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ABSTRACT

We analyze the specifications of option pricing models based on time-changed Lévy processes.

We classify option pricing models based on the structure of the jump component in the underlying

return process, the source of stochastic volatility, and the specification of the volatility process itself.

Our estimation of a variety of model specifications indicates that to better capture the behavior of

the S&P 500 index options, we need to incorporate a high frequency jump component in the return

process and generate stochastic volatilities from two different sources, the jump component and the

diffusion component.



Although researchers have proposed and tested various extensions of the Black and Scholes (1973)

model, they have yet to find a model that can capture both the time series and cross-sectional properties

of equity index options. The significance of this task is enormous. First, to price and hedge options,

we need to explain the behavior of option prices across strike prices and maturities. Second, the in-

formation from the options market helps us understand the underlying asset return dynamics as the

option price behavior reveals important information about the conditional risk-neutral distributions of

the underlying return over different horizons.

In this paper, we present a unified framework that synthesizes the ongoing efforts to identify the

“true” dynamics of the underlying return process by performing a specification analysis of option pric-

ing models. We then apply this analysis to S&P 500 index options and empirically investigate some

open issues regarding the equity index return dynamics.

The specification analysis we develop here is based on the theoretical framework of time-changed

Lévy processes proposed by Carr and Wu (2003b). A Lévy process is a continuous time stochastic

process with independent stationary increments. In addition to the Brownian motion and the compound

Poisson jump process used in the traditional option pricing literature, the class of Lévy processes also

includes other jump processes that exhibit higher jump frequencies and thus may better capture the

dynamics of equity indexes. On the other hand, a time change is a monotonic transformation of the

time variable. Stochastic volatility can be generated by applying random time changes to the individual

components of a Lévy process. For example, we can apply different time changes separately to the

diffusion component and the jump component of a Lévy process so that stochastic volatility can be

generated from both components. Therefore, the framework of time-changed Lévy processes can be

used to generate a wide class of jump-diffusion stochastic volatility models.

Within the class of time-changed Lévy processes, we classify model specifications into three sep-

arate but interrelated dimensions: the choice of a jump component in the asset return process, the

identification of the sources for stochastic volatility, and the specification of the volatility process it-

self. Such a classification scheme encompasses almost all option pricing models in the literature and

provides a framework for future modeling efforts.



Based on this framework, we design and estimate a series of models using S&P 500 index options

data and test the relative goodness-of-fit of each specification. Our specification analysis focuses on

addressing two important questions on model design. (Q1) What type of jump structure best describes

the underlying price movement and the return innovation distribution? (Q2) Which component, the

jump component or the diffusion component, determines the time variation of return volatility?

The empirical analysis in this paper focuses on the performance of 12 option pricing models that

are generated by a combination of three jump processes and four stochastic volatility specifications.

The three jump processes include the standard compound Poisson jump process (MJ) used in Merton

(1976), the variance-gamma jump model (VG) of Madan, Carr, and Chang (1998), and the log stable

model (LS) of Carr and Wu (2003a). The compound Poisson jump model (MJ) generates a finite

number of jumps within any finite time interval. In contrast, both VG and LS allow an infinite number

of jumps within any finite interval and hence are better suited to capture highly frequent discontinuous

movements in the underlying asset return. We choose these three jump processes to address the question

raised in (Q1).

The stochastic volatility specifications include the traditional specification in Bates (1996) and

Bakshi, Cao, and Chen (1997), in which the instantaneous variance of the diffusion component is

stochastic but the arrival rate of the jump component is constant. We also introduce new specifications

that allow us to generate stochastic volatility separately from the jump and diffusion components. These

new stochastic volatility specifications are designed to address the question raised in (Q2).

Our estimation results show that in capturing the behavior of the S&P 500 index options, models

based on VG and LS outperform those based on the compound Poisson process (MJ). This performance

ranking is robust to variations in the stochastic volatility specification and holds for both in-sample and

out-of-sample tests. Our results suggest that the market prices index options as if there are many

discontinuous price movements of different magnitudes in the S&P 500 index. This implication favors

incorporating high frequency jumps such as VG and LS in the underlying asset return process.

The estimation results also show that variations in the index return volatility come from two separate

sources: the instantaneous variance of the diffusion component and the arrival rate of the jump com-

ponent. One implication of this finding is that the intensities of both small and large index movements
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vary over times and they vary separately. Furthermore, the model parameter estimates indicate that the

return volatility generated from the diffusion and the jump components show different risk-neutral dy-

namics. The diffusion-induced volatility exhibits larger instantaneous variation, but the jump-induced

return volatility shows much higher persistence. As a result, the behavior of short-term options is in-

fluenced more by the randomness from the diffusive movements, but the behavior of long-term options

is mostly influenced by the randomness in the arrival rate of jumps.

The empirical results from our specification analysis provide further support for option pricing

models that include both jumps and stochastic volatility. Nevertheless, our results also illustrate the

importance of choosing the right jump structure and designing a good stochastic volatility specifica-

tion. We find that the option pricing model performance can be significantly improved by including

high-frequency jumps in the underlying return process and by generating stochastic return volatility

separately from the jump and diffusion components.

The paper is organized as follows. Section I discusses the studies that form the background for our

paper. Section II constructs option pricing models through time changing Lévy processes. Section III

addresses the data and estimation issues. Section IV compares the empirical performance of different

model specifications. Section V analyzes the remaining structures in the pricing errors for different

models. Section VI concludes with suggestions for future research.

I. Background

Black and Scholes (1973) spawned an enormous literature on option pricing. Their paper has also

played a key role in the growth of the derivatives industry. However, the Black-Scholes model has been

known to systematically misprice equity index options, especially those that are out-of-the-money.

A key assumption underlying the Black-Scholes model is that the log return of the underlying asset

is normally distributed. However, the empirical option pricing literature has documented three stylized

facts that run counter to this assumption. First, for a given option maturity, the Black-Scholes implied

volatilities for out-of-the-money put options are much higher than those of call options that are equally

out-of-the-money.1 This phenomenon is called the “volatility smirk.”

3



Second, when we plot the Black-Scholes implied volatilities against a standardized measure of

moneyness, the resulting implied volatility smirk does not flatten out, but steepens slightly as the option

maturity increases. This standardized moneyness measure is defined as the logarithm of the strike over

the forward price of the underlying, normalized by the square root of maturity. Carr and Wu (2003a)

document this phenomenon on S&P 500 index options with option maturities up to two years. More

recently, Foresi and Wu (2003) find that the same maturity pattern holds for all major equity indexes in

the world and for time-to-maturities up to five years.

Third, both the level of the implied volatility and the shape of the implied volatility surface across

moneyness and maturity vary over time (Cont and da Fonseca (2002)).

It is widely recognized that the implied volatility smirk is a direct result of conditional non-

normality of the return on the equity index. The volatility smirk reflects asymmetry (negative skewness)

and fat-tails (leptokurtosis) in the risk-neutral distribution of the underlying index return. The maturity

pattern of this smirk indicates that the conditional non-normality of the return distribution does not

decline with increasing horizon, as we might expect from the central limit theorem. The option pricing

literature generates conditional return non-normality either by incorporating a jump component in the

underlying index return process (Merton (1976)), or by allowing the return volatility to be stochastic

(Heston (1993) and Hull and White (1987)). To capture the maturity pattern of the implied volatility

smirk, the general consensus is that the researcher needs to incorporate both a jump component and

stochastic volatility into the model. The jump component generates return non-normality over the short

terms, and a persistent stochastic volatility process slows down the convergence of the return distri-

bution to normality as the maturity increases. Incorporating stochastic volatility is also necessary to

capture the time variation and dynamic behavior of the implied volatility surface.

Most option pricing models with both jumps and stochastic volatility can be specified within the

jump-diffusion affine framework of Duffie, Pan, and Singleton (2000). Recent examples include Bak-

shi, Cao, and Chen (1997), Bates (1996, 2000), Das and Sundaram (1999), Eraker (2003), Pan (2002),

and Scott (1997). In these models, the underlying asset return innovation is generated by a jump-

diffusion process. The diffusion component captures small and frequent market moves. The jump

component, which is assumed to follow a compound Poisson process as in Merton (1976), captures the

large, rare events. The number of jumps within any given time interval is finite. Thus, these models
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classify asset price moves dichotomously, as either small and diffusive or large and rare. However, in

practice we observe much more frequent discontinuous movements of different sizes in equity indexes.

Another notable feature of the current option pricing literature is that researchers often assume

that stochastic volatility comes solely from the diffusion component of the underlying return process.

Even in models that incorporate jumps, the arrival rate of the jump events is assumed to be an affine

function of the diffusion variance. Thus, the variation in return volatility is completely determined by

the variation in the volatility of the diffusion component. However, such specifications of stochastic

volatility are driven more by concerns of analytical tractability than by empirical evidence. In practice,

the variation in return volatility can be generated either by variations in the diffusion variance, or

variations in the arrival rates of jumps, or a combination of the two. The manner in which the jump

component and the diffusion component contribute differently to stochastic volatility, and how these

two contributions vary over time, can be determined at an empirical level, rather than by the theoretical

model specification.

We adopt the time-changed Lévy process framework of Carr and Wu (2003b) to generate option

pricing models. A Lévy process can accommodate not only the Brownian motion component and the

compound Poisson jump component in traditional specifications, but also more recently proposed high-

frequency jump processes, e.g., the normal inverse Gaussian model of Barndorff-Nielsen (1998), the

generalized hyperbolic class of Eberlein, Keller, and Prause (1998), the variance-gamma (VG) model

of Madan and Milne (1991) and Madan, Carr, and Chang (1998), and the log stable model of Carr and

Wu (2003a).

Time change is a standard technique for generating new processes in the theory of stochastic pro-

cesses. There is a growing literature on applying the technique to finance problems. This approach may

go back to Clark (1973), who suggests that a random time change can be interpreted as a cumulative

measure of business activity. Ané and Geman (2000) provide empirical support for this interpretation.

Examples of other applications include Barndorff-Nielsen and Shephard (2001), Carr, Geman, Madan,

and Yor (2003), and Geman, Madan, and Yor (2001). In this paper, we use time change to generate

stochastic volatilities from different Lévy components.
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II. Model Specifications

We generate candidate option pricing models by modeling the underlying asset return process as

time-changed Lévy processes. Under our classification scheme, each model specification requires that

we specify the following aspects: the jump component in the return process, the source for stochastic

volatility, and the dynamics of the volatility process itself. We consider 12 model specifications. Under

the 12 models, the characteristic function of log returns has a closed-form solution. We then convert

the characteristic functions into option prices via an efficient fast Fourier transform (FFT) algorithm

(Carr and Madan (1999)).

A. Dynamics of the Underlying Price Process

Formally, let
�
Ω � F � � Ft � t � 0 ��� � be a complete stochastic basis and � be a risk-neutral probability

measure. We specify that under this measure � , the logarithm of the underlying stock price (index

level) follows a time-changed Lévy process,

lnSt � lnS0 	 � r 
 q � t 	 � σWT d
t

 1

2
σ2T d

t � 	�
 JT j
t

 ξT j

t � � (1)

where r denotes the instantaneous interest rate and q the dividend yield, σ is a positive constant, W is

a standard Brownian motion, and J denotes a compensated pure Lévy jump martingale process. The

vector Tt ��� T d
t � T j

t ��� denotes potential stochastic time changes applied to the two Lévy components

Wt and Jt . By definition, the time change Tt is an increasing, right-continuous vector process with left

limits satisfying the usual regularity conditions. The time change Tt is finite � -a.s. for all t � 0 and

Tt � ∞ as t � ∞.

Although stochastic time change has much wider applications, our focus here is its role in gener-

ating stochastic volatilities. For this purpose, we further restrict Tt to be continuous and differentiable

with respect to t. Let

v
�
t ����� vd � t � � v j � t � ��� � ∂Tt � ∂t � (2)

Then vd � t � is proportional to the instantaneous variance of the diffusion component and v j � t � is pro-

portional to the arrival rate of the jump component. Following Carr and Wu (2003b), we label v
�
t �
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as the instantaneous activity rate. Intuitively speaking, t is calendar time and Tt is the business time

at calendar time t. A more active business day, captured by a higher activity rate, generates higher

volatility for asset returns. The randomness in business activity generates randomness in volatility.

In equation (1), we apply stochastic time changes only to the diffusion and jump martingale com-

ponents, but not to the instantaneous drift. The reason is that the equilibrium interest rate and dividend

yield are defined by calendar time, not on business event time. Furthermore, we apply separate time

changes on the diffusion and jump martingale components, which allows potentially different time-

variation in the intensities (activity rates) of small and large events.

In this paper, we use “volatility” as a generic term that captures the financial activities of an asset.

We do not use it as a statistical term for standard deviation. We model the stochastic volatility from the

diffusion component by specifying a stochastic process for vd � t � , which is proportional to the instanta-

neous variance of the diffusion component. In addition, we model stochastic volatility from the jump

component by specifying a stochastic process for v j � t � , which is proportional to the arrival rate of the

jump component.

B. Option Pricing via Generalized Fourier Transforms

To derive the time 0 price of an option expiring at time t, we first derive the conditional generalized

Fourier transform of the log return st � ln
�
St � S0 � and then obtain the option price by using an efficient

fast Fourier inversion. Since we model the underlying asset return as a time-changed Lévy process, we

derive the generalized Fourier transform of the return process in two steps. First, we derive the gener-

alized Fourier transform of the Lévy process before the time change. Then we obtain the generalized

Fourier transform of the time-changed Lévy process by solving the Laplace transform of the stochastic

time under an appropriate measure change.

First, we consider the return process before a time change. Equation (1) implies that prior to any

time change, the log return st � ln
�
St � S0 � follows the following Lévy process,

st � � r 
 q � t 	 � σWt 
 1
2

σ2t � 	 � Jt 
 ξt � � (3)
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Equation (3) decomposes the log return st into three components. The first component,
�
r 
 q � t, is from

the instantaneous drift, which is determined by no-arbitrage. The second component, � σWt 
 1
2 σ2t � ,

comes from the diffusion, with 1
2 σ2t as the concavity adjustment. The last term,

�
Jt 
 ξt � , represents

the contribution from the jump component, with ξ as the analogous concavity adjustment for Jt . The

generalized Fourier transform for st under equation (3) is given by

φs
�
u ���! #"%$ eiust & � exp

�
iu
�
r 
 q � t 
 tψd 
 tψ j � � u ' D ')(*� (4)

where  ",+.- / denotes the expectation operator under the risk-neutral measure � , D denotes a subset of

the complex domain ( ( ) where the expectation is well-defined, and

ψd � 1
2

σ2 $ iu 	 u2 &
is the characteristic exponent of the diffusion component.

The characteristic exponent of the jump component, ψ j, depends on the exact specification of the

jump structure. Throughout the paper, we use a subscript (or superscript) “d” to denote the diffusion

component and “ j” the jump component. As a key feature of Lévy processes, neither ψd nor ψ j depends

on the time horizon t.2 We note that φs
�
u � is essentially the characteristic function of the log return when

u is real. The extension of u to the admissible complex domain is necessary for the application of the

fast Fourier transform algorithm.3

Next, we apply the time change through the mapping t � Tt as defined in equation (1). The gener-

alized Fourier transform of the time-changed return process is given by

φs
�
u �0� eiu 1 r 2 q 3 t  "54 eiu 6 σWTd

t
2 1

2 σ2T d
t 798 iu : J

T j
t
2 ξT j

t ;=<� eiu 1 r 2 q 3 t  ?> � e 2 ψ @ Tt � � eiu 1 r 2 q 3 tL >T � ψ � � (5)

where ψ � +ψd � ψ j / � denotes the vector of the characteristic exponents and L >T � ψ � represents the

Laplace transform of the stochastic time Tt under a new measure A . The measure A is absolutely
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continuous with respect to the risk-neutral measure � and is defined by a complex-valued exponential

martingale,

d A
d � t

� exp B iu � σWT d
t

 1

2
σ2T d

t � 	 iu 
 JT j
t

 ξT j

t � 	 ψdT d
t 	 ψ jT

j
t C � (6)

Note that equation (5) converts the issue of obtaining a generalized Fourier transform into a simpler

problem of deriving the Laplace transform of the stochastic time (Carr and Wu (2003b)). The solution

to this Laplace transform depends on the specification of the instantaneous activity rate v
�
t � and on the

characteristic exponents, the functional form of which is determined by the specification of the jump

structure Jt .

C. The Jump Structure

Depending on the frequency of jump arrivals, Lévy jump processes can be classified into three

categories: finite activity, infinite activity with finite variation, and infinite variation (Sato (1999)). Each

jump category exhibits distinct behavior and hence results in different option pricing performance.

Formally, the structure of a Lévy jump process is captured by its Lévy measure, π
�
dx � , which

controls the arrival rate of jumps of size x 'ED 0 (the real line excluding zero). A finite activity jump

process generates a finite number of jumps within any finite interval. Thus, the integral of the Lévy

measure is finite: F D 0 π
�
dx �HG ∞ � (7)

Given the finiteness of this integral, the Lévy measure has the interpretation and property of a proba-

bility density function after being normalized by this integral. A prototype example of a finite activity

jump process is the compound Poisson jump process of Merton (1976) (MJ), which has been widely

adopted by the finance literature. Under this process, the integral in equation (7) defines the Poisson
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intensity, λ. The MJ model assumes that conditional on one jump occurring, the jump magnitude is

normally distributed with mean α and variance σ2
j . The Lévy measure of the MJ process is given by

πMJ
�
dx ��� λ

1I
2πσ2

j

exp J�
 � x 
 α � 2
2σ2

j K dx � (8)

For all finite activity jump models, we can factor the Lévy density into two components, a normalizing

coefficient often labeled as the Poisson intensity, and a probability density function controlling the

conditional distribution of the jump size.

Unlike a finite activity jump process, an infinite activity jump process generates an infinite number

of jumps within any finite interval. The integral of the Lévy measure for such processes is no longer

finite. One example of this class is the variance-gamma (VG) model of Madan and Milne (1991) and

Madan, Carr, and Chang (1998). The VG process is obtained by subordinating an arithmetic Brownian

motion with drift αλ and variance σ2
jλ by an independent gamma process with unit mean rate and

variance rate 1 � λ. The Lévy measure for the VG process is given by

πVG
�
dx �L� λ

exp 
 
NM x Mv O �P
x
P dx �

where

ν Q � 1
2 
 I α2 	 2σ2

j R α � �
The parameter ν 8 applies to positive jumps and ν 2 applies to negative jumps. The jump structure

is symmetric around zero when we set α � 0. As the jump size approaches zero, the arrival rate

approaches infinity. Thus, an infinite activity model incorporates infinitely many small jumps. The

Lévy measure of an infinite activity jump process is singular at zero jump size.

Nevertheless, the sample paths of the VG jump process exhibit finite variation:F D 0

�
1 S P x P � π � dx �TG ∞ � (9)

where the function
�
1 S P x P � represents the minimum of one and

P
x
P
. Under certain regularity conditions,

the Lévy measure of large jumps always performs like a density function. Hence, whether an infinite
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activity jump process exhibits finite or infinite variation is purely determined by its property around

the singular point at zero jump size (x � 0). The function
�
1 S P x P � is a truncation function used to

analyze the jump properties around the singular point of zero jump size (Bertoin (1996)). There are

other commonly used truncation functions for the same purpose. These include x1 M x M U 1 , where 1 M x M U 1

is an indicator function, and x � � 1 	 x2 � . We can use any truncation functions, h : V d � V d , which are

bounded, with compact support, and satisfy h
�
x �W� x in a neighborhood of zero (Jacod and Shiryaev

(1987)).

When the integral in (9) is no longer finite, the sample path of the process exhibits infinite variation.

A typical example is an α-stable motion with α ' � 1 � 2 / .4 The Lévy measure under the α-stable motion

is given by

π
�
dx �L� c Q P x P 2 α 2 1dx � (10)

The process shows finite variation when α G 1; but when α X 1, the integral in (9) is no longer finite and

the process is of infinite variation. Nevertheless, for the Lévy measure to be well-defined, the quadratic

variation has to be finite: F D 0

�
1 S x2 � π � dx �TG ∞ � (11)

which requires that α Y 2.

The parameter α is often referred to as the tail index. The parameters c Q control both the scale and

the asymmetry of the process. Within this category, we choose the finite moment log stable (LS) process

of Carr and Wu (2003a) for our empirical investigation. In this LS model, c 8 is set to zero in equation

(10) so that only negative jumps are allowed. This restriction not only matches the asymmetric feature

of the risk-neutral return distribution inferred from S&P 500 index options, but also guarantees the

existence of a finite martingale measure, and thus finite option prices. Furthermore, under this model,

the return has an α-stable distribution, the variance and higher moments of the asset return are infinite

and hence the central limit theorem does not apply. The conditional distribution of the asset return

remains non-normal as the conditioning horizon increases. This property helps explain the relatively

invariant feature of the implied volatility smirk across different maturities observed for S&P 500 index

options. Nevertheless, by setting c 8 to zero, the model guarantees that the conditional moments of the

asset price of all positive orders are finite. This delicate balancing not only captures the salient features
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of the S&P 500 index options, but also effectively addresses the criticism of Merton (1976) on using

α-stable distributions to model asset returns.

As mentioned earlier, to calculate option prices via equation (5), we need to know the characteristic

exponents of the specified jump process. The three jump processes considered here (MJ, VG, and

LS) all have analytical characteristic exponents, which we tabulate in Table I. We also include the

characteristic exponent for the diffusion component for comparison. Given the Lévy measure π for

a particular jump process, we can derive the corresponding characteristic exponents using the Lévy-

Khintchine formula (Bertoin (1996)),

ψ j
�
u �L� 
 iub 	 F D 0 � 1 
 eiux 	 iux1 M x M U 1 � π

�
dx � �

where b denotes a drift adjustment term.

Insert Table I About Here.

D. The Sources of Stochastic Volatility

The specification of a time-changed Lévy process given in equation (1) makes it transparent that

stochastic volatility can come either from the instantaneous variance of the diffusion component or

from the arrival rate of the jump component, or both. We consider four cases that exhaust the potential

sources of stochastic volatility.

D.1. SV1: Stochastic Volatility from Diffusion

If we apply a stochastic time change to the Brownian motion only, i.e., Wt � WT d
t

, and leave the

jump component Jt unchanged, stochastic volatility comes solely from the diffusion component. The

arrival rate of jumps remains constant. Examples using this specification include Bakshi, Cao, and

Chen (1997) and Bates (1996). Under this specification, whenever the asset price movement becomes

more volatile, it is due to an increase in the diffusive movements in the asset price. The frequency
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of large events remains constant. Thus, the relative weight of the diffusion and jump components in

the return process varies over time. The relative weight of the jump component declines as the total

volatility of the return process increases.

D.2. SV2: Stochastic Volatility from Jump

Alternatively, if we apply a stochastic time change only to the jump component, i.e., Jt � JT j
t
, but

leave the Brownian motion unchanged, stochastic volatility comes solely from the time variation in the

arrival rate of jumps. Under this specification, an increase in the return volatility is due solely to an

increase in the discontinuous movements (jumps) in the asset price. Hence, the relative weight of the

jump component increases with the return volatility. The models proposed in Carr, Geman, Madan, and

Yor (2003) are degenerate examples of this SV2 category because they apply stochastic time changes

to pure jump Lévy processes.

D.3. SV3: Joint Contribution from Jump and Diffusion

To model the situation in which stochastic volatility comes simultaneously from both the diffusion

and jump components, we can apply the same stochastic time change Tt (a scalar process) to both

Wt and Jt . In this case, the instantaneous variance of the diffusion and the arrival rate of jumps vary

synchronously over time. Under SV3, the relative proportions of the diffusion and jump component are

constant, even though the return volatility varies over time. The recent affine models in Bates (2000)

and Pan (2002) are variations of this category. In these models, both the arrival rate of the Poisson jump

and the instantaneous variance of the diffusion component are driven by one stochastic process.

D.4. SV4: Separate Contribution from Jump and Diffusion

The general specification is to apply separate time changes to the diffusion and jump components so

that the time change Tt is a bivariate process. Under this specification, the instantaneous variance of the

diffusion component and the arrival rate of the jump component follow separate stochastic processes.

Hence, variation in the return volatility can come from either or both of the two components. Since the

two components vary separately over time, the relative proportion of each component also varies over
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time. The relative dominance of one component over the other depends on the exact dynamics of the

two activity rates. Specification SV4 encompasses all the previous three specifications (SV1-SV3) as

special cases.

Under the affine framework of Duffie, Pan, and Singleton (2000), Bates (2000) also specifies a

two-factor stochastic volatility process. Since each of the two volatility factors in Bates’s specification

drives both a compound Poisson jump component and a diffusion component, his model can serve as

a two-factor extension of our SV3 model. Alternatively, his model can also be regarded as a mixture

of SV1 and SV3 specifications, since the intensity of the Poisson jump in the model includes both a

constant term and a term proportional to the stochastic volatility factor (see also Andersen, Benzoni,

and Lund (2002)). We can also see our SV4 specification as a special case of Bates’s specification

if we set the diffusion component to zero in one factor and the jump component to zero in the other

factor. Nevertheless, our separate treatment of the jump component and the diffusion component makes

it easier to identify the different roles played by the two components.

We now derive the generalized Fourier transform of the log return for each of the four SV specifi-

cations. Let x denote the time-changed component and y the unchanged component in the log return,

and ψx and ψy denote their respective characteristic exponents. We can write the generalized Fourier

transform of the log return st � ln
�
St � S0 � in equation (5) as

φs
�
u ���5 Z"[� eiu 1 r 2 q 3 t 8 yt 8 xTt � � eiu 1 r 2 q 3 t 2 tψy  > � e 2 ψxT 1 t 3 � � eiu 1 r 2 q 3 t 2 tψyL >T � ψx � �

The complex-valued exponential martingale in equation (6) that defines the measure change becomes

d A
d � t

� exp
�
iuyt 	 iuxTt 	 ψyt 	 ψxTt � �

Table II summarizes the x and y components, and the generalized Fourier transform of the log return,

for each of the four SV specifications.

Insert Table II About Here.
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E. Specification of the Activity Rate Process

We finish our modeling by specifying an activity rate process v
�
t � and deriving the Laplace trans-

form of the stochastic time Tt �]\ t
0 v
�
s � ds under the new measure A . Thus, we rewrite the Laplace

transform as

L >T � ψ ���5 > � e 2 ψ @ Tt � �! > � e 2�^ t
0 ψ @ v 1 s 3 ds � � (12)

If we treat ψ � v
�
t � as an instantaneous interest rate, equation (12) is analogous to the pricing formula

for a zero coupon bond. We can then borrow from the term structure of interest rates literature for the

modeling of the activity rate. For example, we can model the activity rate of a Brownian motion after

the term structure model of Cox, Ingersoll, and Ross (1985) and, in fact, recover the Heston (1993)

stochastic volatility model. Multivariate activity rate processes can be modeled after affine models of

Duffie and Kan (1996) and Duffie, Pan, and Singleton (2000), and the quadratic models of Leippold

and Wu (2002).

Despite the large pool of candidate processes for the activity rate modeling, we leave the specifica-

tion analysis of different activity rate models for future research. For the empirical work in this paper,

we focus on one activity rate process, i.e., the Heston (1993) model. Under the risk-neutral measure � ,

the activity rate process satisfies the following stochastic differential equation,

dv
�
t ��� κ

�
1 
 v

�
t �_� dt 	 σv ` v

�
t � dZt � (13)

where Zt denotes a standard Brownian motion under � , which can be correlated with the standard

Brownian motion Wt in the return process by ρdt �a b" + dWt dZt / . Note that the long-run mean of the

activity rate is normalized to unity in equation (13) for identification purpose. For the SV4 specification,

we assume that the two activity rates, v
�
t �L� $ vd � t � � v j � t � & � , follow a vector square-root process.

Since the Laplace transform of the time change in equation (12) is defined under measure A , we

need to obtain the activity rate process under A . By Girsanov’s Theorem, under measure A , the

diffusion function of v
�
t � remains unchanged and the drift function is adjusted to

µ >c�edfhg κ
�
1 
 v

�
t �_�i	 iuσσvρv

�
t � � for SV 1 � SV 3;

κ
�
1 
 v

�
t �_�i	 iuσσvρ ` v

�
t � � for SV 2 �
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We call special attention to the difference between the drift adjustment for SV2 models and that for

SV1 and SV3 models. This difference occurs because the diffusion component in the return process

is time changed under all SV specifications except for the SV2 specification. Therefore, given that

dWTt � ` v
�
t � dWt holds in probability, the drift adjustment term for SV2 models is different from the

drift adjustment term for all other SV specifications by a scaling of ` v
�
t � . The two-factor SV4 model

combines SV1 with SV2.

As the drift µ > remains affine for models SV1 and SV3 for any ρ ' + 
 1 � 1 / , the arrival rate process

belongs to the affine class. The Laplace transform of Tt is then exponential-affine in v0 (the current

level of the arrival rate), and is given by

L >T � ψ ��� exp
� 
 b

�
t � v0 
 c

�
t �_� � (14)

where

b
�
t �j� 2ψ

�
1 
 e 2 ηt �

2η 
 � η 
 κ k � � 1 
 e 2 ηt � ;
c
�
t �j� κ

σ2
v
B 2ln

�
1 
 η 
 κ k

2η
� 1 
 e 2 ηt � � 	 � η 
 κ k � t C �

with

η � I � κ k � 2 	 2σ2
vψ � κ k � κ 
 iuρσσv �

For the SV2 specification, the affine structure is retained only when ρ is zero. For tractability, we restrict

ρ to zero in our estimation of SV2 models. Under the SV4 model, we assume that the two activity rates

are independent of each other and the activity rate for the diffusion component is correlated with the

diffusion component in the return process. Then, the Laplace transform under the SV4 model becomes

a product of two exponential affine forms, one for the SV1 component and the other for the SV2

component.

Substituting the Laplace transform in equation (14) into the generalized Fourier transforms in Table

II, we can derive in analytical forms the generalized Fourier transforms for all 12 models: three jump

specifications (MJ, VG, and LS) multiplied by four stochastic volatility specifications (SV1-SV4). We

label these 12 models as “JJDSVn,” where JJ 'ml MJ � VG � LS n denotes the jump component, D refers to
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the diffusion component, and SVn, with n � 1 � 2 � 3 � 4, denotes a particular stochastic volatility specifi-

cation. For example, when the Merton jump diffusion model (MJD) is coupled with the SV1 specifica-

tion, we have the model labeled as “MJDSV1.” This is the same specification as the one considered in

Bakshi, Cao, and Chen (1997) and Bates (1996). Taken together, the 12 models are designed to answer

two important questions: (1) What type of jump process performs best in capturing the behavior of

S&P 500 index options? (2) Where does stochastic volatility come from?

III. Data and Estimation

We obtain from a major investment bank in New York daily closing bid and ask implied volatility

quotes on the S&P 500 index options across different strikes and maturities from April 6, 1999 to May

31, 2000. The quotes are on standard European options on the S&P 500 spot index, listed at the Chicago

Board of Options Exchange (CBOE). The implied volatility quotes are derived from out-of-the-money

(OTM) option prices. The same data set also contains matching forward prices F , spot prices (index

levels) S, and interest rates r corresponding to each option quote, compiled by the same bank.

We apply the following filters to the data: that the time to maturity is greater than five business

days; that the bid option price is strictly positive; and that the ask price is no less than the bid price.

After applying these filters, we also plot the mid implied volatility quote for each day and maturity

against strike prices to visually check for obvious outliers. After removing these outliers, we have

62,950 option quotes over a period of 290 business days.

Figure 1 shows in the left panel the histogram of moneyness of the cleaned-up option contracts,

where the moneyness is defined as k � ln
�
K � S � , with K being the strike price. The observations are

centered around at the money option contracts (k � 0). On average, there are more OTM put option

quotes (k G 0) than OTM call option quotes (k X 0), reflecting the difference in their respective trading

activities. The right panel of Figure 1 plots the histogram of the time-to-maturity for the option con-

tracts. The maturities of the option contracts range from five business days to over one year and a half,

with the number of option quotes declining almost monotonically as the time-to-maturity increases.

These exchange-traded index options have fixed expiry dates, all of which fall on the Saturday follow-

ing the third Friday of a month. The terminal payoff at expiry is computed based on the opening index
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level on that Friday. Thus, the contract stops trading on that expiring Thursday. To avoid potential

microstructure effects, we delete from our sample the contracts that are within one week of expiry.

Insert Figure 1 About Here.

Since the FFT algorithm that we use returns option prices at fixed moneyness with equal intervals,

we linearly interpolate across moneyness to obtain option prices at fixed moneyness. We also restrict

our attentions to the more liquid options with moneyness k between 
 0 � 3988 and 0 � 1841. This restric-

tion excludes approximately 16 percent of the very deep out-of-money options (approximately eight

percent each for calls and puts), which we deem as too illiquid to contain useful information. Note that

we use an asymmetric moneyness range to reflect the fact that there are deeper out-of-the-money put

option quotes than out-of-the-money call option quotes. Within this range, we sample options with a

fixed moneyness interval of ∆k � 0 � 03068 (a maximum of 20 strike points at each maturity). For the

interpolation to work with sufficient precision, we require that at each day and maturity there be at least

five option quotes. We also refrain from extrapolating: We only retain option prices at fixed moneyness

intervals that are within the data range. Visual inspection indicates that at each date and maturity, the

quotes are so close to each other along the moneyness line that interpolation can be done with little

error, irrespective of the interpolation method. We delete one inactive day from the sample when the

number of sample points is less than 20. The number of sample points in the other active 289 days

ranges from 92 to 144, with an average of 118 sample points per day. In total, we have 34,361 sample

data points for estimation.

We estimate the vector of model parameters, Θ, by minimizing the weighted sum of squared pricing

errors,

Θ � arg min
Θ

T

∑
t o 1

mset � (15)
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where T denotes the total number of days and mset denotes the mean squared pricing error at date t,

defined as

mset � min
v 1 t 3 1

Nt

nt p τ
∑
i o 1

nt p k
∑
j o 1

wi je2
i j � (16)

where nt q τ and nt q k denote, respectively, the number of maturities and the number of moneyness levels

per each maturity at date t, Nt denotes the total number of observations at date t, wi j denotes an optimal

weight, and ei j represents the pricing error at maturity i and moneyness j.

Note that there are two layers of estimation involved. First, given the set of model parameters Θ,

we identify the instantaneous activity rates level v
�
t � at each date t by minimizing the weighted mean

squared pricing errors on that day. Next, we choose Θ to minimize the sum of the daily mean squared

pricing errors.5 To construct out-of-sample tests, we divide the data into two subsamples: We use the

first 139 days of data to estimate the model parameters and then the remaining 150 days of data to

test the models’ out-of-sample performance. To evaluate out-of-sample performance on the second

subsample, we fix the parameter vector Θ estimated from the first sub-sample and compute the daily

mean squared pricing errors according to equation (16): At each day, we choose the activity rate levels

v
�
t � to minimize the sum of the weighted squared pricing errors on that day.

The pricing error matrix e � � ei j � is defined as

e � drrrf rrrgts
O
�
Θ � 
 Oa � if sO � Θ � X Oa

0 � if Oa Y sO � Θ � Y ObsO � Θ � 
 Ob � if sO � Θ �TG Ob

(17)

where sO � Θ � denotes model-implied out-of-the-money option prices (put prices when K Y F and call

prices when K X F) as a function of the parameter vector Θ, and Oa and Ob denote, respectively, the ask

and bid prices observed from the market. We set the pricing error to zero as long as the model implied

price falls within the bid-ask spread of the market quote. We also normalize all prices as percentages

of the underlying spot index level.

The construction of the pricing error is a delicate but important issue. For example, the pricing

error can be defined with respect to implied volatility, call option price, or put option price. It can be

defined as the difference in levels, in log levels, or in percentages. Here, we define the pricing error
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using call option prices when K X F and put option prices when K Y F . This definition has become the

industry standard for several reasons, one of which is that in-the-money options have positive intrinsic

value that is insensitive to model specification, but can still be the dominant component of the total

option value. Another reason is that when there is a discrepancy between the market quotes on out-of-

the-money options and their in-the-money counterparts, the former quotes are generally more reliable

because they are more liquid. We refine the standard definition of the pricing error by incorporating

the effects of the bid-ask spreads. Doing so reduces the potential problem of over-fitting and further

accounts for the liquidity differences at different moneyness levels and maturities. Dumas, Fleming,

Whaley (1998) also incorporate this bid-ask spread effect in their definition of “mean outside error.”

A. The Optimal Weighting Matrix

Like the definition of the pricing error, the construction of a “good” weighting matrix is also im-

portant in obtaining robust estimates. Empirical studies often use identity weighting matrix. Under

our definition of the pricing error, an identity weighting matrix puts more weight on near-the-money

options than on deep out-of-the-money options. More important, it puts significantly more weight on

long-term options than on short-term options. Thus, performance comparisons can be biased toward

models that better capture the behavior of long-term options. Therefore, we want to estimate a weight-

ing matrix that attaches a more balanced weighting to options at all moneyness and maturity levels, and

which can be applied to the estimation and comparison of all relevant models.

One way to achieve this is to estimate an optimal weighting matrix based on the variance of the

option prices, normalized as percentages of the underlying spot index level. We estimate the variance

of the percentage option prices at each moneyness and maturity level via nonparametric regression and

use its reciprocal as the weighting for the pricing error at that moneyness and maturity. This weighting

matrix is optimal in the sense of maximum likelihood under the assumptions that the pricing errors are

independently and normally distributed, and that the variance of the pricing error is well approximated

by the variance of the corresponding option prices as percentages of the index level.

When the pricing errors are independently and normally distributed, if we set the weighting at

each moneyness and maturity level to the reciprocal of the variance estimate of the pricing error at
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that moneyness and maturity, the minimization problem in equation (15) also generates the maximum

likelihood estimates. In principle, we can estimate the variance of the pricing errors via a two-stage

procedure analogous to a two-stage least square procedure. However, the weighting obtained from such

a procedure depends on the exact model being estimated. We use the variance of the option price (as

a percentage of the index level) as an approximate measure for the variance of the pricing error. This

approximation is exact when the return to the underlying stock index follows a Lévy process without

stochastic volatility because for such processes the conditional return distribution over a fixed horizon

does not vary over time. As a result, for a given option maturity and moneyness, the option price

normalized by the underlying index level does not vary with time either. We can then estimate the

“true” option price as a percentage of the index level through a sample average, and can consider the

daily deviations from such a sample average as the pricing error. Therefore, the variance of the pricing

error is equivalent to the variance of the option prices normalized by the index level.

However, all our model specifications incorporate some type of stochastic volatility. Thus, the

variance of the option prices includes both the variance of the pricing error and the variation induced

by stochastic volatility. Therefore, in our case the variance estimate of the option price is only an

approximate measure of the variance of the pricing error. Nevertheless, our posterior analysis of the

pricing errors confirms that such a choice of weighting matrix is reasonable. The idea of choosing a

common metric, to which different and potentially non-nested models can be compared, is also used

in the distance metric proposed by Hansen and Jagannathan (1997) for evaluating different stochastic

discount factor models.

Since the moneyness and maturity of the options vary every day, we estimate the mean option

value and the option price variance as percentages of the index level at fixed moneyness and maturities

through a nonparametric smoothing method. The Appendix contains details for this estimation.

The left panel of Figure 2 shows the smoothed mean surface of out-of-the-money option prices. As

expected, option prices are the highest for at-the-money options and they also increase with maturities.

The right panel illustrates the variance estimates of the option prices. Overall, the variance increases

with the maturity of the option. For the same maturity, out-of-the-money puts (k G 0) have a smaller

variation than do out-of-the-money calls (k X 0). This difference might be a reflection of different

liquidities: For S&P 500 index options, OTM puts are more liquid and more heavily traded than OTM
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calls. Given the estimated variance of the option prices, we define the optimal weight at each moneyness

and maturity level as its reciprocal.

Insert Figure 2 About Here.

B. Performance Measures

We compare different models based on the sample properties of the daily mean squared pricing

errors (mset ) defined in equation (16) under the estimated model parameters. A small sample average

of the daily mean squared errors for a model would indicate that on average, the model fits the option

prices well. A small standard deviation for a model would further indicate that the model is capable of

capturing different cross-sectional properties of the option prices at different dates.

Our analysis is based on both the in-sample mean squared errors of the first 139 days and the out-

of-sample mean squared errors of the last 150 days. We also gauge the statistical significance of the

performance difference between any two models i and j based on the following t-statistic of the sample

differences in daily mean squared errors:

t-statistic � msei 
 mse j

stdev
�
msei 
 mse j � � (18)

where the overline on mse denotes the sample average and stdev
� - � denotes the standard error of the

sample mean difference. We adjust the standard error calculation for serial dependence based on Newey

and West (1987), with the number of lags optimally chosen based on Andrews (1991) and an AR(1)

specification.

IV. Model Performance Analysis

We analyze the parameter estimates and the sample properties of the mean squared pricing errors

for each of the 12 models introduced in Section II. As mentioned earlier, our objective is to investigate
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which jump type and which stochastic volatility specification perform the best in pricing S&P 500

index options. Our analysis below focuses on answering these two questions.

Tables III and IV report the parameter estimates and their standard errors for one-factor (SV1 to

SV3) and two-factor stochastic volatility (SV4) models, respectively. In the tables we also report the

sample average and standard deviation of the daily mean squared pricing errors, both in-sample (mse I)

and out-of-sample (mseO). Table V reports the t-statistics defined in equation (18) for pair-wise model

comparisons. With 12 models, we could have reported a 12 u 12 matrix of pair-wise t-tests, but to

focus on the two questions raised above, we report the t-tests in two panels. Panel A compares the

performance of different jump structures under each stochastic volatility specification (SV1 to SV4),

and Panel B compares the performance of different SV specifications for a given jump structure (MJ,

VG, or LS). The table reports both in-sample and out-of-sample comparisons.

Insert Table III About Here.

Insert Table IV About Here.

Insert Table V About Here.

A. What Jump Structure Best Captures the Behavior of S&P 500 Index Options?

Since our 12 models are combinations of three jump structures and four SV specifications, to an-

swer the question raised on jump types, we compare the performance of the three jump structures under

each SV specification. If the performance ranking of the three jump structures depends crucially on

the specific SV specification, then the choice of a jump structure in model design should be contingent

on which SV specification we use. On the other hand, if the performance rankings are the same under
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each of the four SV specifications, then we would conclude that in capturing the behavior of S&P 500

index options, the superiority of one jump structure over the others is unconditional and robust to vari-

ations in the SV specification. The empirical evidence matches the latter scenario. The infinite activity

jump structures (VG and LS) outperform the traditional finite activity compound Poisson (MJ) jump

structure under all four SV specifications.

Panel A of Table V addresses the question based on the t-statistics defined in equation (18). Each

column in Panel A compares the performance of two jump structures under each SV specification. For

example, the column “MJ-VG” compares the performance of the Merton jump model (MJ) against

the performance of the variance-gamma model (VG), under each of the four SV specifications. A t-

statistics of 1.645 or higher implies that the pricing error from the MJ model is significantly larger than

the pricing error from the VG model under a 95 percent confidence interval. Therefore, the VG model

outperforms the MJ model. A t-value of 
 1 � 645 or less implies the opposite.

The in-sample t-values in column “MJ-VG” are strongly positive under all SV specifications, so

are all the in-sample t-values in the “MJ-LS” column. The out-of-sample tests reveal similar results,

except for the SV4 case. Therefore, our test results indicate that out of the three jump structures, the

most commonly used compound Poisson jump structure of Merton (1976) performs significantly worse

than both the VG and the LS jump structures. This result holds under all of the four SV specifications

and for both in-sample and most of the out-of-sample tests.

On the other hand, the performance difference between VG and LS is much smaller and can have

different signs, depending on the SV specification assumed. The t-values in the “VG-LS” column are

much smaller, positive under SV1 and SV2, but negative under SV3 and SV4. Carr and Wu (2003a)

obtain similar performance rankings for the three jump structures without incorporating any stochas-

tic volatilities. Our results show that this ranking remains unchanged in the presence of stochastic

volatility.

The key structural difference between the Merton jump model and the other two types of jump

structures lies in the jump frequency specification. Within any finite time interval, the number of

jumps under MJ is finite and is captured by the jump intensity measure λ. Under the MJ structure, the

estimates for λ fall between 0 � 178 under the SV4 specification (see Table IV) and 0 � 405 under the SV1

24



specification (see Table III). An estimate of 0 � 405 or smaller implies about one jump every two and

half years, a rare event. In contrast, under the VG and LS jump structures, the number of jumps within

any finite time interval is infinite. Therefore, we can expect to observe much more frequent jumps of

different magnitudes than in the Merton jump case. Our estimation results indicate that to capture the

behavior of S&P 500 index options, we need to incorporate a much more frequent jump structure in the

underlying return process than the classic Merton model allows.

B. Where Does Stochastic Volatility Come From?

By applying stochastic time change to different Lévy components, we can generate stochastic

volatility from either the diffusion component, or the jump component, or both. Thus, it becomes a

purely empirical issue as to where, exactly, the stochastic volatility comes from. We address this issue

by comparing the empirical performance of four different stochastic volatility specifications in pricing

the S&P 500 index options.

In Table V, Panel B compares the performance of the four stochastic volatility specifications under

each of the three jump structures. We first look at the three one-factor SV specifications, SV1, SV2,

and SV3. We find that the in-sample t-test values in the “SV1-SV2” column are all strongly negative

and the in-sample t-test values in the “SV2-SV3” column are all strongly positive, which suggests that

the SV2 specification is significantly outperformed by the other two one-factor SV specifications. In

contrast, the in-sample t-test estimates in the “SV1-SV3” column are much smaller and have different

signs under different jump specifications, positive under MJ and VG, negative under LS. The out-of-

sample performance comparison gives similar conclusions, except under the LS jump structure where

the t-statistics are much smaller.

Under the SV2 specification, the instantaneous variance of the diffusion component is constant and

all stochastic volatilities are attributed to the time variation in the arrival rate of jumps. The inferior

performance of SV2, as compared to SV1 and SV3, indicates that the instantaneous variance of the

diffusion component should be stochastic. The parameter estimates of the three one-factor SV speci-

fications in Table III tell a similar story. The volatility of volatility estimates (σv) are always strongly

positive under SV1 specifications, slightly smaller under SV3 specifications, but close to zero under
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SV2 specifications, when only the arrival rate of the jump component is allowed to be stochastic. For

example, the estimate of σv is 2.136 under VGDSV1, 1 � 745 under VGDSV3, but a mere 0 � 001 under

VGDSV2. Similar results hold for the MJ and LS models. These estimates indicate that the arrival rate

of the jump component is not as volatile as the instantaneous variance of the diffusion component. This

evidence supports traditional stochastic volatility specifications, but casts doubt on the performance

of the stochastic volatility models of Carr, Geman, Madan, and Yor (2003), which generate stochastic

volatility from pure jump models.

Another important structural difference between the SV2 specification and the other SV specifica-

tions is that SV2 is the only specification in which instantaneous correlation is not incorporated between

the return innovation and the innovation in the activity rate. Therefore, the SV2 specification cannot

capture the widely documented negative correlation between stock returns and return volatilities, i.e.,

the “leverage effect.”6 Yet, under all other SV specifications, the estimates for this instantaneous cor-

relation parameter ρ are strongly negative (see Table III), suggesting the importance of incorporating

such a leverage effect in capturing the behavior of S&P 500 index option prices. This negative correla-

tion helps generate negative skewness in the conditional index return distribution implied by the option

prices.

Consistent with our observation, Carr, Geman, Madan, and Yor (2003) also note that without the

leverage effect, the performance of the SV3 specification declines to approximately the same level as

that of the SV2 specification. Therefore, this lack of negative correlation under SV2 constitutes another

key reason for its significantly worse performance compared to other one-factor SV specifications.

In contrast to the three one-factor SV specifications, the SV4 specification allows the instantaneous

variance of the diffusion component and the arrival rate of the jump component to vary separately. The

t-statistics in Table V indicate that this extra flexibility significantly improves the model performance.

The t-tests for performance comparisons between SV4 and all the one-factor SV specifications are

strongly negative both in-sample and out-of-sample, which indicates that the two-factor SV4 models

perform much better than all the one-factor SV models. This superior performance of the SV4 models

indicates that stochastic volatility actually comes from two separate sources, the instantaneous variance

of the diffusion component and the arrival rate of the jump component.
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The superior performance of the SV4 models implies that a high-volatility day on the market can

come from either the intensified arrival of large events or the increased arrival of small, diffusive events,

or both. Therefore, the exact source of high volatility is subject to further research and shall be case

dependent. This result contrasts with the implication of earlier option pricing models, e.g., Bates (1996)

and Bakshi, Cao, and Chen (1997), both of which assume that variations in volatility can only come

from variations in the diffusive volatility.

C. How Do the Risk-Neutral Dynamics of the Two Activity Rates Differ?

Since the SV4 specification provides a framework that encompasses all the one-factor SV speci-

fications, we can learn more about the risk-neutral dynamics of the activity rates by investigating the

relevant parameter estimates of the SV4 models, which are reported in Table IV.

Based on the square-root specification in equation (13) for the risk-neutral activity rate dynamics,

the two elements of σv � � σd
v � σ j

v � � capture the instantaneous volatility of the two activity rate pro-

cesses, with σd
v capturing the instantaneous volatility of the diffusion variance and σ j

v the instantaneous

volatility of the jump arrival rate. The estimates indicate that the variance of the diffusion component

shows larger instantaneous volatility than the arrival rate of the jump component. For example, the esti-

mates for σd
v are 2.646, 2.555, and 2.856 when the jump components are MJ, VG, and LS, respectively.

In contrast, the corresponding estimates for σ j
v are 2.313, 1.428, and 1.148, evidently lower than the

corresponding estimates for σd
v .

On the other hand, the relative persistence of the activity rate dynamics is captured by the two

elements of κ � $ κd � κ j & � . A smaller value for κ implies a more persistent process. The estimates

reported in Table IV indicate that the arrival rate of the jump component exhibits much more persistent

risk-neutral dynamics than the instantaneous variance of the diffusion component. The estimates for κ j

are 0.001, 0.63, and 0.668, when the jump components are MJ, VG, and LS, respectively, much smaller

than the corresponding estimates for κd , which are 1.872, 1.898, and 2.119, respectively.

The parameter estimates for the SV4 specifications indicate that to match the market price behav-

ior of S&P 500 index options, we need to derive stochastic volatilities from two separate sources, the

instantaneous variance of the diffusion component and the arrival rate of the jump component. Fur-
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thermore, the risk-neutral dynamics of the diffusion variance exhibits higher instantaneous volatility

and much less persistence than the risk-neutral dynamics of the jump arrival rate. Such different risk-

neutral dynamics for the two activity rate processes dictate that the jump and diffusion components

play different roles in governing the behavior of S&P 500 options. The more volatile, but also more

transient, feature of the activity rate from the diffusion component implies that the variation of the

diffusion component is more likely to dominate the price behavior of the short-term options. On the

other hand, although the activity rate from the jump component is not as volatile, its highly persistent

nature implies that its impact is more likely to last longer and hence dominate the behavior of long-term

options. These different impacts generate potentially testable implications on the time series behavior

of S&P 500 index options.

D. Shall We Take the Diffusion Component for Granted?

One consensus in the option pricing literature is that to account for the pricing biases in the Black-

Scholes model, we need to add both a jump component and stochastic volatility. This consensus im-

plicitly takes for granted the Brownian motion component in the Black-Scholes model. This view is

not surprising since most of the jump models in the literature are variations of Merton’s finite activity

compound Poisson jump model. In these models, the number of jumps within a finite interval is finite.

For example, under the MJDSV1 model, our estimate for the Poisson intensity is 0 � 405 (Table III),

which implies an approximate average of one jump every two and half years. Obviously, we need to

add a diffusion component to fill the gaps between the very infrequent jumps in the asset price process.

However, if we consider jump processes with infinite activity, or even infinite variation, the infinite

small jumps generated from such models can fill these gaps. Carr, Geman, Madan, and Yor (2002)

conclude from their empirical study that a diffusion component is no longer necessary as long as they

adopt an infinite activity pure jump process. Carr and Wu (2003a) arrive at similar conclusions in

their infinite variation log stable (LS) model. Carr and Wu (2003c) identify the presence of jump and

diffusion components in the underlying asset price process by investigating the short-maturity behavior

of at-the-money and out-of-the-money options written on this asset. They prove that a jump component,

if present, dominates the short-maturity behavior of out-of-the-money options and hence can readily be

identified. A diffusion component, if present, usually dominates the short-maturity behavior of at-the-
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money options. Nevertheless, they find that in theory, an infinite-variation jump component can also

generate the same short-maturity behavior for at-the-money options as does a diffusion process. The

same infinite variation feature for both a Brownian motion and an infinite-variation pure jump process

implies that they generate similar short-maturity behaviors for at-the-money options.

These empirical and theoretical findings lead us to ask questions beyond the traditional framework

of thinking: Do we really need a diffusion component if we include an infinite-activity jump component

in the option pricing model? Can we separately identify a diffusion component from an infinite-activity

jump component, especially one that also shows infinite variation? These questions are especially

relevant here, since our estimation results strongly favor the infinite activity jump components, and the

infinite variation LS jump component in particular, over the more traditional finite activity compound

Poisson MJ jump specification.

Tables III and IV show that under all the tested models with infinite-activity jump components (VG

or LS), the estimates for the diffusion parameter σ are all significantly different from zero. This finding

indicates that the diffusion component is both identifiable and needed. The key difference between our

models and those estimated in Carr, Geman, Madan, and Yor (2002) and Carr and Wu (2003a) is that

we incorporate stochastic volatility, but they consider pure Lévy processes without stochastic volatility.

Thus, our identification of the diffusion component comes from its role in generating stochastic volatil-

ity. The separate specification of the two activity rate processes under SV4 implies that the relative

proportion of small (diffusive) movements and large (jump) movements can vary over time. Their dif-

ferent risk-neutral dynamics further imply that the two components can separately dominate the price

behaviors of options at different maturities.

Furthermore, our empirical work focuses on a purely diffusive specification for the activity rate pro-

cess, i.e., the Heston (1993) model. Under such a specification, any instantaneous negative correlation

between the activity rate process and the return innovation must be incorporated by using a diffusion

component in the return process, because a pure jump component is by definition orthogonal to any

diffusion components. Thus, under our specification, the diffusion component in the return process

is not only important in providing a separate source of stochastic volatility, but also indispensable in

providing a vehicle to accommodate the leverage effect. We can conceivably incorporate a jump com-

ponent in the activity rate process, as in Chernov, Gallant, Ghysels, and Tauchen (1999) and Eraker,
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Johannes, and Polson (2003). Doing so would allow us to accommodate the leverage effect via a cor-

relation between the jump component in the return process and the jump component in the activity rate

processes. When these two jump components exhibit infinite variation, the need for a separate diffusion

component could be reduced.

Even under our diffusive activity-rate specification, the model parameter estimates indicate that

the relative proportion of the diffusion component declines as the jump specification goes from finite

activity (MJ) to infinite activity but finite variation (VG), and to infinite variation (LS). Given that we

calibrate all models to the same data set, the estimate of the diffusion parameter σ represents the relative

weight of the diffusion component compared to the jump component. The decline in the relative weight

of the diffusion component holds for all SV specifications. For instance, among the SV4 models shown

in Table IV, the estimate of σ (the diffusion parameter) is 0 � 312 for MJDSV4, 0 � 310 for VGDSV4,

but 0 � 308 for LSDSV4. We observe similar declines under SV1 specifications (from 0.352, to 0.318,

and then to 0.309) and SV3 specifications (from 0.301, to 0.272, and then to 0.175). However, the

most dramatic decline comes under the SV2 specification. The estimate for σ is 0.173 under MJDSV2,

0.157 under VGDSV2, but a meager 0.044 under LSDSV2. SV2 differs from all other SV specifica-

tions in generating stochastic volatility from the jump component only and by not accommodating a

leverage effect. Thus, consistent with our discussion above, without a role in either generating stochas-

tic volatility or accommodating a leverage effect, the diffusion component is hardly needed when the

jump component also shows infinite variation, as in the case of LSDSV2.

Combining all the evidence, we conclude that as the frequency of jump arrival increases from MJ

to VG and then to LS, the need for a diffusion component declines. The many small jumps in infinite

variation jump components can partially replace the role played by a diffusion component. Neverthe-

less, under our specifications, the diffusion component plays important roles in providing a separate

source of stochastic volatility and accommodating the leverage effect between the return innovation

and the activity rate process. Therefore, under our specifications, the diffusion component cannot be

totally replaced by the jump component, even if the jump component exhibits infinite variation.
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V. Pricing Error Analysis

Another way to investigate the robustness and performance of different model specifications is to

check for remaining structures in the pricing errors of these models. If a model is specified reasonably

well, we should find minimal structure in the pricing errors on the S&P 500 index options. We check

for remaining structures in the mean pricing error at each moneyness and maturity. The mean pricing

error of a good model should be close to zero and show no obvious structures along both the moneyness

and the maturity dimensions.

Since an option’s time-to-maturity and moneyness change every day, we estimate the pricing error

at fixed moneyness and maturity by using nonparametric smoothing (See the Appendix). It follows

from the pricing error definition in equation (17) that a positive pricing error indicates model overpric-

ing compared to market data and a negative pricing error indicates model underpricing.

Figure 3 reports the smoothed in-sample pricing errors at different moneyness and maturities under

each of the 12 model specifications. The mean out-of-sample pricing errors show similar structures and

are not reported for the sake of brevity. Twelve panels are shown as a four-by-three matrix in Figure 3,

each of which corresponds to a particular model specification. The four rows, from top to bottom,

correspond to the four SV specifications SV1, SV2, SV3, and SV4. The three columns, from left to

right, correspond to the three jump structures MJ, VG, and LS. Thus, the panel at the top left corner

denotes mean pricing errors from model MJDSV1, the panel at the bottom right corner denotes mean

pricing errors from model LSDSV4, and so on. Within each panel, the four lines represent pricing

errors for four maturities: 0.1 (solid), 0.5 (dashed), 1.0 (dot-dashed), and 1.5 years (dotted).

Insert Figure 3 About Here.

For comparison, we use the same scale for all panels except for the second row, where we use

a larger scale to accommodate the larger pricing errors from the SV2 models. Figure 3 shows that

the three SV2 models exhibit large mean pricing errors along both the maturity and the moneyness

dimensions. At short maturities, SV2 models overprice out-of-the-money put options (k G 0 � relative
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to out-of-the-money call options (k X 0). At long maturities, the pattern is reversed. Out-of-the-money

put options are underpriced relative to out-of-the-money call options. We can also see from the figure

that SV1 and SV3 models perform well along the moneyness dimension but not as well along the

maturity dimension. The two-factor SV4 specifications show much better performance, except at very

long maturities (one-year, dotted line), where we still observe some moneyness bias.

In the option pricing literature, it is standard practice to document the option price behavior in

terms of the Black-Scholes implied volatility. For S&P 500 index options, at a given maturity level, the

Black-Scholes implied volatilities for out-of-the-money puts are much higher than those for equally

out-of-the-money calls. This volatility smirk is a direct result of conditional non-normality in asset

returns. The downward slope of the smirk reflects asymmetry (negative skewness) in the risk-neutral

distribution. The positive curvature of the smirk reflects the fat-tails (leptokurtosis) of this distribu-

tion. Furthermore, the central limit theorem implies that under very general conditions, the conditional

return distribution should converge to normality as the maturity increases. As a result, the volatility

smirk should flatten out. However, Carr and Wu (2003a) find that the implied volatility smirk in fact

steepens slightly as maturity increases. Such a maturity pattern seems to run against the implications

of the central limit theorem and presents challenges for option pricing modeling. The literature has

used two approaches to account for this maturity pattern of the volatility smirk. The first approach

incorporates a persistent stochastic volatility process to slow down the convergence to normality. The

second approach, proposed by Carr and Wu (2003a), adopts an α-stable process so that the traditional

central limit theorem does not hold and return non-normality does not disappear with aggregation.

The bias of SV2 models as shown in Figure 3 implies that the SV2 models generate steeper implied

volatility smirks than observed in the data at short maturities, and flatter ones than observed in the data

at long maturities. The SV2 models imply that as maturity increases, volatility smirk flattens out faster

than observed in the data. Thus, the remaining structure in the mean pricing error for SV2 models

indicates that the SV2 specification fails to account for the maturity pattern of the volatility smirk for

S&P 500 index options. This failure implies that not just any persistent stochastic volatility model will

work. The better performance of other SV specifications also suggests that for successful model design,

we need also to address the issue of how the stochastic volatility is incorporated into the return process.
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Both Figure 3 and Tables IV and V show that SV4 type models look promising in generating a

persistent volatility smirk across the maturity horizon. The better performance of the LSDSV4 model

can be traced to a combination of two attributes, the LS jump structure and the SV4 specification.

The LS jump structure is specifically designed by Carr and Wu (2003a) to capture the maturity pattern

of the implied volatility smirk for S&P 500 index options. Under this LS model, the central limit

theorem does not apply. Conditional non-normality remains as maturity increases so that the model

can generate a relatively stable maturity pattern for the implied volatility smirk. The SV4 specification

also improves the performance by generating variations in the relative proportion of the jump and

diffusion components along the option maturity dimension. Since the estimated risk-neutral dynamics

for the jump-induced return volatility is more persistent than the estimated dynamics for the diffusion-

induced volatility (κ j � 0 � 668 compared to κd � 2 � 119 under LSDSV4, see Table IV), the impact

of the more persistent jump component dominates the behavior of long-term options and the more

transient diffusion component contributes more to short-term options. Since non-normality is mainly

generated from the jump component, the progressively increasing proportion of the jump component

with increasing maturities counteracts the central limit theorem and helps maintain a relatively stable

and slightly steepening maturity pattern for the implied volatility smirk.

VI. Conclusion

Within the general framework of time-changed Lévy processes, we analyze the specification of

option pricing models based on three separate but interrelated dimensions: the specification of the jump

component in the return process, the source for stochastic volatility, and the dynamics of the volatility

process itself. Based on this classification scheme, we propose and test a variety of new option pricing

models and address several model design issues that have not been answered in the literature. We focus

on answering two questions: What type of jump structure best captures the behavior of the S&P 500

index options? Where does stochastic volatility of the S&P 500 index return come from?

We find that a high-frequency jump structure always outperforms the traditional low-frequency

compound Poisson jump specification. The implication of this finding is that the market prices the

S&P 500 index options as if discrete movements in the index level are frequent occurrences rather

than rare events. We also find that stochastic volatility comes from two separate sources, the instan-
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taneous variance of a diffusion component and the arrival rate of a jump component. The risk-neutral

dynamics of the diffusion variance is more volatile, but the risk-neutral dynamics of the arrival rate

of the jump component shows much more persistence. As a result, the stochastic volatility from the

diffusion component dominates the behavior of short-term option prices, and the stochastic volatility

from jumps dominates that of long-term option prices. In short, our empirical results for the S&P 500

index options demonstrate that a good model for the underlying index return dynamics should include a

high-frequency jump component and should allow stochastic volatility to be generated separately from

the diffusion component and the jump component.

To maintain the parsimony of the model, we consider only one activity rate specification in our

empirical study, which is the square-root model of Heston (1993). Yet, the framework proposed here

provides fertile ground for extensions and future research. One potential line of inquiry for future

research is to investigate the relative performance of different activity rate specifications. In particular,

a series of recent studies, e.g., Chernov, Gallant, Ghysels, and Tauchen (1999) and Eraker, Johannes,

and Polson (2003), incorporate both jumps into the activity rate process and jumps in the asset return

processes. Nevertheless, all these studies consider only compound Poisson jumps with potentially time-

varying arrival rates. In light of our findings in this paper on the superior performance of high frequency

jumps, it would be intriguing to see whether incorporating such high-frequency jumps in the volatility

process will also deliver superior performance over specifications of Poisson jumps in volatility used

in the current literature.

Since the objective of our paper is to analyze the relative performance of different models in pricing

options on a daily basis, we focus on the model specifications under the risk-neutral measure and

calibrate the models solely to the options data. A line for future research is to analyze the properties

of the risk premia on the jump component, the diffusion component, and the stochastic activity rates

through an integrated analysis of the time series of both the option prices and the underlying spot prices

along the lines of Eraker (2003) and Pan (2002).
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Appendix. Nonparametric Estimation of Weighting Matrix

Since the moneyness and maturity of option contracts vary over time, we estimate the variance of

the pricing error at fixed moneyness and maturity via nonparametric kernel regression.

Let τ denote time to maturity and k � ln
�
K � S � denote moneyness. Define the information set

Z � � τ � k � . Suppose that there are total N observations. Given a kernel function K
� - � and the bandwidth

matrix H , the kernel estimate of the variance V
�
Z � is given by

sV � Z �v� ∑N
i o 1 K 
 MZ 2 Zi MH � � ei � 2
∑N

i o 1 K 
 MZ 2 Zi MH � 
 + sµ � Z � / 2 ; sµ � Z ��� ∑N
i o 1 K 
 MZ 2 Zi MH � ei

∑N
i o 1 K 
 MZ 2 Zi MH � � (A1)

There are a variety of choices of kernels and bandwidth in the literature. We refer to the monograph

by Simonoff (1996) on this issue. In our analysis, we follow Aı̈t-Sahalia and Lo (1998) in choosing

independent Gaussian kernels and setting the bandwidths according to

h j � c jσ jN 2 1 w 6 � j � τ � k � (A2)

where σ j is the standard deviation of the regressor Z j, and c j is a constant that is typically of order

of magnitude one. The larger the coefficient c j , the smoother the estimates are across moneyness and

maturities. In our application, we set cτ � ck � 4.
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Carr, Peter, Hélyette Geman, Dilip Madan, and Marc Yor, 2002, The fine structure of asset returns: An

empirical investigation, Journal of Business 75, 305–332.
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NOTES

1See, for example, Aı̈t-Sahalia and Lo (1998), Jackwerth and Rubinstein (1996), and Rubinstein

(1994) for empirical documentation of this phenomenon in S&P 500 index options.

2See Bertoin (1996) and Sato (1999).

3See Titchmarsh (1986) for a comprehensive reference on generalized Fourier transforms.

4See Samorodnitsky and Taqqu (1994) and Janicki and Weron (1994).

5We thank an anonymous referee for suggesting this estimation procedure.

6Black (1976) first documented this phenomenon and attributed it to the “leverage effect;” however,

various other explanations have also been proposed in the literature, e.g., Haugen, Talmor, and Torous

(1991), Campbell and Hentschel (1992), Campbell and Kyle (1993), and Bekaert and Wu (2000).
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Table I
Characteristic Exponent of the Lévy Components in the Asset Return Process

Component ψ
�
u �

Diffusion 1
2 σ2 $ iu 	 u2 &

Poisson Jump (MJ) λ � iu 
 eα 8 1
2 σ2

j 
 1 � 
 
 eiuα 2 1
2 u2σ2

j 
 1 �x�
Variance Gamma (VG) λ � 
 iu ln 
 1 
 α 
 1

2 σ2
j � 	 ln 
 1 
 iuα 	 1

2 σ2
ju

2 �x�
Log Stable (LS) λ � iu 
 � iu � α �

Table II
Generalized Fourier Transforms of Log Returns under Different SV Specifications

The term xt denotes the time changed component and yt denotes the unchanged component in the log
return st � ln

�
St � S0 � . The term Jt denotes a compensated pure jump martingale component, and ξ its

concavity adjustment.

Model xt yt φs
�
u �

SV1 σWt 
 1
2 σ2t Jt 
 ξt eiu 1 r 2 q 3 t 2 tψ j L >T � ψd �

SV2 Jt 
 ξt σWt 
 1
2 σ2t eiu 1 r 2 q 3 t 2 tψd L >T � ψ j �

SV3 σWt 
 1
2 σ2t 	 Jt 
 ξt 0 eiu 1 r 2 q 3 tL >T � ψd 	 ψ j �

SV4 $ σWt 
 1
2 σ2t � Jt 
 ξt & � 0 eiu 1 r 2 q 3 tL >T � +ψd � ψ j / � �
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Table III
Parameter Estimates of One-Factor SV Models

We estimate model parameters by minimizing the sum of daily mean squared errors. Given model
parameters, we obtain the daily mean squared errors by choosing the activity rate level at that day to
minimize the sum of the weighted squared pricing errors on that day. Entries report the parameter
estimates and standard errors (in parentheses), based on the first 139 days of data. We also report the
sample average and standard deviation of the daily mean squared error for both the in-sample period
(mseI , the first 139 days) and the out-of-sample period (mseO, the last 150 days). The pricing error is
defined in percentages of the spot price.

Model specifications

Θ MJDSV1 MJDSV2 MJDSV3 VGDSV1 VGDSV2 VGDSV3 LSDSV1 LSDSV2 LSDSV3

σ 0 y 352 0 y 173 0 y 301 0 y 318 0 y 157 0 y 272 0 y 309 0 y 044 0 y 175z
0 y 288 { z

0 y 010 { z
0 y 031 { z

0 y 037 { z
0 y 006 { z

0 y 030 { z
0 y 037 { z

0 y 001 { z
0 y 029 {

λ 0 y 405 0 y 364 0 y 223 0 y 253 0 y 593 0 y 985 0 y 028 0 y 077 0 y 053z
0 y 459 { z

0 y 135 { z
0 y 190 { z

0 y 194 { z
0 y 068 { z

1 y 115 { z
0 y 003 { z

0 y 007 { z
0 y 007 {

α | 0 y 091 | 0 y 393 | 0 y 408 | 0 y 247 | 0 y 391 | 0 y 244 1 y 673 1 y 578 1 y 738z
0 y 052 { z

0 y 100 { z
0 y 149 { z

0 y 119 { z
0 y 029 { z

0 y 122 { z
0 y 044 { z

0 y 028 { z
0 y 066 {

σ j 0 y 175 0 y 235 0 y 000 0 y 264 0 y 013 0 y 003 |}|~| |~|}| |}|~|z
0 y 113 { z

0 y 035 { z
0 y 000 { z

0 y 108 { z
0 y 001 { z

0 y 001 { |}|~| |~|}| |}|~|
κ 1 y 039 2 y 070 1 y 110 0 y 813 2 y 054 0 y 974 0 y 795 0 y 867 1 y 304z

0 y 320 { z
0 y 000 { z

0 y 346 { z
0 y 322 { z

0 y 237 { z
0 y 327 { z

0 y 293 { z
0 y 000 { z

0 y 324 {
σv 2 y 574 0 y 000 1 y 983 2 y 136 0 y 001 1 y 745 2 y 253 0 y 000 1 y 839z

0 y 620 { z
0 y 000 { z

0 y 361 { z
0 y 431 { z

0 y 000 { z
0 y 321 { z

0 y 358 { z
0 y 000 { z

0 y 344 {
ρ | 0 y 704 |}|~| | 0 y 648 | 0 y 692 |~|}| | 0 y 662 | 1 y 000 |}|~| | 1 y 000z

0 y 073 { |}|~| z
0 y 092 { z

0 y 075 { |~|}| z
0 y 101 { z

0 y 000 { |}|~| z
0 y 000 {

mseI 0 y 334 1 y 159 0 y 307 0 y 302 0 y 927 0 y 279 0 y 256 0 y 859 0 y 279z
0 y 254 { z

0 y 314 { z
0 y 247 { z

0 y 244 { z
0 y 272 { z

0 y 236 { z
0 y 218 { z

0 y 262 { z
0 y 237 {

mseO 2 y 105 2 y 599 1 y 752 1 y 868 2 y 339 1 y 531 1 y 813 1 y 610 1 y 739z
1 y 123 { z

1 y 127 { z
0 y 968 { z

0 y 982 { z
1 y 046 { z

0 y 874 { z
1 y 030 { z

0 y 734 { z
0 y 968 {
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Table IV
Parameter Estimates of SV4 Models

We estimate model parameters by minimizing the sum of daily mean squared errors. Given model
parameters, we obtain the daily mean squared errors by choosing the activity rate level at that day to
minimize the sum of the weighted squared pricing errors on that day. Entries report the parameter
estimates and standard errors (in parentheses), based on the first 139 days of data. The superscripts d
and j on a parameter denote, respectively, the diffusion and jump components of that parameter vector.
We also report the sample average and standard deviation of the daily mean squared error for both the
in-sample period (mseI , the first 139 days) and the out-of-sample period (mseO, the last 150 days). The
pricing error is defined in percentages of the spot price.

Θ MJDSV4 VGDSV4 LSDSV4

σ 0 y 312
z
0 y 020 { 0 y 310

z
0 y 010 { 0 y 308

z
0 y 0099 {

λ 0 y 178
z
3 y 450 { 0 y 001

z
0 y 000 { 0 y 001

z
0 y 0001 {

α | 0 y 486
z
0 y 513 { | 0 y 534

z
0 y 076 { 1 y 296

z
0 y 0739 {

σ j 0 y 281
z
0 y 439 { 0 y 440

z
0 y 025 { |}|~| z

0 y 0000 {
κd 1 y 872

z
0 y 498 { 1 y 898

z
0 y 254 { 2 y 119

z
0 y 3884 {

κ j 0 y 001
z
0 y 014 { 0 y 630

z
0 y 102 { 0 y 668

z
0 y 3262 {

σd
v 2 y 646

z
0 y 358 { 2 y 555

z
0 y 201 { 2 y 856

z
0 y 3466 {

σ j
v 2 y 313

z
22 y 018 { 1 y 428

z
0 y 160 { 1 y 148

z
0 y 6824 {

ρd | 0 y 701
z
0 y 063 { | 0 y 730

z
0 y 036 { | 0 y 719

z
0 y 0421 {

mseI 0 y 140
z
0 y 151 { 0 y 128

z
0 y 150 { 0 y 128

z
0 y 1491 {

mseO 0 y 705
z
0 y 647 { 0 y 677

z
0 y 551 { 0 y 743

z
0 y 5868 {
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Table V
Pair-Wise t-statistics for Model Comparisons

Entries report the t-statistics defined in equation (18). Tests in Panel A compare the performance of
different jump structures under each stochastic volatility specification (SV1 to SV4). Tests in Panel
B compare the performance of different SV specifications given a fixed jump structure. For each test
(Model i -Model j), a t-value greater than 1.645 implies that the mean squared pricing error from model
i is significantly larger than the mean squared error from model j. Hence, model j outperforms model i,
at 95 percent confidence interval. A t-value less than 
 1 � 645 implies the opposite. We base in-sample
tests on the first 139 days of option price data and out-of-sample tests on the last 150 days of data,
given parameter estimates from the first subsample.

Panel A. Testing Which Jump Structure Performs the Best

Cases/Tests MJ | VG MJ | LS VG | LS MJ | VG MJ | LS V G | LS

In-sample comparison Out-of-sample comparison

SV1 2 y 57 6 y 24 3 y 98 5 y 73 7 y 75 2 y 07
SV2 15 y 51 7 y 27 1 y 98 7 y 37 6 y 95 6 y 09
SV3 4 y 28 5 y 91 | 0 y 00 6 y 48 2 y 70 | 6 y 42
SV4 4 y 65 4 y 26 0 y 09 0 y 67 | 0 y 93 | 5 y 87

Panel B. Testing Where Stochastic Volatility Comes From

Cases/Tests SV1 | SV2 SV1 | SV3 SV2 | SV3 SV4 | SV1 SV4 | SV2 SV4 | SV3

In-sample comparison

MJ | 15 y 03 3 y 48 15 y 01 | 4 y 42 | 25 y 48 | 4 y 05
VG | 13 y 52 2 y 88 15 y 01 | 4 y 44 | 24 y 70 | 4 y 38
LS | 17 y 64 | 3 y 55 14 y 54 | 4 y 39 | 25 y 44 | 4 y 23

Out-of-sample comparison

MJ | 7 y 07 6 y 24 11 y 95 | 8 y 12 | 14 y 56 | 7 y 58
VG | 8 y 31 6 y 84 13 y 23 | 6 y 66 | 11 y 38 | 5 y 06
LS 1 y 50 1 y 87 | 1 y 17 | 7 y 42 | 5 y 65 | 5 y 43
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Figure 1. Histograms of OTM option prices. The left panel depicts the histogram of the moneyness
k � ln

�
K � S � and the right panel depicts the histogram of the maturities for all available S&P 500 index

options in our cleaned sample. The sample is daily from April 6, 1999 to May 31, 2000, comprising
290 business days and 62,950 option contracts.
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Figure 2. Mean and variance surface of option prices. Using independent Gaussian kernels, we
estimate nonparametrically the mean (left panel) and variance (right panel) of S&P 500 index option
prices as percentages of the index level at each moneyness k � ln

�
K � S � and maturity (in years). The

sample of S&P 500 index options is daily from April 6, 1999 to May 31, 2000, comprising 290 business
days and 62,950 option quotes.
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Figure 3. In-sample mean pricing errors. We define pricing errors as the difference between the
model-implied option price and the market-observed price, outside the bid-ask spread and in percent-
ages of the underlying spot level. Using independent Gaussian kernels, we estimate the mean pricing
errors at fixed moneyness (k � ln

�
K � S � ) and maturities. Each panel denotes one model. The jump

component of the model is, from left to right, MJ, VG, and LS. The stochastic volatility specification
is, from top to bottom, SV1, SV2, SV3, and SV4. The four lines in each panel denote for maturities:
0.1 (solid line), 0.5 (dashed line), 1.0 (dash-dotted line), and 1.5 years (dotted line). For ease of com-
parison, we use the same scale for all panels except for the second row, where we use a much larger
scale to accommodate the much larger pricing errors of SV2 models.
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