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The Degree of Stability of Price Diffusion

Abstract

The distributional form of financial asset returns has important implications for the theoretical and empir-
ical analyses in economics and finance. It is now a well-established fact that financial return distributions
are empirically nonstationary, both in the weak and the strong sense. One first step to model such nonsta-
tionarity is to assume that these return distributions retain their shape, but not their localization (mean µ)
or size (volatility σ) as the classical Gaussian distributions do. In that case, one needs also to pay attention
to skewedness and kurtosis, in addition to localization and size. This modeling requires special Zolotarev
parametrizations of financial distributions, with a four parameters, one for each relevant distributional
moment. Recently popular stable financial distributions are the Paretian scaling distributions, which scale
both in time T and frequency ω. For example, the volatility of the lognormal financial price distribution,
derived from the geometric Brownian asset return motion and used to model Black-Scholes (1973) option
pricing, scales according to T 0.5. More generally, the volatility of the price return distributions of Calvet

and Fisher’s (2002) Multifractal Model for Asset Returns (MMAR) scales according to T
1
αZ , where the

Zolotarev stability exponent αZ measures the degree of the scaling, and thus of the nonstationarity of the
financial returns.
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1 Introduction

As we discussed in Los (2005a), the distributional form of financial asset returns has important

implications for the theoretical and empirical analyses in economics and finance. For example,

asset, portfolio and option pricing theories are typically based on the shape of these distributions,

which some researchers have tried to recover from financial market prices. For example, Jackwerth

and Rubinstein (1996) and Melick and Thomas (1997) did this for the options markets.

Stable distributions, which are distributions which retain their shape over time, but not neces-

sarily their size - are currently en vogue for risk valuation, asset and option pricing, and portfolio

management, long after having been in fashion for a short - lived period in the 1960s. They

provide much more realistic financial risk profiles, in particular in the high frequency FX markets,

where, for example, excess kurtosis is found, but also in the persistent stock markets (Hsu, Miller

and Wichern, 1974; Mittnik and Rachev, 1993a and b; Chobanov et al., 1996; McCulloch, 1996;

Cont, Potters and Bouchaud, 1997; Gopikrishnan et al., 1998; Müller et al., 1998; Los, 2000).

The scientific debate - about what kind of distributions best represent financial time series -

is not yet settled, and maybe never will. Some authors claim that the financial market return

distributions are close to being Paretian stable (Mandelbrot, 1962, 1963a and b and c, 1966;

Fama, 1963, 1965a and b; McFarland, Petit and Sung, 1982; Rachev and Mittnik, 2000); others

that they are close to Student −t distributions (Boothe and Glasserman, 1987). Still others reject

any single distribution, and claim that they can best be modeled by portfolios of distributions

(Caldéron - Rossel and Ben - Horim, 1982). However, everybody can agrees on a few empirical

observations like: FX return rates are fat - tailed and show high kurtosis. In other words, in

the FX markets extreme values are more prevalent than the conventional Gaussian distribution

suggests, i.e., extreme risks in the FX markets are abnormally frequent.

In addition, a new controversy has arisen in the financial research community as to whether the

second moment of the distribution of rates of returns actually exists, i.e., whether it converges to a
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(time - normalized) constant, or not. As emphasized by Müller, Dacorogna and Pictet (1998), this

question is central to computational finance, since financial models heavily rely on the existence

of the volatility of returns, σ (Los, 2001). Some empirical financial distributions, such as the rates

of return of the S&P500 Index exhibit such non - existent, i.e., non - convergent volatilities. Their

variances are not only nonstationary, they are essentially unpredictable!

As we observed in Los (2005a), financial market risk has been associated with this volatility

of returns σ, ever since in the 1950s Markowitz attempted to put portfolio theory on a scientific

footing (Markowitz, 1952; 1991, original 1959), using only the first two distributional moments -

the mean µ and the variance σ2. From the Sharpe ratio for measuring the portfolio performance

of mutual funds (Sharpe, 1966) to dynamic fundamental asset and derivative pricing models, the

volatility or risk constant σ is always present. Of course, for full - scale global multi - currency,

multi - asset investment portfolio valuation, one investigates the whole covariance matrix Σ,

instead of only independent variances σ2.

Thus the main motivation for studying stable distributions is the need to evaluate extreme risks

in the financial markets, i.e., the fat tails of the financial return distributions. Regrettably, most of

the current models for assessing such risks are still based on the assumption that financial market

returns are distributed according to the Gaussian distribution, which has only two parameters, the

two first moments of Markowitz. With the Gaussian distribution the evaluation of the frequency

of occurrence of extreme risks is directly related to the measurement of the volatility size σ, but

in the case of fat - tailed distributions that is no longer the case.

Thus, to broaden the set of our distributional benchmarks for financial returns, in this paper we

focus on the statistical theory of stable marginal distributions of investment returns, in particular,

of their Paretian time-and-frequency scaling distributions, irrespective of the structure of their

temporal dependence. In the case of scaling distributions, we want to have a theoretical concept of

statistical frequency distributions that exhibits the property of self - similarity and to show how

that property is related to certain time intervals via stable scaling laws of time aggregation. Later

2



on we will establish a (not yet specified) connection between the frequency of occurrence and the

timing of occurrence of certain financially risky events.

In this paper, we explain, first, the difference between linear and affine relations and time

series. Then, in Sections 2 and 3, some invariant properties of stable distributions are defined, like

of weighted mixtures, choice maximization and aggregation, closely following Mandelbrot (1962,

1963b). In Section 4 the scaling properties of Pareto-Lévy distributions are analyzed. Next, in

Section 5, we focus on the particular parametrizations of stable distributions of Zolotarev, following

the very clear explanation by Nolan (1999a and b) and Rachev and Mittnik (2000). In Section 6,

we also provide some examples of empirical financial research, which use this new theory of stable

distributions. In Section 7 we connect this discussion of stable distributions to current research of

the efficiency and stability of financial markets, via Calvet and Fisher’s (2002) Multifractal Model

of Asset Returns, and in Section 8 we discuss some of the essential weaknesses of current statistical

approaches to identify these distributions from inexact and irregular data. We recommend to use

the engineering signal processing modeling technologies to identify the crucial financial market

stability exponents, as we explained in Los (2005b).

2 Affine Traces of Speculative Prices

Although, in Los (2005a) we stated that correlatedness was a form of linear dependence, we did

not yet define what that concept represents. In this section, we will define linearity, affinity, time

- invariance, and time - dependence, all within the context of a financial system by using simple

operator algebra.1

1 An early user of such operator algebra was the famous Polish economist Oskar Lange, 1904 - 1965 (Lange,
1970). As a graduate student at Columbia University, I used such operator algebra in 1978 to solve the complex
nonlinear growth system of Michael Kalecki (1945). I had picked up Lange’s use of operator algebra at the London
School of Economics in 1975-76. My solution of Kalecki’s dynamic economic development system was to the delight
of my economics lecturer Duncan Foley of Barnard College. Kalecki’s dynamic system was more realistic, because it
could model more complex nonstationary behavior, than Samuelson’s more familiar, but much simpler accelerator
- multiplier economic growth system, which can only model stationary behavior (i.e., trends, infinite sinusoidal
waves, etc.) (Samuelson, 1947). It was an early indication to me that engineering concepts of signal processing
could have relevant use in the study of the nonstyationary financial market processes
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2.1 Linearity Versus Affinity

2.1.1 System Transformations

Let’s first define what is meant by such a crucial concept as a system.

Definition 2 A system is a mathematical model of a physical process that relates the input
function (or source) to the output function (or response). Thus, a system can be considered a
mapping of an input Xi(t) into an output Xo(t). Using the symbol f to symbolize this mapping,
we have

Xo(t) = f {Xi(t)} (1)

and f is the system operator, which transforms the inputs Xi(t) into outputs Xo(t).

f may be a linear or a nonlinear system operator. We will shortly define system linearity.

Definition 3 A system is invertible when

Xi(t) = f−1Xo(t) (2)

Thus, in an invertible system the output can just as well be the input, and vice versa.

Definition 4 A system is time - invariant when

Xo(t+ τ) = f {Xi(t+ τ)} (3)

where τ is an arbitrary constant, representing a time interval.

Time intervals have no influence on the output of a time - invariant system, since the system

does not change within such time intervals.

Definition 5 L is called the linear operator and the system represented by L is called a linear
system, if the operator L satisfies the following two conditions of additivity and homogeneity:

L {Xi1(t) +Xi2(t)} = L {Xi1(t)}+ L {Xi2(t)}
= Xo1(t) +X2o(t) (additivity) (4)

L {cXi(t)} = cL {Xi(t)}
= cXo(t) (homogeneity) (5)

For example, the familiar time lag - operator L, which delays the input by one time period, is

linear, as can be easily checked, since it satisfies the two defining properties of linearity. Notice

that

Xt−τ = LτXt (6)

Thus, multiple period lags consist of a geometric series of linear one - period lag operators.
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Remark 6 Note that the first difference operator ∆ can be derived from the time lag - operator,
since

∆ = 1− L (7)

This easy to check, since

∆X(t) = X(t)−X(t− 1)
= X(t)− LX(t)

= (1− L)X(t) (8)

Now we also see why the Geometric Brownian Motion (GBM) can be written, in discrete time
fashion, as

∆x(t) = (1− L)x(t)

= ε(t), with ε(t) ∼ i.i.d. (9)

with the rate of return x(t) = ∆ lnX(t), when X(t) is the market price.

Since the lag operator is linear, the first difference operator is also linear. Higher - order

difference operators can easily be expressed as products of the first difference operator:

∆d = (1− L)d (10)

for any real (integer or fractional) constant order d ∈ R. These higher - order difference operators

play an increasingly important role in empirical financial research.

Example 7 Bachelier’s (1900) simpler Random Walk (RW) can also be viewed as a linear system,
when we focus on the first price differences ∆X(t), since we can write

∆X(t) = ε(t), with ε(t) ∼ i.i.d. (11)

In this model conception, the series of time - dependent prices {X(t)} is linearly transformed,

or filtered, into innovations, which are assumed to be independently and identically distributed

(= strongly stationary) or i.i.d.. Consequently, to empirically test this RW model, we compute

the first differences of such price series and then test if the resulting series of innovations are,

indeed, independent and strongly stationary. If not, the price series cannot be described by the

RW model. Recently, we executed non - parametric independence and stationarity tests on high

- frequency, minute - by - minute Asian FX series in Los (1999), which are both not independent

and nonstationary, and on weekly Asian stock market returns in Los (2000), which show a fair

amount of stationarity, but do not show independence.
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However, the real order d of financial system differentiation is often empirically measured to

be a fraction and not an integer.

Definition 8 A fractional difference operator is ∆d = (1− L)d for d = non integer ∈ R.

We met these empirically important fractional difference operators again in Los (2005b), where

we discussed Fractional Brownian Motion (FBM). The FBM and the related Multifractal Model

of Asset returns (MMAR) can better explain the observed simultaneous phenomena of nonsta-

tionarity and long - term dependence or Long Memory.

In Los (2005b), we discussed the two major types of their time dependence: serial (or short-

term) dependence and global (or long - term) dependence. This global time dependence can

only be modelled by fractional difference operators, since it requires that the power of volatility

or financial market risk never dies off. In other words, the arbitraging financial market trading

processes never cease to operate due to the long memory of historical news events.

Now, there is a difference between linear and affine system operations.

2.1.2 Affine Transformations

Definition 9 M is called the affine operator when

Xo(t) =M {Xi(t)}
= cXi(t) + d (12)

where c and d are amplifying and vertical frame shifting constants, respectively.

The affine operator is clearly nonlinear, since, first, it is not additive:

M {X1(t)}+M {X2(t)} = c [X1(t) +X2(t)] + 2d

6=M {X1(t) +X2(t)}

= c [X1(t) +X2(t)] + d (13)
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and, second, it is not homogeneous, since

M {cX(t)} = cX(t) + d

6= cM {X(t)}

= cX(t) + cd (14)

However, we can always transform an affine data series into a linear data series by taking

deviations from the mean, since

xo(t) =

"
Xo(t)− 1

T

TX
t=1

Xo(t)

#

= [cXi(t) + d]−
"
c

T

TX
t=1

Xi(t) +
1

T

TX
t=1

d

#

= c

"
Xi(t)− 1

T

TX
t=1

Xi(t)

#
+ d− d

= c

"
Xi(t)− 1

T

TX
t=1

Xi(t)

#

= cxi(t) (15)

which is clearly additive and homogeneous, and thus linear. Thus, we’ve found a second reason to

compute deviations from the mean, or first differences, before we analyze a financial time series:

to derive linearity.

3 Invariant Properties: Stationarity Versus Scaling

We learned in Los (2005a) that stationarity in the wide sense (weak stationarity) is defined by

constant, invariant risk:

σt = σs, with t, s ∈ T (16)

We learned also that Bachelier’s RW process has invariant normalized risk. As long as the

scaling factor remains invariant over time, we can transform any horizon risk linearly into nor-

malized risk by proper scaling. By scaling we normalize the horizon risk of an asset to its own
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invariant asset risk class. In the case of the RW process, we use the so-called Fickian scaling. The

RW process risk scales self - similarly according to the number of periods n, where the total time

of observation is T = nτ , since we can express the self - similarity of the horizon risk of the RW

process within the constant investment or trading horizon τ as follows:

στ =
1

n0.5
σT

=
³ τ
T

´0.5
σT (17)

or, in inverse form,

σT = στn
0.5 (18)

But there are distributions which have different scaling exponents than the Fickian scaling

exponent λ = 0.5 of an RW (or Arithmetic Brownian Motion on the basis of the market prices

X(t)), or of a GBM (on the basis of the investment return x(t) = ln(X(t)/X(t− 1)). It appears

now that these non - Fickian scaling exponents are most prevalent in empirical finance and not

the usually presumed Fickian exponent. A subgroup of such statistical scaling distributions are

the Pareto - Lévy power laws.2

Definition 10 A (Pareto - Lévy) scaling distribution (or power law) is a frequency dis-
tribution P (X(τ) > x) of independent random variables X(τ) with a scaling factor σT , which is
dependent on the frequency of (observed) occurrence, such that

P (X(t) > x) ∼ σT = στn
λ (19)

where λ is the scaling exponent, the total time of observation is T = nτ and τ is the minimal
trading horizon, e.g., a minute, an hour, a day, a month, or a year, etc.

The essence of power laws is the inherent self- similarity over the n trading periods: no matter

what the size of n, the power law will have the same shape. The shape of the power law is

2 Vilfredo Pareto (1848 - 1923) was an Italian sociologist and professor of political economy at the University
of Lausanne, Switzerland. In his book Mind and Society (1916; English translation, 1935), Pareto states that
individuals act irrationally, but that mass action becomes more logical the greater the number of individuals
involved, because their desires and illusions cancel out. He thought that society, like physics, is a system of forces
in equilibrium. Mathematics can therefore be applied to explain why the equilibrium holds, making a science of
society possible. Unfortunately, Pareto’s theory did not recognize that irrational behavior can also occur on a mass
scale, e.g., like bubbles and catastrophes in the financial markets, and therefore his theory cannot account for crowd
behavior. In 1897 Pareto found that the distribution of incomes for individuals was approximately log - normally
distributed for 97% of the population. But for the last 3% of the population incomes increased more sharply. We
now know from Finance theory why that is, because the more wealth one has, the more one can risk. The wealthy
can leverage their wealth in ways the average, middle income, individual cannot.
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determined by the exponent λ. Thus, the size of the shape of a financial return distribution

determined by the number of trading periods n and the fundamental market volatility στ , which

is a measure of the fundamental energy or "noise" of a market.

Remark 11 Notice that we make a distinction between the trading time τ and the actual time t.
Thus, only when the trading time unit is the same as the actual time unit τ = 1, T = n, and the
power law can be expressed in terms of the total time of observation:

P (X(t) > x) ∼ σT = στT
λ (20)

For some financial time series, we must distinguish between trading time and observation time,
like for FX series, where the tick - by - tick trading is often more frequent than the recording
of transaction prices by commercial bank quotations. Researchers have often only access to the
regularly spaced price quotations and not to the more frequent and irregularly spaced tick - by -
tick transaction prices.

A Pareto-Lévy power law can be written in logarithmic form as an affine relation:

lnσT = λ lnn+ lnστ (21)

so that, in principle, the exponent λ can be found from the expression:

λ =
lnσT − lnστ

lnn
(22)

In terms of financial risk theory, Peters (1994, pp.27 - 37) appropriately calls this relationship

the term structure of volatility. It depends on the horizon (or maturity) volatility σT and the

fundamental market volatility στ - which depends on the uniform trading horizon τ - as well as

the number n of uniform, equally spaced, trading times.

How easy is it to compute the invariant scaling exponent λ from the observations? Not as

easy as it appears, since, a priori, we do not know the fundamental market volatility στ , the basic

standard deviation (risk) of the unit of observation, i.e., the observation ”noise”. This has to be

measured first, somehow, or at least simultaneously, with the horizon volatility. We discussed this

epistemological issue in greater detail already in Los (2005b), where we showed that this problem

is solved by the latest advances in nonstationary (engineering) signal processing. The relevance

if this term structure of volatility for portfolio risk management and Value - at - Risk issues is

discussed in Los (2005c).
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4 Invariances of Pareto - Lévy Scaling Distributions

Many objects that come in different sizes have self - similar power law distributions of their relative

abundance over large size ranges, of the form:

f(x) ∼ xλ (23)

A recent example of the application of such scaling laws of financial volatility to the analysis of

financial long - term dependence is Batten, Ellis and Mellor (1999). The only prerequisite for such

a self - similar law to prevail in a given size range is the absence of an inherent size scale. Thus,

invariance of scaling results from the fact that homogeneous power laws lack natural scales: they

do not harbor a characteristic unit (such as a unit length, a unit time, or a unit mass).

Remark 12 Real - world data are never completely scale - invariant because of ”end effects.” For
example, no living village has fewer than one inhabitant or more than 100 million inhabitants -
except the proverbial ”global village,” which is more of a simile, than a reality.

Mandelbrot (1962, 1963b) discusses three invariances of scaling, or self - similarities, of stable

Pareto - Lévy power law distributions:

(1) invariance of scaling under weighted mixture (= weighted linear combination);

(2) invariance of scaling under choice maximization (minimization); and

(3) invariance of scaling under aggregation.

More invariances are possible, as Fig. 1 shows, but they are all related to the three invariances

defined by Mandelbrot.

Let’s discuss Mandelbrot’s three scale invariances in some sufficient detail to understand the

concept of "scaling distributions," and as an example of "distributional stability."
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Figure 1: Stable probabilistic schemes

4.1 Weighted Mixtures

Suppose that the random variable XW is a weighted mixture of the independent random variables

X(τ), and denote by pτ the probability that XW is identical to X(τ). Since

P (XW > x) =
X
τ

pτP (X(τ) > x)

∼
X
τ

pτστn
λ

= σWnλ (24)

we see that the weighted mixture XW is also scaling and the scale parameter σW =
P

pτστ is a

weighted average of the separate scale parameters στ . (The sign ∼ means ”is proportional to”).

Thus, scaling is invariant under weighted mixture (= weighted linear combination) of random

variables.

11



4.2 Choice Maximization

Ex post, when the values of X(τ) are known, let XM be the maximum value. This XM is also

scaling with the scale parameter σM =
P

στ , since, in order that XM is the maximum, i.e.,

XM ≤ x,where x is a value, it is both necessary and sufficient that Xτ ≤ x for every τ . Hence we

have the product

P (XM ≤ x) =
Y
τ

P (Xτ ≤ x) (25)

Consequently,

P (XM > x) = 1− P (XM ≤ x)

= 1−
Y
τ

P (Xτ ≤ x)

= 1−
Y
τ

(1− P (Xτ > x))

∼ 1−
Y
τ

(1− στn
λ)

∼
X

στn
λ = σMnλ (26)

for sufficiently small στ , where σM =
P

στ .

4.3 Aggregation

Let XA be the sum of the random variables Xτ . The aggregate XA is also scaling, with a scale

parameter that is again the sum of the separate weights σA =
P

στ . Using a similar argument as

for the weighted mixtures

P (XA > x) =
X
τ

P (X(τ) > x)

∼
X
τ

στn
λ

= σAn
λ (27)

where σA =
P

στ . Mixtures combined with aggregation leave the scaling distribution invariant -

up - to - scale.
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5 Zolotarev Parametrization of Stable Distributions

We will now discuss stable distributions in general, by following closely Nolan’s (1999a and b)

admirably clear theoretical presentation, and we will see where the Pareto - Lévy scaling laws of

Mandelbrot, which exhibit infinite variance in the limit, fit in as a subsection of stable distributions.

Interestingly, the study of general stable distributions was begun by Paul Lévy in 1924 in his study

of normalized sums of i.i.d. variables. Stable distributions are a class of distributions, that includes

the Gaussian and Cauchy distributions in a family that allows skewness and heavy tails (= excess

kurtosis). Distributions with heavy tails are empirically observed in economics, finance, insurance,

telecommunications and physics.

Remark 13 In finance, the interest in the skewness of return distributions has primarily emerged
in the context of the discussion about the empirical truthfulness of the Capital Asset Pricing Model
(CAPM), which is based on Markowitz’ Nobel Memorial Prize - winning Mean - Variance Analysis.
That model assumes normal distributions and/or quadratic wealth-utility preference functions,
which don’t include preferences for skewness and kurtosis. However, the moment a certain degree
of skewness is preferred by the investors, the conventional CAPM is no longer a model of market
efficiency (Kraus and Litzenberger, 1976; Friend and Westerfield, 1980). In other words, the
empirically observed skewness implies that the CAPM cannot represent an efficient market model
for the empirical markets..

Some people have objected against the use of stable distributions with infinite variance, be-

cause empirical data exhibit bounded ranges. However, that is not what it means, since the rates

of return of the S&P500 Index have indeterminate (= "infinite") variance! Moreover, bounded

data sets are routinely modeled by Gaussian distributions which have infinite support. Thus the

epistemological question is, why would distributions with theoretical infinite support with empir-

ically bounded ranges be methodologically acceptable, while distributions with theoretical finite

support and empirically unbounded ranges would not be? After all, we’re primarily interested in

the shape of the distributions, not in their size.

It is now an established empirical fact that the shape characteristics of stable distributions,

other than the Gaussian, are more conform those of the frequency distributions we empirically

observe, in particular in finance (Rachev and Mittnik, 2000). In addition, stable distributions
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provide a realistic fit with very parsimonious parametrizations. Furthermore, infinite variances

are not restricted to stable distributions. If a distribution has asymptotic power decay on its tails,

then the number of its moments is limited. If the exponent of such power decay is less than 2,

then the distribution will have infinite variance, as we already learned in Los (2005b).

We turn now to Zolotarev’s definition and parametrization of stable distributions, since that

is currently the most popular theoretical representation (Zolotarev, 1986; Adler, Feldman and

Taqqu, 1998)

5.1 Definitions of Stable Distributions

Definition 14 (Original definition of stable distribution): A random variable X is stable,
or stable in the wide sense, if for X1 and X2 independent copies of X and for any positive
constants a and b, we have

aX1 + bX2
d
= cX + d (28)

for all choices of a and b and for some nonnegative c ≥ 0 and some d ∈ R. Thus if the weighted
sum of X1 and X2 equals in distribution an affine relationship.

The symbol d
= means equality in distribution, i.e., both expressions have the same probability

law, although the size of the distribution is indeterminate.

Definition 15 The random variable X is strictly stable or stable in the narrow sense if
this relationship holds with the "intercept" d = 0, thus if their weighted sum equals in distribution
a linear relationship.

Definition 16 A random variable is symmetrically stable if it is stable and symmetrically
distributed around 0, e.g.,

X
d
= −X (29)

In other words, the equation

aX1 + bX2
d
= cX + d (30)

states that the shape of the distribution of X is preserved affinely, i.e., up to scale c and shift

d under addition. For scaling distributions, which are a subset of stable distributions, this is,

of course, equivalent to the invariances under weight mixture and aggregation of Mandelbrot’s

(1963a) Pareto - Lévy distributions. The word stable is used because the shape of the distribution

is stable or unchanged under sums of this additive type. As already mentioned, there are not only
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additive stable, but also max - stable, min - stable and geometrically stable distributions, that

preserve stability under choice maximization, choice minimization, etc.

There are other equivalent definitions of stable random variables. Here is a variation of the

original definition of an (additive) stable distribution:

Definition 17 (Variation of definition of stable distribution) X is stable (in the wide
sense) if and only if for all n > 1 there exist constants cn and dn ∈ R such that

X1 +X2 + ...+Xn
d
= cnX + dn (31)

where X1, ...,Xn are independent, identical copies of X.

It appears that the only possible choice for cn is that it is an exponential function of n:

cn = nλ = n
1
αZ . X is again strictly stable if and only if dn = 0 for all n. Thus a defining

invariance property of stable distributions is that linear combinations of stable random variables

are also stable.

The most concrete way to describe all possible stable distributions is through their charac-

teristic functions, or Fourier transforms (Cf. Los, 2005a), which is what we will do next. All

stable distributions are scale and location shifts of standardized stable distributions, just like

any Gaussian X ∼ N(µ, σ2) is the scale and location shift affine transform X = σZ + µ of the

standardized Gaussian Z ∼ N(0, 1), for which standardized probability tables exist.

Following Nolan, we will present the popular standardized or reduced parametrization of stable

distributions of Zolotarev.3 This standardized parametrization of stable distributions uses the

sign (or modified Heaviside) function, which is defined as:

sign(ω)


= −1 for ω < 0

= 0 for ω = 0

= +1 for ω > 0


(32)

Theorem 18 (Zolotarev, 1986, Standardized Parametrization of Stable Distribution)
A random variable X is stable if and only if X d

= cZ + d, with c ≥ 0, d ∈ R, and Z = (αZ , β) is a
3 Other parametrizations are possible, but currently not as popular (Cf. Rachev and Mittnik, 2000). Since in

the cuent paper I emphasize concepts, definitions and empirical measurements of risk, all Theorems, Lemma’s and
Propositions will be given without proof. Such mathematical proofs can be found in the references.
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random variable with the following characteristic function, where 0 < αZ ≤ 2,−1 ≤ β ≤ 1,

E
©
ejωz

ª
=

Z +∞

−∞
ejωzdG(z)(

= e(−|ω|
αZ [1+jβ tan παZ

2 sign(ω)(|ω|1−αZ−1)]) if αZ 6= 1
= e(−|ω|[1+jβ

2
π (sign(ω) ln|ω|]) if αZ = 1

)
(33)

where G is the stable distribution function corresponding to the stable density function of Z.

The key idea of Zolotarev’s fundamental Theorem is that the parameters αZ and β determine

the shape of the stable distribution, while c is a scale parameter and d is a shift parameter. It

shows that the standardized stable distribution has only two parameters: (1) an index of stability,

or stability (shape) exponent αZ ∈ (0, 2] and (2) a skewness parameter β ∈ [−1, 1]. For the αZ = 1

case, 0. ln 0 is always interpreted as 0.

Remark 19 The Non - Standardized Stable Distribution of the random variable X ∼
S(αZ , β, γ, δ; 0) (e.g., in Mittnik et al., 1998, and in Rachev and Mittnik, 2000) has the char-
acteristic function

E
©
ejωx

ª
=

Z +∞

−∞
ejωxdH(x)(

= e(−γ
αZ |ω|αZ [1+jβ tan παZ

2 sign(ω)(γ|ω|1−αZ−1)]+jδω) if αZ 6= 1
= e(−γ|ω|[1+jβ

2
π (sign(ω)(ln|ω|+ln γ]+jδω) if αZ = 1

)
(34)

where H is the stable distribution function corresponding to the stable density function of X. As
we already discussed in Los (2005a), this non - standardized stable distribution has four parameters
(1) a stability exponent αZ ∈ (0, 2], (2) a skewness parameter β ∈ [−1,+1], (3) a scale parameter
γ > 0, and (4) a location parameter δ ∈ R.

Remark 20 This is the theoretical expression, of course The actual computation of all stable
densities is always approximate in the sense that the density function S(αZ , β, γ, δ; k), k = 0, 1 is
approximated by the Fast Fourier Transformation of these stable characteristic functions.

5.2 General Properties of Stable Distributions

Although explicit formulas exist for stable characteristic functions, in general no explicit formulas

exist for the corresponding stable distribution densities. However, the theoretical properties of

such distribution densities are well known. The basic property of stable distribution densities is

given by the following so - called idealization theorem.

Theorem 21 All (non - degenerate) stable distributions are continuous distributions with an
infinitely differentiable density.
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The probability density function (pdf) of a standardized Z(αZ , β) stable distribution will

be denoted by f(z|αZ , β) and the cumulative distribution function (c.d.f.) will be denoted by

F (z|αZ , β). All stable densities are unimodal, i.e., they have each one ”peak.”4 The mode

m(αZ , β) of a Z(αZ , β) distribution can be numerically computed, even though no explicit alge-

braic formula for it exists. By the symmetry property, the densities have uni-modes such that:

m(αZ ,−β) = −m(αZ , β) (35)

Furthermore, stable densities are positive on the whole real line, unless αZ < 1 and (β = +1 or

β = −1), in which case the support is half a line. In more precise terms:
Lemma 22 The support of a stable X(αZ , β, γ, δ) distribution is

support f(z|αZ , β) =
£
δ − tan(παZ2 ),∞¢ if αZ < 1 and β = 1 (positively skewed)¡−∞, δ + γ tan(παZ2 )

¤
if αZ < 1 and β = −1 (negatively skewed)

(−∞,+∞) otherwise

 (36)

Remark 23 Notice that the constant tan(παZ2 ) is an important ingredient of stable distributions.
It shows an essential discontinuity at αZ = 1, since as αZ ↑ 1, tan(παZ2 ) ↑ +∞ and αZ ↓ 1,
tan(παZ2 ) ↓ −∞, while tan(παZ2 ) is undefined at αZ = 1.

Another basic property of stable distributions is their symmetry.

Proposition 24 (Symmetry Property) For any αZ and β,

Z(αZ ,−β) d
= Z(αZ , β) (37)

Therefore, the density and distribution function of a Z(αZ , β) random variable satisfy f(z|αZ , β) =

f(−z|αZ ,−β) and F (z|αZ , β) = 1− F (−z|αZ , β).

It’s important to consider now a few special cases to understand these distributions and their

densities:

(1) When β = 0, the symmetry property says f(z|αZ , β) = f(−z|αZ , β), so the pdf and c.d.f.

are symmetric around 0.

4 This unimodality, or "one - peakedness" of stable distributions is a potential shortcoming for research into
empirical financial distributions, since some of such distributions have been observed to be multi - modal. Multi -
modality occurs, for example, in chaotic distributions. Such multiple equilibria, chaotic distributions can be gener-
ated by price diffusion equations, which contain a combination of linear and parabolic or higher-order components,
like the price diffusion equations of some options. This is an extremely interesting area of both theoretical and
empirical research into financial turbulence (Los, 2005d).
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(2) When β > 0, the distribution is skewed to the right with the right tail of the distribution

heavier than the left tail: P (Z > z) > P (Z < −z) for large z > 0. When β = 1, the stable

distribution is totally skewed to the right.

(3) By the symmetry property, the behavior of the β < 0 cases is reflecting the behavior of

the β > 0 cases, with a heavier left tail. Thus when β < 0, the distribution is skewed to the left

with the left tail of the distribution heavier than the right tail: P (Z > z) > P (Z < −z) for large

z > 0. When β = −1, the distribution is totally skewed to the left.

(4) The stability exponent αZ ∈ (0, 2] determines the kurtosis of the distribution: the peaked-

ness at δ and the fatness of the tails. As the stability exponent αZ decreases, three things occur

to the distribution density: its peak gets higher, the region flanking the peak gets lower, and the

tails get heavier, or, in summary: the kurtosis of the distribution increases. Vice versa, when the

stability exponent αZ increases, the kurtosis of the distribution decreases. For example, when

αZ = 2, the distribution is normal with its variance equal to σ2 = 2γ2. In that case

tan(
παZ
2
) = tan(π) = 0 (38)

so the characteristic function is real and hence the distribution is always symmetric, no matter

what the value of β. The next characteristic of stable distributions is the most interesting.

(5) When the stability exponent αZ < 2, the second moment, or variance, becomes infinite,

or, more precisely, undefined. Its computation no longer converges to a unique value. When

1 < αZ < 2, the first moment still exists, but when αZ ≤ 1, the first moment or theoretical

(population) average also becomes infinite or undefined and its computation no longer converges

to a unique value (Samorodnitsky and Taqqu, 1994). Thus, there is only a very limited range of

the stability exponent αZ for which both the first and second moments of stable distributions exist.

By existence of moments we mean that they have a well - defined value that can be computed

and identified within a prespecified error range, no matter how small.
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Of course, we can always compute a (sample) average or a variance of a finite data set. Non

- existent or undefined theoretical (population) averages and variances just mean that there is

no convergence to well - defined values, even when we substantially enlarge the data set. The

computed mean and variance of that data set will never converge to a specific mean and variance,

but will continue to ”wander.” It will never settle on a specific value.

This is not a theoretical abstraction, as one can observe from the computation of the variance

of the rates of return of the S&P500 Index. These Index rates have a well-defined, convergent

finite mean, but no defined, convergent variance. Peters, 1994, pp. 200 - 205 provides many

additional theoretical and empirical examples. These cases are seldom mentioned in the classical

statistical literature, thereby creating the erroneous impression that these cases are pathological

and special. But they are actually regularly occurring empirical cases in the financial markets!

5.3 Different Zolotarev Parametrizations

Historically, several different Zolotarev parametrizations have been used for stable distributions,

for which, in general, no closed form parametrization exists (because of the discontinuity at αZ =

1). We give the three most often used Zolotarev parametrizations. Here is the first one.

Definition 25 A random variable X is the parametrized stable distribution S(αZ , β, γ, δ; 0)
if

X
d
= γZ + δ (39)

where Z = Z(αZ , β) is implicitly given by its characteristic function in Theorem 1.

This is the Zolotarev parametrization used for current numerical work on stable distributions.

It has the simplest form for the characteristic function that is continuous in all parameters.

Remark 26 Notice that γ is the scale parameter and δ the location parameter, in a rather natural
fashion. For the standardized version γ = 1 and δ = 0, so that S(αZ , β, γ, δ; 0) = S(αZ , β; 0).

Let’s show some numerical examples of stable distributions to demonstrate their properties

mentioned in the preceding subsection. Fig. 2 provides a graphical representation of stable

densities in the S(αZ , β, γ, δ; 0) = S(αZ , 0.8, 1, 0; 0) parametrization, with the stability exponent

αZ (alpha) as indicated.
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Figure 2: Stable density in the Zolotarev S(αZ , β, γ, δ; 0) = S(αZ , 0.8, 1, 0; 0) parametrization

Here is the second Zolotarev parametrization:

Definition 27 A random variable X is characterized by the parametrized stable distribution
S(αZ , β, γ, δ; 1) if

X

(
d
= γZ + (δ + βγ tan παZ

2 ), if αZ 6= 1
d
= γZ + (δ + β 2πγ ln γ), if αZ = 1

)
(40)

where Z = Z(αZ , β) is implicitly given by its characteristic function in Zolotarev’s 1986 Theorem.

This S(αZ , β, γ, δ; 1) parametrization is the most common one currently in use, since it pro-

duces the simplest characteristic function, which is jointly continuous in all four parameters, and

has therefore preferable algebraic properties. But it’s practical disadvantage is that the location

of the mode is unbounded in any neighborhood of αZ = 1.

Fig. 3 provides a graphical representation of stable densities in the S(αZ , β, γ, δ; 1) = S(αZ , 0.8, 1, 0; 1)

parametrization, with the stability exponent αZ (alpha) being varied similarly as in Fig. 2. Notice

in Fig. 3, that the mode is near 0 for αZ near 0 or 2, or αZ = 1, but diverges to +∞ as αZ ↑ 1

and diverges to −∞ as αZ ↓ 1. When β = 0, both these parametrizations are identical.

Remark 28 As αZ ↑ 2 both parametrized distributions converge in distribution to a distribution
with standard deviation

√
2γ and not γ, as maybe would have been expected! In fact, when αZ < 2,
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Figure 3: Stable density in the Zolotarev S(αZ , β, γ, δ; 1) = S(αZ , 0.8, 1, 0; 1) parametrization

no standard deviation exists. Thus, for comparison purposes, one should multiply γ by
√
2 to

make the scale parameter of the stable distribution comparable with that of the standard Gaussian
distribution, i.e., the deviation σ =

√
2γ, or, equivalently, γ = 1√

2
σ.

The third Zolotarev parametrization focuses on the mode as a location parameter, since, as

we saw, every stable distribution has a mode.

Definition 29 A random variable X is characterized by the parametrized stable distribution
S(αZ , β, γ, δ; 2) if

X
d
= α

−1/αZ
Z γ[Z −m(αZ , β)] + δ (41)

where Z = Z(αZ , β) is implicitly given by its characteristic function in Theorem 1 and m(αZ , β)
is the mode of Z.

5.4 Tail Properties and Stable Paretian laws

When the stability exponent αZ = 2, the resulting Gaussian distribution has well understood

asymptotic tail properties. For the purpose of comparison, we’ll briefly discuss in this section the

crucial tail properties of non - Gaussian (αZ < 2) stable distributions. In risk theory, it is the

tails of such stable distributions, representing the less likely, outlying and sometimes catastrophic

events, that are most important for financial analysts, hedgers, and insurance and re-insurance
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companies.

Theorem 30 (Tail Approximation). Let X ∼ S(αZ , β; 0) with 0 < αZ < 2, −1 < β ≤ 1.
Then, as x→∞,

P (X > x) ∼ cαZ (1 + β)x−αZ (42)

f(x|αZ , β; 0) ∼ αZcαZ (1 + β)x−(αZ+1) (43)

where cαZ = Γ(αZ)(sin
παZ
2 )/π.

Remark 31 Notice the gamma function Γ, which is such that Γ(αZ +1) = αZΓ(αZ) = αZ !, with
Γ(1) = 1.

Remark 32 Using the symmetry property, the lower tail properties are similar. For all αZ < 2
and −1 < β, the upper tail probabilities and densities are asymptotic power laws (i.e., scaling
distributions).

Having developed this arsenal of concepts and definitions of stable distributions, we’ll can

now define more specific non - Gaussian distributions, in particular the Pareto and heavy tailed

distributions, which figure prominently in the recent financial research literature (Müller et al.,

1990; Janicki and Weron, 1994; Mantegna and Stanley, 1995; Samorodnitsky and Taqqu, 1994) .

Definition 33 Pareto distributions are probability laws with upper tail probabilities given ex-
actly by the right hand side of the Tail Approximation Theorem.

Remark 34 The term stable Paretian laws is used to distinguish between the fast decay of the
Gaussian distributions and the Pareto - like tail behavior in the αZ < 2 case.

Definition 35 A distribution is said to be heavy - tailed if it’s tails are heavier than exponential.

Remark 36 For αZ < 2, stable distributions have one tail (when αZ < 1 and β = ±1), or both
tails (in all other cases) that are asymptotically power laws with heavy tails.

One important consequence of heavy tails is that not all moments exist, or, when they exist,

they may be fractional. In other words, the literature on frequency distributions has considerably

expanded our arsenal of moments discussed in Los (2005a): from integer moments to fractional

moments! This provides the direct connection to Los (2005b).

Definition 37 Fractional absolute moments:

E {|X|p} =
Z ∞
−∞

|x|p f(x)dx (44)

where p is any - integer or fractional - real number.
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The Tail Approximation Theorem implies that for 0 < αZ < 2, the moments E {|X|p} are

finite for 0 < p < αZ , and that E {|X|p} = +∞ for all p ≥ αZ . Thus ,when αZ < 2, E
n
|X|2

o
=

E
©
X2
ª
= +∞ and stable distributions do not have finite second moments or variances. This is

the worrisome theoretical case to which Mandelbrot (1963, 1966) referred in the 1960s and which

was then dismissed by most mathematicians as pathological. But empirical observations in the

financial markets since the 1960s have demonstrated that this case is empirically more prevalent

than was presumed by the theoreticians.

In fact, this is an important case for anybody studying financial risk, since it implies that par-

ticular investment return series may have measurable stable distributions, but still exhibit infinite

or undefined risk! The empirical scientific question is, do such strange financial distributions exist

in empirical reality? The unfortunate answer is: yes, since this are the distributions of variables

moving in the range of the so - called persistent or pink noise, i.e., noise that lies in the range

between white and red noise (Los, 2005b & c).

Example 38 The logarithmic plot of Fig. 4 (which we borrowed from Mantegna and Stanley,
2000, p. 69) shows that the high - frequency pdf for ∆t = 1 minute price changes of the S&P500
Index with an empirically measured αZ = 1.67 lies between the Gaussian pdf with αZ = 2.00 and
the pdf of a Lévy stable distribution with αZ = 1.40 and a scaling factor of γ = 0.00375.

Example 39 Fig. 5 shows that the daily observations on the rates of return of the S&P500
Index in 1998 exhibit considerable persistence, unlike Gaussian rates of return. The variance
or volatility of these daily rates of return, computed over longer and longer horizons dissipates.
But this dissipation of the S&P500’s volatility is not gradual and smooth. It shows sudden and
completely unpredictable discontinuities and the volatility never converges to a uniquely defined
value. Peters (1994, pp. 141 - 146) observed similar phenomena and found that this volatility
dissipation process is antipersistent (Los, 2005b).

Let’s analyze the specific case of the first moment, or mean, of stable distributions in somewhat

greater detail.

Proposition 40 When 1 < αZ ≤ 2, E {|X|} <∞ and the mean of X ∼ S(αZ , β, γk, δk; k) exists,
for k = 0, 1, 2, respectively, the mean is

µ


= E {X} = δ1
= δ0 − βγ0 tan

παZ
2

= δ2 − α
−1/α
Z γ2

¡
β tan παZ

2 +m(αZ , β)
¢
 (45)

In other words, there is a clear relationships between the various location parameters, δ1, δ2,

and δ2 of these three parametrizations. On the other hand, when αZ ≤ 1, the first absolute
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Figure 4: Comparison of the ∆t = 1 minute p.d.f. for high - frequency S&P500 price changes (white
circles) with the Gaussian p.d.f (dotted line, smallest p.d.f. in middle) with αZ = 2.00 and with a Lévy
stable p.d.f. (solid line, largest p.d.f.) of αZ = 1.40 and scale factor γ = 0.00375 (same as that of the
S&P500).

moment is infinite, E {|X|} = +∞, and these means are undefined. What happens geometrically

with a stable distribution when its absolute mean does not exist?

Consider what happens to the mean of X ∼ S(αZ , β; 0) as αZ ↓ 1. Even though the mode of

the distribution stays close to 0, it has a mean µ = β tan παZ
2 . When β = 0, the distribution is

symmetric and the mean is always 0. When β > 0, the mean µ ↑ +∞, because both tails are

getting heavier, but the right tail is heavier than the left. By symmetry, the β < 0 case has the

mean µ ↓ −∞. Finally, when αZ reaches 1, the tails are too heavy for the integral

E {X} =
Z ∞
−∞

xf(x)dx (46)

to converge and the mean becomes undefined or infinite: E {X}→∞.

However, this geometric description depends on the particular Zolotarev parametrization cho-

sen. For example, the second parametrization, a S(αZ , β; 1) distribution, keeps the mean at 0

by shifting the whole distribution by an increasing amount as αZ ↓ 1. For the third Zolotarev
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Figure 5: Non - convergent moving variance of 253 daily rates of return (in 100%) of the S&P500 stock
market index in 1998, computed with a moving (horizon) window of τ = 50 observations. Notice that
none of the window variances is the same and that they wander aimlessly.

parametrization, a S(αZ , β; 2) distribution keeps the mode exactly at 0, and the mean behaves like

the mean of a S(αZ , β; 0) distribution. Thus a stable empirical distribution with a non - existent

mean can best be parametrized by the first Zolotarev parametrization, when a parametrization is

required (usually for computational purposes).

5.5 Generalized Central Limit Theorem (GCLT)

The classical Central Limit Theorem states that the normalized sums of i.i.d. variables with

finite variance converges to a Gaussian distribution (Gnedenko and Kolmogorov, 1954). But the

Generalized Central Limit Theorem shows that if the finite variance (= finite risk) assumption is

dropped, the only possible resulting limits are stable distributions.

Theorem 41 (Generalized Central Limit Theorem, or GCLT). Let X1,X2, ...,Xn be an
i.i.d. sequence of random variables. There exist constants cn > 0, dn ∈ R and a non - degenerate
random variable Z with

cn(X1 + ...Xn)− dn
d→ Z (47)

if and only if Z is stable, in which case cn = n−1/αZ for some 0 < αZ ≤ 2.
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Remark 42 Recall from Chapter 1 that for the normalized i.i.d. Random Walk volatility we have
the stability exponent αZ = 2 and thus the normalizing constant cn = n−0.5.

This GCLT implies that the only possible distributions with unique domains of attraction are

stable distributions!

Definition 43 A random variable X is in the domain of attraction (DOA) of Z if and only
if there exist constants cn > 0, dn ∈ R with

cn(X1 + ...Xn)− dn
d→ Z (48)

where X1,X2, .......are i.i.d. distributed copies of X.

ByDOA(Z) we will indicate the set of all random variables that are in the domain of attraction

of Z. As Mittnik, Rachev and Paolella (1998) and Rachev and Mittnik (2000) properly emphasize,

a DOA is an important and, perhaps, even desirable property. Loosely speaking, any distribution

in the DOA of a specified stable distribution has properties which are close to the properties

of the stable distribution. These authors reason that, therefore, decisions will, in principle, not

be affected by adopting an ”idealized” stable distribution instead of using the true empirical

distribution. Furthermore, they claim that it is it is possible to check whether or not a distribution

is in the DOA of a stable distribution by examining only the tails of the distribution, since only

these parts specify the DOA properties of the distribution. The stability, or continuity, of the

adopted distribution is valid for any distribution with the appropriate tail.5

6 Examples of Closed Form Stable Distributions

Although there are closed forms for the characteristic functions of all stable distributions, there are

no closed formulas for the distribution densities and unctions for all but a few stable distributions,

like for the Gaussian, Cauchy and Lévy distributions we encountered in Chapter 1. Here are their

respective special closed form densities.

5 Of course, this reasoning only applies when the distribution has one unique DOA around its mode. But as we
commented earlier, empirical return distributions may have more than one mode, and thus more than one DOA,
when multiple price equilibria coexist in a turbulent market.
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Definition 44 Gaussian distributions: X ∼ N(µ, σ2) if it has density

f(x) =
1√
2πσ2

e(−
(x−µ)2
2σ2

),−∞ < x < +∞ (49)

The normal distribution has an infinite support (infinite domain) on the whole real line from

−∞ to +∞. In terms of Zolotarev’s formula, Z(2, β) d
= Z(2, 0) = N(0, 2).

Definition 45 Cauchy distributions: X ∼ Cauchy(γ, δ) if it has density

f(x) =
1

π

γ

γ2 + (x− δ)2
,−∞ < x < +∞ (50)

The Cauchy distribution has also an infinite support (infinite domain) on the whole real line

from −∞ to +∞. In terms of Zolotarev’s formula, Z(1, 0) = Cauchy(1, 0).

Remark 46 It can be easily shown that a Cauchy variable X, which has a stable distribution and
is almost certainly finite, has an infinite variance and an infinite mean! (Cf. Los, 2005c)

Definition 47 Lévy distributions: X ∼ Lévy(γ, δ) if it has density

f(x) =

r
γ

2π

1

(x− δ)3/2
e(−

γ
2(x−δ ), δ < x <∞ (51)

The Lévy distribution has only support in the positive domain on the half line from δ to ∞.

In terms of Zolotarev’s formula, Z(0.5, 0) = Lévy(1, 0).

Both Gaussian and Cauchy distributions are symmetric, bell-shaped curves, but the Cauchy

distribution has much heavier tails than the Gaussian distribution, i.e., the pricing events further

away from the mean are more likely to occur than under a Gaussian distribution. This is the

reason why stable return distributions other than the Gaussian are called heavy tailed. In contrast

to both the Gaussian and Cauchy distributions, the Lévy distribution is highly skewed, with all the

probability concentrated on x > 0, and it has even a heavier tail than the Cauchy distribution.

General stable distributions allow for varying degrees of tail heaviness and varying degrees of

skewness.

Table 1 demonstrates clearly the heavier tail probabilities of the Cauchy and Lévy distributions,

compared to the tail probabilities of the Gaussian distribution.

Other than the Gaussian distribution, the Cauchy distribution, the Lévy distribution, and the

reflection of the Lévy distribution, there are no known closed form expressions for general stable
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c Normal Cauchy Lévy
0 0.5000 0.5000 1.0000
1 0.1587 0.2500 0.6827
2 0.0228 0.1476 0.5205
3 0.001347 0.1024 0.4363
4 0.00003167 0.0780 0.3829
5 0.0000002866 0.0628 0.3453

Table 1: Comparison of Tail P(X>c) Probabilities

densities and it is even unlikely that any other stable distributions, than the ones mentioned, have

closed forms for their densities. Although there is no closed formula for the normal distribution

function, there are numerical tables and accurate numerical computer algorithms for the standard

distribution function (e.g., Mantegna, 1994). Financial analysts use such computed numerical

values in normal models, e.g., for the valuation of Black - Scholes options. Similarly, we have now

also computer programs (like Nolan’s STABLE.EXE software, available from his web site:

http://www.cas.american.edu/~jpnolan/stable.html)

to compute quantities of interest for stable distributions. So, it is possible to use such programs

to solve empirical problems, like the valuation of the risk in various assets and derivatives. Precise

tabulations of the skewed Stable distributions can be found in McCulloch and Panton (1997, 1998)

7 Stable Parameter Estimation and Diagnostics

Nolan (1999b) discusses in detail the methods for estimating stable parameters from empirical

data and the methods for model verification, i.e., how to assess whether the estimated stable

parameters actually do a good job describing the empirical data.

7.1 Parameter Computation

There are basically four methods of distributional parameter identification:

(1) The computation of αZ , β, γ, and δ is usually performed by minimizing a distance function.

(Mittnik, Rachev and Polella, 1998)), like the Kolmogorov Distance.
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Definition 48 Kolmogorov Distance (KD):

ρ = sup
x∈R

¯̄̄
F (x)− cFS(x)¯̄̄ (52)

where F (x) is the empirical distribution and bF (x) the estimated distribution function for a par-
ticular parametrization S.

This method is used mostly when one is concerned about kurtosis.

(2) Alternatively, one maximizes numerically the so-called likelihood function of stable distri-

butions.

Definition 49 Likelihood Function (ML)

L(αZ , β, γ, δ) =
TY
t−1
S(αZ , β; 0)

µ
x− δ

γ

¶
1

γ
(53)

which is maximized with respect to the four parameters αZ , β, γ, δ.

Under the i.i.d. assumptions the resulting estimates are consistent and asymptotically normal

with the asymptotic covariance matrix given by the inverse of the usual Fisher information matrix,

i.e., the matrix of second derivatives of the Likelihood Function evaluated at the ML point values

(Mittnik et al., 1996).

(3) The oldest method is the quantile/fractile method of Fama and Roll (1971) for the sym-

metric case and McCulloch (1986) for the general case. This method tries to match certain data

quantiles with those of stable distributions.

(4) But the scientifically most convincing method is to compute the moments directly from

the empirical characteristic function, as is recommended by Nolan (1999a and b).

Nolan (1999b) provides many valuable applications of simulated data, exchange rate data,

CRSP stock prices, Abbey National share prices, radar noise, ocean wave energy, and simulated

unstable data. Here, we reproduce Nolan’s example of fitting stable distributions to exchange rate

data.

Example 50 Daily exchange rate data for 15 different currencies were recorded (in U.K. pounds)
over a 16 year period ( 2 January 1980 to 21 May 1996). The data was logarithmically transformed
by

y(t) = ∆ lnX(t+ 1)

= lnX(t+ 1− lnX(t) (54)
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giving T = 4, 274 transformed data observations. The transformed data were fit with a stable
distribution, using the maximum Likelihood Function method. The results, with 95% confidence
intervals, are given in Fig 6. These empirical data are clearly not Gaussian: the heavy tails in

Figure 6: Identification of the four parameter of the Zolotarev parametrization of stable FX distributions.

the data causes the sample variance to be large, and the Gaussian fit poorly describes both the
center and the tails of the distribution. Although the stable distribution fit does a reasonable job
of describing the FX rate data, it never captures the extreme ”peakedness ” of FX rate data. With
the stability or tail exponent 1 < αZ < 2, we must conclude that although the mean of these daily
FX returns exists, the variance is undefined and thus also the fourth moment. In other words,
the values of the variance and of the kurtosis of each of the FX series do not converge, but they
”wander” aimlessly when more data are aggregated.6 In other words, the volatilities of these
FX data are undefined and, therefore, cannot be priced or hedged by the usual option pricing or
hedging formulas! The currency with the heaviest tails (α = αZ = 1.441) and thus most extreme
outlying values was the Italian lire, while the one with the lightest tails (α = αZ = 1.530) was
the Swiss Franc. Notice also that the Australian distribution was the only one in this period with
a slight positive skewness (β > 0), indicating the depreciation of the Australian dollar versus the
U.K. Pound. All other currencies showed negative skewness (β < 0) and thus appreciated versus
the U.K. Pound over the length of this 16 year period. For a similar, but earlier, set of daily
foreign exchange data and their statistical properties, see Hsieh (1988).

6 Interestingly, Nolan’s (1999b) and Mittnik et al.’s (1999) measurements using the ML method and the implied
conclusion regarding the nonconvergence of the variance of FX returns appears to conflict with the measurements
by Müller, Dacorogna and Pictet (1998). The Nolan - Mittnik measurements of αZ are between 1.44 and 1.78.
Müller, Dacorogna and Pictet use so - called bootstrap and jackknife methods and find values for the tail exponent
αZ between 3 and 5 for various US Dollar exchange rates for various time intervals, suggesting that the second
moment does converge. This inconsistency of the respective empirical measurements is not easily resolved. But
my own αZ measurements are compatible with the Nolan - Mittnik measurements (Cf. Chapter 8, Section 8.42).
Moreover the nonconvergence of the variance has been observed by myself and several other researchers. Perhaps,
Müller, Dacorogna and Pictet inverted the exponent and actually measured the homogeneous Lipschitz αL = H
(Los, 2005b). In that case their measured tail exponent is 1/3 = 1.33 ≤ αZ ≤ 2.00 = 1/5 and, thus, much more
in agreement with the (somewhat tighter) Nolan - Mittnik measurements of 1.44 ≤ αZ ≤ 1.78. Both the physics
and the financial literature is full of confusion between the homogeneous or uniform Lipschitz αL (= Hurst -
Hölder exponent) and Zolotarev’s tail or stability exponent αZ = 1

αL
, since most authors don’t bother to index the

particular α!
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8 The Degree of Stability of Price Diffusion

Let’s return now, for a moment to our original concern: the stable distributions of financial market

rates of return, as generated by a general price diffusion equation. For example, we know that

the volatility of the lognormal financial price distribution, derived from the geometric Brownian

asset return motion and used to model Black-Scholes (1973) option pricing, scales according to

T 0.5, since σT = στT
0.5 As we have seen in Section 3, this implies that the Black-Scholes model

assumes that there is no difference between actual clock time and trading time and that the unit

of actual clock time is the same as the unit of trading time, or τ = 1.

But Calvet, Fisher and Mandelbrot (1997) propose a more general configuration, where a

distinction can be made between actual clock time and trading time, where the unit of clock time

is not necessarily equal to the unit of trading time, τ 6= 1, and where there may not even be

a uniform trading time. The trading time units may be of unequal, fractional length and not

uniformly distributed: 0 < τ < 1. In their Multifractal Model for Asset Returns (MMAR) the

volatility of the price return distributions scales according to T
1
αZ (Calvet and Fisher, 2002).

Thus the Zolotarev stability exponent αZ measures not only the degree of the time-scaling of the

financial market return distributions produced by a price diffusion, but also the degree of their

kurtosis, stability, or lack of stationarity. Since the MMAR is now considered the best theoretical

and empirical model of efficient financial market price diffusion - it captures both the empirically

observable Long Memory phenomenon and it is arbitrage-free (it produces a martingale pricing

time series) - it is essential that Zolotarev’s uniform stability exponent αZ is accurately measured.

9 Conclusion: Diagnostics of a Skeptic

In principle, it should be no surprise that one can fit the financial market return data better with

the four parameter (Zolotarev) stable distribution model than with the two parameter Gaussian

model, since there are two more degrees of freedom available. But the relevant scientific question is
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whether or not the fitted stable distribution actually describes the empirical financial pricing data

well. In models of financial data, like rates of investment, stock prices or foreign exchange rates,

we’re interested in the whole distribution, and not only in the tails, even though risk sensitive

financial managers may want to focus on the extreme values in these tails (Hols and DeVries,

1991).

An important caveat is that non - Gaussian stable distributions are heavy - tailed distributions,

but most heavy - tailed distributions are not stable. In fact, it is not possible to directly prove

that a given empirical data set is or is not stable! (Pincus and Kalman, 1997) Therefore, the

elegance of the stable distributions may turn out to be irrelevant for empirical financial research,

Gaussian or not, because of changes in the financial and economic situations over time that produce

nonstationary, unstable time series, for which no definite stable distributions exist (Los, 2005c).

Even testing for normality or ”Gausianity” is still an active field of research and not as ”cut

and dried” as standard statistics and, in particular, econometrics textbooks (even in specialized

textbooks such as Gourieroux and Jasiak, 2001) make it out to be! The best we can do at this

point is to determine whether the financial market time series are consistent with the hypothesis

of distributional stability. But all these tests will fail if the departure from stability is small or

occurs in an unobserved part of the range of observations. For example, it is found that because

of the curvature (reflecting the degree of kurtosis) in the distribution functions, it is very difficult

to compare the fitted and he empirical density functions visually, especially with respect to the

(important) tails, where observations are, per definition, scarce.

10 APPENDIX: Software

For more detailed information on stable distributions, papers and software, see John Nolan’s

expert web site at the American University:

http://academic2.american.edu/~jpnolan/stable/stable.html

where you can find STABLE.EXE (900 KB) which calculates stable densities, cumulative dis-
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tribution functions and quantiles. It also includes stable random number generation and maximum

likelihood estimation of stable parameters using a fast 3−dimensional cubic spline interpolation of

stable densities. STABLE.TXT (16 KB) provides the description of the STABLE.EXE program.

Huston McCulloch of Ohio State University provides a stable distribution random number

generator in the form of MATLAB R° M - Files: STABRND.M:

http://www.econ.ohio-state.edu/jhm/jhm.html
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