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Abstract 
 

We show that truncated Lévy flights appear due to the presence of particular features of 
autocorrelation in data.  We present and analyze ‘physical’ reasons sufficient to ensure the scaling power laws 
and sluggish convergence associated with truncated Lévy flights.  Our approach is exemplified with currency 
data for the British pound and Chinese yuan against the US dollar.  We further compare these examples with a 
simulated Lorentzian distribution. 
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1.  Introduction 
 

Financial asset prices are unlikely to follow Gaussian distributions [1].  High peaks 
and fat tails are pervasive in financial data.  Even a biased Gaussian random walk [2] 
cannot account for these ‘anomalies’.  Extreme events like Black Monday are virtually 
impossible in a biased random walk, where the probability of more than five standard 
deviations is essentially zero.  Yet Black Monday is more than 34 standard deviations [3]. 

Early attempts to replace Gaussian distributions include the suggestion of a stable 
Lévy distribution to model cotton prices [4].  But though leptokurtosis can be accounted for 
by Lévy distributions, these have never been established in mainstream finance.  One 
reason is related to their property of infinite variance.  The number of data points of real-
world financial series is always finite, and so it is the variance. 

To remedy such a deficiency, a truncated Lévy distribution has been put forward [5, 
6].  The truncated Lévy flight (TLF) aims at modeling financial series through a non-stable 
distribution which features non-normal scaling power laws and finite variance.  The TLF is 
thus likely to model financial data.  That has been shown for the S&P500 index [6] and 
other stock indices [7, 8, 9], as well as foreign exchange rates [10]. 

The TLF is a stochastic process defined for independent variables.  And real-world 
financial data often present autocorrelations. However, for short-range autocorrelated data 
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the observed statistical properties are frequently similar to those of random aggregative 
variables picked from the original time series [11].  This letter warns that that is not always 
the case. 

Another contribution of this letter to literature is to show that an autocorrelation 
function, even if it is at its noise level, can lead to the scaling laws compatible with the 
presence of a TLF.  What is more, we demonstrate how the autocorrelation acts as a friction 
causing the ultraslow convergence to the Gaussian regime, which is a typical feature of the 
TLF. We also show that random and non-random aggregative variables present distinct 
statistical properties, regardless of the autocorrelation.  We exemplify our approach using 
data from the dollar prices of the British pound and Chinese yuan.  We then contrast our 
results with a simulated Lorentzian, which is a special case of the Lévy distribution.  This 
will allow us to compare real-world data fitted by a TLF with those of a ‘true’ TLF. 
 The structure of the letter is as follows.  Section 2 briefly describes the TLF and 
puts forward ‘physical’ reasons for the sluggish convergence and power laws that are 
characteristic of TLFs. Section 3 presents an example of the relevance of the TLF to real-
world exchange rates, namely the dollar prices of the pound and yuan.  Our examples are 
then compared with a simulation of the Lorentzian distribution in Section 4.  Section 5 
concludes. 
 
2.  Truncated Lévy flights and autocorrelation 
  

For a start, let us consider the ordinary Lévy distribution which is symmetric, i.e. 
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for some threshold l and constant c.  Distribution (2) is a TLF.  It approaches equilibrium 
for the aggregative variables tS ∆  in accordance with the central limit theorem.  When 

1→∆t  the process can be described by a stable Lévy probability density function (PDF). 
 Here we focus on the properties of the TLF of slow convergence to the Gaussian 
regime [5] and on the power law scaling in the probability of return to the origin [6].  Other 
features of the TLF are discussed elsewhere [11]. 

The probability of return to the origin is given by 
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A straight line of slope α/1−  emerges in a plot of logP∆t(0) versus log ∆t in the time 
window for which the Lévy regime holds.  The slope then asymptotically approaches –0.5 
which is the value that corresponds to the Gaussian equilibrium. 

Stable Lévy PDFs are self-similar [11].  To usefully compare the distributions for 
increasing values of ∆t, scaled variables are taken, i.e. 
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A given set of data can then be made to collapse onto the ∆t = 1 distribution, at least for the 
central region of the PDF.  But there are departures from the Lévy PDF as far as the tails 
are concerned.  Data points fall short of the ones of the Lévy which means that second 
moments are finite.  For this reason, the process shows two regimes, a Lévy and a 
Gaussian.  These are separated by a crossover time ∆tx and are governed by distinct 
statistical properties. 

Now we put forward possible ‘physical’ reasons for the appearance of the TLF in a 
time series.  First consider ‘central variables’ defined as 

><−= ∆∆∆ ttt SSS '  (5) 
and ‘reduced variables’ as 
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So we take identically distributed (but not independent) variables. 

For the characteristic function ( )qϕ  of a process with finite variance we have [12] 
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where w(q) is a function such that w(0) = 0.  We state the following. 
Definition 1.  A stable process occurs in the interval [∆t1, ∆t2] if 
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It is worth noting that Definition 1 does not turn the PDFs stable.  Yet results that 

interest most are those with processes whose distributions are not stable.  But Definition 1 
does imply that the characteristic function is constant in the interval [∆t1, ∆t2], i.e. 

21 ∆∆∆    ),()( tttqqt ≤≤=∆ ϕϕ  (9) 
where )(qt∆ϕ  is the characteristic function of tS∆  (and )(qϕ  is that of 1S ). Thus the 
reduced variables tS∆  have the same PDFs for ∆t ∈  [∆t1, ∆t2] although their distribution 
laws f(xi) are not stable.  For a process to be stable in the sense above and, at the same time, 
for the probabilistic laws f(x) to be unstable, autocorrelation between the variables xi must 
be present. 

If a process is independent, we have )()( qq t
t

∆
∆ =ϕϕ  for the aggregative variables.  

By using the reduced variables we obtain 
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The central limit theorem follows because [12] 
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From (11) we realize that (9) is satisfied only if there is a friction preventing the 
convergence 0)( →∆ qw t  as ∞→∆t .  And such a friction is precisely the one found in 
correlated processes. 

Now let us consider an interesting property of a stable process concerning the 
scaling in )( >=< ∆∆ tt SSP .  If )(~ qϕ  is the characteristic function of our central variables 
(5), then we have 
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By performing the transformation q'q t∆σ=  we get 
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Since the process is stable in 21 ttt ∆≤∆≤∆ , the integral above equals a constant A.  Thus 
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So the probability of return to the origin scales with the inverse of the standard 
deviation t∆σ  in the interval of stability [∆t1, ∆t2].  And if the standard deviation itself 
scales as a power law of type 
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Note that Eq. (16) is similar to (3) if 
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Here the relevance of the autocorrelation should be stressed. For independent and 
identically distributed (IID) variables, α = 1/2 in (15).  For correlated processes α ≠  1/2. 

Now suppose that w∆t(q) varies very slowly in the interval [∆t1, ∆t2].  Such a process 
can be dubbed ‘quasi-stable’.  Here a relation similar to (16) holds, i.e. 
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Since w∆t is almost constant in the interval [∆t1, ∆t2], then A∆t varies very slowly.  If the 
standard deviation t∆σ  obeys scaling law (15), then we have a relation similar to (17) with 
A∆t replacing A. 

Moreover if 2≤α  then the probability of return to the origin follows a scaling 
similar to that of a stable distribution and is characterized by characteristic function 

α

ϕ ||)( qkeq −= . 
So the central region of the distribution follows a Lévy process even if the 

distributions f(x) themselves are not either stable, independent, or generated by a Lévy 
stochastic process. 

For a quasi-stable process there exists a time horizon in which w∆t(q) approaches 
zero very slowly because the autocorrelation acts as a friction.  That is precisely the reason 
why the ultraslow convergence associated with the TLF emerges.  However, as w∆t(q) ≈ 0 
the characteristic function gets closer to the Gaussian, i.e. 
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in which case P(0) rescales as predicted for a normal distribution. 

It is worth noting that none of the results above hold true if w∆t is not sluggish.  It is 
thus implied that there exists particular types of autocorrelation associated with TLFs.  But 



we have no means to learn whether a particular kind of autocorrelation is at first compatible 
with a TLF. 

By employing an entirely different approach, Matsuba and Takahashi [13] use the 
concept of generalized entropy [14] to relate it to both the index α of the Lévy distribution 
and the Hurst exponent (which is aimed at capturing autocorrelation).  Interestingly the 
Hurst turns out to be the inverse of the scaling exponent. And since the scaling exponent of 
the Lévy falls into the interval between zero and two, the Hurst is greater than 1/2, thereby 
giving evidence of autocorrelation.  Incidentally the authors [13] also observe (like us) that 
it is an open question to precisely determine which type of autocorrelation can generate the 
Lévy flights. 
 
3. Example 
 
 Our approach can be illustrated with reference to the dollar prices of the British 
pound and Chinese yuan.  Such data were taken from the Federal Reserve website at http: 
//www.federalreserve.gov/releases/H10/hist/ (Table 1).  These exchange rates were 
collected by the Federal Reserve Bank of New York from a sample of market participants.  
They are noon buying rates in New York from cable transfers payable in these currencies.  
As standard, here we ignore ‘holes’ from weekends and holidays; analysis thus focuses on 
trading days.  We also take returns Z rather than raw data, i.e. 

)()()( tYttYtZ t −∆+=∆ , (20) 
where )(tY  is a rate at day t.  Fig. 1 displays the logarithm of the PDFs of currency returns. 
Increases in time horizons range from ∆t = 1, 2, and 5 trading days (a week) to 240 trading 
days (a year).  Incidentally note that the aggregative variables tS ∆  are equivalent to )(tZ t∆ . 

We showed elsewhere [10] that the TLF is likely to be pervasive among daily time 
series of currency returns in dollar terms, the yuan being among the exceptions.  We have 
chosen the pound and yuan as typical examples because the pound/dollar returns are 
possibly described by a TLF but the same cannot be said as far as the yuan/dollar returns 
are concerned.  Here our aim is to illustrate what makes it more likely for a process to be 
described by a TLF by focusing on autocorrelations. 

Fig. 2 shows a log-log plot of P(0) against ∆t.  Power laws emerge for the 
currencies in the time window of 1 ≤ ∆t ≤ 100.  These are at first consistent with the 
presence of a TLF. 

By plugging the slope value of α/1− , we get γ from (3).  By using (4), the data can 
then collapse onto the ∆t = 1 distribution (Fig. 3).  Fig. 3 suggests that a TLF is unlikely to 
model the yuan/dollar returns. 

Table 2 displays the parameters α and γ for the currencies.  Parameter α ≈ 1.8 for 
the pound/dollar returns is well inside the Lévy regime which stops at 2.  Parameter α ≈ 5 
for the yuan/dollar returns is far outside the Lévy regime. 

Both the pound and yuan exhibit scaling in their second moments (Fig. 4).  From the 
curve for the pound we get the following fitting: 
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where ∆t ranges from 1 to 50.  As expected from our discussion in Section 2, parameter α is 
in good agreement with that in Table 2.  Indeed both the presence of power laws in the 
second moment and a quasi-stable function w(q) lead to the power law in the probability of 
return to the origin.  Expression (21) is theoretically given by 
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It is straightforward to conclude from (22) that ∑ ),( ji xxcorr  is the responsible for the 
particular curve followed by the original process in Fig. 4.  Fig. 5 adds up the 
autocorrelations of o

tS∆  to the curve of the process for ‘randomized variables’ R
tS∆ .  The 

latter is a sum of variables taken randomly from a time series for S1 = Z1(t) which in turn is 
expected to follow an IID process.  Note that the new adjusted curve matches that of o

tS∆ .  
The original process of the aggregative variables o

tS∆  is shown in Fig. 4 together with R
tS∆ .  

Fig. 4 suggests that o
tS∆  and R

tS∆  follow distinct scaling laws.  That is at first unexpected for 
processes with the autocorrelation function at its noise level.  Short-range autocorrelation is 
usually considered as a sufficient condition for o

tS∆  and R
tS∆  to share the same statistical 

properties.  Yet that might not be always true. 
Indeed for the pound the autocorrelation is somehow short range (Fig. 6).  But 

short-range autocorrelated processes usually present a characteristic time which is not seen 
in Fig. 6.  The autocorrelation starts out at 0.06 (maximum at 1) and goes on very low 
throughout.  Despite the fact that the autocorrelation remains at its noise level, it is still 
responsible for the scaling law leading to the TLF for the pound.  There seems to be no 
difference in the autocorrelations of the pound and yuan.  However, as we will see below 
the yuan returns are not described by the TLF. 

Fig. 7 displays the behavior of function w(q) for both currency returns.  Function 
w(q) can be rewritten as iR iwwqw +=)( .  And this expression can be further expanded to 
yield 
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(kurtosis) is shown in Fig. 7 for the currencies to both o
tS∆  and R

tS∆ .  For the pound we can 
see that the process is quasi-stable in the sense discussed above.  Note that o

tS∆  is sluggish 
and R

tS∆  converges faster to the Gaussian regime.  That is not unexpected since R
tS∆  follows 

the behavior of an IID process.  Here the kurtosis measures the convergence speed of the 
process.  As far as the yuan is concerned, Fig. 4 shows that o

tS ∆  and R
tS∆  alike follow the 

curve of an IID process.  Thus, since both o
tS ∆  and R

tS ∆  follow a stochastic process, they 
exhibit the same convergence speed and w(q) cannot show in Fig. 7 the quasi-stability 
necessary for the TLF to emerge. 

It is worth noting that we can also take into account the imaginary part of w(q), 
whose leading terms involve the skewness of the process 
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Rather than focusing on the kurtosis, the leading terms in the expansion of the norm 
22

RI ww +  can alternatively be seen as a measure of the distance to the Gaussian 
regime. 

So despite the fact that the yuan/dollar returns show scaling in the second moment 
(Fig. 4), that feature by itself is not enough for the TLF to be present (Fig. 7 and Table 2). 

As seen (Fig. 6) there is no sharp difference in the autocorrelations for the pound 
and yuan.  But now we have learned that, unlike the pound, both o

tS∆  and R
tS∆  for the yuan 

are governed by the same statistical laws.  Though it remains to be seen which 
particularities in these ‘noise’ autocorrelations are leading to such distinct behaviors. 

To spice up our discussion we report another intriguing property of the yuan/dollar 
returns.  Fig. 8 displays an IFS–clumpiness test [15] where white noise generates a picture 
in which dots fill it uniformly.  Correlated noise and perhaps chaotic data present localized 
clumps.  Idiosyncratically a fractal known as the Sierpinsky triangle emerges [16, 17].  And 
the same test for the pound gives a patternless cloud of dots (not shown).  Perhaps the noise 
autocorrelation function has something to do with the nested behavior in Fig. 8.  But we 
leave such a conjecture for future research. 
 
4. Comparison with a simulated Lorentzian distribution 
 

This section presents a simulation of a stable Lévy stochastic process.  Our 
motivation is the following.  The quasi-stability and relation (15) suffice for a TLF to fit the 
modal region of data.  Nevertheless none of these are necessary.  Our simulation will lead 
to a function w(q) that is not quasi-stable.  What is more, the second moment scales with 
n1/2, which is typical of an IID process.  But P(0) scales with the parameter of the Lévy 
distribution generating our simulated data. 

We consider the particular case of a Student's t distribution [11] 
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obtained from independent variables ui and h, each with normal density, zero mean and 
variance equaling the unity.  Note that Γ(∆t) is the Gamma function.  For ∆t = 1, P(z) 
collapses to a Lorentzian distribution, i.e. the Lévy distribution with α = 1 and β = 0.  For 
∆t  > 1, the Lorentzian is the only stable case of the Student’s t distributions.  As a general 
rule, P(z) becomes the Gaussian distribution with finite moments of order k when ∆t → ∞ 
and k < ∆t.  Such distributions have been considered by some [18] as an alternative to the 
Gaussian. 



 Fig. 9 displays our numerical simulation for the Lorentzian, where the log of P(Z) is 
plotted against Z.  Fig. 10 shows that the second moment scales with ∆t1/2, as expected for a 
Gaussian process.  And P(0) scales with α = 1 (Fig. 11) and (as also expected) can collapse 
onto the ∆t = 1 distribution (Fig. 12). 
 By comparing the example of the Lorentzian with that of the pound (Fig. 6 and 13), 
we realize that both processes present autocorrelations at their noise level.  However, the 
speed of convergence of the pound is much slower than that of the Lorentzian.  This can be 
seen in the behavior of function w(q) (Fig. 14).  Thus the autocorrelation does not act as a 
friction for the Lorentzian, and is not responsible for the scaling in P(0).  Unlike the pound 
and yuan cases, our simulation with the Lorentzian shows that the scaling laws typical of a 
TLF appear for reasons other than autocorrelation in data. 

As seen at the end in Section 4, we do not know which are the particularities in 
noise autocorrelations that can lead to distinct behaviors.  Our analysis of a simulated 
Lorentzian distribution suggests that such a problem is far from being trivial.  Indeed, 
scaling laws typical of a TLF may appear for reasons other than autocorrelation for the 
Lorentzian. 
 
5.  Conclusion 
 
 The TLF is a stochastic process defined for independent variables.  However, real- 
world financial data are often autocorrelated.  To justify the use of the TLF, short-range 
autocorrelated data are usually treated as independent after their characteristic time has 
elapsed. 

This letter shows that the definition of a TLF need not rely on the assumption of 
independence.  Indeed, we demonstrate that an autocorrelation function even at its noise 
level can also lead to scaling laws that are compatible with the presence of the TLF.  What 
is more, we show how the autocorrelation acts as a friction causing the ultraslow 
convergence to the Gaussian regime, which is a typical feature of the TLF.  Our discussion 
is illustrated with the pound and yuan returns in dollar terms and then with a simulated 
Lorentzian distribution. 

Thus the main characteristics of the TLF, such as power law scaling in the 
probability of return to the origin and the slow speed of termalization, are due to 
particularities of the autocorrelation in data. 

A problem is that the specific nature of these particularities is currently unknown.  
Analysis of a simulated Lorentzian distribution shows that such a problem is far from being 
trivial.  Indeed, our simulation with the Lorentzian show that the scaling laws typical of a 
TLF appear for reasons other than autocorrelation in data. 
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Table 1 
Description of data sets 
 
Country Currency Time Period Data Points
Britain Pound 4Jan71 – 10Jan03 8033 
China Yuan 2Jan81 – 10Jan03 5472 
 
 
 
Table 2 
Parameters α and γ for the currencies in Table 1 
 
Currency α γ 
Pound 1.75110 .000092423 
Yuan 4.97749 3.9307E-13 
 



 
Fig. 1.  Probability density functions of the pound and yuan returns observed at time intervals ∆t which range 
from 1 to 240 trading days.  As ∆t is increased, a spreading of the probability distribution characteristic of any 
random walk is observed. 
 

 
Fig 2.  Log-log plot of the probability of return to the origin P(0) against the time lag ∆t for the pound and 
yuan returns in dollars.  Power laws emerge in the time window of  1 ≤ ∆t ≤ 100.  This non-Gaussian scaling 
is at first consistent with the presence of a TLF. 
 

 
Fig. 3.  The same PDFs as in Fig. 1 but now plotted in scaled units P(Z).  Given the scaling index α for a 
currency (Table 2), all the data are made to collapse onto a ∆t = 1 distribution.  The pound seems to adjust 
well, but the same cannot be said as far as the yuan is concerned. 
 
 



                  
 
Fig. 4.  Plot of the scaled second moment versus ∆t for both the original process ( o

tS ∆ ) and the randomized 

process ( R
tS ∆ ).  The curve of an IID process tt ∆=∆ σσ  is shown for comparison.  For the yuan/dollar 

returns, the fitting line of the original process o
tS ∆  is –3.13338 + 0.49122 log(∆t) and that of the randomized 

process R
tS ∆  is –3.13352 + 0.49305 log(∆t); thus both processes follow the curve of an IID process. 

 
Fig. 5.  The role of the autocorrelation for the pound/dollar returns.  The dotted curve is R

tS ∆  added up to the 

autocorrelations of o
tS ∆ . 

 

          
Fig. 6.  Autocorrelation function corr[Z1(t), Z1(t + h)] for the pound and yuan returns in dollar terms. 
 
 

 



              
Fig. 7.  Behaviour of the kurtosis for the pound and yuan returns.  For the pound we can see that the process is 
quasi-stable.  Note that o

tS∆  is sluggish and R
tS∆  converges faster to the Gaussian regime.  For the yuan, since 

both o
tS ∆  and R

tS ∆  follow a stochastic process, w(q) does not exhibit the quasi-stability necessary for the TLF 
to emerge. 

 

 
Fig. 8. IFS clumpiness test for the price changes of the yuan/dollar rate. 

 
 

 

 
Fig. 9.  Logarithm of P(Z) versus Z  for the simulated Lorentzian process. 



 
 

Fig. 10.  Curve followed by the second moment for the Lorentzian. 
 

 
 

Fig. 11.  Scaling in P(0) for the Lorentzian. 
 

 
Fig. 12.  Collapse onto the ∆t = 1 distribution for the Lorentzian. 

 
 

 



 
Fig. 13. Autocorrelation for our simulation of the Lorentzian. 

 

 
 

Fig. 14. Behavior of w(q) for the Lorentzian distribution. 


