Skew Kurt t

SPX -2.279 3.339 -0.597 9.283 -7.194 -0.594 0.567 0.220 10.20.484
OEX -1.889 3.394 0.633 3.533 -5.458 -0.509 0.560 0.383 10.047.830
DJX -2.039 3.583 0.483 3.622 -5.194 -0.525 0.570 0.660 0.348025
NDX -1.040 10.108 2.043 9.001 -0.944 -0.207 0.455 0.440 9.474.418
QQQ -2.940 12.014 1.059 2.840 -1.815 -0.257 0.451 0.176 80.18.887

MSFT -2.746 11.465 -0.446 28.192 -2.850 -0.277 0.496 0.090.5940 -5.897
INTC 2,522 18.632 2.117 6.469 1.356 -0.024 0.500 0.618 0.64H523
IBM  -1.502 10.460 -0.605 19.435 -1.527 -0.232 0.584 -0.009.110 -3.901
AMER  -3.224 23.125 0.516 1.185 -2.066 -0.173 0.552 -0.094.06D -4.077
DELL -3.391 20.005 0.949 3.330 -1.453 -0.208 0.525 0.223 99.0-3.330
CSCO -2.216 19466 1.549 7.230 -1.321 -0.271 0.813 -6.4365591 -3.885
GE -1.893 7.005 1.129 4.758 -3.326 -0.237 0.469 0.339 0.3(M487
CPQ -1.194 20.799 0.119 5.635 -0.636 -0.136 0.575 0.248 30.22.643
YHOO -1.278 39.162 -0.028 4412 -0.341 -0.093 0.531 0.123.03® -1.829
SUNW  -0.570 19.821 -0.641 16.432 -0.310 -0.108 0.465 0.075.424 -2.305
MU  -2.242 27831 0.864 4592 -0.928 -0.097 0.448 0.241 0.462723
MO  -1.563 11.351 0.883 7.130 -1.388 -0.242 0.676 0.305 0.33661
AMZN -14.587 57.757 -0.137 1.898 -1.668 -0.218 0.569 0.16D.066 -2.756
ORCL -4.115 44.142 -4.839 34.620 -0.763 -0.151 0.625 -1.806.914 -2.046
LU -0.105 33.900 -9.996 226.367 -0.047 -0.081 0.518 -0.073.199 -1.720
TRV 0.632 15.347 2.624 9.165 0.385 -0.127 0.602 0.925 2.028869
WCOM  -0.680 21.542 1.049 11.827 -0.255 -0.130 0.614 -0.067.2840 -1.633
TYC -8.198 47.826 -1.897 19.373 -1.426 -0.346 0.726 0.907 171. -3.996
AMAT  -1.627 23.865 1.110 4.803 -0.809 -0.106 0.464 0.259 2B.4-2.624
QCOM  -1.757 27.014 0.735 1.490 -0.683 -0.158 0.570 -0.193544. -2.700
TXN 1.809 19425 1.189 4416 0.961 -0.030 0.456 0.072 0.09m728
PFE -1.236 7.661 1.654 5759 -1.506 -0.205 0.568 -0.152 61.2@.949
MOT 1.484 20.113 -0.689 10.783 0.815 -0.044 0.555 -0.477 83.4-0.796
EMC 3.068 27.062 2.241 9.447 0.871 -0.046 0.476 0.357 0.1@B915
HWP 0.241 14537 0.465 6.333 0.173 -0.087 0.521 0.214 0.3726561
AMGN  -1.679 14.626 0.631 3.782 -1.019 -0.163 0.531 0.078 29®. -2.731
BRCM 2.783 48.606 0.635 1.918 0.489 -0.035 0466 0.178 9.69.602
MER -0.604 12541 1.021 2.748 -0.497 -0.112 0.485 0.273 7@.0-2.507
NOK 1.131 18.978 -0.593 8.818 0.568 -0.047 0536 0.056 0.628765
CHL -0.606 14.599 2.238 12.212 -0.412 -0.145 0.518 0.298 70.5-2.674
UNPH 8.221 48.510 0.884 1.940 1.454 -0.006 0.565 -0.328 48).0-0.098
EBAY -2.613 45445 1.458 3.265 -0.403 -0.253 0.566 0.422 62.0-2.614
JNPR  -9.136 51.393 -0.189 0.783 -1.200 -0.144 0.490 -0.5812270 -2.060
CIEN 5.299 60.722 0.986 3.740 0.664 -0.032 0.583 0.527 1.49m414
BRCD 10.201 56.030 0.747 0.839 1.158 0.007 0.520 -0.219 5850.30.089
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Table 6
Explaining variance risk premia with CAPM beta
Entries report the GMM estimates (atidtatistics in parentheses) of the following relation,

In RVLT/SWJ' =0+ Bj EF{?T +e,

whereER™ denotes the excess return on the market portfolio, whicldzyed by the return on the S&P 500
index forward in the left panel and the excess return on th8R Ralued-weighted stock portfolio in the right
panel. The-statistics are computed according to Newey and West (1@8f)30 lags for the overlapping daily
series in the left panel and six lags for the non-overlappiogthly series in the right panel. The columns under
“R2” report the unadjusted R-squared of the regression.

Proxy S&P 500 Index Valued-Weighted Market Portfolio
a § R° a B R

SPX -0.577 (-12.302) -4.589 (-5.884) 0.183 -0.568 (-9.3785.299 (-4.623) 0.234
OEX -0.492 (-10.293) -4.569 (-5.916) 0.186 -0.498 (-8.0075.335 (-4.880) 0.233
DJX -0.532 (-9.569) -4.734 (-5.407) 0.216 -0.531 (-8.492)4.513 (-3.761) 0.198
NDX -0.198 (-4.944) -2.563 (-4.065) 0.090 -0.151 (-4.113)3.526 (-3.242) 0.183
QQQ -0.267 (-4.754) -1.226 (-2.015) 0.024 -0.238 (-4.4820.709 (-1.568) 0.107

MSFT -0.269 (-6.511) -2.255 (-4.217) 0.058 -0.263 (-4.635R.375 (-2.844) 0.063
INTC -0.015 (-0.325) -2.298 (-2.871) 0.059 0.016 (0.336) .669 (-3.084) 0.143
IBM -0.223 (-4.134) -2.310 (-2.876) 0.044 -0.183 (-3.057)2.040 (-1.665) 0.037
AMER -0.162 (-3.579) -2.216 (-3.269) 0.043 -0.167 (-3.530)1.521 (-1.459) 0.022
DELL -0.196 (-3.881) -2.678 (-3.613) 0.073 -0.189 (-2.715)3.224 (-3.408) 0.110
CSCO -0.266 (-3.577) -0.957 (-0.599) 0.004 -0.217 (-3.1951.927 (-0.855) 0.040
GE -0.230 (-5.731) -2.593 (-3.798) 0.092 -0.227 (-4.284).621 (-1.512) 0.046
CPQ -0.110 (-1.975) -2.398 (-2.312) 0.039 0.047 (0.909) 318.(-2.762) 0.101
YHOO -0.094 (-1.702) -0.593 (-0.813) 0.004 -0.109 (-1.745)0.831 (0.776) 0.008
SUNW -0.089 (-2.080) -2.380 (-3.371) 0.062 -0.049 (-0.8998.951 (-3.187) 0.179
MU -0.092 (-2.498) -1.350 (-2.234) 0.025 -0.049 (-1.095) .512 (-3.606) 0.094
MO -0.244 (-3.906) 0.482 (0.540) 0.001 -0.180 (-2.942) 2.700.604) 0.003
AMZN -0.218 (-3.289) 0.120 (0.122) 0.000 -0.054 (-0.671) 28% (0.306) 0.001
ORCL -0.141 (-2.041) -2.206 (-2.597) 0.032 -0.124 (-1.6978.674 (-2.567) 0.116
LU -0.068 (-1.376) -1.436 (-1.732) 0.019 0.030 (0.634) 3B.7(-2.849) 0.103
TRV -0.126 (-2.047) -1.993 (-2.567) 0.035 -0.097 (-0.980)1.022 (-0.647) 0.011
WCOM -0.101 (-1.405) -3.430 (-3.307) 0.075 -0.006 (-0.068)4.137 (-2.691) 0.129
TYC -0.353 (-4.066) -1.724 (-1.490) 0.018 -0.321 (-3.137) .923 (0.308) 0.003
AMAT -0.102 (-2.598) -1.080 (-1.968) 0.015 -0.054 (-1.175)2.736 (-3.498) 0.104
QCOM -0.154 (-2.889) -1.305 (-1.646) 0.015 -0.089 (-1.5782.578 (-2.202) 0.062
TXN -0.028 (-0.677) -0.724 (-1.346) 0.007 -0.032 (-0.621)0.744 (-0.887) 0.007
PFE -0.200 (-3.342) -1.957 (-1.878) 0.036 -0.149 (-2.455).909 (-1.246) 0.037
MOT -0.031 (-0.581) -1.954 (-1.861) 0.031 0.032 (0.441) 523. (-2.044) 0.106
EMC -0.031 (-0.682) -2.611 (-3.398) 0.081 -0.028 (-0.389)3.146 (-3.890) 0.131
HWP -0.076 (-1.530) -1.661 (-1.956) 0.025 0.010 (0.185) 5a.9-1.536) 0.049
AMGN -0.162 (-3.050) -1.129 (-1.281) 0.014 -0.045 (-0.556)0.127 (-0.091) 0.000
BRCM -0.029 (-0.533) 0.878 (1.172) 0.011 -0.013 (-0.146) .61 (-0.304) 0.004
MER -0.109 (-2.493) -1.363 (-1.739) 0.024 -0.081 (-1.333)1.271 (-1.162) 0.022
NOK -0.046 (-0.792) -1.715 (-1.933) 0.030 0.028 (0.442) 928 (-1.490) 0.059
CHL -0.140 (-2.692) -1.609 (-1.805) 0.029 -0.053 (-1.269)1.953 (-2.115) 0.052
UNPH -0.005 (-0.085) -1.444 (-1.258) 0.018 0.011 (0.297).982 (-1.201) 0.073
EBAY -0.252 (-3.216) 0.173 (0.171) 0.000 -0.206 (-1.633) 018 (0.014) 0.000
IJNPR -0.147 (-2.154) -0.490 (-0.575) 0.003 -0.133 (-1.720-1.912 (-0.924) 0.034
CIEN -0.027 (-0.361) -2.422 (-1.827) 0.046 -0.011 (-0.122.399 (-1.924) 0.154
BRCD 0.008 (0.110) 0.104 (0.111) 0.000 0.078 (0.811) -2.491.941) 0.086
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Table 7
Explaining variance risk premia with Fama-French risk factors
Entries report the GMM estimates (atidtatistics in parentheses) of the following relation,

INRVy1/SWt =0a+BERT +sSMB1+hHML T+,

where the regressors are the three stock-market risk fadifined by Fama and French (1993): the excess
return on the market portfolidER™), the size factor$MB), and the book-to-market factoH(ML). The data
are monthly from January 1996 to December 2002. fFsiatistics are computed according to Newey and West
(1987) with six lags. The columns undd€®?” report the unadjusted R-squared of the regression.

Ticker a ERM SMB HML R

SPX -0.561 (-8.365) -5.038 (-3.765) -2.831 (-2.132) -0.2870.342)  0.276
OEX -0.489 (-7.311) -5.090 (-3.992) -3.344 (-2.483) -0.5¢90.570)  0.289
DIJX -0.518 (-7.447) -4.434 (-3.201) -3.637 (-3.150) -1.3771.692) 0.273
NDX -0.150 (-4.032) -2.777 (-2.635) -1.948 (-2.472)  1.3511.36) 0.272
QQQ -0.221 (-4.184) -1.932 (-1.309) -1.851 (-1.784)  1.5042.661) 0.235

MSFT -0.247 (-5.054) -2.469 (-2.865) -4.939 (-5.170) -B97-2.289)  0.222
INTC 0.023 (0.567) -3.770 (-3.207) -2.823 (-2.746) -1.1561.619)  0.194
IBM -0.174 (-3.371) -1.934 (-1.535) -3.053 (-1.931) -0.7820.510)  0.085
AMER -0.153 (-3.765) -1576 (-1.173) -3.291 (-2.377) -B1Z-1.124) 0.084
DELL -0.187 (-2.733) -2.673 (-3.190) -3.118 (-2.544)  0.40{0.338)  0.190
CSCO -0.227 (-3.598) -1.009 (-0.444)  1.288 (1.026)  2.082.382) 0.076
GE -0.208 (-4.997) -1.512 (-1.294) -2.617 (-2.689) -0.7380.884)  0.121
CPQ 0.046 (0.959) -3.024 (-2.112)  1.069 (0.927)  0.847 (®)80 0.108
YHOO -0.107 (-1.738)  0.144 (0.109) 0574 (0.363) -0.975 .§9@¢)  0.029
SUNW -0.056 (-1.079) -3.113 (-2.087) -1.509 (-1.472)  0.9970.959)  0.224
MU -0.046 (-1.072) -2.704 (-3.663) -0.346 (-0.403) -0.617-0.050)  0.099
MO -0.187 (-3.145) 0939 (0.688) -0.306 (-0.169)  0.883 @ap 0.008
AMZN -0.063 (-0.911) -0.367 (-0.259) -1.682 (-0.726)  -1788(-1.180)  0.043
ORCL -0.119 (-1.570) -3.893 (-3.237) -0.264 (-0.172) -G0.37-0.413)  0.117
LU 0.031 (0652) -3.475 (-2.738) -0.859 (-0.544) -1.438 .B&4) 0.133
TRV -0.059 (-0.763) -0.463 (-0.277) -5.841 (-5.029) -1.0691.016) 0.218
WCOM -0.014 (-0.157) -4.793 (-2.656) -2.345 (-1.403) -1.7§41.558)  0.157
TYC -0.282 (-2.585)  0.404 (0.173) -4.381 (-1.565) -2.7151.850)  0.087
AMAT -0.036 (-1.064) -2.508 (-2.905) -4.070 (-4.315)  -1806(-1.780)  0.247
QCOM -0.090 (-1.600) -1.744 (-1.446) -3.711 (-3.344)  0.6040.581)  0.135
TXN -0.020 (-0.400) -0.949 (-1.439) -4.230 (-4.987) -1.9542.125)  0.155
PFE -0.129 (-2.541) -1.528 (-0.865) -3.535 (-1.956) -1.0{0.551) 0.103
MOT 0.028 (0.353) -3.038 (-1.893) 0.784 (0.541) 0817 (Y3 0.114
EMC -0.030 (-0.491) -1.651 (-1.707) -1.965 (-2.401)  1.7612.5389)  0.259
HWP 0.014 (0.250) -2.384 (-1.600) -0.826 (-0.690) -1.046 .948)  0.061
AMGN -0.040 (-0.550) -0.426 (-0.287) -1.142 (-0.844) -¥19-1.485) 0.018
BRCM 0023 (0.290) -0.094 (-0.042) -3.281 (-2.507) -0.5350.444)  0.086
MER -0.075 (-1.393) -0.899 (-0.762) -1.881 (-1.324)  0.2970.332)  0.060
NOK 0.043 (0.651) -1.874 (-1517) -2.407 (-2.105) -0.8150.047) 0.115
CHL -0.050 (-1.300) -1.816 (-1.952) -2.762 (-2.195) -0.53:0.593)  0.111
UNPH 0.028 (0.418) -1.791 (-0.796) -1.815 (-1.015)  1.128 .708)  0.148
EBAY -0.177 (-1.373) 0590 (0.536) -2.783 (-1.993)  0.300 .26B) 0.072
IJNPR -0.049 (-0.686) -3.209 (-2.277) -3.556 (-2.444) -8.60-3.620) 0.173
CIEN 0.011 (0.119) -5258 (-2.452) -2.997 (-2.526) -2.5061.584)  0.211
BRCD 0.138 (1.155) -1.766 (-1.485) -3.769 (-2.599) -0.9660.182)  0.225
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Table 8

Expectation hypothesis regressions on constant variance risk premia
Entries report the GMM estimates (atidtatistics in parentheses) of the following relations,

Left panel: RMT = a+bSWt+e
Right panel: InRMt1 = a+bInSWt+e

Thet-statistics are calculated according to Newey and West7)1@&h 30 lags, under the null hypothesis of
a=0,b= 1. The columns undeR?” report the unadjusted R-squared of the regression.

Ticker Rt =a+bSWt+e INRM 1 =a+bInSWt +e
a b 24 a b 24

SPX 0.729 (1.148) 0526 (-3.981) 0.293 -0.492 (-2.385) D.940.505) 0.391
OEX 0.466 (0.740) 0633 (-3.137) 0.315 -0.531 (-2.534) 2.010.104) 0.418
DJX 1.007 (1.243) 0527 (-3.361) 0.223 -0.183 (-0.696) 6.401.319) 0.269
NDX -2.547 (-1.508) 1.085 (0.648) 0.585 -0.421 (-2.272) 80.0(1.158) 0.690
QQQ -4.281 (-1.435) 1.052 (0.364) 0.473 -0.655 (-1.778) 2@.1(1.070) 0.523

MSFT 3.042 (1.358) 0.701 (-2.209) 0.333 -0.254 (-0.968) 92.94-0.087) 0.453
INTC 2.351 (0.656) 1.007 (0.039) 0.358 0.325 (1.236) 0.888.76) 0.430
IBM 4.737 (1.885) 0.625 (-2.239) 0.244 0.143 (0.502) 0.862..320) 0.290
AMER 12.920 (3.494) 0636 (-4.607) 0263 0562 (1.439) 0.801.969) 0.296
DELL 8.643 (2.092) 0.668 (-2.565) 0.224 0507 (1.192) 0.707.666) 0.257
CSCO -2.402 (-0.871) 1.006 (0.055) 0.534 -0.811 (-1.705)161. (1.239) 0.367
GE 1.309 (1.240) 0.768 (-2.661) 0.407 0.047 (0.272) 0.886.§12) 0.488
CPQ 13.279 (3.027) 0551 (-2.977) 0.182 0.846 (1.742) 0.768.083) 0.251
YHOO 27.022 (3.714) 0.615 (-4.217) 0.313 0.696 (1.538) D.g+1.860) 0.344
SUNW 5287 (1.163) 0.843 (-1.105) 0.483 0.089 (0.245) 0.948.555) 0.481
MU 17.606 (3.873) 0.663 (-4.220) 0.273 0.971 (2.806) 0.733.121) 0.299
MO 6.654 (4.740) 0459 (-6.258) 0.146 0.539 (1.978) 0.692.956) 0.238
AMZN 53.943 (4.739) 0.336 (-7.649) 0.140 1.013 (1.421) 6.7¢-1.819) 0.276
ORCL 30.942 (3.241) 0.267 (-3.026) 0.108 1.046 (1.254) 4.§71.366) 0.288
LU 18.249 (2.730) 0.418 (-2.631) 0.220 0.338 (1.216) 0.871.505) 0.492
TRV 4.393 (1.623) 0.799 (-1.694) 0.237 0.414 (1.171) 0.804.578) 0.266
WCOM 9.398 (3.237) 0.634 (-2.599) 0.304 0.472 (1.308) 0.801.681) 0.377
TYC 18.120 (3.902) 0.355 (-18.024) 0.246 0.059 (0.208) ®.§71.629) 0.480
AMAT 12.450 (3.235) 0.691 (-3.314) 0.267 0.837 (2.634) ©.76-2.962) 0.302
QCOM 8.678 (1.893) 0.786 (-2.259) 0.327 0.469 (1.130) 0.§33.539) 0.292
TXN 4.316 (1.069) 0.929 (-0506) 0.429 0332 (1.113) 0.898.214) 0.466
PFE 4546 (2.892) 0584 (-4.106) 0.150 0501 (1.664) 0.722562) 0.195
MOT 6.500 (1.977) 0.820 (-1.157) 0.394 0.498 (1.725) 0.822.773) 0.449
EMC -2.871 (-0.559) 1.153 (0.852) 0.493 0.116 (0.334) 0.950.454) 0.502
HWP 6.807 (2461) 0.737 (-2.375) 0.332 0.340 (1.193) 0.862.549) 0.377
AMGN 5241 (2.190) 0.728 (-2.354) 0.389 0.196 (0.700) 0.884.330) 0.437
BRCM 23.907 (1.813) 0.761 (-1.396) 0.320 1.045 (2.194) 4&.752.249) 0.343
MER 4.187 (1.369) 0.799 (-1.399) 0.333 0.376 (1.188) 0.841.563) 0.373
NOK 12.659 (2.964) 0.646 (-2.579) 0.261 0.699 (1.776) 0.778.995) 0.338
CHL 4.234 (2.136) 0756 (-1.912) 0.352 0.005 (0.021) 0.948.§432) 0.518
UNPH 18.161 (1.653) 0.868 (-0.696) 0.349 0514 (1.014) ®.§71.014) 0.389
EBAY 2708 (0.282) 0926 (-0.516) 0.415 -1.256 (-3.506) 452 (2.857) 0.663
IJNPR 32,793 (2.113) 0.632 (-2.301) 0.274 1506 (2.419) €.642.553) 0.235
CIEN 38.400 (2.601) 0.636 (-2.280) 0.204 1.113 (1.848) 8.131.971) 0.337
BRCD 24.059 (1.628) 0.861 (-0.846) 0277 1.026 (1.622) 4£.771.615) 0.299
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Table 9
Variance risk premia and variance of return volatility

Entries report the estimates (andtatistics in parentheses) of the following two regressio the left and right
panels, respectively,

INSW1/R¥r = a+b(SWr-VF)+e

INSWt/RM1 = a+bln(SWr/VF)+e

Thet-statistics are calculated according to Newey and West7)l@@h 30 lags, under the null hypothesis of
a=0,b=0. The columns undeR?” report the unadjusted R-squared of the regression.

Ticker  InSW1/RM1=a+b(SWr-VSF)+e INSW1/RV 1 =a+bln(SW1/VF) +e
a b 23 a b 23

SPX 0.462 (7.001) 0.087 (3.117) 0.048 0.283 (4.052) 1.142.23%) 0.086
OEX 0.412 (4.598) 0.085 (1.355) 0.013 0.295 (3.218) 1.055.922) 0.028
DJX 0.379 (4.258) 0.130 (2.386) 0.049 0302 (3.007) 1.211.24B) 0.048
NDX 0.204 (4.049) 0.002 (0.092) 0.000 0.154 (2.701) 0.505.308) 0.006
QQQ 0.232 (3.641) 0010 (0.859) 0.003 0.189 (2.563) 0.671.631) 0.011

MSFT 0.234 (5.065) 0014 (3.037) 0.023 0.194 (3.255) 0.542.137) 0.019
INTC -0.012 (-0.189) 0.016 (0.715) 0.004 -0.002 (-0.032) 299. (0.444) 0.001
IBM 0.168 (2.839) 0.027 (4.342) 0.035 0.049 (0.723) 1.294.948) 0.050
AMER 0.107 (1.834) 0012 (2.397) 0.015 0.114 (1.975) 0.453.689) 0.007
DELL 0.106 (1.690) 0.028 (2.527) 0.028 0087 (1.182) 1.132.160) 0.022
CSCO 0.293 (3.376) -0.005 (-0.530) 0.001 0.210 (3.000) ®.461.172) 0.003
GE 0.156 (3.410) 0.043 (2.877) 0.039 0.126 (2.725) 0.8131§6) 0.045
CPQ 0.055 (0.965) 0.020 (5.554) 0.071 0.004 (0.070) 1.017.94®) 0.059
YHOO 0.052 (0.858) 0.005 (4.437) 0.021 0.040 (0.652) 0.542.071) 0.013
SUNW 0.062 (1.300) 0.012 (6.099) 0.038 0.035 (0.669) 0.683.3¢8) 0.029
MU 0.050 (1.340) 0.008 (3.342) 0.026 0.044 (1.161) 0.548 762) 0.016
MO 0.165 (2.547) 0.037 (2.381) 0.050 0.133 (2.058) 0.792 4{2) 0.040
AMZN 0.047 (0.535) 0.013 (4.195) 0.084 0.023 (0.264) 1.545.041) 0.050
ORCL 0.300 (3.285) -0.045 (-2.982) 0.175 0.310 (1.790) 61.7-1.335) 0.036
LU 0.053 (1.034) 0.008 (9.332) 0.053 0.045 (0.744) 0.396 720) 0.009
TRV 0.060 (0.796) 0.027 (1.617) 0.015 -0.046 (-0.531) 1.342.944) 0.040
WCOM -0.017 (-0.210) 0.045 (5.860) 0.108 -0.046 (-0.569) 96.3(7.922) 0.095
TYC 0270 (2.818) 0.011 (4.095) 0.039 0.245 (2.472) 0.734.70Q) 0.012
AMAT 0.003 (0.072) 0.024 (3.123) 0.047 0.014 (0.272) 0.942.550) 0.026
QCOM 0.098 (1.461) 0.012 (1.470) 0.010 0.097 (1.284) 0.588.118) 0.005
TXN -0.047 (-0.987) 0.020 (3.337) 0.040 -0.083 (-1.552) 27.0(4.236) 0.040
PFE 0.109 (1.799) 0.064 (4.318) 0.047 0.068 (1.245) 1.231.99@) 0.059
MOT 0.004 (0.069) 0.018 (3.217) 0.040 -0.053 (-0.940) 1.245.698) 0.058
EMC 0.033 (0.684) 0.003 (0.613) 0.002 0.017 (0.342) 0.299.3%2) 0.006
HWP 0.046 (0.890) 0.020 (4.596) 0.022 0.036 (0.661) 0.60527®) 0.011
AMGN 0.084 (1.490) 0.030 (2.701) 0.032 0.030 (0.535) 1.18B.188) 0.036
BRCM -0.039 (-0.674) 0.010 (2.475) 0.039 -0.079 (-1.342) 521. (3.027) 0.049
MER -0.026 (-0.422) 0.067 (3.737) 0.070 -0.025 (-0.393) 41.5(3.603) 0.053
NOK 0.019 (0.306) 0.014 (4.730) 0.031 0.012 (0.184) 0.692.932) 0.023
CHL 0.079 (1.335) 0.031 (4.601) 0.042 0.038 (0.607) 1.061.005) 0.042
UNPH -0.024 (-0.355) 0.005 (0.850) 0.004 0.006 (0.101) 08.0(-0.016) 0.000
EBAY 0.156 (1.494) 0.017 (1.554) 0.020 -0.143 (-1.336) 8.015.897) 0.217
JNPR 0.067 (0.696) 0.007 (1.104) 0.022 0.118 (1.056) 0.260.285) 0.001
CIEN -0.044 (-0.522) 0.013 (2.144) 0.027 0.032 (0.388) 5.000.005) 0.000
BRCD -0.075 (-0.762) 0.009 (1.095) 0.018 -0.055 (-0.547) 668. (0.766) 0.007
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Table 10
Expectation hypothesis regression on variance risk premia controllingfiance of volatility
Entries report the GMM estimates (andtatistics in parentheses) of the following relation,

INRMtT = a+binSWr+cin(SWT/VF) +e

Thet-statistics are calculated according to Newey and West7)l@@&h 30 lags, under the null hypothesis of
a=0,b=1,c=0. The columns undeR?” report the unadjusted R-squared of the regression.

Ticker a b c =2
SPX  -0.293  (-1.517) 1.007  (0.058) 1146 (-6.090) 0.442
OEX -0.296  (-1.328) 1.001  (0.005) 1.055  (-2.935) 0.434
DIJX -0.113  (-0.436) 0.878  (-0.874) 1072 (-3.106) 0.295
NDX -0.363  (-1.833) 1.076  (1.106) .0.459  (-1.188) 0.692
QQQ  -0.602 (-1.672) 1132 (1.120) -0.708  (-1.674) 0.529
MSFT  -0.371  (-1.431) 1.068  (0.704) 0.651 (-2.424) 0.465
INTC 0325  (1.241) 0.886  (-1.319) 0047  (0.074) 0.430
IBM 0.033 (0.125) 0.967 (-0.331) -1.243 (-4.732) 0.319
AMER 0554  (1.412) 0.814  (-1.786) -0.308  (-1.017) 0.298
DELL 0569  (1.406) 0.811 (-1.588) 1.056  (-1.974) 0.271
CSCO  -0.760  (-1.642) 1166  (1.271) 0527  (-1.277) 0.369
GE 0.031 (0.180) 0.933 (-0.960) -0.739 (-3.990) 0.506
CPQ  0.805  (1.721) 0.754  (-1.782) -0.874 (-4.576) 0.285
YHOO 0626  (1.277) 0.835  (-1.431) 0307 (-0.819) 0.346
SUNW  0.048  (0.134) 0976  (-0.239) -0.666  (-2.950) 0.494
MU 0929  (2.602) 0752  (-2.756) 0.355  (-1.657) 0.303
MO 0509  (1.891) 0741  (-2.538) 0612 (-1.928) 0.256
AMZN  0.861  (1.198) 0794  (-1.312) 1165  (-2.717) 0.295
ORCL 0833 (1.216) 0698  (-1.434) 1402 (1.640) 0.305
LU 0311  (1.149) 0.885 (-1.331) 0244  (-1.002) 0.493
TRV 0341  (1.021) 0.887  (-1.010) 1160  (-2.914) 0.285
WCOM 0530  (1.524) 0.842  (-1.402) 1319 (-6.742) 0.431
TYC 0.028 (0.098) 0.904 (-1.248) -0.409 (-0.968) 0.481
AMAT 0851  (2.782) 0.765  (-2.854) -0.814  (-2.259) 0.316
QCOM 0507  (1.213) 0.839  (-1.496) 0535  (-0.996) 0.296
TXN 0318  (1.079) 0.930 (-0.819) 0.955  (-4.014) 0.484
PFE 0448  (1.487) 0792  (-1.804) 1.083  (-3.143) 0.232
MOT 0482  (1.718) 0.860  (-1.427) 1118 (-5.689) 0.475
EMC 0084  (0.244) 0970  (-0.293) 0269 (-1.300) 0.505
HWP 0344  (1.219) 0875  (-1.418) 0524  (-2.093) 0.382
AMGN 0285  (1.016) 0.897  (-1.190) 1143 (-3.162) 0.455
BRCM  0.784  (1.547) 0.830  (-1.429) 0.975  (-1.996) 0.353
MER 0361  (1.189) 0887  (-1.166) 1412 (-3.219) 0.400
NOK 0598  (1.433) 0815  (-1.541) -0.423  (-1.487) 0.343
CHL -0.066 (-0.283) 1.011 (0.126) -1.081 (-4.402) 0.536
UNPH 0600  (1.131) 0847  (-1.167) 0460  (0.806) 0.391
EBAY -0.133  (-0.308) 1061  (0.646) 3755  (-5.153) 0.717
JNPR 1664  (2.546) 0598  (-2.653) 0.648  (0.702) 0.241
CIEN 1232  (2.063) 0.697  (-2.246) 1073  (1.100) 0.344
BRCD  1.015  (1642) 0778  (-1.591) .0.050 (-0.055) 0.299
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