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Variance Risk Premia

ABSTRACT

We propose a direct and robust method for quantifying the variance risk premium on financial

assets. We theoretically and numerically show that the risk-neutral expected value of the return

variance, also known as the variance swap rate, is well approximated by the value of a particular

portfolio of options. Ignoring the small approximation error, the difference between the realized

variance and this synthetic variance swap rate quantifies the variance risk premium. Using a large

options data set, we synthesize variance swap rates and investigate the historical behavior of vari-

ance risk premia on five stock indexes and 35 individual stocks.

JEL CLASSIFICATION CODES: G10, G12, G13, C51.

KEY WORDS: Stochastic volatility; variance risk premia; variance swap; volatility swap; option pric-

ing; expectation hypothesis; leverage effect.



Variance Risk Premia

1. Introduction

The grant of the 2003 Nobel prize in economics has made available to the general public the well-

documented observation that return variances are random over time. Therefore, when investing in

a security such as a stock or a stock portfolio, an investor faces at leasttwo sources of uncertainty,

namely the uncertainty about the return as captured by the return variance, and the uncertainty about

the return variance itself.

It is important to know how investors deal with the uncertainty in return variance to effectively

manage risk and allocate assets, to accurately price and hedge derivative securities, and to understand

the behavior of financial asset prices in general. We develop a direct and robust method for quantifying

the return variance risk premium on an asset using the market prices of options written on this asset.

Our method uses the notion of a variance swap, which is an over-the-counter contract that pays the

difference between a standard estimate of the realized variance and the fixed swap rate. Since variance

swaps cost zero to enter, the variance swap rate represents the risk-neutral expected value of the realized

return variance. We theoretically and numerically show that the variance swap rate can be synthesized

accurately by a particular linear combination of option prices. Ignoring the small approximation error,

the difference between the ex-post realized variance and this synthetic variance swap rate quantifies the

variance risk premium. Using a large options data set, we synthesize variance swap rates and analyze

the historical behavior of variance risk premia on five stock indexes and 35 individual stocks.

If variance risk is not priced, the time series average of the realized return variance should equal the

variance swap rate. Otherwise, the difference between the expected value of the return variance under

the statistical probability measure and the variance swap rate reflects the magnitude of the variance risk

premium. Therefore, by comparing the variance swap rate to the ex-post realized return variance, we

can empirically investigate the behavior of the variance risk premium.

Widespread appreciation of the significance of variance risk by the practitioner community has

recently engendered the introduction of a slew of financial products with payoffs that are directly tied
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to estimates of realized variance or volatility. Nowadays, variance and volatilityswaps trade actively

over the counter on major stocks, stock indexes, and currencies. On September 22, 2003, the Chicago

Board Options Exchange (CBOE) redefined its well-known volatility index (VIX) in such a way that

it approximates the 30-day variance swap rate of the S&P 500 index return.On March 26, 2004, the

CBOE launched a new exchange, the CBOE Futures Exchange (CFE) to start trading futures on VIX.

These futures contracts represent a simple way to trade variance realized over a future time period. At

the time of this writing, options on the VIX are also planned.

Despite the recent surge in liquidity in volatility contracts, high-quality historicaltime-series data

on variance swap rates are not yet available. In this paper, we circumvent this issue by synthesizing re-

turn variance swap rates. Working in complete generality, we show how the payoff of a return variance

swap can be accurately approximated theoretically by combining the payoff from a static position in

a continuum of European options with a dynamic trading strategy in the underlying futures. We show

that a sufficient condition for our replication strategy to be exact is that theunderlying asset’s return

dynamics are continuous over time. It is important to appreciate that no restrictive assumptions are

necessary on the dynamics followed by the return variance. In particular, the instantaneous variance

rate can jump and it need not even be observable. In this sense, the replicating strategy is robust.

When the underlying asset price can jump, the strategy fails to replicate perfectly. We show that the

instantaneous approximation error is third order in the size of the jump. When applying the theoretical

relation in practice, we also introduce an approximation error due to the interpolation and extrapolation

needed to generate the required continuum of option prices from the finite number of available option

quotes. We numerically show that both sources of approximation errors are small under realistic price

processes and market settings.

Variance swaps are not the only volatility derivatives that can be robustlyreplicated. Carr and Lee

(2003a) develop robust replicating strategies for any contracts with terminal payoffs that are functions

of the realized variance and final price. In particular, they develop the replicating strategy for a volatility

swap, the payoff of which is linear in the square root of the realized variance. They argue that the Black

and Scholes (1973) at-the-money implied volatility is an accurate approximation of the volatility swap

rate. We numerically confirm the accuracy of their theoretical arguments. We conclude that variance
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swap rates and volatility swap rates can both be accurately approximated using market prices of options

and their underlying assets.

Given these conclusions, we synthesize variance and volatility swap ratesusing options data on five

of the most actively traded stock indexes and 35 of the most actively tradedindividual stocks during the

past seven years. We compare the synthetic variance swap rates to the corresponding realized return

variance and investigate the historical behavior of the variance risk premiafor different assets. We find

that the average risk premia on return variances are strongly negative for the S&P 500 and 100 indexes

and for the Dow Jones Industrial Average. The variance risk premia for the Nasdaq 100 index and for

most individual stocks are also negative, but with a smaller absolute magnitude. The negative sign on

the variance risk premia indicates that variance buyers are willing to suffera negative average excess

return to hedge away upward movements in the index return variance.

We investigate whether the classical Capital Asset Pricing Model (CAPM) can explain the negative

variance risk premia. We find that the well-documented negative correlationbetween index returns and

volatility generates a strongly negative beta, but this negative beta can onlyexplain a small portion

of the negative variance risk premia. The common risk factors identified by Fama and French (1993)

cannot explain the strongly negative variance risk premia, either. Therefore, we conclude that either

the market for variance risk is highly inefficient or else the majority of the variance risk is generated by

an independent risk factor, which the market prices heavily.

We further analyze the dynamics of the variance risk premia by formulating regressions based on

various forms of the expectation hypothesis that assume constant or independent variance risk premia.

Under the null hypothesis of constant variance risk premia, a regression of the realized variance on

the variance swap rate will result in a slope estimate of one. We find that the sample estimates of the

regression slope are positive for all stocks and stock indexes, but are significantly lower than the null

value of one for over half of the stocks and stock indexes.

The distributions of the return variance and variance risk premia are highly non-normal. The dis-

tribution becomes much closer to normal when we represent the variance in log terms and the variance

risk premia in log differences. Under the null hypothesis of constant or independent log variance risk

premia, a regression of the log realized variance on the log variance swaprate should result in a slope of
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one. We find that this hypothesis is supported by the data. At the 95 percent confidence level, the null

hypothesis cannot be rejected for any of the five stock indexes and for24 of the 35 individual stocks.

Since the floating part of the variance swap payoff is just the square of the floating part of the

volatility swap payoff, Jensen’s inequality dictates that the variance swap rate is greater than the square

of the volatility swap rate. The difference between the variance swap rate and the volatility swap rate

squared measures the risk-neutral variance of the return volatility. Usingthe synthesized variance swap

rate and the at-the-money implied volatility, we obtain a time series of the risk-neutral variance of the

return volatility for each of the five stock indexes and the 35 stocks. Since variance or volatility risk

premia compensate for uncertainty in return volatility, we hypothesize that the variance risk premia

become more negative when the variance of the return volatility is high. Regressing the negative of

the variance risk premia on the variance of volatility, we obtain positive slope estimates for most of the

stock indexes and individual stocks, with more than half of them statistically significant.

Finally, we run an expectation hypothesis regression that uses the log variance and controls for the

variation in the variance of volatility. The regression slope estimate on the log variance swap rate is no

longer significantly different from its null value of one for all but five ofthe individual stocks.

In the vast literature on stock market volatility, the papers most germane to ourstudy are the recent

works by Bakshi and Kapadia (2003a,b). These studies consider the profit and loss (P&L) arising from

delta-hedging a long position in a call option. They persuasively argue that this P&L is approximately

neutral to the directional movement of the underlying asset return, but is sensitive to the movement

in the return volatility. By analyzing the P&L from these delta-hedged positions,Bakshi and Kapadia

are able to infer some useful qualitative properties for the variance risk premia without referring to a

specific model. Our approach maintains and enhances the robustness of their approach. In addition,

our approach provides a quantitative measure of the variance risk premia. As a result, we can analyze

not only the sign, but also the quantitative properties of the premia. The quantification enables us to

investigate whether the magnitude of the variance risk premia can be fully accounted for by the classical

CAPM or by Fama-French factors, and whether the variance risk premia satisfy various forms of the

expectation hypothesis.
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Chernov (2003), Eraker (2003), Jones (2003), and Pan (2002)analyze the variance risk premia

in conjunction with return risk premia by estimating various parametric option pricing models. Their

results and interpretations hinge on the accuracy of the specific models thatthey use in the analysis.

Ang, Hodrick, Xing, and Zhang (2003) form stock portfolios ranked by their sensitivity to volatility

risk and analyze the difference among these different portfolios. Fromthe analysis, they can infer

indirectly the impact of volatility risk on the expected stock return. Also related isthe work by Coval

and Shumway (2001), who analyze how expected returns on options investment vary with strike choices

and whether the classic capital asset pricing theory can explain the expected option returns.

The underlying premise for studying variance risk premia is that return variance is stochastic. Nu-

merous empirical studies support this premise. Prominent empirical evidencebased on the time se-

ries of asset returns includes Andersen, Benzoni, and Lund (2002), Andersen, Bollerslev, Diebold,

and Ebens (2001), Andersen, Bollerslev, Diebold, and Labys (2001, 2003), Ding, Engle, and Granger

(1993), Ding and Granger (1996), and Eraker, Johannes, and Polson (2003). Evidence from the options

market includes Bakshi, Cao, and Chen (1997, 2000a,b), Bakshi andKapadia (2003a,b), Bates (1996,

2000), Carr and Wu (2003), Eraker (2001), Huang and Wu (2004), and Pan (2002).

Our analysis of the variance risk premia is based on our theoretical work on synthesizing a variance

swap using European options and futures contracts. Carr and Madan (1998), Demeterfi, Derman,

Kamal, and Zou (1999a,b), and Britten-Jones and Neuberger (2000) have used the same replicating

strategy, but under the assumption of continuity in the underlying asset price. Our derivation is under

the most general setting possible. As a result, our theoretical work quantifies the approximation error

induced by jumps. In a recent working paper,

Also relevant is the large strand of literature that investigates the information content of Black-

Scholes implied volatilities. Although conclusions from this literature have at times contradicted each

other, the present consensus is that the at-the-money Black-Scholes implied volatility is an efficient,

although biased, forecast of the subsequent realized volatility. Examplesof these studies include Latane

and Rendleman (1976), Chiras and Manaster (1978), Day and Lewis (1988), Day and Lewis (1992),

Lamoureux and Lastrapes (1993), Canina and Figlewski (1993), Dayand Lewis (1994), Jorion (1995),

Fleming (1998), Christensen and Prabhala (1998), Gwilym and Buckle (1999), Hol and Koopman
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(2000), Blair, Poon, and Taylor, (2000a,b), Hansen (2001), Christensen and Hansen (2002), Tabak,

Chang, and de Andrade (2002), Shu and Zhang (2003), and Neely (2003).

The remainder of this paper is organized as follows. Section 2 shows the extent to which the pay-

off to a variance swap can be theoretically replicated by combining the payoff from a static position

in European options with the gains from a dynamic position in futures on the underlying asset. We

also discuss the relation between volatility swaps and variance swaps in this section. Section 3 uses

three standard models of return dynamics to numerically investigate the magnitudeof the approxima-

tion error due to price jumps and discrete strikes. Section 4 lays down the theoretical foundation for

various expectation hypothesis regressions. Section 5 discusses the data and the methodologies used to

synthesize variance and volatility swap rates and to calculate realized variance. Section 6 empirically

investigates the behavior of the variance risk premia. Section 7 concludes.

2. Synthesizing a Return Variance Swap

A return variance swap has zero net market value at entry. At maturity, the payoff to the long side

of the swap is equal to the difference between the realized variance overthe life of the contract and a

constant fixed at inception called the variance swap rate. Ift denotes the entry time andT denotes the

payoff time, the terminal payoff to the long side of the swap atT is:

[RVt,T −SWt,T ]L, (1)

whereRVt,T denotes the realized annualized return variance between timet andT, andSWt,T denotes

the fixed swap rate, which is determined at timet and is paid at timeT. The letterL denotes the

notional dollar amount that converts the variance difference into a dollar payoff. Since the contract has

zero market value at initiation, no-arbitrage dictates that the variance swaprate equals the risk-neutral

expected value of the realized variance,

SWt,T = E
Q
t [RVt,T ] , (2)
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whereE
Q
t [·] denotes the expectation operator under some risk-neutral measureQ and conditional on

the information up to timet.

In what follows, we show that under relatively weak assumptions on the price process of the under-

lying, the risk-neutral expected value of the return quadratic variation from timet to T can be approx-

imated from the time-t prices of out-of-the-money European options maturing at timeT. Numerical

calculations from realistic price processes and strike spacings indicate that the total approximation error

is small. Hence, the risk-neutral expected value att of the increase in the return quadratic variation over

[t,T] can be effectively determined att from an implied volatility smile of maturityT. Thus, assuming

continuous monitoring of the underlying asset’s price path, we have effectively determined the fixed

rate for a variance swap.

2.1. Synthesizing the return quadratic variation by trading options and futures

It is well known that the geometric mean of a set of positive numbers is nevermore than the

arithmetic mean. Furthermore, the larger the variance of the numbers, the greater is the difference

between the arithmetic mean and the geometric mean. This section exploits these observations to

extract the risk-neutral expected value of realized variance from option prices.

To fix notation, we letSt denote the spot price of an asset at timet ∈ [0,T ], whereT is some

arbitrarily distant horizon. We letFt denote the time-t futures price of maturityT > t. For simplicity,

we assume that the futures contract marks to market continuously. We also assume that the futures price

is always positive, although it can get arbitrarily close to zero. No arbitrage implies that there exists a

risk-neutral probability measureQ defined on a probability space(Ω,F ,Q) such that the futures price

Ft solves the following stochastic differential equation:

dFt = Ft−σt−dWt +
∫

R0
Ft− (ex−1) [µ(dx,dt)−νt(x)dxdt] , t ∈ [0,T ], (3)

starting at some fixed and known valueF0 > 0. In equation (3),Wt is aQ standard Brownian motion,

R0 denotes the real line excluding zero,Ft− denotes the futures price at timet just prior to any jump

at t, and the random counting measureµ(dx,dt) realizes to a nonzero value for a givenx if and only

if the futures price jumps fromFt− to Ft = Ft−ex at time t. The process{νt(x),x ∈ R0, t ∈ [0,T ]}
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compensates the jump processJt ≡
∫ t

0

∫
R0 (ex−1)µ(dx,ds), so that the last term in equation (3) is the

increment of aQ-pure jump martingale. This compensating processνt(x) must satisfy (Prokhorov and

Shiryaev (1998)): ∫

R0

(
|x|2∧1

)
νt(x)dx< ∞, t ∈ [0,T ].

In words, the compensator must integrate the square of the small jumps (|x|< 1) to have a well-defined

quadratic variation. Furthermore, large jumps (|x| > 1) must not be so frequent as to have infinite ag-

gregate arrival rate. Thus, equation (3) models the futures price change as the sum of the increments

of two orthogonal martingale components, a purely continuous martingale anda purely discontinu-

ous (jump) martingale. This decomposition is generic for any continuous-time martingale (Jacod and

Shiryaev (1987)).

To avoid notational complexity, we assume that the jump component of the returns process exhibits

finite variation: ∫

R0
(|x|∧1)νt(x)dx< ∞, t ∈ [0,T ].

The time subscripts onσt− andνt(x) indicate that both are stochastic and predictable with respect to

the filtrationF t . We further restrictσt− andνt(x) so that the futures priceFt is always positive. Finally,

we assume deterministic interest rates so that the futures price and the forward price are identical.1 So

long as futures contracts trade, we need no assumptions on dividends.

Under the specification in equation (3), the quadratic variation on the futures return from timet to

T is

Vt,T =
∫ T

t
σ2

s−ds+
∫ T

t

∫

R0
x2µ(dx,ds). (4)

The annualized quadratic variation isRVt,T = 1
T−tVt,T . We show that this return quadratic variation can

be replicated up to a higher-order error term by a static position in a portfolioof options of the same

horizonT and a dynamic position in futures. As futures trading is costless, the risk-neutral expected

value of the quadratic variation can be approximated by the forward value of the portfolio of European

options. The approximation is exact when the futures price process is purely continuous. When the

futures price can jump, the instantaneous approximation error at timet is of orderO((dFt
Ft−

)3).

1We can alternatively assume the weaker condition of zero quadratic covariation between the futures price and the price

of a pure discount bond of the same maturity.
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Theorem 1 Under no arbitrage, the time-t risk-neutral expected value of the returnquadratic variation

of an asset over horizon T− t defined in (4) can be approximated by the continuum of European out-

of-the-money option prices across all strikes K> 0 and with maturity T :

E
Q
t [RVt,T ] =

2
T − t

∫ ∞

0

Θt(K,T)

Bt(T)K2 dK+ ε, (5)

whereε denotes the approximation error, Bt(T) denotes the time-t price of a bond paying one dollar

at T , andΘt(K,T) denotes the time-t value of an out-of-the-money option with strike price K> 0 and

maturity T≥ t (a call option when K> Ft and a put option when K≤ Ft). The approximation error

ε is zero when the futures price process is purely continuous. When the futures price can jump, the

approximation errorε is of order O((dFt
Ft−

)3) and is determined by the compensator of the discontinuous

component,

ε =
−2

T − t
E

Q
t

∫ T

t

∫

R0

[
ex−1−x− x2

2

]
νs(x)dxds. (6)

Proof. Let f (F) be a twice differentiable function ofF . By Itô’s lemma for semi-martingales:

f (FT) = f (Ft)+
∫ T

t
f ′(Fs−)dFs+

1
2

∫ T

t
f ′′(Fs−)σ2

s−ds

+
∫ T

t

∫

R0
[ f (Fs−ex)− f (Fs−)− f ′(Fs−)Fs−(ex−1)]µ(dx,ds), (7)

Applying equation (7) to the functionf (F) = lnF , we have:

ln(FT) = ln(Ft)+
∫ T

t

1
Fs−

dFs−
1
2

∫ T

t
σ2

s−ds+
∫ T

t

∫

R0
[x−ex +1]µ(dx,ds). (8)

Adding and subtracting 2[FT
Ft
−1]+

∫ T
t x2µ(dx,ds) and re-arranging, we obtain the following represen-

tation for the quadratic variation of returns:

Vt,T ≡
∫ T

t
σ2

s−ds+
∫ T

t
x2µ(dx,ds) = 2

[
FT

Ft
−1− ln

(
FT

Ft

)]
+2

∫ T

t

[
1

Fs−
− 1

Ft

]
dFs

−2
∫ T

t

∫

R0

[
ex−1−x− x2

2

]
µ(dx,ds). (9)
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A Taylor expansion with remainder of lnFT about the pointFt implies:

lnFT = lnFt +
1
Ft

(FT −Ft)−
∫ Ft

0

1
K2(K−FT)+dK−

∫ ∞

Ft

1
K2(FT −K)+dK. (10)

Combining equations (9) and (10) and noting thatFT = ST , we have:

Vt,T = 2

[∫ Ft

0

1
K2(K−ST)+dK+

∫ ∞

Ft

1
K2(ST −K)+dK

]

+2
∫ T

t

[
1

Fs−
− 1

Ft

]
dFs

−2
∫ T

t

∫

R0

[
ex−1−x− x2

2

]
µ(dx,ds). (11)

Thus, we can replicate the return quadratic variation up to timeT by the sum of (i) the payoff from a

static position in2dK
K2 European options on the underlying spot at strikeK and maturityT (first line), (ii)

the payoff from a dynamic trading strategy holding 2Bs(T)
[

1
Fs−

− 1
Ft

]
futures at times (second line),

and (iii) a higher-order error term induced by the discontinuity in the futures price dynamics (third

line). The options are all out-of-the money forward, i.e., call options whenFt > K and put options

whenK ≤ Ft .

Taking expectations under measureQ on both sides, we obtain the risk-neutral expected value of

the quadratic variation on the left hand side. We also obtain the forward value of the sum of the startup

cost of the replicating strategy and the replication error on the right hand side:

E
Q
t [Vt,T ] =

∫ ∞

0

2Θt(K,T)

Bt(T)K2 dK−2E
Q
t

∫ T

t

∫

R0

[
ex−1−x− x2

2

]
νs(x)dxds.

By the martingale property, the expected value of the gains from dynamic futures trading is zero under

the risk-neutral measure. Dividing by (T − t) on both sides, we obtain the result on the annualized

return quadratic variation.

Equation (5) forms the theoretical basis for our empirical study. We will numerically illustrate that

the approximation error is small. Then we use the first term on the right hand side to determine the

synthetic variance swap rate on stocks and stock indexes. The relevantreturn variance underlying the

variance swap is that of the futures, which is equal to that of the forwardunder our assumption of
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deterministic interest rates. Comparing the synthetic variance swap rate to the realized return variance,

we will investigate the behavior of the variance risk premia on different stocks and stock indexes.

2.2. Volatility swaps

In many markets especially currencies, an analogous volatility swap contract also exists that pays

the difference between the realized volatility and a fixed volatility swap rate,

[√
RVt,T −VSt,T

]
L, (12)

whereVSt,T denotes the fixed volatility swap rate. Since the contract has zero value at inception, no-

arbitrage dictates that the volatility swap rate equals the risk-neutral expected value of the square root

of the realized variance,

VSt,T = E
Q
t

[√
RVt,T

]
. (13)

Volatility swaps and variance swaps serve similar purposes in hedging against uncertainty in return

volatility. Carr and Lee (2003b) show that there is a robust replicating portfolio for a volatility swap

under the sufficient conditions of continuous futures prices and a stochastic volatility process whose

coefficients and increments are independent of returns. The replicatingportfolio requires dynamic

trading in both futures and options, rendering the replication much more difficult in practice than the

replication of a variance swap. However, it is actually much easier to robustly approximate the initial

price of a volatility swap than a variance swap. Carr and Lee (2003a) show that the volatility swap rate

is well approximated by the Black and Scholes (1973) implied volatility for the at-the-money forward

(K = F) option of the same maturity,ATMV,

VSt,T
.
= ATMVt,T . (14)

This approximation is accurate up to the third orderO(σ3) when the underlying futures price is purely

continuous and the volatility process is uncorrelated with the return innovation. The at-the-money im-

plied volatility remains a good first-order approximation in the presence of jumpsand return-volatility

correlations. Appendix A provides more details on the derivation.
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Comparing the definitions of the variance swap rate in equation (2) and the volatility swap rate in

equation (13), we observe the following relation between the two:

Vart
(√

RVt,T
)

= SWt,T −VS2
t,T , (15)

whereVarQt (·) denotes the conditional variance operator under the risk-neutral measure. The standard

quotation convention for variance swaps and volatility swaps is to quote both involatility terms. Using

this convention, the variance swap rate should always be higher than the volatility swap rate by virtue

of Jensen’s inequality. When the variance swap rate and the volatility swap rate are both represented in

terms of variance, the difference between the two is just the risk-neutral variance of realized volatility.

The two swap rates coincide with each other when return volatility is constant.

Remark 1 The difference between the variance swap rate and the volatility swap rate squared mea-

sures the degree of randomness in return volatility.

The remark is an important observation. The existence of risk premia for return variance or volatil-

ity hinges on the premise that the return variance or volatility is stochastic in the first place. The remark

provides a direct measure of the perceived riskiness in return volatility based on observations from the

options market. Using the market prices of options of the same maturity but different strikes, we can

approximate the variance swap rate according to equation (5). We can alsoapproximate the volatility

swap rate using the Black-Scholes implied volatility from the at-the-money option.The difference be-

tween the two swap rates reveals the (risk-neutral) variance of the returnvolatility and hence provides

a direct measure of the perceived riskiness in return volatility.

3. Numerical Illustration of Standard Models

The attempted replication of the payoff to a variance swap in equation (5) hasan instantaneous error

of orderO((dFt
Ft−

)3). We refer to this error asjump erroras it vanishes under continuous path monitoring

if there are no jumps. Even if we ignore this jump error, the pricing of a variance swap still requires

a continuum of option prices at all strikes. Unfortunately, option price quotes are only available in
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practice at a discrete number of strike levels. Clearly, some form of interpolation and extrapolation

is necessary to determine the variance swap rate from the available quotes.The interpolation and

extrapolation introduce a second source of error, which we termdiscretization error. The discretization

error would disappear if option price quotes were available at all strikes.

To gauge the magnitude of these two sources of approximation error, we numerically illustrate

three standard option pricing models: (1) the Black-Scholes model (BS), (2) the Merton (1976) jump-

diffusion model (MJD), and (3) a combination of the MJD model with Heston (1993) stochastic volatil-

ity (MJDSV). The MJDSV model is due to Bates (1996), who estimates it on currency options. Bakshi,

Cao, and Chen (1997) estimate the models on S&P 500 index options.

The risk-neutral dynamics of the underlying futures price process under these three models are:

BS: dFt/Ft = σdWt ,

MJD: dFt/Ft− = σdWt +dJ(λ)−λgdt,

MJDSV: dFt/Ft− =
√

vtdWt +dJ(λ)−λgdt,

(16)

whereW denotes a standard Brownian motion andJ(λ) denotes a compound Poisson jump process

with constant intensityλ. Conditional on a jump occurring, the MJD model assumes that the size of the

jump in the log price is normally distributed with meanµj and varianceσ2
j , with the mean percentage

price change induced by a jump given byg= eµj+
1
2σ2

j −1. In the MJDSV model, the diffusion variance

ratevt is stochastic and follows a mean-reverting square-root process:

dvt = κ(θ−vt)dt+σv
√

vtdZt , (17)

whereZt is another standard Brownian motion, correlated withWt by EQ [dZtdWt ] = ρdt.

The MJDSV model nests the MJD model, which in turn nests the BS model. We regard the progres-

sion from BS to MJD and then from MJD to MJDSV as one of increasing complexity. All three models

are analytically tractable, allowing us to numerically calculate risk-neutral expected values of variance

and volatility, without resorting to Monte Carlo simulation. The difference in the BS model between

the synthetic variance swap rate and the constant variance rate are purely due to the discretization error,

since there are no jumps. The increase in the error due to the use of the MJDmodel instead of BS
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allows us to numerically gauge the magnitude of the jump error in the presence ofdiscrete strikes. The

change in the approximation error from the MJD model to the MJDSV model allows us to numerically

gauge the impact of stochastic volatility in the presence of discrete strikes andjumps. In theory, the

addition of stochastic diffusion volatility does not increase the approximation error in the presence of

a continuum of strikes. However, the reality of discrete strikes forces usto numerically assess the

magnitude of the interaction effect.

In the numerical illustrations, we normalize the current futures price to $100and assume a constant

riskfree rate atr = 5.6 percent. We consider the replication of a return variance swap rate over a

one-month horizon. The option prices under the Black-Scholes model canbe computed analytically.

Under the MJD model, they can be computed using a weighted average of the Black-Scholes formula.

For the MJDSV model, we rely on the analytical form of the characteristic function of the log return,

and compute the option prices based on the fast Fourier inversion method ofCarr and Madan (1999).

Table 1 summarizes the model parameter values used in the numerical illustrations. These parameters

reflect approximately those estimated from S&P 500 index option prices, e.g., inBakshi, Cao, and

Chen (1997).

3.1. Variance swap rate

Under the BS model, the annualized return variance rate is constant atσ2. Under the MJD model,

this variance rate is also constant atσ2 + λ
(

µ2
j +σ2

j

)
. Under the MJDSV model, the realized return

variance rate is stochastic. The risk-neutral expected value of the annualized variance rate, hence the

variance swap rate, depends on the current level of the instantaneousvariance ratevt ,

E
Q
t [RVt,T ] = σ2

t +λ
(
µ2

j +σ2
j

)
, (18)

whereσ2
t is given by

σ2
t ≡

1
T − t

E
Q
t

∫ T

t
vsds= θ+

1−e−κ(T−t)

κ(T − t)
(vt −θ) . (19)
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Our replicating strategy implicit in equation (5) is exact when the underlying dynamics are purely

continuous, but has a higher order approximation error in the presenceof jumps. Thus, under the BS

model, the theoretical approximation error is zero:ε = 0. Under the other two jump models MJD and

MJDSV, the compound Poisson jump component has the following compensator:

ν(x) = λ
1√

2πσ2
j

e
− (x−µj )

2

2σ2
j . (20)

We can compute the approximation errorε from equation (6):

ε = 2λ
(
g−µj −σ2

j /2
)
. (21)

Thus, the approximation error depends on the jump parameters(λ,µj ,σ j).

The other obvious source of error is from the interpolation and extrapolation needed to obtain a

continuum of option prices from the finite number of available option quotes. To numerically gauge

the impact of this discretization error, we assume that we have only five optionquotes at strike prices

of $80, $90, $100, $110, and $120, based on a normalized futures price level of $100. All the stock

indexes and individual stocks in our sample average no less than five strikes at each chosen maturity.

Hence, the choice of just five strike prices is conservative.

To gauge the magnitude of the total approximation error, we first compute the option prices under

the model parameters in Table 1 and compute the option implied volatility at the five strikes. Then,

we linearly interpolate the implied volatility across the five strikes to obtain a finer grid of implied

volatilities. For strikes below $80, we use the implied volatility level at the strike of $80. Similarly,

for strikes above $120, we use the implied volatility level at the strike of $120.This interpolation and

extrapolation scheme is simple and conservative. There might exist more accurate schemes, but we

defer the exploration of such schemes for future research.

With the interpolated and extrapolated implied volatility quotes at all strikes, we apply the Black-

Scholes formula to compute the out-of-the-money option prices at each strikelevel. Then, we approx-

imate the integral in equation (5) with a sum over a fine grid of strikes. We set the lower and upper

bounds of the sum at±8 standard deviations away from at the money, where the standard deviation
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is based on the return variance calculation given in equation (18). The fine grid used to compute the

sum employs 2,000 strike points within the above bounds. We perform this analysis based on a one-

month horizon (T − t = 1/12). Following this numerical approximation procedure, we compute the

synthesized annualized variance swap rate over this horizon,ŜWt,T , where the hat stresses the approxi-

mations involved. The difference between this approximate variance swap rateŜWand the analytically

computed annualized varianceE
Q
t [RVt,T ] represents the aggregate approximation error.

Table 2 summarizes our numerical results on the approximation error of the variance swap rates

under the title “Variance Swap.” Under the BS model, the analytical approximation error is zero.

Furthermore, since the implied volatility is constant and equal toσ at all strikes, there is no interpolation

or extrapolation error on the implied volatility. The only potential error can comefrom the numerical

integration. Table 2 shows that this error is not distinguishable from zero up to the fourth reported

decimal point.

Under the MJD model, the analytical error due to jumps is 0.0021, about 1.51 percent of the total

variance (0.1387). The aggregate error via numerical approximation is also 0.0021. Hence again,

numerical approximation via five strike levels does not induce noticeable additional errors.

Under the MJDSV model, we consider different instantaneous variance levels, represented as its log

difference from the mean, ln(vt/θ). As the current instantaneous variance levelvt varies, the analytical

error due to the jump component is fixed at 0.0021, because the arrival rate of the jump component

does not change. But as the aggregate variance level varies from 0.0272 to 2.3782, the percentage

error due to jumps varies accordingly from 7.72 percent to 0.09 percent.The aggregate numerical error

also varies at different volatility levels, but the variation and the magnitude are both fairly small. The

interpolation across the five option strikes does not add much additional approximation error, indicating

that our simple interpolation and extrapolation strategy works well.

Our numerical results show that the jump error is small under commonly used option pricing models

and reasonable parameter values. The additional numerical error due todiscretization is also negligible.

Hence, we conclude that the synthetic variance swap rate matches closely the analytical risk-neutral

expected value of the return variance.
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3.2. Volatility swap rate

Under the BS model, the volatility swap rate and the variance swap rate coincidewith each other

and with the realized return varianceσ2 when they are represented in the same units. Under the MJD

model, the return quadratic variationVt,T as defined in (4) is random due to the random arrival of jumps

of random size. Under the MJDSV model,Vt,T has another source of randomness due to stochastic

volatility. The randomness inVt,T under these two models generates a difference between the variance

swap rate and the volatility swap rate due to Jensen’s inequality, as capturedby equation (15).

To compute the analytical volatility swap rate under the MJD and MJDSV models, we use the

following mathematical equality for any positive numberq,

√
q =

1
2
√

π

∫ ∞

0

1−e−sq

s3/2
ds. (22)

Appendix B provides the proof for this equality. Then, by replacingq with Vt,T and taking expectations

on both sides, we can represent the volatility swap rate as a function of the Laplace transform of the

quadratic variation,

E
Q
t

[√
Vt,T

]
=

1
2
√

π

∫ ∞

0

1−E
Q
t

[
e−sVt,T

]

s3/2
ds. (23)

Under the MJD model, this Laplace transform can be represented as an infinite sum:

E
Q
t

[
e−sVt,T

]
= e−sσ2(T−t)

∞

∑
n=0

eλ(T−t) (λ(T − t))n

n!

(
1+2σ2

j s
)− n

2 e
−

nµ2
j s

1+2σ2
j s , (24)

where the first term is due to the constant diffusion component. Under the MJDSV model, this first

term changes due to stochastic volatility,

E
Q
t

[
e−sVt,T

]
= e−b(T−t)vt−c(T−t)

∞

∑
n=0

eλ(T−t) (λ(T − t))n

n!

(
1+2σ2

j s
)− n

2 e
−

nµ2
j s

1+2σ2
j s , (25)

where

b(t) = 2s(1−e−ηt)
2η−(η−κ)(1−e−ηt) ,

c(t) = κθ
σ2

v

[
2ln

(
1− η−κ

2η (1−e−ηt)
)

+(η−κ)t
]
,

(26)
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and

η =
√

κ2 +2σ2
vs.

Given these two Laplace transforms, we can solve for the volatility swap ratefor the two models via

numerical integration of equation (23). We use an adaptive Lobatto quadrature method to evaluate this

integral numerically with a tolerance level of 10−9. We then compare how the volatility swap rates

match the at-the-money implied volatility from each model.

Under the title “Volatility Swap,” Table 2 reports the accuracy of using the at-the-money implied

volatility to approximate the volatility swap rate. For ease of comparison to the variance swap rate,

we report the squares of the volatility. Under the Black-Scholes model, the volatility swap rate and the

implied volatility coincide becauseσ = 0.37 is constant.

Under the MJD and MJDSV models, we observe some differences betweenthe at-the-money im-

plied volatility and the analytical volatility swap rate. But in all cases, the differences are fairly small,

with the magnitudes similar to the approximation errors for the variance swap rates.

Historically, many studies have used at-the-money implied volatilities as proxies for the true volatil-

ity series to study its time series property and forecasting capabilities. Our numerical results, together

with the theoretical results in Carr and Lee (2003a), show that these studies have indeed chosen a good

proxy. Although it is calculated using the Black-Scholes formula, the at-the-money implied volatility

represents an accurate approximation for the risk-neutral expected value of the return volatility under

much more general settings.

4. Expectation Hypotheses

If we useP to denote the statistical probability measure, we can link the variance swap rateand the

annualized realized variance as follows:

SWt,T =
EP

t [Mt,TRVt,T ]

EP
t [Mt,T ]

= EP
t [mt,TRVt,T ] , (27)
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whereMt,T denotes a pricing kernel andmt,T represents its normalized version, which is aP-martingale,

EP
t [mt,T ] = 1. Assuming a constant interest rate, we have:

EP
t [Mt,T ] = Bt(T) = e−r(T−t). (28)

For traded assets, no-arbitrage guarantees the existence of at least one such pricing kernel (Duffie

(1992)).

We decompose equation (27) into two terms:

SWt,T = EP
t [mt,TRVt,T ] = EP

t [RVt,T ]+CovP
t (mt,T ,RVt,T). (29)

The first termEP
t [RVt,T ] represents the time-series conditional mean of the realized variance. The

second term captures the conditional covariance between the normalized pricing kernel and the realized

variance. The negative of this covariance defines the return variancerisk premium.

Dividing both sides of (29) bySWt,T , we can also represent the decomposition in excess returns:

1 = EP
t

[
mt,T

RVt,T

SWt,T

]
= EP

t

[
RVt,T

SWt,T

]
+CovP

t (mt,T ,
RVt,T

SWt,T
). (30)

If we regardSWt,T as the forward cost of our investment,(RVt,T/SWt,T −1) captures the excess return

from going long the variance swap. The negative of the covariance termin equation (30) represents the

variance risk premium in terms of the excess return. Based on the decompositions in equations (29) and

(30), we analyze the behavior of the variance risk premia. We also test several forms of the expectation

hypothesis on the variance risk premia.

Using the volatility swap rate, we can analogously define the volatility risk premiumand analyze

its empirical properties. We have done so. The results are qualitatively similarto the results on the

variance risk premia. We only report the results on the variance risk premiain this paper to avoid

repetition.
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4.1. The average magnitude of the variance risk premia

From equation (29), a direct estimate of the average variance risk premiumis the sample average

of the difference between the variance swap rate and the realized variance, RPt,T ≡ RVt,T −SWt,T .

This difference also measures the terminal capital gain from going long on avariance swap contract.

From equation (30), we can also compute an average risk premia in excessreturn form by computing

the average excess return of a long swap position. To make the distribution closer to normality, we

represent the excess return in continuously compounded form and label it as the log variance risk

premium,LRPt ≡ ln(RVt,V/SWt,T).

The most basic form of the expectation hypothesis is to assume zero variance risk premium. There-

fore, the null hypothesis is:RPt,T = 0 andLRPt,T = 0. We empirically investigate whether the average

(log) variance risk premium is significantly different from zero.

4.2. Expectation hypothesis on constant variance risk premia

A weaker version of the expectation hypothesis is to assume that the variance risk premium is

constant or independent of the variance swap rate. Then, we can runthe following regressions to test

the hypothesis:

RVt,T = a+bSWt,T +et,T , (31)

lnRVt,T = a+b lnSWt,T +et,T . (32)

The null hypothesis underlying equation (31) is thatRPt,T is constant or independent of the variance

swap rate. Under this null hypothesis, the slope estimateb should be one. The null hypothesis under-

lying equation (32) is that the log variance risk premiaLRPt,T is constant or independent of the log

variance swap rate. The null value of the slope estimate is also one. Under the null hypothesis of zero

risk premia, the intercepts of the two regressions should be zero. Therefore, tests of these expectation

hypotheses amount to tests of the null hypotheses:a = 0 andb = 1 for the two regressions.
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4.3. Hypothesis on the link between the variance risk premia and variance of volatility

The existence of nonzero variance risk premia hinges on the existence ofrandomness in volatility.

In a world where return variances are constant, no risk and hence no premium would exist on volatil-

ity. We hypothesize that the magnitude of the variance risk premium is positivelycorrelated with the

magnitude of the uncertainty in the return volatility.

Remark 1 proposes an observable measure for the uncertainty in return volatility. The difference

between the variance swap rate and the volatility swap rate squared measures the variance of the return

volatility under the risk-neutral measure. Therefore, we can run the following regression:

ln(RVt,T/SWt,T) = a+b(SWt,T −VS2
t,T)+e, (33)

and test whether the slope coefficient differs from zero.

4.4. Expectation hypothesis under the Heston model

To illustrate the economic intuition behind the average variance risk premia and the expectation

hypothesis regression slope estimates, we go through a simple example basedon the stochastic volatility

model of Heston (1993). This model assumes that the instantaneous returnvariance,vt , follows a

square-root process under the risk-neutral measureQ:

dvt = κ(θ−vt)dt+σv
√

vtdZt , (34)

whereZt denotes a standard Brownian motion,θ is the long-run mean instantaneous variance rate,κ is

the mean-reversion speed, andσv is a parameter governing the instantaneous volatility of variance.
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A common assumption for the square-root model is that the market price of risk due to shocks in the

Brownian motionZ is proportional to the diffusion component of the instantaneous variance process:2

γ(vt) = γσv
√

vt . (35)

In words, a zero cost portfolio with unit exposure to the incrementdZt would be expected to change

in value as compensation for uncertainty in the realization ofZ. Under the statistical measureP, the

assumed absolute appreciation rate for this portfolio isγσv
√

vt per unit time, whereγ is real and possibly

negative.

Under assumption (35), Girsanov’s theorem implies that the diffusion of thevt process remains the

same under the statistical measureP, but the drift ofvt changes to the following,

µ(vt) = κ(θ−vt)+ γσ2
vvt = κP(

θP−vt
)
, (36)

which remains affine in the instantaneous variance ratevt . TheP-long-run mean and the mean-reversion

speed are

θP =
κ

κ− γσ2
v

θ, κP = κ− γσ2
v. (37)

When the market price ofZ risk is positive (γ > 0), the long-run mean of the variance rate under the

statistical measureP, θP, becomes larger than the long-run meanθ under the risk-neutral measureQ.

The mean-reversion speedκP under measureP becomes smaller (slower). The opposite is true when

the market price ofZ risk is negative.

2Examples of square-root stochastic volatility models with proportional market price of risk include Pan (2002) and Eraker

(2003). Many term structure models also assume proportional marketprice of risk on square-root factors. Examples include

Cox, Ingersoll, and Ross (1985), Duffie and Singleton (1997), Roberds and Whiteman (1999), Backus, Foresi, Mozumdar,

and Wu (2001), and Dai and Singleton, (2000, 2002).
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Assuming the square-root process in (34) and the proportional marketprice ofZ risk in (35), we

can derive the conditional expected value of the realized aggregate variance under the two measures:

SWt,T ≡ E
Q
t [RVt,T ] = θ+

1−e−κ(T−t)

κ(T − t)
(vt −θ) , (38)

EP
t [RVt,T ] = θP +

1−e−κP(T−t)

κP(T − t)

(
vt −θP)

. (39)

Both are affine in the current level of the instantaneous variance ratevt . Therefore, the conditional vari-

ance risk premium as measured by the difference between the two expectedvalues,RPt = EP
t [RVt,T ]−

E
Q
t [RVt,T ], is also affine invt and is hence also given by a stochastic process.

The long-run mean ofvt is θP andθ under measuresP andQ, respectively. The unconditional mean

of the variance risk premium under measureP is equal to:

EP[RPt ] = EP[RVt,T −SWt,T ] = θP−
[

θ+
1−e−κ(T−t)

κ(T − t)

(
θP−θ

)
]

=

[
1− 1−e−κ(T−t)

κ(T − t)

]
γσ2

v

κ− γσ2
v

θ. (40)

Therefore, the average variance risk premium is positive when the market price ofZ risk γ is positive

and negative when the market price ofZ risk γ is negative. The average risk premium becomes zero

whenγ = 0.

Now we consider the expectation hypothesis regression:

RVt,T = a+bSWt,T +e. (41)

The missing variable in the expectation regression is the variance risk premium,RPt , which is affine in

vt . Since the swap rateSWt,T is also affine invt , the missing risk premium in the regression is correlated

with the regressor. Thus, the slope estimate forb will deviate from its null value of one.

From equations (38) and (39), we can derive the population value for the regression slope:

b =
CovP

(
EP

t [RVt,T ] ,SWt,T
)

VarP (SWt,T)
=

κ
(

1−e−κP(T−t)
)

κP
(
1−e−κ(T−t)

) , (42)
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whereVarP(·) andCovP(·, ·) denote variance and covariance under measureP, respectively. The slope

is equal to the null value of one only whenκ = κP. To see exactly how the slope deviates from the null

value, we Taylor expand the two exponential functions up to second order and obtain:

b =
κ
(

1−e−κP(T−t)
)

κP
(
1−e−κ(T−t)

) .
=

1− 1
2κP(T − t))

1− 1
2κ(T − t)

. (43)

Therefore, the slope is less than one whenκP > κ, or whenγ < 0. The slope is greater than one when

κP < κ, or γ > 0.

The relation becomes complicated when the regression is on log variance. Taylor expanding the

logarithms ofSWt,T andEP
t [RVt,T ] around their respective long-run means generates the following first-

order approximations:

lnSWt,T
.
= lnθ+

1−e−κ(T−t)

θκ(T − t)
(vt −θ) , (44)

lnEP
t [RVt,T ]

.
= lnθP +

1−e−κP(T−t)

θPκP(T − t)

(
vt −θP)

. (45)

The regression slope on the log variances is approximately,

b =
CovP

(
lnEP

t [RVt,T ] , lnSWt,T
)

VarP (lnSWt,T)

.
=

θ
(
1− 1

2κP(T − t))
)

θP
(
1− 1

2κ(T − t)
) . (46)

Whether this slope is greater or less than the null value of one becomes ambiguous. For example, when

γ > 0, we haveθ < θP, but
(
1− 1

2κP(T − t))
)
>

(
1− 1

2κ(T − t)
)
. The two conflicting impacts generate

ambiguous regression slopes that will depend on the exact value of the model parameters.

Finally, under the Heston model with proportional market price ofZ risk, the variance risk premium

is proportional to the instantaneous variance rate. Therefore, any other variable that is related (and

ideally proportional) to the instantaneous variance rate would also have explanatory power for the risk

premium. Equation (33) proposes to use the risk-neutral variance of return volatility, VarQt
(√

RVt,T
)

as

the explanatory variable. Under the Heston model and the proportional market price of risk assumption,

this conditional variance of volatility is indeed related tovt , but in a complicated nonlinear way. Thus,
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we expect the variable to have some explanatory power for the variance risk premium at least under the

Heston example.

5. Data and Methodologies

Our options data are from OptionMetrics, a financial research and consulting firm specializing in

econometric analysis of the options markets. The “Ivy DB” data set from OptionMetrics is the first

widely-available, up-to-date, and comprehensive source of high-quality historical price and implied

volatility data for the U.S. stock and stock index options markets. The Ivy DB database contains

accurate historical prices of options and their associated underlying instruments, correctly calculated

implied volatilities and option sensitivities, based on closing quotes at the ChicagoBoard of Options

Exchange (CBOE). Our data sample starts from January 1996 and endsin February 2003.

From the data set, we filter out market prices of options on five stock indexes and 35 individ-

ual stocks. We choose these stocks and stock indexes mainly based on thequote availability, which

approximates the stocks’ trading activity. Table 3 provides the list of the fivestock indexes and 35

individual stocks in our sample, as well as the starting and ending dates, thesample length (N), and the

average number of strikes (NK) at the chosen maturities for each stock (index). The list includes op-

tions on the S&P 500 index (SPX), the S&P 100 index (OEX), the Dow Jones Industrial Index (DJX),

and the Nasdaq-100 index (NDX). The index options on SPX, DJX, and NDX are European options

on the spot indexes. The OEX options and options on the other 35 individual stocks and the QQQ (the

Nasdaq-100 tracking stock) are all American options on the underlying spot.

Index options are more active than the individual stock options. On average, more than 20 strikes

are available at the chosen maturity for the S&P index options, but the number ofavailable strikes at

the chosen maturity for individual stock options is mostly within single digits. Therefore, inferences

drawn from the index options data could be more accurate than those drawnfrom the individual stock

options.

The data set includes closing quotes for each option contract (bid and ask) along with Black-Scholes

implied volatilities based on the mid quote. For the European options, implied volatilities are directly
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inferred from the Black-Scholes option pricing formula. For the American options, OptionMetrics

employs a binomial tree approach that takes account of the early exercisepremium. The data set also

includes the interest rate curve and the projected dividend yield.

In parallel with our numerical studies in the previous section, we choose a monthly horizon for

the synthesis of variance swap rates. At each date for each stock or stock index, we choose to the

two nearest maturities, except when the shortest maturity in within eight days,under which scenario

we switch the next two maturities to avoid the potential microstructure effects of the very short-dated

options. We only retain options that have strictly positive bid quotes and where the bid price is strictly

smaller than the ask price.

Analogous to the numerical illustrations, at each maturity, we first linearly interpolate implied

volatilities at different moneyness levels, defined ask ≡ ln(K/F), to obtain a fine grid of implied

volatilities. For moneyness levelsk below the lowest available moneyness level in the market, we use

the implied volatility at the lowest strike price. Fork above the highest available moneyness, we use

the implied volatility at the highest strike. Using this interpolation and extrapolation procedure, we

generate a fine grid of 2,000 implied volatility points with a strike range of±8 standard deviations

from at-the-money. The standard deviation is approximated by the averageimplied volatility.

Given the fine grid of implied volatility quotes,IV , we compute the forward price of a European

option of strikeK and maturityT using the Black (1976) formula,

Θt(K,T)

Bt(T)
=





FtN(d1)−KN(d2) K > Ft

−FtN(−d1)+KN(−d2) K ≤ Ft

, (47)

with

d1 =
ln(Ft/K)+ IV 2(T − t)/2

IV
√

T − t
, d2 = d1− IV

√
T − t. (48)

We can rewrite the initial cost of the approximate replicating portfolio in equation(5) as

E
Q
t [RVt,T ]

.
=

2
T − t

[∫ 0

−∞

(
−e−kN(−d1(k))+N(−d2(k))

)
dk+

∫ ∞

0

(
e−kN(d1(k))−N(−d2(k))

)
dk

]
,

(49)
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with

d1(k) =
−k+ IV 2(k)(T − t)/2

IV (k)
√

T − t
, d2(k) = d1(k)− IV (k)

√
T − t. (50)

Therefore, the value of this portfolio does not depend directly on the spot or forward price of the

underlying, but only on the moneyness levelk and the implied volatility at each moneyness levelk.

Based on the implied volatilities at the two nearest maturities that are no shorter than eight days,

we compute the synthetic variance swap rates at these two maturities. Then, welinearly interpolate

to obtain the variance swap rate at a 30-day horizon. We also linearly interpolate to obtain the at-the-

money implied volatility over a 30-day horizon as an approximation for the volatility swap rate. We

do not extrapolate. When the shortest maturity is over 30 days, we use the variance swap rate and

at-the-money implied volatility at the shortest maturity.

At each day, we also compute the relevant forward priceF of each stock based on the interest

rates, dividend yields, and the spot price level. Then, we match the variance swap rate with an ex-post

annualized realized variance estimate over the next 30 calendar days,

RVt,t+30 =
365
30

30

∑
i=1

(
Ft+i,t+30−Ft+i−1,t+30

Ft+i−1,t+30

)2

, (51)

whereFt,T denotes the time-t forward price with expiry at timeT. The estimation of the ex-post real-

ized variance defined in equation (51) is similar to the way that the floating component of the payoff to

a variance swap contract is calculated in practice. A small difference exists between the return variance

defined in equation (51) and the quadratic variation in (4) due to the difference between daily moni-

toring and continuous monitoring. The forward price has a fixed maturity dateand hence a shrinking

time-to-maturity as calendar time rolls forward. Since the stock prices in the OptionMetrics data set

are not adjusted for stock splits, we manually adjust the stock splits for eachstock in calculating the

realized variance. We have also downloaded stock prices from Bloomberg to check for robustness.

Furthermore, we have also computed alternative realized variances based on spot prices, and based on

demeaned returns. These variations in the definition of the realized variance do not alter our conclu-

sions. We report our results based on the realized variance definition in equation (51).

At each day, we have computed a 30-day variance swap rate, a 30-dayvolatility swap rate, and a

30-day ex-post realized variance (the realized variance from that day to 30 days later). In our analysis,
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we apply the following filters to delete inactive days that occur mainly for individual stock options: (1)

The nearest available maturity must be within 90 days. (2) The actual stock price level must be greater

than one dollar. (3) The number of strikes is at least three at each of the two nearest maturities. For a

stock with active options trading, the most active options are usually the onesthat mature in the current

or next month. Hence, an absence of quotes for these short-term options is an indication of inactivity.

Furthermore, since a stock will be delisted from the stock exchange if the stock price stays below one

dollar for a period of time, options trading on such penny stocks are normallyvery inactive. The last

filter on the number of strikes at each maturity is needed to accurately estimate thevariance swap rate.

None of these filters are binding for the S&P 500 and 100 index options.

Table 4 reports the summary statistics for the realized variance (RV), the synthetic variance swap

rate (SW), and the synthetic volatility swap rate (VS). For ease of comparison, we represent all three

series in percentage volatility units. Of the three series, the average value of the realized variance is the

lowest, and the variance swap rate is the highest, with the volatility swap rate in themiddle. All three

rates exhibit positive skewness and positive excess kurtosis for most stocks and stock indexes.

6. The Behavior of Variance Risk Premia

In this section, we empirically investigate the behavior of the variance risk premia. First, we es-

tablish the existence, sign, and average magnitude of the variance risk premia. Then, we investigate

whether the classical capital asset pricing theory (CAPM) and Fama-French market factors can fully

account for the premia. Finally, we analyze the dynamic properties of the risk premia using the various

expectation hypotheses formulated in Section 4.

6.1. Do investors price variance risk?

If investors price the variance risk, we expect to see a difference between the sample averages of the

realized variance and the variance swap rate. Table 5 reports the summarystatistics of the difference

between the realized variance and the variance swap rate,RP= 100× (RVt,T −SWt,T), in the left panel

and the log differenceLRP= ln(RVt,T/SWt,T) in the right panel. We labelRP as the variance risk
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premia andLRP the log variance risk premia. The variance risk premiaRP show large kurtosis and

sometimes also large skewness. The skewness and kurtosis are much smallerfor the log variance risk

premiaLRP.

The mean (log) variance risk premia are negative for all of the stock indexes and for most of the

individual stocks. To test its statistical significance, we construct at-statistic for the risk premia,

t-stat =
√

Nµj/σ j , j = RP,LRP, (52)

whereN denotes the sample length,µ denotes the sample average, andσ denotes the Newey and

West (1987) serial-dependence adjusted standard error, computed with a lag of 30 days. We report the

estimatedt-values in Table 5. The largestt-statistics come from the S&P 500 and S&P 100 indexes and

the Dow Jones Industrial Average, which are strongly significant for both variance risk premia and log

variance risk premia. The Nasdaq-100 index and its tracking stock generatet-statistics that are much

lower. Thet-statistics on the two Nasdaq indexes are not statistically significant for the variance risk

premiaRP, albeit significant for the log variance risk premiaLRP.

The t-statistics on the log variance risk premia are also negative for most of the individual stocks,

but the magnitudes are smaller than that for the S&P indexes. The mean log variance risk premia are

significantly negative for 21 of the 35 individual stocks. However, the mean variance risk premia (RP)

are insignificant for all but three of the 35 individual stocks.

If an investor creates the fixed part of the variance swap payoff by purchasing at timet the proper

portfolio of options with expiry dateT and then dynamically trading futures, the initial cost of this

trading strategy is given byBt(T)SWt and the terminal payoff of this strategy at timeT is the realized

varianceRVt,T . Therefore, the log risk premiumLRP= ln(RVt,T/SWt,T) captures the continuously

compounded excess return to such a trading strategy. The mean values ofLRP in Table 5 show that

on average, the investors are willing to accept a negative excess returnfor this investment strategy,

especially on the S&P and Dow indexes. This excess return is over−50 percent per month for the

two S&P 500 indexes and for Dow Jones. Therefore, we conclude that investors price heavily the

uncertainty in the variance of the S&P and Dow indexes.
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However, the average variance risk premia on the Nasdaq-100 index and the individual stocks are

much smaller. The average capital gains from going long the variance swapcontract (RP) are mostly

insignificant for Nasdaq-100 index and individual stocks. Thus, we conjecture that the market does

not price all return variance variation in each single stock, but only prices the variance risk in the

stock market portfolio. Based on this hypothesis, the average variance risk premium on each stock is

not proportional to the total variation of the return variance, but proportional to the covariation of the

return variance with the market portfolio return variance. To test this hypothesis, we use the realized

variance on S&P 500 index return as the market portfolio variance, and estimate the “variance beta” as

βV
j = Cov(RVj ,RVSPX)/Var(RVSPX), j = 1, · · · ,40, (53)

where the variance and covariance are measured using the common sample of the two realized variance

series. Then, we expect the average variance risk premium on each stock j (LRPj ) is positive related to

its variance beta. The regression estimates are as follows,

LRPj = 0.0201 + 0.2675 βV
j +e, R2 = 15.9%,

(0.34) (2.72)
(54)

with t-statistics reported in the parentheses below the estimates. The slope estimate is statistically

significant and positive at 95 confidence level. Here, we estimate both the variance risk premia and the

variance beta using log variance. Figure 1 plots the scatter plot of this regression, from which we also

observe an apparent positive relation. Thus, the market charges premium not on the total variance risk

for each stock, but on its covariance with a common variance risk factor.

Given the large magnitudes of the variance risk premia on S&P and Dow indexes, it is natural

to investigate whether shorting variance swaps on these indexes constitutesan attractive investment

strategy. To answer this question, we measure the annualized information ratio for a short position in a

variance swap. Figure 2 plots the information ratio estimates. The left panel plots the raw information

ratio, defined as the mean excess log return over its standard deviation, scaled by
√

12 for annualization.

The standard deviation is the simple sample estimate on the overlapping daily data. In the right panel,

we adjust the standard deviation calculation for serial dependence following Newey and West (1987)

with 30 lags.
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By going short the variance swap contracts on the S&P and Dow indexes, we obtain very high

raw information ratios (over three). After adjusting for serial dependence, the Sharpe ratios are still

higher than an average stock portfolio investment. Nevertheless, given the nonlinear payoff structure,

caution should be applied when interpreting Sharpe ratios on derivative trading strategies (Goetzmann,

Ingersoll Jr., Spiegel, and Welch (2002)).

Overall, we find that the market prices heavily the uncertainties in the return variance of the S&P

and Dow indexes. The variance risk premia on the Nasdaq index and on individual stocks are smaller.

The negative sign of the variance risk premia implies that investors are willing topay a premium, or

receive a return lower than the riskfree rate, to hedge away upward movements in the return variance of

the stock indexes. In other words, investors regard market volatility increases as extremely unfavorable

shocks to the investment opportunity and demand a heavy premium for bearing such shocks.

6.2. Can we explain the variance risk premia with classical riskfactors?

The variance risk premia are strongly negative for S&P and Dow indexes.The classical capital

asset pricing theory (CAPM) argues that the expected excess return on an asset is proportional to the

beta of the asset, or the covariance of the asset return with the market portfolio return. Qualitatively, the

negative excess return on the variance swap contract on the stock indexes is consistent with the CAPM,

given the well-documented negative correlation between the index returnsand index volatility.3 If

investors go long stocks on average and if realized variance is negatively correlated with index returns,

the payoff to the long side of a variance swap is attractive as it acts as insurance against an index

decline. Therefore, investors are willing to receive a negative excessreturn for this insurance property.

Can this negative correlation fully account for the negative variance risk premia? To answer this

question, we estimate the following regressions,

lnRVt,T/SWt,T = α+β j ERm
t,T +e, (55)

3Black (1976) first documented this phenomenon and attributed it to the “leverage effect.” Various other explanations have

also been proposed in the literature, e.g., Haugen, Talmor, and Torous (1991), Campbell and Hentschel (1992), Campbell and

Kyle (1993), and Bekaert and Wu (2000).
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for the five stock indexes and 35 individual stocks. In equation (55),ERm denotes the excess return

on the market portfolio. Given the negative correlation between the index return and index return

volatility, we expect that the beta estimates are negative for at least the stockindexes. Furthermore,

if the CAPM fully accounts for the variance risk premia, the intercept of the regressionα should be

zero. This intercept represents the average excess return of a market-neutral investment strategy that

goes long one unit of the variance swap and shortβ units of the market portfolio. Under CAPM, all

market-neutral investment strategies should generate zero expected excess returns.

To estimate the relation in equation (55), we consider two proxies for the excess return to the market

portfolio. First, we use the S&P 500 index to proxy for the market portfolio and compute the excess

return based on the forward price on the index,

ERm
t,T = lnSm

T /Fm
t,T . (56)

Since we have already constructed the forward price on S&P 500 index when we construct the time

series on the realized variance, we can readily obtain a daily series of the excess returns (ERm) that

match the variance data series.

Our second proxy is the value-weighted return on all NYSE, AMEX, and NASDAQ stocks (from

CRSP) minus the one-month Treasury bill rate (from Ibbotson Associates). This excess return is pub-

licly available at Kenneth French’s data library on the web.4 The data are monthly. The sample period

that matches our options data is from January 1996 to December 2002.

We estimate the regressions using the generalized methods of moments (GMM), with the weighting

matrix computed according to Newey and West (1987) with 30 lags for the overlapping daily series and

six lags for the non-overlapping monthly series.

Table 6 reports the estimates (andt-statistics in parentheses) on the CAPM relation. The results

using the daily series on S&P 500 index and the monthly series on the valued-weighted market portfolio

are similar. Theβ estimates are strongly negative for all the stock indexes and most of the individual

stocks. Theβ estimates are the most negative for S&P and the Dow indexes. These negative estimates

4The web address is:http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
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are consistent with the vast empirical literature that documents a negative correlation between stock

index returns and return volatility. The negative beta estimates are also consistent with the average

negative variance risk premia observed the most strongly on S&P and Dow indexes.

Nevertheless, the interceptα estimates remain strongly negative, especially for the S&P and Dow

indexes, implying that the negative beta cannot fully account for the observed negative variance risk

premia. Indeed, the estimates forα are not much smaller than the mean variance risk premia reported

in Table 5, indicating that theβ risk does not tell the full story of the variance risk premia. The results

call for additional risk factors.

Fama and French (1993) identify two additional risk factors in the stock market that are related to

the firm size (SMB) and book-to-market value (HML), respectively. We investigate whether these addi-

tional common risk factors help explain the variance risk premia. We estimate the following relations

on the five stock indexes and 35 individual stocks,

lnRVt,T/SWt,T = α+βERm
t,T +sSMBt,T +hHMLt,T +e. (57)

Data on all three risk factors are available on Kenneth French’s data library. We refer the interested

readers to Fama and French (1993) for details on the definition and construction of these common

risk factors. The sample period that overlaps with our options data is monthly from January 1996 to

December 2002. Again,ERm denotes the excess return to the market portfolio. Furthermore, bothSMB

andHML are in terms of excess returns on zero-cost portfolios. Therefore, the interceptα represents

the expected excess return on an investment that goes long one unit of thevariance swap contract, short

β of the market portfolio,sof the size portfolio, andh of the book-to-market portfolio. This investment

strategy is neutral to all three common risk factors.

We use GMM to estimate the relation in (57), with the weighting matrix constructed following

Newey and West (1987) with six lags. Table 7 reports the parameter estimatesand t-statistics. The

intercept estimates for the indexes remain strongly negative, the magnitudes only slightly smaller than

the average variance risk premia reported in Table 5. Therefore, the Fama-French risk factors can only

explain a small portion of the variance risk premia.
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In the joint regression, both the market portfolioERm and the size portfolioSMBgenerate signif-

icantly negative loadings, indicating that the return variance is not only negatively correlated with the

index returns but also negatively correlated with theSMBfactor. Hence, going long the variance swap

contract also serves as an insurance against theSMB factor going up. The loading estimates on the

HML factor are mostly insignificant.

Fama and French (1993) also consider two bond-market factors, related to maturity (TERM) and

default (DEF) risks. Furthermore, Jegadeesh and Titman (1993) identify a momentum phenomenon

that past winner often continue to outperform past losers. Later studies, e.g., Rouwenhorst (1998,

1999) and Jegadeesh and Titman (2001), have confirmed the robustness of the results. We construct the

TERMandDEF factors using Treasury and corporate yield data from the Federal Reserve Statistical

Release. Kenneth French’s data library also provides a momentum factor (UMD) similar to that from

Carhart (1997). However, single-factor marginal regressions on these three factors show that none

of these three factors have a significant loading on the variance risk premia. Therefore, they cannot

explain the variance risk premia, either.

The bottom line story here is that neither the original capital asset pricing model nor the Fama-

French factors can fully account for the negative variance risk premiaon the stock indexes. Therefore,

either there exist a large inefficiency in the market for index variance or else the majority of the vari-

ance risk is generated by an independent risk factor that the market prices heavily. Investors are willing

to receive a negative excess return to hedge against market volatility going up, not only because mar-

ket volatility movement is negatively correlated with stock market portfolio return, but also because

investors regard market volatility hikes by themselves as unfavorable shocks and demand a high com-

pensation for bearing such shocks.

We leave the study of economic foundations for the negative variance riskpremia for future re-

search. Here, we propose several potential reasons for the negative premia. We consider the holding of

the market portfolio of stocks. With the same expected return, the increase inreturn variance implies

an decline in performance in terms of the information ratio. Hence, one way to guarantee a minimum

performance is to buy options to hedge against return variance increases. The fact that shorting the

variance swap contract generates high information ratios indicates that thehigh negative premia are not

justified based purely on the information ratio measure. Nevertheless, goinglong the variance swap
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contrast is also an effective strategy to hedge against the risks associated with the random arrival of

discontinuous price movements. These risks are not well measured by the information ratio. Further-

more, considerations on meeting value-at-risk requirements and preventingshortfalls and draw-downs

also make long variance swap an attractive strategy that could generate negative variance risk premia.

6.3. Are variance risk premia constant?

To understand the dynamic behavior of the variance risk premia, we run thefollowing two expectation-

hypothesis regressions,

RVt,T = a+bSWt,T +e, (58)

lnRVt,T = a+b lnSWt,T +e. (59)

Under the null hypothesis of constant variance risk premia, the slope estimate for equation (58) should

be one. Under the null hypothesis of constant log variance risk premia, the slope estimate for equation

(59) should be one. We estimate the regressions using the generalized methodof moments (GMM),

with the weighting matrix computed according to Newey and West (1987) with 30 lags to account for

the overlapping sample.

Table 8 reports the estimates andt-statistics under the null hypothesis ofa= 0,b= 1. The columns

on the left side summarize the estimation results on equation (58). All of the slopeestimates are

positive, but many of them are lower than one. Thet-statistics show that over half of the stock indexes

and individual stocks generate regression slopes that are significantlylower than the null value of one.

Our previous analysis shows that under the Heston (1993) stochastic volatility model, these lower-than-

one slope estimates lend support to negative market price of variance risk(equation (43)).

The columns on the right side of Table 8 report the estimation results on equation (59) based on

log variances. For all the stock indexes and 24 of the 35 individual stocks, the slope estimates are no

longer significantly different from one at the 95 confidence level.

The difference between the slope estimates of the two regressions indicatesthat the risk premia

defined in log returns is closer to a constant or independent series than the risk premia defined in level
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differences. The Heston (1993) stochastic volatility model with a negativelyproportional market price

of risk can qualitatively match the results on these two regressions.

6.4. Do variance risk premia increase with variance risk?

Variance risk premia arise as compensation for bearing the uncertainty in return variance. When

going shorting a variance swap contract, the investor receives a positive average premium as a compen-

sation for bearing the risk of facing market volatility going up.

We hypothesize that the absolute magnitude of the variance risk premia increases with the riskiness

in the return volatility. To test this hypothesis, we use GMM to estimate the following relations on the

five stock indexes and 35 stocks,

ln(SWt,T/RVt,T) = a+b
(
SWt,T −VS2

t,T

)
+e, (60)

ln(SWt,T/RVt,T) = a+bln
(
SWt,T/VS2

t,T

)
+e. (61)

The left hand side of the two equations represents the log excess returnsto the investor who goes short

a variance swap. The right hand side measures the difference betweenthe variance swap rate and

the volatility swap rate, which captures the variance of return volatility. We usethis difference as a

measure of the riskiness in return volatility. In equation (61), we use the log difference to replace the

level difference to obtain better distributional properties.

Table 9 reports the estimation results. Consistent with our hypothesis, the slope estimates are

predominantly positive for most stocks and stock indexes. Thet-statistics of the slope estimates show

that the S&P and Dow indexes, as well as many individual stocks, generateslopes that are significantly

positive. Therefore, the absolute magnitude of the variance risk premia increases with the riskiness in

return volatility, as measured by the risk-neutral conditional variance of the return volatility.

Given the explanatory power of the variance of volatility on the variance risk premia, we further

hypothesize that if we control for the variance of volatility in the expectation-hypothesis regression as

follows,

lnRVt,T = a+b lnSWt,T +c ln
(
SWt,T/VS2

t,T

)
+e, (62)

36



the slope estimate forb would become closer to its null hypothesis value of one. We choose to use the

log difference ln
(
SWt,T/VS2

t,T

)
instead of the level difference for better distributional properties.

Table 10 reports the GMM estimation results. Consistent with our hypothesis, the estimates for

b become closer to one than in the case without controlling for variance of volatility. The t-statistics

suggest that for all the stock indexes and all but five of the individual stocks, the estimates forb are not

significantly different from its null value of one.

7. Conclusion

In this paper, we propose a direct and robust method to quantify the variance risk premia on financial

assets underlying options. Our method uses the notion of a variance swap,which is an over-the-counter

contract that pays the difference between a standard estimate of the realized variance and the fixed swap

rate. Since variance swaps cost zero to enter, the variance swap rate represents the risk-neutral expected

value of the realized return variance. We theoretically and numerically showthat the variance swap rate

is well approximated by a particular linear combination of option prices. Hence, the difference between

the ex-post realized variance and this synthetic variance swap rate quantifies the variance risk premium.

Using a large options data set, we synthesize variance swap rates and analyze variance risk premia on

five stock indexes and 35 individual stocks.

We find that the variance risk premia are strongly negative for the S&P 500 and 100 indexes and for

the Dow Jones Industrial Average. The magnitude of the premia are smaller for the Nasdaq 100 index

and for individual stocks. Investors are willing to pay a large premium, or receive a negative excess

return, to take the long option position implicit in a long variance swap. The net effect of doing so is to

hedge against market volatility going up. The negative risk premia imply that investors regard market

volatility going up as unfavorable shocks.

We investigate whether the classical capital asset pricing theory can explain the negative variance

risk premia. We find that the well-documented negative correlation between index returns and volatility

generates a strongly negative beta, but this negative beta can only explain a small portion of the negative

variance risk premia. The Fama-French factors cannot account for the strongly negative variance risk
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premia, either. Therefore, we conclude that either there is a large inefficiency in the market for index

variance or else the majority of the variance risk is generated by an independent risk factor that the

market prices heavily.

To analyze the dynamic properties of the variance risk premia, we formulate various forms of

expectation-hypothesis regressions. When we regress the realized variance on the variance swap rate,

we obtain slope estimates that are all positive, but mostly significantly lower thanone, the null value

under the hypothesis of constant or independent variance risk premia.The slope estimates become

closer to one when the regression is on the logarithm of variance. These regression results indicate that

although the log variance risk premia are strongly negative, they are not that strongly correlated with

the expected log variance.

Like variance swaps, volatility swaps also trade over the counter and may besynthesized by trading

in options. The difference between the variance swap rate and the square of the volatility swap rate

measures the risk-neutral variance of volatility. Since we can readily synthesize both variance swap

rates and volatility swap rates, this risk-neutral variance of volatility is easily and robustly determined

from option prices. We regress the negative of the variance risk premia against this estimate of variance

of volatility and find that the slope estimates are mostly positive. This result confirms our hypothesis

that the variance risk premia become more negative when the variance of volatility is high.

When we use the log of variance and control for the variance of volatility in the expectation hy-

pothesis regression, the regression slope estimates on the variance swaprate are no longer significantly

different from the null value of one for all the five stock indexes and for all but five of the individual

stocks. Hence, an observed relative increase in the variance swap rate is on average associated with a

subsequent relative increase in realized variance of the same size, once we control for the variance of

volatility.

The simple and robust method that we propose to measure the risk-neutral expected value of return

variance and variance risk premium opens fertile ground for future research. On top of our research

agenda is to understand the dynamics of return variance and the economic meanings of the variance

risk premia. In particular, given the predominant evidence on stochastic variance and strongly negative

variance risk premia, it is important to understand the pricing kernel behavior as a function of both the
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market portfolio returns and return variances. Recent studies, e.g., Jackwerth (2000) and Engle and

Rosenberg (2002) have found some puzzling behaviors on the pricing kernel projected on the equity

index return alone. Accurately estimating the pricing kernel as a joint function of the index return and

return variance represents a challenging task, but accomplishing this taskcan prove to be very fruitful

not only for understanding the behavior of the variance risk premia, butalso for resolving the puzzling

behaviors observed on the pricing kernels projected on the index returnalone.

The empirical analysis in this paper focuses on the variance swap rate over a fixed 30-day horizon.

Since we observe option prices at many different maturities, we can construct variance swap rates at

these different maturities and construct a term structure of variance swap rates at each day. An impor-

tant line for future research is to design and estimate stochastic return variance models to capture the

dynamics of the term structure. The key advantage of doing so is that we can gain a better understanding

of the return variance dynamics without the interference from the return innovation specification.
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Appendix A. Approximating the Volatility Swap Rate

Most of the results in this appendix are from Carr and Lee (2003a). We provide them here for completeness.

Carr and Lee assume the followingQ-dynamics for the futures priceFt ,

dFt/Ft = σtdWt . (A1)

Compared to equation (3), they make the extra assumption of no jumps. They further restrict the diffusion

volatility σt to be independent of the Brownian motionWt .

Under these assumptions, Hull and White (1987) show that the value of a call option equals the risk-neutral

expected value of the Black-Scholes formula value, considered as a function of the random realized volatility. In

the special case when the call is at-the-money (K = F), the time-t value of a European call option maturing at

timeT becomes,

ATMCt,T = Bt(T)EQ
t

{
Ft

[
N

(√
RVt,T(T − t)

2

)
−N

(
−

√
RVt,T(T − t)

2

)]}
, (A2)

whereRVt,T is the random annualized realized return variance over the time period[t,T],

RVt,T ≡ 1
T − t

∫ T

t
σ2

sds. (A3)

As first shown in Brenner and Subrahmanyam (1988), a Taylor series expansion of each normal distribution

function in (A2) around zero generates,

N

(√
RVt,T(T − t)

2

)
−N

(
−

√
RVt,T(T − t)

2

)
=

√
RVt,T(T − t)√

2π
+O((T − t)

3
2 ). (A4)

Substituting (A4) in (A2) implies that:

ATMCt,T = Bt(T)EQ
t

[
Ft√
2π

√
RVt,T(T − t)+O((T − t)

3
2 )

]
, (A5)

and hence the volatility swap rate is given by:

VSt,T = E
Q
t

√
RVt,T =

√
2π

Bt(T)Ft
√

T − t
ATMCt,T +O((T − t)

3
2 ). (A6)
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Since an at-the-money call is concave in volatility,
√

2π
Bt (T)Ft

√
T−t

ATMCt,T is a slightly downward biased approx-

imation of the volatility swap rate. As a result, the coefficient on(T − t)
3
2 is positive. However, Brenner and

Subrahmanyam show that the at-the-money implied volatility (ATMV) is also given by:

ATMVt,T =

√
2π

Bt(T)Ft
√

T − t
ATMCt,T +O((T − t)

3
2 ). (A7)

Once again,
√

2π
Bt (T)Ft

√
T−t

ATMCt,T is a slightly downward biased approximation of the at-the-money implied

volatility and hence the coefficient on(T − t)
3
2 is positive. Subtracting equation (A7) from (A7) shows that

the volatility swap rate can be approximated by the at-the-money implied volatility,

VSt,T = ATMVt,T +O((T − t)
3
2 ). (A8)

In fact, the leading source of error in (A6) is partially cancelled by the leading source of error in (A7). As a

result, this approximation has been found to be extremely accurate. The shorter the time to maturity, the better

the approximation.

Appendix B. Approximating the Volatility Swap Rate

This appendix follows from an appendix in Carr and Lee (2003b). Let Γ(α) ≡ ∫ ∞
0 tα−1e−tdt be the gamma

function withα a positive real number. Then, it is well known that

√
π = Γ(

1
2
) =

∫ ∞

0

e−t
√

t
dt. (B9)

Consider the change of variabless= t/q for q > 0, we havet = sq,dt = qds, and

√
π =

√
q

∫ ∞

0

e−sq
√

s
ds, (B10)

from which we obtain one representation for
√

q:

√
q =

√
π

∫ ∞
0

e−sq√
s ds

. (B11)

41



Another representation is obtained by integrating (B10) byparts. Let

u = 1√
t
, dv= e−tdt

du= − 1
2t3/2 dt, v = 1−e−t .

Hence,
√

π =
1−e−t
√

t

∣∣∣∣
t=∞

t=0
+

1
2

∫ ∞

0

1−e−t

t3/2
dt =

1
2

∫ ∞

0

1−e−t

t3/2
dt. (B12)

Again, consider the change of variabless= t/q for q > 0,

√
π =

1
2

∫ ∞

0

1−e−sq

(sq)3/2
qds=

1
2
√

q

∫ ∞

0

1−e−sq

(s)3/2
dt, (B13)

from which we can solve for
√

q as
√

q =
1

2
√

π

∫ ∞

0

1−e−sq

s3/2
ds. (B14)
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Fig. 1. The beta on the common variance risk factor and variance risk premium. Circles are a scatter
plot of the average log variance risk premia on each stock against its beta loading on the S&P 500 index
realized variance, defined as the ratio of the covariance of the realized variance on the stock and the
realized return variance on S&P 500 index to the variance of the realized return variance on S&P 500
index. The covariance and variance are on log realized return variances.
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Fig. 2. Information ratios from short variance swap investments. We define the raw information ratios
in the left panel as the sample mean excess log return over its sample standarddeviation, scaled by

√
12

for annualization. In the right panel, we use the Newey-West standard deviation with 30 lags to adjust
for serial dependence.
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Table 1
Model parameters used in the numerical illustration
Under MJDSV,σ =

√
θ.

Model σ λ µj σ j κ σv ρ

BS 0.37
MJD 0.35 0.40 −0.09 0.18
MJDSV 0.35 0.40 −0.09 0.18 1.04 0.90 −0.70

Market Ft = 100, r = 5.6%.
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Table 2
Numerical illustration of the approximation error for variance and volatility swap rates
Entries under the title “Variance Swap” report the expected value of the annualized variance computed
based on the analytical value (EQ[RV]), the synthetic approximation of the annualized variance swap
rate (ŜW) based on five European option implied volatility quotes, and the approximation error of this
synthetic swap rate (Error =EQ[RV]− ŜW). The columnε reports the analytical approximation error
due to the jump component in the asset price process. Entries under the title “Volatility Swap” reports

the square of the expected value of the realized volatility (
[
EQ[

√
RV]

]2
) based on numerical integration,

the at-the-money implied volatility (ATMV2) as an approximation, and the approximation error (Error

=
[
EQ[

√
RV]

]2−ATMV2). Option prices are computed based under three option pricing models with
model parameters listed in Table 1, assuming an 30-day option maturity. For models with stochastic
volatility, the first column denotes the log difference between the current instantaneous variance level
vt and its long-run meanθ.

lnvt/θ Variance Swap Volatility Swap

EQ[RV] ŜW Error ε
[
EQ[

√
RV]

]2
ATMV2 Error

A. Black-Scholes Model

0.0 0.1369 0.1369 0.0000 0.0000 0.1369 0.1369 0.0000

B. Merton Jump-Diffusion Model

0.0 0.1387 0.1366 0.0021 0.0021 0.1306 0.1319 -0.0012

C. MJD-Stochastic Volatility

-3.0 0.0272 0.0273 -0.0001 0.0021 0.0113 0.0125 -0.0012
-2.5 0.0310 0.0313 -0.0003 0.0021 0.0151 0.0162 -0.0011
-2.0 0.0372 0.0376 -0.0004 0.0021 0.0213 0.0225 -0.0011
-1.5 0.0475 0.0477 -0.0001 0.0021 0.0319 0.0331 -0.0012
-1.0 0.0645 0.0637 0.0008 0.0021 0.0494 0.0507 -0.0013
-0.5 0.0925 0.0905 0.0020 0.0021 0.0782 0.0794 -0.0012
0.0 0.1387 0.1356 0.0031 0.0021 0.1254 0.1262 -0.0008
0.5 0.2148 0.2107 0.0041 0.0021 0.2026 0.2024 0.0002
1.0 0.3403 0.3353 0.0051 0.0021 0.3293 0.3273 0.0020
1.5 0.5472 0.5410 0.0062 0.0021 0.5373 0.5323 0.0050
2.0 0.8884 0.8799 0.0085 0.0021 0.8795 0.8697 0.0098
2.5 1.4509 1.4377 0.0132 0.0021 1.4428 1.4253 0.0175
3.0 2.3782 2.3561 0.0221 0.0021 2.3708 2.3410 0.0298
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Table 3
List of stocks and stock indexes used in our study
Entries list the ticker, the starting date, the ending date, the sample length (N), the average number
of available strikes per maturity (NK), and the full name for each of the five stock indexes and 35
individual stocks used in our study.

No. Ticker Starting Date Ending Date N NK Name

1 SPX 04-Jan-1996 28-Feb-2003 1779 26 S&P 500 Index
2 OEX 04-Jan-1996 28-Feb-2003 1780 27 S&P 100 Index
3 DJX 06-Oct-1997 28-Feb-2003 1333 12 Dow Jones Industrial Average
4 NDX 04-Jan-1996 28-Feb-2003 1722 19 Nasdaq 100 Stock Index
5 QQQ 10-Mar-1999 28-Feb-2003 978 22 Nasdaq-100 Index Tracking Stock

6 MSFT 04-Jan-1996 28-Feb-2003 1766 9 Microsoft Corp
7 INTC 04-Jan-1996 28-Feb-2003 1653 8 Intel Corp
8 IBM 04-Jan-1996 28-Feb-2003 1768 9 International Business Machines Corp
9 AMER 04-Jan-1996 28-Feb-2003 1648 9 Nanobac Pharmaceuticals Inc

10 DELL 04-Jan-1996 28-Feb-2003 1650 7 Dell Inc
11 CSCO 04-Jan-1996 28-Feb-2003 1554 7 Cisco Systems Inc
12 GE 04-Jan-1996 28-Feb-2003 1458 6 General Electric Co
13 CPQ 04-Jan-1996 03-May-2002 1272 6 Compaq Computer Corp
14 YHOO 09-Sep-1997 28-Feb-2003 1176 14 Yahoo! Inc
15 SUNW 04-Jan-1996 28-Feb-2003 1395 8 Sun Microsystems Inc
16 MU 04-Jan-1996 28-Feb-2003 1720 8 Micron Technology Inc
17 MO 04-Jan-1996 28-Feb-2003 1474 5 Altria Group Inc
18 AMZN 19-Nov-1997 28-Feb-2003 1078 12 Amazon.Com Inc
19 ORCL 04-Jan-1996 28-Feb-2003 1104 6 Oracle Corp
20 LU 19-Apr-1996 28-Feb-2003 981 7 Lucent Technologies Inc
21 TRV 04-Jan-1996 28-Feb-2003 1279 5 Thousand Trails Inc
22 WCOM 04-Jan-1996 21-Jun-2002 1104 6 WorldCom Inc
23 TYC 05-Jan-1996 28-Feb-2003 979 6 Tyco International Ltd
24 AMAT 04-Jan-1996 28-Feb-2003 1671 8 Applied Materials Inc
25 QCOM 04-Jan-1996 28-Feb-2003 1613 8 Qualcomm Inc
26 TXN 04-Jan-1996 28-Feb-2003 1610 7 Texas Instruments Inc
27 PFE 04-Jan-1996 28-Feb-2003 1420 6 Pfizer Inc
28 MOT 04-Jan-1996 28-Feb-2003 1223 6 Motorola Inc
29 EMC 04-Jan-1996 28-Feb-2003 1188 7 EMC Corp
30 HWP 04-Jan-1996 28-Feb-2003 1395 6 Hewlett-Packward Co
31 AMGN 04-Jan-1996 28-Feb-2003 1478 6 Amgen Inc
32 BRCM 28-Oct-1998 28-Feb-2003 1003 12 Broadcom Corp
33 MER 04-Jan-1996 28-Feb-2003 1542 6 Merill Lynch & Co Inc
34 NOK 04-Jan-1996 28-Feb-2003 1176 6 Nokia OYJ
35 CHL 04-Jan-1996 28-Feb-2003 1422 5 China Mobile Hong KongLtd
36 UNPH 16-Sep-1996 28-Feb-2003 745 12 JDS Uniphase Corp
37 EBAY 01-Feb-1999 28-Feb-2003 1000 12 eBay Inc
38 JNPR 07-Oct-1999 28-Feb-2003 627 15 Juniper Networks Inc
39 CIEN 14-May-1997 28-Feb-2003 998 9 Ciena Corp
40 BRCD 30-Nov-1999 28-Feb-2003 693 10 Brocade Communications Systems Inc
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Table 4
Summary statistics for the realized variance, the variance swap rate, and thevolatility swap rate
Entries report summary statistics for the realized variance RV, the synthetic variance swap rateSW, and the
synthetic volatility swap rate (VS). Columns under Mean, Std, Skew, Kurt report the sample average, standard
deviation, skewness, and excess kurtosis, respectively. For ease of comparison, we represent all three series in
percentage volatility units.

Ticker
√

RV
√

SW VS
Mean Std Skew Kurt Mean Std Skew Kurt Mean Std Skew Kurt

SPX 18.82 7.23 1.20 1.57 24.41 6.21 1.14 2.04 21.28 5.30 1.04 1.54
OEX 19.88 7.67 1.15 1.34 24.61 6.04 1.00 1.16 22.27 5.64 1.08 1.52
DJX 19.67 7.26 1.41 1.69 24.71 5.72 1.30 1.69 22.50 5.02 1.33 1.74

NDX 37.54 16.13 1.18 1.43 40.19 12.57 0.50 -0.68 38.19 12.24 0.57 -0.54
QQQ 44.96 15.50 0.98 0.31 49.47 10.36 0.44 -0.46 47.07 9.95 0.49 -0.36

MSFT 38.31 13.83 1.32 2.04 42.68 10.60 1.56 4.97 39.38 8.81 1.21 1.97
INTC 49.33 18.27 1.44 1.86 48.57 12.46 0.99 0.83 46.42 11.60 0.99 0.89
IBM 36.66 13.07 0.92 0.61 39.72 9.34 1.56 5.34 36.91 7.99 1.131.33

AMER 61.20 19.18 0.44 -0.27 64.98 14.59 0.65 0.33 60.90 13.450.68 0.59
DELL 54.71 17.23 0.93 0.49 59.06 11.87 0.98 1.34 56.00 11.25 0.97 1.45
CSCO 51.36 21.75 1.16 1.17 55.50 15.87 1.14 1.04 52.00 14.94 1.14 1.08

GE 32.64 11.22 1.07 0.89 35.97 9.31 0.63 0.08 33.52 8.39 0.68 0.32
CPQ 52.90 17.40 0.88 0.58 55.20 13.16 1.04 2.22 51.71 12.12 0.84 0.79

YHOO 81.20 25.14 0.33 -0.58 83.22 20.67 1.09 1.43 78.98 18.340.94 0.70
SUNW 57.31 19.67 1.07 0.84 59.05 15.50 1.54 3.38 55.94 14.33 1.44 2.48

MU 72.78 19.26 0.73 0.43 75.28 14.99 0.75 1.20 71.67 13.84 0.53 -0.26
MO 34.46 13.25 0.93 0.86 37.56 10.44 1.08 1.95 35.00 9.34 0.850.54

AMZN 90.32 26.56 -0.00 -0.55 98.65 24.27 0.97 1.05 92.42 21.80 1.02 1.48
ORCL 62.07 22.80 0.94 0.50 65.63 21.85 2.37 9.27 62.92 22.20 2.84 13.18

LU 51.82 21.40 1.68 3.68 52.78 19.17 3.18 21.55 50.21 16.95 2.36 8.51
TRV 41.00 15.99 1.52 2.42 42.04 10.28 1.65 4.54 39.33 9.04 1.55 4.13

WCOM 48.07 19.34 1.26 2.36 49.86 16.33 1.58 3.34 46.81 15.38 1.60 3.48
TYC 50.20 27.24 1.31 1.33 57.27 28.32 2.35 7.09 52.93 24.60 2.50 8.85

AMAT 63.73 18.10 1.03 1.30 66.05 13.77 0.93 0.92 62.91 13.11 0.98 1.31
QCOM 64.93 21.96 0.69 -0.14 68.07 15.50 0.91 0.72 64.62 14.770.92 0.84

TXN 58.10 18.67 0.99 1.13 57.81 14.16 0.76 0.11 54.66 13.02 0.66 -0.10
PFE 34.03 10.36 0.69 0.81 36.62 6.90 0.37 0.25 34.62 6.35 0.300.48

MOT 50.29 19.98 1.21 1.18 50.20 16.11 1.13 1.52 48.21 15.09 1.01 0.93
EMC 60.46 23.20 1.63 2.90 60.17 16.32 1.15 0.92 57.21 15.03 1.17 1.06
HWP 47.60 15.90 0.73 -0.10 48.46 12.10 1.09 1.14 46.45 11.47 0.99 0.40

AMGN 45.91 16.43 0.91 0.77 48.56 13.69 1.02 0.36 45.93 13.05 1.07 0.43
BRCM 91.59 27.08 0.99 0.70 91.71 20.82 0.97 1.16 88.06 18.50 0.88 0.94

MER 46.09 14.21 0.86 0.87 47.70 10.55 0.64 0.97 45.60 10.05 0.81 1.52
NOK 55.31 17.53 0.43 -0.62 55.40 13.57 0.71 1.15 53.82 12.29 0.49 -0.22
CHL 40.74 16.23 1.44 3.29 42.57 13.11 1.39 2.85 40.32 11.82 1.40 3.28

UNPH 86.31 30.43 0.65 0.11 84.05 22.11 0.64 -0.44 80.71 20.080.65 -0.30
EBAY 75.94 33.91 0.56 -0.49 81.24 24.04 0.29 -0.65 77.70 24.09 0.28 -0.65
JNPR 98.83 26.55 0.53 -0.38 104.56 21.27 0.50 -0.28 99.28 19.00 0.52 -0.01
CIEN 92.90 31.58 0.56 -0.21 92.29 24.08 0.23 -0.29 89.40 22.64 0.27 -0.06

BRCD 100.52 30.14 0.45 -0.46 97.88 20.25 0.02 -0.63 94.19 18.56 0.11 -0.46
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Table 5
Summary statistics for variance risk premia
Entries report summary statistics for variance risk premia, defined as the difference between the realized variance
and the variance swap rate in the columns on the left side and as the log difference in the columns on the right
side. Columns under Mean, Std, Skew, Kurt report the sample average, standard deviation, skewness, and excess
kurtosis, respectively. Columns undert report thet-statistics of the mean risk premia. In calculating thet-
statistics, we adjust for serial dependence using the Newey-West standard deviation with a lag of 30 days.

Ticker 100(RV−SW) ln(RV/SW)
Mean Std Skew Kurt t Mean Std Skew Kurt t

SPX -2.279 3.339 -0.597 9.283 -7.194 -0.594 0.567 0.220 0.201 -9.484
OEX -1.889 3.394 0.633 3.533 -5.458 -0.509 0.560 0.383 -0.041 -7.830
DJX -2.039 3.583 0.483 3.622 -5.194 -0.525 0.570 0.660 0.349-7.025

NDX -1.040 10.108 2.043 9.001 -0.944 -0.207 0.455 0.440 0.475 -4.418
QQQ -2.940 12.014 1.059 2.840 -1.815 -0.257 0.451 0.176 0.148 -3.887

MSFT -2.746 11.465 -0.446 28.192 -2.850 -0.277 0.496 0.090 0.594 -5.897
INTC 2.522 18.632 2.117 6.469 1.356 -0.024 0.500 0.618 0.605-0.523
IBM -1.502 10.460 -0.605 19.435 -1.527 -0.232 0.584 -0.009 0.110 -3.901

AMER -3.224 23.125 0.516 1.185 -2.066 -0.173 0.552 -0.094 -0.061 -4.077
DELL -3.391 20.005 0.949 3.330 -1.453 -0.208 0.525 0.223 0.095 -3.330
CSCO -2.216 19.466 1.549 7.230 -1.321 -0.271 0.813 -6.436 71.559 -3.885

GE -1.893 7.005 1.129 4.758 -3.326 -0.237 0.469 0.339 0.304 -5.487
CPQ -1.194 20.799 0.119 5.635 -0.636 -0.136 0.575 0.248 0.213 -2.643

YHOO -1.278 39.162 -0.028 4.412 -0.341 -0.093 0.531 0.123 -0.033 -1.829
SUNW -0.570 19.821 -0.641 16.432 -0.310 -0.108 0.465 0.075 0.424 -2.305

MU -2.242 27.831 0.864 4.592 -0.928 -0.097 0.448 0.241 0.462-2.723
MO -1.563 11.351 0.883 7.130 -1.388 -0.242 0.676 0.305 0.327-3.661

AMZN -14.587 57.757 -0.137 1.898 -1.668 -0.218 0.569 0.161 -0.066 -2.756
ORCL -4.115 44.142 -4.839 34.620 -0.763 -0.151 0.625 -1.8066.914 -2.046

LU -0.105 33.900 -9.996 226.367 -0.047 -0.081 0.518 -0.073 1.199 -1.720
TRV 0.632 15.347 2.624 9.165 0.385 -0.127 0.602 0.925 2.028 -1.869

WCOM -0.680 21.542 1.049 11.827 -0.255 -0.130 0.614 -0.067 -0.287 -1.633
TYC -8.198 47.826 -1.897 19.373 -1.426 -0.346 0.726 0.907 1.171 -3.996

AMAT -1.627 23.865 1.110 4.803 -0.809 -0.106 0.464 0.259 0.423 -2.624
QCOM -1.757 27.014 0.735 1.490 -0.683 -0.158 0.570 -0.193 0.544 -2.700

TXN 1.809 19.425 1.189 4.416 0.961 -0.030 0.456 0.072 0.090 -0.728
PFE -1.236 7.661 1.654 5.759 -1.506 -0.205 0.568 -0.152 1.206 -2.949

MOT 1.484 20.113 -0.689 10.783 0.815 -0.044 0.555 -0.477 0.483 -0.796
EMC 3.068 27.062 2.241 9.447 0.871 -0.046 0.476 0.357 0.163 -0.915
HWP 0.241 14.537 0.465 6.333 0.173 -0.087 0.521 0.214 0.372 -1.656

AMGN -1.679 14.626 0.631 3.782 -1.019 -0.163 0.531 0.078 -0.295 -2.731
BRCM 2.783 48.606 0.635 1.918 0.489 -0.035 0.466 0.178 -0.659 -0.602

MER -0.604 12.541 1.021 2.748 -0.497 -0.112 0.485 0.273 -0.070 -2.507
NOK 1.131 18.978 -0.593 8.818 0.568 -0.047 0.536 0.056 0.628-0.765
CHL -0.606 14.599 2.238 12.212 -0.412 -0.145 0.518 0.298 0.577 -2.674

UNPH 8.221 48.510 0.884 1.940 1.454 -0.006 0.565 -0.328 -0.048 -0.098
EBAY -2.613 45.445 1.458 3.265 -0.403 -0.253 0.566 0.422 0.062 -2.614
JNPR -9.136 51.393 -0.189 0.783 -1.200 -0.144 0.490 -0.581 0.227 -2.060
CIEN 5.299 60.722 0.986 3.740 0.664 -0.032 0.583 0.527 1.491-0.414

BRCD 10.201 56.030 0.747 0.839 1.158 0.007 0.520 -0.219 -0.355 0.089
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Table 6
Explaining variance risk premia with CAPM beta
Entries report the GMM estimates (andt-statistics in parentheses) of the following relation,

lnRVt,T/SWt,T = α+β j ERm
t,T +e,

whereERm denotes the excess return on the market portfolio, which is proxyed by the return on the S&P 500
index forward in the left panel and the excess return on the CRSP valued-weighted stock portfolio in the right
panel. Thet-statistics are computed according to Newey and West (1987)with 30 lags for the overlapping daily
series in the left panel and six lags for the non-overlappingmonthly series in the right panel. The columns under
“R2” report the unadjusted R-squared of the regression.

Proxy S&P 500 Index Valued-Weighted Market Portfolio
α β R2 α β R2

SPX -0.577 ( -12.302 ) -4.589 ( -5.884 ) 0.183 -0.568 ( -9.378 )-5.299 ( -4.623 ) 0.234
OEX -0.492 ( -10.293 ) -4.569 ( -5.916 ) 0.186 -0.498 ( -8.007 )-5.335 ( -4.880 ) 0.233
DJX -0.532 ( -9.569 ) -4.734 ( -5.407 ) 0.216 -0.531 ( -8.492 ) -4.513 ( -3.761 ) 0.198

NDX -0.198 ( -4.944 ) -2.563 ( -4.065 ) 0.090 -0.151 ( -4.113 ) -3.526 ( -3.242 ) 0.183
QQQ -0.267 ( -4.754 ) -1.226 ( -2.015 ) 0.024 -0.238 ( -4.482 ) -2.709 ( -1.568 ) 0.107

MSFT -0.269 ( -6.511 ) -2.255 ( -4.217 ) 0.058 -0.263 ( -4.635 )-2.375 ( -2.844 ) 0.063
INTC -0.015 ( -0.325 ) -2.298 ( -2.871 ) 0.059 0.016 ( 0.336 ) -3.669 ( -3.084 ) 0.143
IBM -0.223 ( -4.134 ) -2.310 ( -2.876 ) 0.044 -0.183 ( -3.057 ) -2.040 ( -1.665 ) 0.037

AMER -0.162 ( -3.579 ) -2.216 ( -3.269 ) 0.043 -0.167 ( -3.530 )-1.521 ( -1.459 ) 0.022
DELL -0.196 ( -3.881 ) -2.678 ( -3.613 ) 0.073 -0.189 ( -2.715 )-3.224 ( -3.408 ) 0.110
CSCO -0.266 ( -3.577 ) -0.957 ( -0.599 ) 0.004 -0.217 ( -3.195 )-1.927 ( -0.855 ) 0.040

GE -0.230 ( -5.731 ) -2.593 ( -3.798 ) 0.092 -0.227 ( -4.284 ) -1.621 ( -1.512 ) 0.046
CPQ -0.110 ( -1.975 ) -2.398 ( -2.312 ) 0.039 0.047 ( 0.909 ) -3.318 ( -2.762 ) 0.101

YHOO -0.094 ( -1.702 ) -0.593 ( -0.813 ) 0.004 -0.109 ( -1.745 )0.831 ( 0.776 ) 0.008
SUNW -0.089 ( -2.080 ) -2.380 ( -3.371 ) 0.062 -0.049 ( -0.899 )-3.951 ( -3.187 ) 0.179

MU -0.092 ( -2.498 ) -1.350 ( -2.234 ) 0.025 -0.049 ( -1.095 ) -2.512 ( -3.606 ) 0.094
MO -0.244 ( -3.906 ) 0.482 ( 0.540 ) 0.001 -0.180 ( -2.942 ) 0.702 ( 0.604 ) 0.003

AMZN -0.218 ( -3.289 ) 0.120 ( 0.122 ) 0.000 -0.054 ( -0.671 ) 0.284 ( 0.306 ) 0.001
ORCL -0.141 ( -2.041 ) -2.206 ( -2.597 ) 0.032 -0.124 ( -1.697 )-3.674 ( -2.567 ) 0.116

LU -0.068 ( -1.376 ) -1.436 ( -1.732 ) 0.019 0.030 ( 0.634 ) -2.736 ( -2.849 ) 0.103
TRV -0.126 ( -2.047 ) -1.993 ( -2.567 ) 0.035 -0.097 ( -0.980 ) -1.022 ( -0.647 ) 0.011

WCOM -0.101 ( -1.405 ) -3.430 ( -3.307 ) 0.075 -0.006 ( -0.068 ) -4.137 ( -2.691 ) 0.129
TYC -0.353 ( -4.066 ) -1.724 ( -1.490 ) 0.018 -0.321 ( -3.137 ) 0.923 ( 0.308 ) 0.003

AMAT -0.102 ( -2.598 ) -1.080 ( -1.968 ) 0.015 -0.054 ( -1.175 )-2.736 ( -3.498 ) 0.104
QCOM -0.154 ( -2.889 ) -1.305 ( -1.646 ) 0.015 -0.089 ( -1.578 )-2.578 ( -2.202 ) 0.062

TXN -0.028 ( -0.677 ) -0.724 ( -1.346 ) 0.007 -0.032 ( -0.621 ) -0.714 ( -0.887 ) 0.007
PFE -0.200 ( -3.342 ) -1.957 ( -1.878 ) 0.036 -0.149 ( -2.455 ) -1.909 ( -1.246 ) 0.037

MOT -0.031 ( -0.581 ) -1.954 ( -1.861 ) 0.031 0.032 ( 0.441 ) -3.523 ( -2.044 ) 0.106
EMC -0.031 ( -0.682 ) -2.611 ( -3.398 ) 0.081 -0.028 ( -0.389 ) -3.146 ( -3.890 ) 0.131
HWP -0.076 ( -1.530 ) -1.661 ( -1.956 ) 0.025 0.010 ( 0.185 ) -1.956 ( -1.536 ) 0.049

AMGN -0.162 ( -3.050 ) -1.129 ( -1.281 ) 0.014 -0.045 ( -0.556 )-0.127 ( -0.091 ) 0.000
BRCM -0.029 ( -0.533 ) 0.878 ( 1.172 ) 0.011 -0.013 ( -0.146 ) -0.613 ( -0.304 ) 0.004

MER -0.109 ( -2.493 ) -1.363 ( -1.739 ) 0.024 -0.081 ( -1.333 ) -1.271 ( -1.162 ) 0.022
NOK -0.046 ( -0.792 ) -1.715 ( -1.933 ) 0.030 0.028 ( 0.442 ) -1.928 ( -1.490 ) 0.059
CHL -0.140 ( -2.692 ) -1.609 ( -1.805 ) 0.029 -0.053 ( -1.269 ) -1.953 ( -2.115 ) 0.052

UNPH -0.005 ( -0.085 ) -1.444 ( -1.258 ) 0.018 0.011 ( 0.297 ) -2.982 ( -1.201 ) 0.073
EBAY -0.252 ( -3.216 ) 0.173 ( 0.171 ) 0.000 -0.206 ( -1.633 ) 0.018 ( 0.014 ) 0.000
JNPR -0.147 ( -2.154 ) -0.490 ( -0.575 ) 0.003 -0.133 ( -1.720 )-1.912 ( -0.924 ) 0.034
CIEN -0.027 ( -0.361 ) -2.422 ( -1.827 ) 0.046 -0.011 ( -0.122 )-4.399 ( -1.924 ) 0.154

BRCD 0.008 ( 0.110 ) 0.104 ( 0.111 ) 0.000 0.078 ( 0.811 ) -2.497( -1.941 ) 0.086
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Table 7
Explaining variance risk premia with Fama-French risk factors
Entries report the GMM estimates (andt-statistics in parentheses) of the following relation,

lnRVt,T/SWt,T = α+βERm
t,T +sSMBt,T +hHMLt,T +e,

where the regressors are the three stock-market risk factors defined by Fama and French (1993): the excess
return on the market portfolio (ERm), the size factor (SMB), and the book-to-market factor (HML). The data
are monthly from January 1996 to December 2002. Thet-statistics are computed according to Newey and West
(1987) with six lags. The columns under “R2” report the unadjusted R-squared of the regression.

Ticker α ERm SMB HML R2

SPX -0.561 ( -8.365 ) -5.038 ( -3.765 ) -2.831 ( -2.132 ) -0.287( -0.342 ) 0.276
OEX -0.489 ( -7.311 ) -5.090 ( -3.992 ) -3.344 ( -2.483 ) -0.509( -0.570 ) 0.289
DJX -0.518 ( -7.447 ) -4.434 ( -3.201 ) -3.637 ( -3.150 ) -1.327( -1.692 ) 0.273

NDX -0.150 ( -4.032 ) -2.777 ( -2.635 ) -1.948 ( -2.472 ) 1.351 (1.836 ) 0.272
QQQ -0.221 ( -4.184 ) -1.932 ( -1.309 ) -1.851 ( -1.784 ) 1.504 (2.651 ) 0.235

MSFT -0.247 ( -5.054 ) -2.469 ( -2.865 ) -4.939 ( -5.170 ) -1.976 ( -2.289 ) 0.222
INTC 0.023 ( 0.567 ) -3.770 ( -3.207 ) -2.823 ( -2.746 ) -1.156 (-1.519 ) 0.194
IBM -0.174 ( -3.371 ) -1.934 ( -1.535 ) -3.053 ( -1.931 ) -0.782( -0.510 ) 0.085

AMER -0.153 ( -3.765 ) -1.576 ( -1.173 ) -3.291 ( -2.377 ) -1.125 ( -1.124 ) 0.084
DELL -0.187 ( -2.733 ) -2.673 ( -3.190 ) -3.118 ( -2.544 ) 0.401( 0.338 ) 0.190
CSCO -0.227 ( -3.598 ) -1.009 ( -0.444 ) 1.288 ( 1.026 ) 2.082 ( 2.389 ) 0.076

GE -0.208 ( -4.997 ) -1.512 ( -1.294 ) -2.617 ( -2.689 ) -0.738 (-0.884 ) 0.121
CPQ 0.046 ( 0.959 ) -3.024 ( -2.112 ) 1.069 ( 0.927 ) 0.847 ( 0.809 ) 0.108

YHOO -0.107 ( -1.738 ) 0.144 ( 0.109 ) 0.574 ( 0.363 ) -0.975 ( -0.894 ) 0.029
SUNW -0.056 ( -1.079 ) -3.113 ( -2.087 ) -1.509 ( -1.472 ) 0.997( 0.959 ) 0.224

MU -0.046 ( -1.072 ) -2.704 ( -3.663 ) -0.346 ( -0.403 ) -0.617 (-0.950 ) 0.099
MO -0.187 ( -3.145 ) 0.939 ( 0.688 ) -0.306 ( -0.169 ) 0.883 ( 0.622 ) 0.008

AMZN -0.063 ( -0.911 ) -0.367 ( -0.259 ) -1.682 ( -0.726 ) -1.887 ( -1.180 ) 0.043
ORCL -0.119 ( -1.570 ) -3.893 ( -3.237 ) -0.264 ( -0.172 ) -0.377 ( -0.413 ) 0.117

LU 0.031 ( 0.652 ) -3.475 ( -2.738 ) -0.859 ( -0.544 ) -1.438 ( -1.364 ) 0.133
TRV -0.059 ( -0.763 ) -0.463 ( -0.277 ) -5.841 ( -5.029 ) -1.069( -1.016 ) 0.218

WCOM -0.014 ( -0.157 ) -4.793 ( -2.656 ) -2.345 ( -1.403 ) -1.784( -1.558 ) 0.157
TYC -0.282 ( -2.585 ) 0.404 ( 0.173 ) -4.381 ( -1.565 ) -2.715 ( -1.850 ) 0.087

AMAT -0.036 ( -1.064 ) -2.508 ( -2.905 ) -4.070 ( -4.315 ) -1.068 ( -1.780 ) 0.247
QCOM -0.090 ( -1.600 ) -1.744 ( -1.446 ) -3.711 ( -3.344 ) 0.604( 0.581 ) 0.135

TXN -0.020 ( -0.400 ) -0.949 ( -1.439 ) -4.230 ( -4.987 ) -1.954( -2.125 ) 0.155
PFE -0.129 ( -2.541 ) -1.528 ( -0.865 ) -3.535 ( -1.956 ) -1.073( -0.551 ) 0.103

MOT 0.028 ( 0.353 ) -3.038 ( -1.893 ) 0.784 ( 0.541 ) 0.817 ( 0.737 ) 0.114
EMC -0.030 ( -0.491 ) -1.651 ( -1.707 ) -1.965 ( -2.401 ) 1.761 (2.539 ) 0.259
HWP 0.014 ( 0.250 ) -2.384 ( -1.600 ) -0.826 ( -0.690 ) -1.046 ( -0.946 ) 0.061

AMGN -0.040 ( -0.550 ) -0.426 ( -0.287 ) -1.142 ( -0.844 ) -1.194 ( -1.485 ) 0.018
BRCM 0.023 ( 0.290 ) -0.094 ( -0.042 ) -3.281 ( -2.507 ) -0.535 (-0.444 ) 0.086

MER -0.075 ( -1.393 ) -0.899 ( -0.762 ) -1.881 ( -1.324 ) 0.297 (0.332 ) 0.060
NOK 0.043 ( 0.651 ) -1.874 ( -1.517 ) -2.407 ( -2.105 ) -0.815 ( -0.947 ) 0.115
CHL -0.050 ( -1.300 ) -1.816 ( -1.952 ) -2.762 ( -2.195 ) -0.531( -0.593 ) 0.111

UNPH 0.028 ( 0.418 ) -1.791 ( -0.796 ) -1.815 ( -1.015 ) 1.128 ( 0.798 ) 0.148
EBAY -0.177 ( -1.373 ) 0.590 ( 0.536 ) -2.783 ( -1.993 ) 0.300 ( 0.268 ) 0.072
JNPR -0.049 ( -0.686 ) -3.209 ( -2.277 ) -3.556 ( -2.444 ) -3.600 ( -3.620 ) 0.173
CIEN 0.011 ( 0.119 ) -5.258 ( -2.452 ) -2.997 ( -2.526 ) -2.506 (-1.584 ) 0.211

BRCD 0.138 ( 1.155 ) -1.766 ( -1.485 ) -3.769 ( -2.599 ) -0.966 (-0.782 ) 0.225
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Table 8
Expectation hypothesis regressions on constant variance risk premia
Entries report the GMM estimates (andt-statistics in parentheses) of the following relations,

Left panel: RVt,T = a+bSWt,T +e,
Right panel: lnRVt,T = a+b lnSWt,T +e.

The t-statistics are calculated according to Newey and West (1987) with 30 lags, under the null hypothesis of
a = 0,b = 1. The columns under “R2” report the unadjusted R-squared of the regression.

Ticker RVt,T = a+bSWt,T +e lnRVt,T = a+blnSWt,T +e
a b R2 a b R2

SPX 0.729 ( 1.148 ) 0.526 ( -3.981 ) 0.293 -0.492 ( -2.385 ) 0.941 ( -0.505 ) 0.391
OEX 0.466 ( 0.740 ) 0.633 ( -3.137 ) 0.315 -0.531 ( -2.534 ) 1.012 ( 0.104 ) 0.418
DJX 1.007 ( 1.243 ) 0.527 ( -3.361 ) 0.223 -0.183 ( -0.696 ) 0.806 ( -1.319 ) 0.269

NDX -2.547 ( -1.508 ) 1.085 ( 0.648 ) 0.585 -0.421 ( -2.272 ) 1.080 ( 1.158 ) 0.690
QQQ -4.281 ( -1.435 ) 1.052 ( 0.364 ) 0.473 -0.655 ( -1.778 ) 1.126 ( 1.070 ) 0.523

MSFT 3.042 ( 1.358 ) 0.701 ( -2.209 ) 0.333 -0.254 ( -0.968 ) 0.992 ( -0.087 ) 0.453
INTC 2.351 ( 0.656 ) 1.007 ( 0.039 ) 0.358 0.325 ( 1.236 ) 0.888 (-1.276 ) 0.430
IBM 4.737 ( 1.885 ) 0.625 ( -2.239 ) 0.244 0.143 ( 0.502 ) 0.862 (-1.320 ) 0.290

AMER 12.920 ( 3.494 ) 0.636 ( -4.607 ) 0.263 0.562 ( 1.439 ) 0.801 ( -1.969 ) 0.296
DELL 8.643 ( 2.092 ) 0.668 ( -2.565 ) 0.224 0.507 ( 1.192 ) 0.797( -1.666 ) 0.257
CSCO -2.402 ( -0.871 ) 1.006 ( 0.055 ) 0.534 -0.811 ( -1.705 ) 1.161 ( 1.239 ) 0.367

GE 1.309 ( 1.240 ) 0.768 ( -2.661 ) 0.407 0.047 ( 0.272 ) 0.886 ( -1.612 ) 0.488
CPQ 13.279 ( 3.027 ) 0.551 ( -2.977 ) 0.182 0.846 ( 1.742 ) 0.708( -2.083 ) 0.251

YHOO 27.022 ( 3.714 ) 0.615 ( -4.217 ) 0.313 0.696 ( 1.538 ) 0.811 ( -1.860 ) 0.344
SUNW 5.287 ( 1.163 ) 0.843 ( -1.105 ) 0.483 0.089 ( 0.245 ) 0.944( -0.555 ) 0.481

MU 17.606 ( 3.873 ) 0.663 ( -4.220 ) 0.273 0.971 ( 2.806 ) 0.733 (-3.121 ) 0.299
MO 6.654 ( 4.740 ) 0.459 ( -6.258 ) 0.146 0.539 ( 1.978 ) 0.697 ( -2.956 ) 0.238

AMZN 53.943 ( 4.739 ) 0.336 ( -7.649 ) 0.140 1.013 ( 1.421 ) 0.728 ( -1.819 ) 0.276
ORCL 30.942 ( 3.241 ) 0.267 ( -3.026 ) 0.108 1.046 ( 1.254 ) 0.674 ( -1.366 ) 0.288

LU 18.249 ( 2.730 ) 0.418 ( -2.631 ) 0.220 0.338 ( 1.216 ) 0.870 (-1.505 ) 0.492
TRV 4.393 ( 1.623 ) 0.799 ( -1.694 ) 0.237 0.414 ( 1.171 ) 0.808 (-1.578 ) 0.266

WCOM 9.398 ( 3.237 ) 0.634 ( -2.599 ) 0.304 0.472 ( 1.308 ) 0.807 (-1.681 ) 0.377
TYC 18.120 ( 3.902 ) 0.355 ( -18.024 ) 0.246 0.059 ( 0.208 ) 0.878 ( -1.629 ) 0.480

AMAT 12.450 ( 3.235 ) 0.691 ( -3.314 ) 0.267 0.837 ( 2.634 ) 0.748 ( -2.962 ) 0.302
QCOM 8.678 ( 1.893 ) 0.786 ( -2.259 ) 0.327 0.469 ( 1.130 ) 0.835( -1.539 ) 0.292

TXN 4.316 ( 1.069 ) 0.929 ( -0.506 ) 0.429 0.332 ( 1.113 ) 0.895 (-1.214 ) 0.466
PFE 4.546 ( 2.892 ) 0.584 ( -4.106 ) 0.150 0.501 ( 1.664 ) 0.724 (-2.552 ) 0.195

MOT 6.500 ( 1.977 ) 0.820 ( -1.157 ) 0.394 0.498 ( 1.725 ) 0.827 (-1.773 ) 0.449
EMC -2.871 ( -0.559 ) 1.153 ( 0.852 ) 0.493 0.116 ( 0.334 ) 0.954( -0.454 ) 0.502
HWP 6.807 ( 2.461 ) 0.737 ( -2.375 ) 0.332 0.340 ( 1.193 ) 0.862 ( -1.549 ) 0.377

AMGN 5.241 ( 2.190 ) 0.728 ( -2.354 ) 0.389 0.196 ( 0.700 ) 0.884( -1.330 ) 0.437
BRCM 23.907 ( 1.813 ) 0.761 ( -1.396 ) 0.320 1.045 ( 2.194 ) 0.754 ( -2.249 ) 0.343

MER 4.187 ( 1.369 ) 0.799 ( -1.399 ) 0.333 0.376 ( 1.188 ) 0.841 (-1.563 ) 0.373
NOK 12.659 ( 2.964 ) 0.646 ( -2.579 ) 0.261 0.699 ( 1.776 ) 0.778( -1.995 ) 0.338
CHL 4.234 ( 2.136 ) 0.756 ( -1.912 ) 0.352 0.005 ( 0.021 ) 0.946 (-0.632 ) 0.518

UNPH 18.161 ( 1.653 ) 0.868 ( -0.696 ) 0.349 0.514 ( 1.014 ) 0.876 ( -1.014 ) 0.389
EBAY 2.708 ( 0.282 ) 0.926 ( -0.516 ) 0.415 -1.256 ( -3.506 ) 1.245 ( 2.857 ) 0.663
JNPR 32.793 ( 2.113 ) 0.632 ( -2.301 ) 0.274 1.506 ( 2.419 ) 0.646 ( -2.553 ) 0.235
CIEN 38.400 ( 2.601 ) 0.636 ( -2.280 ) 0.204 1.113 ( 1.848 ) 0.738 ( -1.971 ) 0.337

BRCD 24.059 ( 1.628 ) 0.861 ( -0.846 ) 0.277 1.026 ( 1.622 ) 0.774 ( -1.615 ) 0.299
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Table 9
Variance risk premia and variance of return volatility
Entries report the estimates (andt-statistics in parentheses) of the following two regressions in the left and right
panels, respectively,

lnSWt,T/RVt,T = a+b
(
SWt,T −VS2

t

)
+e,

lnSWt,T/RVt,T = a+b ln
(
SWt,T/VS2

t

)
+e.

The t-statistics are calculated according to Newey and West (1987) with 30 lags, under the null hypothesis of
a = 0,b = 0. The columns under “R2” report the unadjusted R-squared of the regression.

Ticker lnSWt,T/RVt,T = a+b
(
SWt,T −VS2

t

)
+e lnSWt,T/RVt,T = a+bln

(
SWt,T/VS2

t

)
+e

a b R2 a b R2

SPX 0.462 ( 7.001 ) 0.087 ( 3.117 ) 0.048 0.283 ( 4.052 ) 1.142 ( 6.233 ) 0.086
OEX 0.412 ( 4.598 ) 0.085 ( 1.355 ) 0.013 0.295 ( 3.218 ) 1.055 ( 2.929 ) 0.028
DJX 0.379 ( 4.258 ) 0.130 ( 2.386 ) 0.049 0.302 ( 3.007 ) 1.211 ( 3.241 ) 0.048

NDX 0.204 ( 4.049 ) 0.002 ( 0.092 ) 0.000 0.154 ( 2.701 ) 0.505 ( 1.306 ) 0.006
QQQ 0.232 ( 3.641 ) 0.010 ( 0.859 ) 0.003 0.189 ( 2.563 ) 0.671 ( 1.621 ) 0.011

MSFT 0.234 ( 5.065 ) 0.014 ( 3.037 ) 0.023 0.194 ( 3.255 ) 0.547 (2.137 ) 0.019
INTC -0.012 ( -0.189 ) 0.016 ( 0.715 ) 0.004 -0.002 ( -0.032 ) 0.299 ( 0.444 ) 0.001
IBM 0.168 ( 2.839 ) 0.027 ( 4.342 ) 0.035 0.049 ( 0.723 ) 1.294 ( 4.945 ) 0.050

AMER 0.107 ( 1.834 ) 0.012 ( 2.397 ) 0.015 0.114 ( 1.975 ) 0.455 (1.639 ) 0.007
DELL 0.106 ( 1.690 ) 0.028 ( 2.527 ) 0.028 0.087 ( 1.182 ) 1.137 (2.150 ) 0.022
CSCO 0.293 ( 3.376 ) -0.005 ( -0.530 ) 0.001 0.210 ( 3.000 ) 0.469 ( 1.172 ) 0.003

GE 0.156 ( 3.410 ) 0.043 ( 2.877 ) 0.039 0.126 ( 2.725 ) 0.813 ( 4.186 ) 0.045
CPQ 0.055 ( 0.965 ) 0.020 ( 5.554 ) 0.071 0.004 ( 0.070 ) 1.017 ( 6.947 ) 0.059

YHOO 0.052 ( 0.858 ) 0.005 ( 4.437 ) 0.021 0.040 ( 0.652 ) 0.545 (2.071 ) 0.013
SUNW 0.062 ( 1.300 ) 0.012 ( 6.099 ) 0.038 0.035 ( 0.669 ) 0.685 (3.308 ) 0.029

MU 0.050 ( 1.340 ) 0.008 ( 3.342 ) 0.026 0.044 ( 1.161 ) 0.548 ( 2.760 ) 0.016
MO 0.165 ( 2.547 ) 0.037 ( 2.381 ) 0.050 0.133 ( 2.058 ) 0.792 ( 2.414 ) 0.040

AMZN 0.047 ( 0.535 ) 0.013 ( 4.195 ) 0.084 0.023 ( 0.264 ) 1.545 (4.041 ) 0.050
ORCL 0.300 ( 3.285 ) -0.045 ( -2.982 ) 0.175 0.310 ( 1.790 ) -1.761 ( -1.335 ) 0.036

LU 0.053 ( 1.034 ) 0.008 ( 9.332 ) 0.053 0.045 ( 0.744 ) 0.396 ( 1.720 ) 0.009
TRV 0.060 ( 0.796 ) 0.027 ( 1.617 ) 0.015 -0.046 ( -0.531 ) 1.347( 2.944 ) 0.040

WCOM -0.017 ( -0.210 ) 0.045 ( 5.860 ) 0.108 -0.046 ( -0.569 ) 1.396 ( 7.922 ) 0.095
TYC 0.270 ( 2.818 ) 0.011 ( 4.095 ) 0.039 0.245 ( 2.472 ) 0.734 ( 1.700 ) 0.012

AMAT 0.003 ( 0.072 ) 0.024 ( 3.123 ) 0.047 0.014 ( 0.272 ) 0.944 (2.550 ) 0.026
QCOM 0.098 ( 1.461 ) 0.012 ( 1.470 ) 0.010 0.097 ( 1.284 ) 0.588 (1.118 ) 0.005

TXN -0.047 ( -0.987 ) 0.020 ( 3.337 ) 0.040 -0.083 ( -1.552 ) 1.027 ( 4.236 ) 0.040
PFE 0.109 ( 1.799 ) 0.064 ( 4.318 ) 0.047 0.068 ( 1.245 ) 1.231 ( 3.997 ) 0.059

MOT 0.004 ( 0.069 ) 0.018 ( 3.217 ) 0.040 -0.053 ( -0.940 ) 1.245( 7.698 ) 0.058
EMC 0.033 ( 0.684 ) 0.003 ( 0.613 ) 0.002 0.017 ( 0.342 ) 0.299 ( 1.352 ) 0.006
HWP 0.046 ( 0.890 ) 0.020 ( 4.596 ) 0.022 0.036 ( 0.661 ) 0.605 ( 2.273 ) 0.011

AMGN 0.084 ( 1.490 ) 0.030 ( 2.701 ) 0.032 0.030 ( 0.535 ) 1.187 (3.188 ) 0.036
BRCM -0.039 ( -0.674 ) 0.010 ( 2.475 ) 0.039 -0.079 ( -1.342 ) 1.521 ( 3.027 ) 0.049

MER -0.026 ( -0.422 ) 0.067 ( 3.737 ) 0.070 -0.025 ( -0.393 ) 1.547 ( 3.603 ) 0.053
NOK 0.019 ( 0.306 ) 0.014 ( 4.730 ) 0.031 0.012 ( 0.184 ) 0.692 ( 2.930 ) 0.023
CHL 0.079 ( 1.335 ) 0.031 ( 4.601 ) 0.042 0.038 ( 0.607 ) 1.061 ( 5.001 ) 0.042

UNPH -0.024 ( -0.355 ) 0.005 ( 0.850 ) 0.004 0.006 ( 0.101 ) -0.008 ( -0.016 ) 0.000
EBAY 0.156 ( 1.494 ) 0.017 ( 1.554 ) 0.020 -0.143 ( -1.336 ) 4.018 ( 5.897 ) 0.217
JNPR 0.067 ( 0.696 ) 0.007 ( 1.104 ) 0.022 0.118 ( 1.056 ) 0.260 (0.285 ) 0.001
CIEN -0.044 ( -0.522 ) 0.013 ( 2.144 ) 0.027 0.032 ( 0.388 ) 0.005 ( 0.005 ) 0.000

BRCD -0.075 ( -0.762 ) 0.009 ( 1.095 ) 0.018 -0.055 ( -0.547 ) 0.668 ( 0.766 ) 0.007
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Table 10
Expectation hypothesis regression on variance risk premia controlling forvariance of volatility
Entries report the GMM estimates (andt-statistics in parentheses) of the following relation,

lnRVt,T = a+blnSWt,T +cln
(
SWt,T/VS2

t

)
+e.

The t-statistics are calculated according to Newey and West (1987) with 30 lags, under the null hypothesis of
a = 0,b = 1,c = 0. The columns under “R2” report the unadjusted R-squared of the regression.

Ticker a b c R2

SPX -0.293 ( -1.517 ) 1.007 ( 0.058 ) -1.146 ( -6.090 ) 0.442
OEX -0.296 ( -1.328 ) 1.001 ( 0.005 ) -1.055 ( -2.935 ) 0.434
DJX -0.113 ( -0.436 ) 0.878 ( -0.874 ) -1.072 ( -3.106 ) 0.295

NDX -0.363 ( -1.833 ) 1.076 ( 1.106 ) -0.459 ( -1.188 ) 0.692
QQQ -0.602 ( -1.672 ) 1.132 ( 1.120 ) -0.708 ( -1.674 ) 0.529

MSFT -0.371 ( -1.431 ) 1.068 ( 0.704 ) -0.651 ( -2.424 ) 0.465
INTC 0.325 ( 1.241 ) 0.886 ( -1.319 ) 0.047 ( 0.074 ) 0.430
IBM 0.033 ( 0.125 ) 0.967 ( -0.331 ) -1.243 ( -4.732 ) 0.319

AMER 0.554 ( 1.412 ) 0.814 ( -1.786 ) -0.308 ( -1.017 ) 0.298
DELL 0.569 ( 1.406 ) 0.811 ( -1.588 ) -1.056 ( -1.974 ) 0.271
CSCO -0.760 ( -1.642 ) 1.166 ( 1.271 ) -0.527 ( -1.277 ) 0.369

GE 0.031 ( 0.180 ) 0.933 ( -0.960 ) -0.739 ( -3.990 ) 0.506
CPQ 0.805 ( 1.721 ) 0.754 ( -1.782 ) -0.874 ( -4.576 ) 0.285

YHOO 0.626 ( 1.277 ) 0.835 ( -1.431 ) -0.307 ( -0.819 ) 0.346
SUNW 0.048 ( 0.134 ) 0.976 ( -0.239 ) -0.666 ( -2.950 ) 0.494

MU 0.929 ( 2.602 ) 0.752 ( -2.756 ) -0.355 ( -1.657 ) 0.303
MO 0.509 ( 1.891 ) 0.741 ( -2.538 ) -0.612 ( -1.928 ) 0.256

AMZN 0.861 ( 1.198 ) 0.794 ( -1.312 ) -1.165 ( -2.717 ) 0.295
ORCL 0.833 ( 1.216 ) 0.698 ( -1.434 ) 1.402 ( 1.640 ) 0.305

LU 0.311 ( 1.149 ) 0.885 ( -1.331 ) -0.244 ( -1.002 ) 0.493
TRV 0.341 ( 1.021 ) 0.887 ( -1.010 ) -1.160 ( -2.914 ) 0.285

WCOM 0.530 ( 1.524 ) 0.842 ( -1.402 ) -1.319 ( -6.742 ) 0.431
TYC 0.028 ( 0.098 ) 0.904 ( -1.248 ) -0.409 ( -0.968 ) 0.481

AMAT 0.851 ( 2.782 ) 0.765 ( -2.854 ) -0.814 ( -2.259 ) 0.316
QCOM 0.507 ( 1.213 ) 0.839 ( -1.496 ) -0.535 ( -0.996 ) 0.296

TXN 0.318 ( 1.079 ) 0.930 ( -0.819 ) -0.955 ( -4.014 ) 0.484
PFE 0.448 ( 1.487 ) 0.792 ( -1.804 ) -1.083 ( -3.143 ) 0.232

MOT 0.482 ( 1.718 ) 0.860 ( -1.427 ) -1.118 ( -5.689 ) 0.475
EMC 0.084 ( 0.244 ) 0.970 ( -0.293 ) -0.269 ( -1.300 ) 0.505
HWP 0.344 ( 1.219 ) 0.875 ( -1.418 ) -0.524 ( -2.093 ) 0.382

AMGN 0.285 ( 1.016 ) 0.897 ( -1.190 ) -1.143 ( -3.162 ) 0.455
BRCM 0.784 ( 1.547 ) 0.830 ( -1.429 ) -0.975 ( -1.996 ) 0.353

MER 0.361 ( 1.189 ) 0.887 ( -1.166 ) -1.412 ( -3.219 ) 0.400
NOK 0.598 ( 1.433 ) 0.815 ( -1.541 ) -0.423 ( -1.487 ) 0.343
CHL -0.066 ( -0.283 ) 1.011 ( 0.126 ) -1.081 ( -4.402 ) 0.536

UNPH 0.600 ( 1.131 ) 0.847 ( -1.167 ) 0.460 ( 0.806 ) 0.391
EBAY -0.133 ( -0.308 ) 1.061 ( 0.646 ) -3.755 ( -5.153 ) 0.717
JNPR 1.664 ( 2.546 ) 0.598 ( -2.653 ) 0.648 ( 0.702 ) 0.241
CIEN 1.232 ( 2.063 ) 0.697 ( -2.246 ) 1.073 ( 1.100 ) 0.344

BRCD 1.015 ( 1.642 ) 0.778 ( -1.591 ) -0.050 ( -0.055 ) 0.299
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