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Abstract

It is well known that risk increases the value of options. This paper

makes that precise in a new way. The conventional theorem says that the

value of an option does not fall if the underlying option becomes riskier in the

conventional sense of the mean-preserving spread. This paper uses two new

definitions of “riskier” to show that the value of an option strictly increases

(a) if the underlying asset becomes “pointwise riskier,” and (b) only if the

underlying asset becomes “extremum riskier.”
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I. Introduction

A call option is the right to buy the asset at a strike price, P . It has

been well known at least since Robert Merton (1973) that the value of a

call option increases with the riskiness of the underlying asset. If extra risk

increases the probability that the market price exceeds P , then the value of

the option increases. A standard finance text says

“The holder of a call option will prefer more variance in the price of
the stock to less. The greater the variance, the greater the probability
that the stock price will exceed the exercise price, and this is of value
to the call holder.” (Copeland & Weston, 3rd edition, p. 243)

But this is not quite correct, despite being the sort of thing that even

experts say in conversation and in textbooks. As I am sure Thomas Copeland

and Fred Weston knew as they wrote this passage, it quite possible for the

risk and variance of the underlying asset to increase while the value of the

option remains does not increase. The value will not fall, but it might remain

unchanged. Suppose the strike price is $50 and the current price of the asset

is $40. If the probability of the price being between $45 and $49 increases,

while the probability it is between $38 and $42 falls, the asset has become

riskier, but value of the option is unchanged because the probabilitiesof asset

values above the strike price of $50 are unchanged.

This, too, is well-known, but it leaves open the question of what kind of

risk does actually increase the value of options. It is false, strictly speaking, to

say that additional risk increases the value. On the other hand it is true but

uninteresting to say that additional risk does not reduce the value. A great

many variables do not reduce the value of an option, usually because they

never affect the value either way. For introductory textbooks no great harm

is done in stating a risk-value proposition loosely, but it is worth thinking

about how we can come up with a proposition for this basic intuition that is

both interesting and true.

One way out is to surrender generality in the kinds of asset distribu-

tions that we describe. Bliss (2001), noting the problem of coming up with
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a rigorous proposition, points out that a sufficient condition for option value

to increase with risk is that the underlying asset value have a two-parameter

distribution such as the normal or lognormal. The relationships between

option value and risk, however, clearly holds for much more general distri-

butions. (Bliss’s attention in that article is about a different problem, also

trivially solved by restricting attention to normal distributions— what to do

when the underlying assets cannot be ordered using the standard definition

of risk.)

The options literature has travelled down the route of studying par-

ticular stochastic processes for asset returns— diffusion or jump processes—

rather than looking at general distributions for end-states as Merton (1973)

did. This began with the log-normal diffusion processes of Fischer Black

and Myron Scholes (1973) and continued with such generalizations as John

Cox & Stephen Ross (1976) and Merton (1976) More recent entries in the

literature include Yaacov Bergman, Bruce Grundy & Zvi Wiener (1996) and

Masaaki Kijima (2002). Other papers look at other considerations absent

in the simplest model of one underlying asset, risk-neutral investors, and

zero transaction costs. Ravi Jagannathan (1984), for example, looks at val-

ues when investors are not risk neutral, and value wealth more in particular

states of the world. In such a situation, a riskier asset might not have a

higher option value because the option might yield its highest returns in a

state of the world when investors are wealthier anyway and hence value the

return less.

In this article I will return to the original problem of how risk affects

option value, but from a different direction. First, I will note that if the

underlying asset becomes riskier, then we can at least say that for some

strike prices a call option will become more valuable— a very simple result,

but worth noting. (I will use call options rather than put options throughout,

but it will be clear that the proofs easily extend to puts.) Second, I will show

that only if the underlying asset becomes riskier in the special way I call

“extremum riskier” will every call option will rise in value regardless of the

strike price- a necessary condition for a rise in value. Third, I will show that

if the underlying asset becomes riskier in the special way I call “pointwise
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riskier” then every call option will rise in value regardless of the strike price-

a sufficient condition for a rise in value.

II. The Model

Let there be an asset which has terminal value xi with probability f(xi),

where the values of xi with positive probability are x1 < x2 < ... < xm.

Denote by Vcall(f, p) the current value of a call option on that asset with

strike price p such that x1 < p < xm. This rules out strike prices of x1 or

below and xm and above, because they would lead to riskless options which

would be exercised always or never. It does allow a strike price that does

not happen to equal any of the xi. The call option entitles its owner to

buy the asset at price p at the terminal time if he wishes. We will assume

the discount rate is zero and use only two dates, the current date and the

terminal date, to avoid distraction by the many issues that would otherwise

arise (the date of exercise, diffusion versus jump processes, the time value

of money, dividend payments, and so forth). Instead, our focus is on seeing

how the option value would change if the underlying asset followed a different

distribution g(x) which has the same mean as f(x), so

Ex =
mX
i=1

f(xi)xi =
mX
i=1

g(xi)xi +
nX

i=m+1

g(xi)xi, (1)

where xm+1 < xm+2 < ... < xn are points in the support of g but not f .

This allows, for example, xm+1 < x1, which in words means that g can have

positive probability on x values less than or greater than the support of f(x),

or on values between x’s in f(x)’s support. Let us denote the cumulative

distributions by F (x) and G(x).

The value of a call option with strike price p is

Vcall(f, p) =
mX
i=1

Max{0, f(xi)(xi − p)}

=
mX
i=j

f(xi)(xi − p) where j : xj−1 < p < xj
(2)
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Defining Risk

The standard definition of risk is based on the idea of a “mean- preserv-

ing spread,” which in the present context we can define as follows.

Definition 1a: A mean-preserving spread consists of three numbers

s(y1), s(y2), and s(y3) for y1 < y2 < y3 such that

s(y1)y1 + s(y2)y2 + s(y3)y3 = 0, (the mean is preserved) (3)

s(y1) + s(y2) + s(y3)y = 0, (the new probabilities sum to zero) (4)

and

s(y1) ∈ [0, 1], s(y2) ∈ [−1, 0], s(y3) ∈ [0, 1] (the probability is spread) (5)

Definition 1a is specialized to discrete probability distributions, and it

uses the idea of the “3-point mean-preserving spread,” developed in Petrakis

& Rasmusen (1994) rather than the conventional “4-point mean-preserving

spread” of Rothschild & Stiglitz (1970), which have negative probability at

two middle points rather than one. The two definitions of spread lead to

equivalent definitions of risk (Definition 1b below orders distributions by risk

identically whichever defintion of spread is used), but the 3-point definition

is simpler and will lead to less clutter in proofs (as well as allowing an easy

fix of the error in the main proof in Rothschild & Stiglitz [1970]). Note that

Definition 1a does not require that the yi equal any xi: the spread can put

positive probability on asset values which originally have zero probability (a

spread added to f(x) also could result in probabilities that are negative or

greater than one, but spreads that do so will not be useful).

Thus, we arrive at Definition 1b, the definition of risk originated in

Rothschild & Stiglitz (1970) (though see also Hadar & Russell [1969] and

Hanoch & Levy [1969]).

Definition 1b: Distribution g(x) is riskier than f(x) iff g(x) can be reached

from f(x) by a sequence of mean-preserving spreads.

5



This definition of risk has long been conventional, since it is equivalent

to saying that the asset becomes less attractive to a risk- averse investor

(one with a concave utility function) or that f is like g with noise added,

although Definition 1b is only a partial ordering, and many pairs of distribu-

tions cannot be ranked by it. In the option context, Bliss (2001) shows the

importance of using Definition 1b instead of defining risk as simply higher

variance, which is not an equivalent definition. Variance can increase without

making an asset less attractive to a risk-averse investor, and option values

do not change in a uniform direction with changes in variance.1

It is perhaps worth reminding the reader of another statement of risk: in

terms of stochastic dominance. Distribution G(x) “first-order stochastically

dominates” distribution F (x) if F (t) ≥ G(t) for all t, i.e., if F puts more

probability on lower values of x than G does. Distribution G “second-order

stochastically dominates” distribution F if
R t
0
F (x)dx ≥ R t

0
G(x)dx for all t.2

A definition of risk equivalent to Definition 1b is that distribution g(x) is

riskier than f(x) iff G(x) second-order stochastically dominates F (x). We

will use densities rather than cumulative distributions in this article, however,

because densities are easier to visualize and understand.

1An example to show that increased variance can increase utility for a risk-averse person
is the following. Let the utility be U = x for x ≤ 10 U = 10 + x/2 for x ≥ 10, which is
weakly concave. Suppose wealth is initially distributed as (.8-7, .2-12), which has mean
8, variance 4(= .8 ∗ 12 + .2 ∗ 42), and utility 7.8(= .8 ∗ 7 + .2 ∗ 11). If the distribution is
changed to (.2- 0, .8-10), the mean is still 8, the variance increases to 16(= .2∗82+ .8∗22),
and utility rises to 8(= .2 ∗ 0 + .8 ∗ 10). Kurtosis, which increases when moving weight to
the tails of the distribution, is equally unreliable for ranking the riskiness of distributions;
it starts as 52(= .8 ∗ 14 + .2 ∗ 44) in this example and rises to 832(= .2 ∗ 84 + .8 ∗ 24).

2 There is some scope for ambiguity here in whether the inequalities are weak or strong.
Four levels that might be defined are “weak stochastic dominance”, in which it is possible
that the inequality is an equality for all t, so F and G are identical; “semi-weak stochastic
dominance,” in which the inequality must be strict for at least one value of t; “strict
stochastic dominance, ” in which the inequality must be strict for all values of t such
that G(t) > 0 and G(t) < 1, so G dominates F everywhere except at the bounds of G’s
support; and “super- strict stochastic dominance,” in which the inequality must be strict
for all values of t for which G(t) ≥ 0 and F (t) < 1, so that G dominates F even at
the bounds of G’s support. For discrete distributions like the ones in the present article,
strict and superstrict stochastic dominance are equivalent. Weak and semi-weak stochastic
dominance are what are standardly used in economic theorems. See, too, footnote 3 below.
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Option Value Does Not Decline with Risk

The fundamental proposition in the theory of risk and options is the

well- known Proposition 1: option value is weakly increasing in risk.

Proposition 1 (Merton [1970] Theorem 8, p. 149): If g is riskier than

f , then Vcall(f, p) ≤ Vcall(g, p) for any p.
Proof: From (2), the value of the call on the less risky asset, f , is

Vcall(f, p) =
mX
i=j

f(xi)(xi − p) where j : xj−1 < p < xj (6)

and the value of the call on the riskier asset, g, is

Vcall(g, p) = f(xi)(xi − p) + s(y1)Max(y1 − p, 0) + s(y2)Max(y2 − p, 0) + s(y3)Max(y3 − p, 0).
(7)

If

0 ≤ s(y1)Max(y1 − p, 0) + s(y2)Max(y2 − p, 0) + s(y3)Max(y3 − p, 0).
(8)

then Proposition 1 is correct.

Note first that from the definition equation (3) the spread is mean-

preserving, so s(y1)y1+s(y2)y2+s(y3)y3 = 0, and by equation (4) the spread’s

probabilities add to zero, so [s(y1)+s(y2)+s(y3)] = 0. Together, these imply

that

s(y1)(y1 − p) + s(y2)(y2 − p) + s(y3)(y3 − p) = s(y1)(y1) + s(y2)(y2) + s(y3)(y3)
−[s(y1) + s(y2) + s(y3)]p = 0,

(9)

a result that will be used below.

(i) Suppose p ≤ y1, so inequality (8) becomes

0 ≤ s(y1)(y1 − p) + s(y2)(y2 − p) + s(y3)(y3 − p). (10)
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Equation (9) tells us that this is true as an equality.

(ii) Suppose p ≥ y3, so inequality (8) becomes

0 ≤ s(y1)(0) + s(y2)(0) + s(y3)(0). (11)

This is obviously true as an equality.

(iii) Suppose that p ∈ (y1, y3). Then, sinceMax(y1−p, 0) = 0 andMax(y3−
p, 0) = y3 − p, we can rewrite expression (7) as

0 ≤ 0 + s(y2)Max(y2 − p, 0) + s(y3)(y3 − p) (12)

(a) If Max(y2 − p, 0) = 0, then inequality (12) is true as a strict inequality,
since s(y3) > 0 and y3 > p.

(b) If Max(y2 − p, 0) = y2 − p, then inequality (12) is true if

s(y2)(y2 − p) + s(y3)(y3 − p) ≥ 0 (13)

Equation (9) tells us that s(y1)(y1 − p) + s(y2)(y2 − p) + s(y3)(y3 − p) = 0,
so since s(y1) > 0 and, in case (iii), (y1 − p) < 0, it follows that (12) is true
as a strict inequality. QED.

Compare Proposition 1 with Proposition 1a, which differs only in the strength

of the inequality.

Proposition 1a (false): If g is riskier than f , then Vcall(f, p) < Vcall(g, p)

for any strike price p.

Disproof. Consider a call option with an exercise price of 4.5 and the asset

price distribution shown in Figure 1. Vcall(f, 4.5) = Vcall(g, 4.5), even though

g is riskier than f . The increase in risk has no effect because only changes

in the probabilities of terminal values greater than 4.5 would matter to the

value of the call, and there are no such changes in the example.
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Figure 1: A Counterexample: Risk Does Not Increase Option

Value

Propositions 1 and 1a differ only in the weakness of the inequality. That

is enough, however, for “Proposition 1a: Option value increases with risk” to

be false. Instead, we are left with “Proposition 1: Option value does not fall

with risk,” which although true, is very weak. That kind of statement can

be made of any variable outside the model: “Option value does not fall with

wealth,” or “Option value does not fall with unemployment,” or “Option

value does not fall with the temperature in Bloomington.”

The statement “Option value does not fall with risk,” however, though

it does translate the mathematical notation of Proposition 1, is unnecessarily

weak. We can instead say that “Option value does not fall with risk, and for

at least one value of the strike price it increases.” Propostion 1b expresses

this in mathematical notation.
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Proposition 1b: If g is riskier than f , then there there exists some exercise

price p0 such that the associated call option is more valuable under g than
under f but no exercise price such that a call option is more valuable under

f :

∃p0 : Vcall(f, p0) < Vcall(g, p0); but @p00 : Vcall(f, p00) > Vcall(g, p00).
Proof:

The proof of Proposition 1 showed that if p ∈ (y1, y3), then the value of the
call or put strictly increases. Thus, simply pick p0 in (y1, y3) for one of the
spreads that makes g riskier than f .

That there exists no value p00 for which option value declines is a direct
corollary of Proposition 1. QED.

IIb. New Definitions of Risk

Another approach is to find a definition of risk under which something

like Proposition 1b is true, and the value of the option does increase with

“risk” regardless of the strike price.

Definition 2 (new): Distribution g(x) is pointwise riskier than f(x) iff f

and g have the same mean and there exist points x and x in (x1, xm) such that

(a) if x < x, then g(x) ≥ f(x) and if f(x) > 0 then g(x) > f(x);

(b) if x ∈ [x, x], then g(x) ≤ f(x) and if f(x) > 0 then g(x) < f(x);

(c) if x > x, then g(x) ≥ f(x) and if f(x) > 0 then g(x) > f(x).
Definition 2 says roughly that g(x) is pointwise riskier than f(x) if it

takes probability away from each point in the middle of the distribution and

adds probability to each point at the two ends, while preserving the mean.

Distribution g1(x) in Figure 2 is an example. Definition 2 also allows g(x)

to add probability to points outside the interval [x1, xm]— that is, beyond the

two extremes of the support of f(x).
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This definition can be applied without modification to continuous densi-

ties f and g so long as f has convex support— that is, no gaps in its support,

at which the definition would require g to have negative density. Note, too,

that in the context of a continuous density with f(x1) = 0 and f(xm) = 0 it

implies that g has a bigger support on each side, since it then requires that

f(xm) > 0 and f(xm) > 0.

Figure 2: Pointwise Riskiness

Pointwise riskiness will be not a necessary condition but a sufficient one

for option value to increase with risk for all strike prices, as we will see in

Proposition 4. Distribution g2(x) in Figure 2 is an example in which g is not

pointwise riskier than f , but Vcall(f, p) < Vcall(g, p) nonetheless for all p.

Note also that if p is fixed, g(x) does not even have to be a mean-

preserving spread to increase the value of the call. But we are asking what
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changes to the asset distribution will increase the value of any call written

on the asset.3

Our other new definition of risk is one which is necessary for extra risk

to increase option value: extremum risk.

Definition 3 (new): Distribution g(x) is extremum riskier than f(x)

iff (a) either f(x1) < g(x1), or g(x) > 0 for some x < x1;

and

(b)either f(xm) < g(xm), or g(x) > 0 for some x > xm.

The distribution in part (b) of Figure 3 is extremum-riskier than the

distribution in part (a) of Figure 3.

3 Since pointwise riskiness and second order stochastic dominance both both can al-
ternatively be defined in terms of functions that cross a limited number of times, the
reader may wonder if pointwise riskiness is the same as the strict second-order stochastic
dominance of footnote 2. Distribution G strictly second-order stochastically dominates F
if
R t
0
F (x)dx ≥ R t

0
G(x)dx for all t and the inequality is strict for all values of t such that

G(t) > 0 and G(t) < 1. But for G to be reached from F by a mean-preserving spread, it

must be that at the upper point T of the spread,
R T
0
F (x)dx =

R T
0
G(x)dx (see “Riskiness,”

http://cepa.newschool.edu/het/essays/uncert/increase.htm, viewed August 20, 2004.) If

G is pointwise riskier than F it is still riskier, so
R T
0
F (x)dx =

R T
0
G(x)dx and G does not

strictly second- order dominate F ; the two concepts are not the same.
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Figure 3: Extremum Risk versus Risk

Proposition 2: Consider two distributions f and g. A necessary condition

for it to be true that Vcall(g, p) > Vcall(f, p) for any strike price p is that g be

extremum-riskier than f .

Proof:

(i) If f(x) and g(x) are identical for all x > p or for all x < p, then Vcall(g, p) =

Vcall(f, p).

If f and g are identical for all x > p, then clearly the call value of

equation (2) must be equal for f and g, since then f and g are identical for

x ≥ xj, and only such values of x enter into equation (2), reproduced below.

Vcall(f, p) =
mX
i=j

f(xi)(xi − p) where j : xj−1 < p < xj (14)
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If, on the other hand, f and g are identical for all x < p, then since

their unconditional means, the expected values taken over all possible values

of x, are equal, and their means conditional on x < p are equal, their means

conditional on x > p must also be equal. This, too implies that the values of

calls on f and g are equal.

Thus, for Vcall(g, p) > Vcall(f, p) to be true, it is necessary that g(x) >

f(x) for some but not all x > p.

Since this is true for every p, it must be true for p = xm − ², for any
small value ². Thus, for some x ≥ xm, g(x) > f(x). But this can be true only
if either g(xm) > f(xm), or if g(x) > 0 for some x > xm. That is condition

(b) in Definition 3.

Similarly, if f(x) and g(x) are identical for all x < p, then Vcall(f, p) =

Vcall(f, p). Thus, if Vcall(g, p) > Vcall(f, p) is to be true, it must also be true

that for any p, for some x < p it must be true that g(x) > f(x). Since this is

true for every p, it must be true for p = x1 + ², for any small value ². Thus,

we need that for some x ≤ x1 it is true that g(x) > f(x). But this can be
true only if either g(x1) > f(x1) or if g(x) > 0 for some x < x1. That is

condition (a) in Definition 3.

Thus, for the value of the call to be greater under g(x) for all p, it is

necessary that g satisfy the conditions for being extremum riskier than f .

QED.

Why is this just a necessary condition, and not sufficient? Figure 3

shows why. In Figure 3, g(x) has more probability at the extremes than

f(x) does— the probability of each extreme is .25 instead of .20– but it is

not riskier in the conventional sense, because it cannot be reached from f(x)

by a sequence of mean-preserving spreads. If the strike price is 4.5, then

the call’s value is higher under distribution g(x), because the outcome x = 5

occurs with probability .25 instead of f(x)’s .20. Vcall(f, 4.5) = .20(5−4.5) =
.10 < Vcall(g, 4.5) = .25(5 − 4.5) = .125. If the strike price is 3.5, however,
the call’s value is higher under distribution f(x), because under g(x) the

outcomes x = 4 and x = 5 together occur with probability .25 instead of
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.40 and Vcall(f, 3.5) = .20(4 − 3.5) + .20(5 − 3.5) = .40 > Vcall(g, 3.5) =

.00(4− 3.5) + .25(5− 3.5) = .375.

The solution is simple– if g is riskier than f as well as extremum-riskier,

that is sufficient for all call options on g to be more valuable. (Note that

extremum riskiness already implies that g is not less risky than f , since more

weight is in the far tail of the distribution in g, but it might be that f and

g are not ordered by risk.)

Proposition 3: Consider two distributions f and g. A sufficient condition

for it to be true that Vcall(g, p) > Vcall(f, p) for any strike price p is that

(a) g is extremum-riskier than f ; and

(b) g is riskier than f .

Proof:

From Proposition 1 we know that if condition (b) is true, then Vcall(g, p) ≥
Vcall(f, p), that is, Proposition 3’s inequality is true at least weakly. Thus,

all that we need show is that condition (a) makes the inequality strict.

Suppose Proposition 3 is false, and there does exist some value p such

that Vcall(g, p) = Vcall(f, p). Recall that equation 1) says that g(x) has the

same unconditional mean as f(x):

Ex =
mX
i=1

f(xi)xi =
mX
i=1

g(xi)xi +
nX

i=m+1

g(xi)xi,

where xm+1 < xm+2 < ... < xn are points in the support of g but not f . If

Vcall(g, p) = Vcall(f, p), then it is also true (using (2) for the value of a call)

that

mX
i=j

f(xi)(xi − p) =
mX
i=j

g(xi)(xi − p) +
nX

i=m+k

g(xi)(xi − p), where j : xj−1 < p < xjandk : xm+k−1 <

(15)

so f and g have the same means conditional on x being greater than p.
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Putting these two equations together implies that

j−1X
i=1

f(xi)(xi − p) =
j−1X
i=1

g(xi)(xi − p) +
m+k−1X
i=m+1

g(xi)(xi − p), where j : xj−1 < p < xjandk : xm+k−1
(16)

so f and g have the same means conditional on x being less than p.

Since g is extremum-riskier, though, we know from Definition 3 that

either f(x1) < g(x1), or g(x) > 0 for some x < x1— that g puts more weight

on the far left tail of the distribution. Thus, equation (16) is false— g’s mean

conditional on x < p is lower than f ’s. In turn, this implies that equation

(16) ia false, and no p exists for which Vcall(g, p) = Vcall(f, p). Every call on

g is strictly more valuable than it would be on f . Q.E.D.

You might ask why I did not write Proposition 3 to say that conditions

(a) and (b) are jointly necessary and sufficient, rather than just sufficient.

If options on g are to be always more valuable than options on f , isn’t it

necessary that g be both riskier and extremum- riskier than f? No.

Proposition 3a (false): Consider two distributions f and g. A necessary

and sufficient condition for it to be true that Vcall(f, p) < Vcall(g, p) for any

strike price p is that

(a) g is extremum-riskier than f ; and

(b) g is riskier than f .

Disproof: Conditions (a) and (b) are jointly sufficient, as Proposition 3

says. Condition (a) by itself is necessary, as Proposition 2 says. Thus, what

we need to show to disprove Proposition 3a is that there exist distributions

f and g such that Condition (b) is violated but nonetheless Vcall(f, p) <

Vcall(g, p) for any p. That is, we must show that g’s options are always more

valuable, but g is not riskier than f .

Consider the example in Figure 4. Distribution g is extremum-riskier

than distribution f , but it is not riskier, because it has more probability at
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the mean, x = 5 (in fact, g(5) = 0). The distributions f and g cannot be

ordered by risk.

The value of a call option on an asset with density f and strike price

p ∈ (2, 8) is, from equation (2),

Vcall(f, p) =Max{0, .25(2− p)}+Max{0, .25(4− p)}+Max{0, .25(6− p)}
+Max{0, .25(8− p)}

(17)

and the value of a call option on an asset with density g and strike price

p is

Vcall(g, p) = Max{0, .25(1− p)}+Max{0, .40(5− p)}+Max{0, .30(9− p)}
(18)

The possible values of p go from p = 2 to p = 8, where the endpoints are not

possible (as the option would then be always or never exercised). We will

split this up into four intervals and examine each in turn.

Lemma 1: Vcall(f, p) < Vcall(g, p) for p ∈ (2, 4].
Proof: Then Vcall(f, p) = .25(4− p) + .25(6− p) + .25(8− p) = .25(18− p) =
4.5− .75p. On the other hand, Vcall(g, p) = .40(5−p)+ .30(9−p) = 4.7− .70p,
which is greater, so g has the more valuable options.

Lemma 2: Vcall(f, p) < Vcall(g, p) for p ∈ (4, 5].
Proof: Then Vcall(f, p) = .25(6 − p).25(8 − p) = 3.5 − .50p. On the other
hand, Vcall(g, p) = .40(5 − p) + .30(9 − p) = 4.7 − .70p. It is true that
3.5− .50p < 4.7− .70p if .20p < 1.2, which is true if p < 6, and in particular
if p ∈ [4, 5], so g has the more valuable options.
Lemma 3: Vcall(f, p) < Vcall(g, p) for p ∈ [5, 6].
Proof: Then Vcall(f, p) = .25(8−p) = 2−.25p.On the other hand, Vcall(g, p) =
.30(9−p) = 2.7− .30p. It is true that 2− .25p < 2.7− .30p if .05p < .7, which
is true if p < 14, and in particular if p ∈ [5, 6], so g has the more valuable
options.
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Lemma 4: Vcall(f, p) < Vcall(g, p) for p ∈ [6, 8).
Proof: Then Vcall(f, p) = 0. On the other hand, Vcall(g, p) = .30(9 − p) =
2.7− .30p. It is true that 0 < 2.7− .30p if if p < 9, and in particular is true
if p ∈ [6, 8], so g has the more valuable options.

Thus, for any p ∈ (2, 8), the set for which an option on f is risky, g has
more valuable options, which was to be proved.

Figure 4: Why Riskiness and Endpoint Riskiness Are Not

Necessary for Options To Increase in Value

For many applications, it is convenient to specify a simple sufficient con-

dition for one option to be riskier than another. Indeed, my first motivation

for this paper was to identify such a sufficient condition in the context of

information acquisition during an auction (see Rasmusen [2004]). Pointwise

riskiness is a sufficient condition that is both simple and plausible.

Proposition 4: If g is pointwise riskier than f , then for any p, Vcall(f, p) <

Vcall(g, p).
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Proof: If g is pointwise riskier than f , then it is also riskier and extremum

riskier. It is riskier because we can move from f to g by a series of mean-

preserving spreads that take probability away from the middle interval [x, x]

and move it to the extremes. It is extremum riskier because x1 < x and

xm > x, so g puts more probability on x1 and xm than f does. It follows

from Proposition 3, proved above, that calls on g will be more valuable than

calls on f . Q.E.D.

We have, of course, already found one sufficient condition for options on

g to be more valuable than options on f . Proposition 3 said that riskiness

plus extremum riskiness provides a sufficient condition. Proposition 3, in fact,

is a tighter sufficient condition. If g is pointwise riskier than f it is always

both riskier and extremum riskier— but g can be riskier and extremum riskier

than f without being pointwise riskier. Nonetheless, pointwise riskiness is a

useful concept, because it is simpler and more intuitive than standard plus

extremum riskiness.

Propositions similar to Propositions 2, 3, and 4 are easy to derive for

put options as well as for call options. The propositions do not extend to

exotic options that convey purchase or sale rights over ranges of prices that

do not slice the real line in two (e.g., the right to buy if the price is either

in the interval [3, 5.6] or in [7, 26]). Neither the intuition nor the rigorous

propositions extend to that kind of option, since an exotic option such as in

my parenthetic example can increase in value when probability shifts from

the extremes to the middle, a reduction in risk.

IV. Concluding Remarks

If distribution g is riskier than distribution f , then any call option on

an asset whose value has distribution g will be at least as valuable as the

equivalent option on an asset with distribution f . But the option on g might

not be more valuable, because the values might be equal. This paper has

developed a necessary condition for all call options on an asset whose value

has distribution g to be strictly more valuable than the equivalent option on
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an asset with distribution f , and two sufficient conditions for it, differing in

strength and convenience. The necessary condition is that g be “extremum

riskier”: it must put more probability on the extreme values of the asset.

One sufficient condition is that g be not only extremum riskier, but also

riskier under the conventional definition of risk— that g can be reached from

f by a series of mean-preserving spreads. A second sufficient condition, more

restrictive but simpler, is that g be “pointwise riskier”: asset values in the

middle of g have higher probability than under f , and asset values outside

the middle have lower probability.
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