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1 Introduction

Basic problems of mathematical finance are the problems of pricing, hedging or optimizing some

portfolio choices, which could be formulated as the optimization problem of maximizing the ex-

pected value of some concave objective (eventually state-dependent) utility functions. The prob-

lems can be attacked by the stochastic optimal control methods as, for instance, in the papers of

Merton (1971) [41], Duffie, Flemming, Soner and Zariphopoulou (1997) [17], or by a modern, more

powerful and elegant method: the duality approaches. The difference is that, while the optimal

control methods are wedded to the dynamic programming Hamilton-Jacobi-Bellman equation and

based on the requirement of Markov state processes, the duality techniques, rather then rely on the

Hamilton-Jacobi-Bellman equation, use the stochastic duality theory and permit us to deal with
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more general and non-markovian processes. The key point in this method is the duality relation

of the set of self-financed wealth processes and the set of local supermartingale measures for the

self-financed wealth process discounted by the numéraire.

Duality approaches have been used with success in treating portfolio optimization problems for

incomplete financial markets in a continuous-time diffusion model such as in Karatzas, Lehoczky,

Shreve and Xu (1991) [32], or in a more general framework, where the asset prices are semimartin-

gales, as it is showed in series of papers of Kramkov and Schachermayer (1999 - 2001) [40]. The

further extension to the case of constraints on the proportion of portfolio choice appears in Shreve

and Xu (1992) [50], Cvitanic and Karatzas (1992) [7]. The extension to the case of constraints

imposed on the amount addressed by Cuoco and Cvitanic (1998) [10], Cuoco (1997) [11].

Recently, Pham and Mnif (2002) [47] investigated the general structure of optimization financial

problems with the presense of the so-called liquidity (or American) constraints. They considered

the financial framework in a semimartingale setting, which is represented by the Föllmer-Kramkov

optional decomposition under constraints in additive form (see, Föllmer and Kramkov (1997) [22]).

Hence, it is general enough to incorporate many financial models, such as with constrained port-

folios, labor income as well as large investor.

Motivated by the work of Pham and Mnif (2002), Long (2003) [43] considers the case, where the

state processes have the Föllmer-Kramkov optional decomposition under constraints in multiplica-

tive form (see, Föllmer and Kramkov (1997) [22]). Since the problem considered in Long (2003) is

to optimize the expected utility of terminal wealth, so the problem is the simplest one in terms of

objective. It is undoubtedly an important goal to generalize the study of optimal investment and

consumption problems to the semimartingale setting used by Long (2003) [43]. This paper aims

to solve the mentioned problem.

Like the model proposed by Pham and Mnif (2002), our formulation is sufficiently general to

include as special cases the problems with constrained proportion portfolios, random endowment

and large investor, as well as with the existence of labor income, which were considered in Cvitanic

and Karatzas (1992, 1993) [7], El Karoui and Quenez (1996) [20], Cuoco and Cvitanic (1998) [10],
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El Karoui and Jeanblanc-Piqué (1998) [18], Rogers (2001) [45] and Klein and Rogers (2001) [37].

Using the general optional decomposition under constraints in a multiplicative form of Föllmer and

Kramkov [22], we provide the duality characterization of the state processes in terms of a set of

suitable probability measures and a term arising from the convex constraints; this set of probability

measures is the dual set associated to the convex constraints on the family of state processes.

With this setting, under some conditions imposed on the model setting and on the utility

functions, namely the asymptotic elasticity of the utility function is strictly less than 1, we are

able then to prove an existence of an optimal solution to the original and dual problem.

The outline of the paper is organized as follows. Section 2 recalls the general framework of a

financial model in Long (2003) [43]. After formulizing the problem in Section 3, in Section 4 we

set up and analyze the properties of the dual set, which is the set of equivalent local martingale

measures for state processes, associated with the term arising from the convex constrants. In

Section 5, we provide the dual and primal sets in an abstract version and analyze the properties

of the abstract setting. The existence and uniqueness of an optimal solution to the original and

dual problem is given in Section 6.

2 The Model Setting

Let (Ω, F , F, P) denote a filtered probability space with a filtration F = (Ft)0≤t≤T satisfying

the “usual” conditions, here T ∈ R+ is a fixed time horizon and we assume that F0 is trivial.

Except for processes which appear as integrand of stochastic integrals, all processes considered in

the sequel are assumed to be real-valued, to have right-continuous paths with left limits (càdlàg),

and to be adapted with respect to the given filtration; in particular they are all optional.

For the theory of stochastic integration we refer to [16], [49] and [28]. The stochastic integral

of a predictable process π with respect to a semimartingale X will be denoted by
∫
πdX or π •X.

We denote by L(X) the space of all predictable processes integrable with respect to X. The Émery

distance between two semimartingales X and Y is defined as:

D(X,Y ) = sup
|π|≤1

(∑
n≥1

2−nE[min(|(π • (X − Y )n)|, 1)]
)
,
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where the supremum is taken over the set of all predictable processes π bounded by 1. The

corresponding topology is called the semimartingale topology.

In the sequel, for completeness, we recall some definitions and assumptions of the model setting

from Long (2003) [43].

Let R be a Rd-valued semimartingale in (Ω, F , P). We prescribe a convex subset Π of L(R)

containing the zero element and convex in the following sense: for any predictable process ζ ∈ [0, 1]

and for all π1, π2 ∈ Π we have:

ζπ1 + (1− ζ)π2 ∈ Π.

We consider a family {G̃π : π ∈ Π} of adapted processes with finite variation, null at 0 and satisfying

the concavity property:

G̃ζπ
1+(1−ζ)π2

− ζ • G̃π
1
− (1− ζ) • G̃π

2
∈ I, (1)

where I is the set of all (optional) nondecreasing adapted processes with initial value 0 and null

at 0.

Now we consider the following family:

X̃0 =
{
π •R+ G̃π

}

We shall make the following standing assumption:

Standing Assumption 2.1 Under the condition (1), the set X̃0 is closed for semimartingale

topology.

Given X̃0 ∈ X̃0, we define the set

X̃
b =

{
X̃ − X̃0 : X̃ ∈ X̃0 and X − X̃0 is locally bounded from below

}

so that X̃b is locally bounded from below, closed for the semimartingale topology null at 0, and

containing the constant process 0.

Remark 2.1 Under the relation (1), the family of semimartingales X̃0 is a predictable convex set

in the sense of Föllmer and Kramkov (1997)[22], i.e., for X̃i ∈ X̃0 for i = 1, 2, and for any
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predictable process ζ ∈ [0, 1] we have:

ζ • X̃1 + (1− ζ) • X̃2 ∈ X̃0 − I

Now let us introduce the set P(X̃b) of all nonnegative P-local martingales Z with Z0 = 1 such

that there exists a process A ∈ Ip – the set of nondecreasing predictable processes, null at 0 –

satisfying

Z(X̃b −A) is a P-local supermartingale for any X̃b ∈ X̃b. (2)

The next definition of the upper variation process is adopted from the one in Föllmer and

Kramkov (1997) [22].

Definition 2.1 The upper variation process of X̃b corresponding to Z ∈ P(X̃b), defined as the

element ÃX̃
b

(Z) in Ip satisfying (2) and is minimal with respect to this property, i.e. such that

(A− ÃX̃b(Z)) ∈ Ip, for any A ∈ Ip satisfying (2).

In the remainder of this paper, we shall make the following standing assumptions

Standing Assumption 2.2 The upper variation process ÃX̃
b

(Z) exists.

On the set P(X̃b), we define the set

P∗(X̃b) =

{
Z ∈ P(X̃b) : Z is a P-supermartingale and

ÃX̃
b

(Z) is a continuous process with finite variation

}

and its subset

P∗(X̃b) =
{
Z ∈ P∗(X̃b) : Z is a positive and P-martingale

}
.

In the sequel, we identify a Z ∈ P∗(X̃b) with a probability measure Q ∼ P whose density

process is

Z = (Zt)0≤t≤T = E
[
dQ

dP

∣∣∣∣Ft]
and the upper variation process ÃX̃

b

(Z) with Z ∈ P∗(X̃b) is frequently denoted by ÃX̃
b

(Q).

We assume that

Standing Assumption 2.3 P∗(X̃b) 6= ∅
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Let us introduce a strictly positive process S0. In what follows, we assume that X̃0 can be

chosen so as:

Standing Assumption 2.4 X̃0 is a finite variation process with continuous paths and null at 0.

We now define the family W̃ as follows:

W̃ =
{
W̃ = E(X̃ − C̃); X̃ ∈ X̃, and C̃ ∈ I

}
(3)

W̃
b =

{
W̃b = E(X̃b − C̃); X̃b ∈ X̃b, and C̃ ∈ I

}
(4)

where E(·) is the exponential semimartingale of Doléans-Dade.

Recall that for any semimartingale X null at 0 the Doléan-Dade exponential E(X) is a solution

of the following stochastic differential equation:

Z = 1 + Z− •X, Z0 = 1. (5)

Moreover any solution of this equation coincides with E(X) on the set {(ω, t) : E(X)− 6= 0}.

For any x > 0, we define

W̃x , xW̃ = {xW̃ : W̃ ∈ W̃},

We are now interested on the family of state processes:

W , {W = S0W̃ : W̃ ∈ W̃},

=
{
W = S0

(
1 + W̃− • X̃ − W̃− • C̃

)
: X̃ ∈ X̃, C̃ ∈ I

}
, (6)

with

Wx , xW = {xW : W ∈W}

We suppose that the process W̃− • C̃ can be represented by the formula:∫ t

0

W̃s−dC̃s =
∫ t

0

c̃sds, ∀ t ∈ [0, T ]

We now define a consumption process:

Definition 2.2 A consumption process c(·) is an Ft-adapted nonnegative process, which is related

to the accumulated proportion process by the formula∫ t

0

csds =
∫ t

0

S0
sW̃s−dC̃s, 0 ≤ t ≤ T. (7)
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Put Λt = t, then in the standard notation of the stochastic calculus for semimartingales (7)

can be written as follows:

c • Λ = S0W̃− • C̃,

or equivalently, we have ct = S0
t c̃t, for any t ∈ [0, T ].

Given x > 0 and X̃0 ∈ X̃0, we denote by A(x) the set of the pairs of processes (W, c), where

W ∈Wx and c satisfying (7).

One of the families of examples we have in mind for applications is described below.

Example (Cuoco and Liu (2000), Rogers (2001)).

This is an important example, generalizing a number of other papers in the subject: Cvitanic

and Karatzas (1992, 1993) [7], El Karoui, Peng and Quenez (1997) [20], Cuoco and Cvitanic (1998)

[10], Rogers (2001) [45], El Karoui and Jeanblanc-Piqué (1998) [18], for example. The numéraire

S0 and the wealth process W of the agent satisfies:

dWt

Wt
=

[
rtdt+ πt

(
σtdBt + (bt − rt1)dt

)
+ g(t, πt)dt+ etdt

]
− ctdt (8)

W0 = x

dS0
t = rtS

0
t dt, S0

0 = 1

where πt ∈ Π, B is an n-dimensional Brownian motion, b, r, V ≡ σσ′, V −1, e are all bounded

processes, and there is a uniform Lipschitz bound on g: for some θ <∞,

|g(t, x, ω)− g(t, y, ω)| ≤ θ|x− y|

for all x, y, t and ω. In our model the agent receives an income with a proportional (eventually

stochastic) rate et per unit time.

The unconventional term in the dynamics (8) is the term involving g about which we assume:

• for x ∈ Rn, (t, w) 7→ g(t, x, ω) is an optional process;

• for each t ∈ [0, T ] and ω ∈ Ω, x 7→ g(t, x, ω) is concave and upper semicontinuous.

• g(t, 0, ω) = 0 for all t ∈ [0, T ] and ω ∈ Ω.
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Suppose that ct = Dt
Wt

, and Dt is a nonnegative process. Now let W̃ , W
S0 , by Itô Lemma we

have:

dW̃t = W̃t

[
πt

(
σtdBt + (bt − rt1)dt

)
+ g(t, πt)dt−Dtdt+ etdt

]
In this case, we choose

X̃0
t = π0

t =
∫ t

0

esds

so that X̃b = {π •R+ G̃π}, with

dRt = σtdBt + (bt − rt1)dt

dG̃πt = g(t, πt)dt

By the martingale representation theorem for Brownian motion (see, e.g. Karatzas and Shreve

(1991)), any probability measure equivalent to P has a density process in the form:

Zν ,
dBν

dB
= E

(
−
∫
σ′tV

−1
t (bt − rt1 + ν)dBt

)

where ν ∈M:

M ,
{
ν :
∫ T

0

|σ′tV −1
t ν|2dt <∞, and E[ZνT ] = 1

}
Now by Girsanov’s Theorem, the Doob-Meyer decomposition of X̃b = π • R + G̃π ∈ X̃b under

P ν = ZνTP, ν ∈M, is:

dX̃bt = πtσtdB
ν
t + dAν,πt

where Bν is a n-dimensional Brownian motion under P ν and Aν,π is the predictable compensator

under P ν :

dAν,πt = (g(t, πt)− πtν)dt

Now denote

g̃(t, ν) =
∫ t

0

sup
π∈Π

(
g(s, πs)− πsν

)
ds

the convex conjugate of −g(t,−π) and let G̃ = {ν ∈ Rn : g̃(t, ν) <∞} its effective domain.

We deduce that P∗(X̃b) consists of all probability measures P ν , ν ∈M(G̃):

M(G̃) , {ν ∈M : ν ∈ G̃ and g̃(t, ν) is a continuous process with finite variation}
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Moreover, the upper variation process is given by:

ÃX̃
b

(P ν)t =
∫ t

0

g̃(s, ν)ds

Since all coefficients are bounded, it is straightforward to verify that the model satisfies the

Standing Assumption 2.1. Moreover, the closure property of X̃ may also be proved in this model

under a Liptschitz condition on function g and the invariance of the Emery distance under trans-

lation, see Pham (2002) [48] for details.

Remark 2.2 In the paper of Cuoco and Cvitanic (1998) [10], they preassummed that g̃ is bounded

on its effective domain.

Remark 2.3 Recall that in our framework, the labor income is restricted to be a continuous process

with finite variation. Therefore our framework is not applicable to the general case considered by

El Karoui and Jeanblanc-Picqué, where the income process e is of the general Markovian form

det = µ(t, et)dt+ σ(t, et)dBt.

3 The Dual Set

We define the family Y of nonnegative semimartingales Y as follows

Y =
{
Y =

Z

E(ÃX̃b(Z))E(X̃0)S0
: Z ∈ P∗(X̃b)

}
and denote

Yy , yY, y > 0

In the sequel, let us denote by Y+
y ⊂ Yy the subset containing all positive Y ∈ Yy. We also

suppose that any Z ∈ P∗(X̃b) can be written as Z = E(N), where N is some P-local martingale

null at 0. Since X̃0 and ÃX̃
b

(Z) are continuous processes of finite variation, by using Proposition

I.4.4.69 in Jacod and Shiryaev (1987) [28] we have [X̃0, Y ] = 0 and [ÃX̃
b

(Z) + X̃0, Y ] = 0 for any

semimartingale Y with Y0 = 0, therefore any Y ∈ Yy can be rewritten as:

Y = y
E(N − ÃX̃b(Z)− X̃0)

S0
(9)

The following Lemma is taken from Long (2003) [43], we include it for completeness.
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Lemma 3.1 Given x > 0, for all Y ∈ Y and (W, c) ∈ A(x), the process (YW + Y c • Λ) is a

P-supermartingale.

Proof. Without loss of generality, we may focus to the set A(1).

Since (X̃0 + ÃX̃
b

(Z)) is a continuous process with finite variation, by Itô’s lemma and after

straightforward calculations, from (9) we get:

YW + Y c • Λ = 1 + Y−W− •
(
X̃ − ÃX̃

b

(Z)− X̃0 +N + [N, X̃]
)

(10)

By some algebras we also get

Z(X̃ − X̃0 − ÃX̃
b

(Z)) = 1 + Z− • (X̃ − X̃0 − ÃX̃
b

(Z)) + [Z, X̃] +

+ (X̃ − X̃0 − ÃX̃
b

(Z))− • Z

= 1 + Z− •
(
X̃ − X̃0 − ÃX̃

b

(Z) + [N, X̃]
)

+

+ (X̃ − X̃0 − ÃX̃
b

(Z))− • Z,

Since Z(X̃ − X̃0 − ÃX̃b(Z)) is a P-local supermartingale. The last term on the right-hand side of

the above equality is a P-local martingale, it follows then

Z− •
(
X̃ − X̃0 − ÃX̃

b

(Z) + [N, X̃]
)

is also a P-local supermartingale.

Moreover, since Z− is positive and predictable, we deduce that

(
X̃ − X̃0 − ÃX̃

b

(Z) + [N, X̃]
)

(11)

is a P-local supermartingale. Since Y, W are nonnegative, by Remark VI.53.d in Dellacherie and

Mayer (1982) [16], we deduce from (11) that the processes on the both sides of (10) is a P-local

supermartingales. Furthermore, since Y ≥ 0, W ≥ 0, c • Λ ∈ I we have YW + Y c • Λ is bounded

from below. We then deduce by Fatou’s lemma that in fact, YW + Y c • Λ is a nonnegative

P-supermartingale. This completes the proof of the lemma. �

Remark 3.1 Since Y ≥ 0, c > 0, then from the last lemma, we deduce that, for any x > 0,

W ∈Wx, the product YW is a P-supermartingale.
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From Lemma 3.1 we deduce that the process

ZW

E(X̃0)E(ÃX̃b(Z))S0
+

Zc

E(X̃0)E(ÃX̃b(Z))S0
• Λ

is a P-supermartingale for any Z ∈ P∗(X̃b), and the budget constraint

v(W, c) , E
[

ZTWT

E(ÃX̃b(Z)T )E(X̃0
T )S0

T

+
∫ T

0

Ztctdt

E(ÃX̃b(Z)t)E(X̃0
t )S0

t

]
≤ x, (12)

is satisfied for any (W, c) ∈ A(x).

4 The Utility Maximization from Terminal Wealth and
Consumption

In this paper, our goal is to generalize the study of optimal investment and consumption problems

to the aforementioned semimartingale setting.

We first recall some classical definitions and properties of utility function.

Definition 4.1 A utility function U : (0,∞) × Ω → R ∪ {−∞} is a strictly increasing, strictly

concave, continuously differentiable function and satisfies the Inada conditions:

U ′(0) = lim
x→0

U ′(x) =∞, U ′(∞) = lim
x→∞

U ′(x) = 0 (13)

We now introduce the conjugate function of U :

Ũ(y) = sup
x>0

[U(x)− xy], y > 0 (14)

Recall that if U(x) is defined as in Definition 4.1, then Ũ(y) is a continuously differentiable,

decreasing, strictly convex function satisfying:

Ũ ′(0) = −∞, Ũ ′(∞) = 0, Ũ(0) = U(∞), Ũ(∞) = U(0) (15)

and the following bidual relation:

U(x) = inf
y>0

[Ũ(y) + xy], x > 0 (16)

We also note that the derivative of U(x) is the inverse function of the negative of the derivative of

Ũ(y), which we denote by I

I , −Ũ ′ = (U ′)−1 (17)
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It is well-known that

Ũ ′(y) = −I(y), y > 0, a.s., (18)

and I(y) attains the supremum in (14), i.e.

Ũ(y) = U(I(y))− yI(y), y > 0, a.s. (19)

The agent in our model has time-seperable utility structure as follows

Definition 4.2 A (time-seperable, von Neumann-Morgenstern) preference structure is a pair of

utility functions U1 : R × [0, T ] → [−∞,∞] and U2 : R → [−∞,∞), which measure the investor’s

utility from consumption and wealth, respectively.

Definition 4.3 Given an initial endowment x ∈ R, the consumption plan (WT , c), here WT is the

terminal wealth, and c the consumption rate process throughout the liftetime investment, is called

x-affordable if they are financeable from an initial wealth less or equal to x, i.e., the pair of a wealth

and consumption process (W, c) belong to the set A(x∗) with 0 < x∗ ≤ x.

Recall that a necessary condition for (W, c) ∈ A(x) is the budget constraint (12).

The agent’s total expected uility from consumption over the period and expected utility of

investment at the end of the period [0, T ] is defined as

J(x; W, c) , E

[∫ T

0

U1(ct, t)dt+ U2(WT )

]
. (20)

The x-affordable consumption plan is said to be x-feasible if it satisfies:

J(x; W, c)− = E

[∫ T

0

U1(ct, t)−dt+ U2(WT )−
]
<∞

we denote the set of x-feasible consumption plans (WT , c) by A∗(x). By misuse of notation, we

shall write (W, c) ∈ A∗(x) instead of (WT , c) ∈ A∗(x).

Given an initial endowment x and income stream X0, an investor wishes to choose a consump-

tion profile and investment policy so as to to maximize his total expected uility from consumption

over the period and expected utility of investment at the end of the period [0, T ], with the value

function:

u(x) = sup
(W,c)∈A∗(x)

J(x; W, c), x ∈ R+, (21)
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using feasible policies.

To ensure that (21) is meaningful, we impose the following assumption:

Assumption 4.1

u(x) <∞, for some x > 0

Following Kramkov and Schachermayer (1999) [39], we require an asymptotic elasticity condi-

tion on U1 and U2:

AE(U1(t, x)) , lim sup
x→∞

xU ′1(t, x)
U1(t, x)

< 1, ∀ t ∈ [0, T ] and AE(U2(x)) , lim sup
x→∞

xU ′2(x)
U2(x)

< 1 (22)

5 The Abstract Setting

The main goal of this section is to provide a dual sets and their basic properties. With respect to

the classical utility maximization from fixed terminal wealth, we have now to consider the whole

path of the consumption process on the support of `[0, T ], here `[0, T ] stands for Lebesgue measure

on [0, T ].

We now introduce some definitions and notations that will be useful in the rest of the paper.

Define the finite measure space (S,S, µ) as follows:

S = [0, T ]× Ω, S = B[0, T ]⊗F , µ = (`[0, T ] + δT )×P

Let L0
+ denote the cone of non-negative functions on L0(S,S, µ), a closed convex set usually

abbreviated to L0
+.

Notice that, for Y 1, Y 2 ∈ L0
+, we have:

∫
(Y 1, Y 2)dµ = E

[∫ T

0

Y 1
t Y

2
t dt+ Y 1

T Y
2
T

]
(23)

Here and in what follows we denote

〈Y 1, Y 2〉s,t =
∫ t

s

Y 1
u Y

2
u du+ Y 1

t Y
2
t 1t=T , t ∈ [0, T ] (24)

and let

〈Y 1, Y 2〉t , 〈Y 1, Y 2〉0,t, 〈Y 1, Y 2〉 , 〈Y 1, Y 2〉0,T (25)
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For Y1, Y2 ∈ L0
+, we shall say that

Y1 ≡ Y2, if Y1 = Y2 µ− a.e.

On L0
+, we define a partial ordering by:

Y 1 � Y 2 ⇔ Y 1 ≤ Y 2, µ− a.e.

We say that a subset C of L0
+ is solid if

Y2 ∈ C, Y1 � Y2 ⇒ Y1 ∈ C

We define L1 as the Banach space of elements Y = (Y )t ∈ L0, equipped with the norm

‖Y ‖1 = E
[∫ T

0

|Y |tdt+ |Y |T
]

We also denote L1
+ = L0

+ ∩ L1.

We define the abstract version of the primal and dual sets A∗(x) and Yy as follows:

Cx =
{

g ∈ L0
+; g : S → R+ such that g � c,

and gT ≤WT for some (W, c) ∈ A∗(x)

}
(26)

Dy =
{
h ∈ L0

+ : h � Y, Y ∈ Yy
}

(27)

We denote by D+
y the subset of Dy consisting of all h such that h > 0 µ-a.e., and Dy the closure in

L0
+ of Dy. From Standing Assumption 2.3 we deduce that D+

y 6= ∅ for any y > 0.

For later use, we summarize some of the basic properties of the set C and D, as well as kind of

“bipolar” relation between the these sets in the Lemma 5.1 below.

Lemma 5.1 Let g ∈ L0
+, then g ∈ C if and only if

v(g) , sup
h∈D

∫
〈h, g〉dµ ≤ 1, (28)

Proof. First of all, notice that by Fatou’s lemma we have:

sup
h∈D

∫
〈h, g〉dµ = sup

h∈D

∫
〈h, g〉dµ (29)

so all we need to confirm (28) is to check the statement for h ∈ D.
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The “if part” of the relation (29) is obvious, since YW is a P-supermartingale (Remark 3.1)

and the fact that h, g are nonnegative and dominated by Y, W in a sense of (26) and (27). What

remains now is to prove the converse assertion.

Consider an adapted, nonnegative FT -measurable random variable A defined as

A =
∫ T

0

gt

E(X̃0
t )S0

t

dt+
gT

E(X̃0
T )S0

T

Since ÃX̃
b

(Z) is nondecreasing for any Z ∈ P∗(X̃b). Hence we have

v(A) , sup
Q∈P∗(X̃b)

EQ

[
A

E(ÃX̃b(Q))T

]

≤ sup
Z∈P∗(X̃b)

E
[∫ T

0

Ztgt

E(ÃX̃b(Z))tE(X̃0
t )S0

t

dt+
ZT gT

E(ÃX̃b(Z))TE(X̃0
T )S0

T

]
= sup

Y ∈Y

∫
〈Y, g〉dµ ≤ 1 (30)

where the first inequality follows from the inclusion P∗(X̃b) ⊂ P∗(X̃b). where the last equality by

(28) and (29) and the definition of the set Y. Then by the stochastic control lemma of Föllmer and

Kramkov (1997) [22] (see proof in Long (2003) [43]), there exists a càdlàg version of the nonnegative

process:

W̃ b
t = ess sup

Q∈P∗(X̃b)
E(ÃX̃

b

(Q))tEQ

[
A

E(ÃX̃b(Q)T )

∣∣∣∣Ft], 0 ≤ t ≤ T (31)

Moreover, for any Q ∈ P∗(X̃b), the process W̃ b/E(ÃX̃
b

(Q)) is a Q-supermartingale. By the optional

decomposition under constraints theorem in multiplicative form in Föllmer and Kramkov (1997)

[22], the process W̃ b admits a decomposition:

W̃ b = v(A)E(X̃b − C̃) = v(A) + W̃ b
− • X̃b − W̃ b

− • C̃ (32)

where X̃b ∈ X̃b, C̃ ∈ I. We now consider the process

W , S0E(X0)W̃ b = v(A)E(X0 + X̃b − C̃) = v(A) + W̃− • X̃ − W̃− • C̃

with X̃ , X0 + X̃b ∈ X̃0.
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Let us define W , S0

(
W̃ − g

S0 • Λ
)

. Using the definition of X̃0, (31) and (32) we get

W = S0

(
v(A)E(X̃ − C̃)− g

S0
• Λ
)

= S0

(
v(A) + W̃− • X̃ − W̃− • C̃ −

g

S0
• Λ
)

= S0

(
1 + W̃− • X̃ −

(
W̃− • C̃ + 1− v(A) +

g

S0
• Λ
))

It is not hard to show that WT ≥ gT , and W belongs to the set W, with the cumulated

consumption process defined as

c

S0
• Λ , W̃− • C̃ + 1− v(A) +

g

S0
• Λ � g

S0
• Λ,

Hence, (W, c) ∈ A(1) is a pair of wealth process its corresponding consumption rate process that

dominates g in a sense of (26). �

As it can be seen, the value v(A) is the least initial state value, which allows to dominate in

the almost sure sense the FT random variable A by a state process. In the financial context, v(A)

is usually called the superreplication cost of the European option AT . Notice in particular that

the expression of v(A) does not depend on the choice of X̃0.

Lemma 5.2 Given x > 0 The set Cx is convex, solid and closed under convergence in µ-measure.

Proof. Note that the solidity of Cx is rather obvious. It remains to prove its convexity.

Let (S0W̃ 1, S0c̃1) and (S0W̃ 2, S0c̃2) are two pair of processes in A∗(x). Taking any ε1 = 1−ε2 ∈

(0, 1) and defining the convex combinations

W̃ ∗ = ε1W̃ 1 + ε2W̃ 2

c̃∗ = ε1c̃1 + ε2c̃2

By the predictable convexity property on the set X̃0 and the associativity of the stochastic integral

(see, e.g. Theorem 19 in Protter (1990) [49]), we find immediately that:

W̃ ∗ = x+ (ε1W̃ 1
− • X̃1 + ε2W̃ 2

− • X̃2)− c̃∗ • Λ

= x+ W̃ ∗− •
(
ε1W̃ 1

−

W̃ ∗−
• X̃1 +

ε2W̃ 2
−

W̃ ∗−
• X̃2

)
− c̃∗ • Λ

= x+ W̃ ∗− •X − (c̃∗ • Λ + W̃ ∗− • C)

16



where X ∈ X̃0, D ∈ I. We see that c̃∗ • Λ � c∗ • Λ , c̃∗ • Λ + W̃ ∗− •D, and deduce that

c̃∗ � c∗

Since the utility functions are nondereasing, then (S0W̃ ∗, S0c∗) is a pair of a wealth and a con-

sumption process in A∗(x) (corresponding to X). By the definition of Cx, the convex combination

(S0
T W̃

∗
T , S

0
t c̃
∗
t ) is also in Cx, hence Cx is convex.

Now let (gn)n∈N ∈ L0
+ be a sequence in Cx converging in µ-measure; we may (and shall) by

passing to a subsequence and suppose that the sequence converges µ-almost everywhere to limit g.

We will use lemma 5.1 to prove that f belong to the sets Cx.

Since all processes under consideration are nonnegative, and all h ∈ D are dominated by some

Y ∈ Y µ-a.e., by Fatou’s lemma and by (29), we have:

sup
h∈D

∫
〈h, g〉dµ ≤ sup

Y ∈Y

∫
〈Y, f〉dµ

= sup
Z∈P∗(X̃b)

∫
〈 Z

E(ÃX̃b(Z))E(X̃0)S0
, g〉dµ

≤ sup
h∈D

lim inf
n→∞

∫
〈 Z

E(ÃX̃b(Z))E(X̃0)S0
, gn〉dµ

≤ x.

This proves the closeness property of Cx. �

The next lemma is taken from Long (2003) [43], we include it for completeness.

Lemma 5.3 The set D is convex, solid and closed with respect to the topology of convergence in

µ-measure.

Proof. First note that the closeness of D follows immediately from its definition and the solidity

of D is rather obvious. We now prove the remaining assertion.

Since 0 already belongs to the set D, and the convexity is preserved under weak convergence,

so all we need to verify the convexity for h ∈ D+
.

We first show the convexity of Y+, which then implies the the convexity of D
+

by the the

solidity property of D
+

.
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First, let us recall the following properties of the exponential semimartingales of Doléans-Dade

(see, e.g. Kallsen and Shirayev (2002) [29])

E(X) = 1 + E(X)− •X (33)

X = X0 +
1

E(X)−
• E(X) (34)

Let Y 1 and Y 2 be processes in Y+, which have the following decompositions:

Y 1 =
Z1

E(ÃX̃b(Z1))E(X̃0)S0
=

E(N1)

E(ÃX̃b(Z1))E(X̃0)S0

Y 2 =
Z2

E(ÃX̃b(Z2))E(X̃0)S0
=

E(N2)

E(ÃX̃b(Z2))E(X̃0)S0

where Zi = E(N i) ∈ P∗(X̃b). Taking any ε1 = 1− ε2 ∈ [0, 1] and defining the convex combinations

Ŷ = ε1Y 1 + ε2Y 2

Define a process A ∈ Ip and a P-local martingale N as follows:

A =
ε1Y 1
−

Ŷ−
• ÃX̃

b

(Z1) +
ε2Y 2
−

Ŷ−
• ÃX̃

b

(Z2) (35)

N =
ε1Y 1
−

Ŷ−
•N1 +

ε2Y 2
−

Ŷ−
•N2 (36)

We now check whether Ẑ , E(N) belongs to the set P∗(X̃b).

Fix any X̃b ∈ X̃b, we need to show that Ẑ(X̃b−A) is a P-local supermartingale. Since ÃX̃
b

(Zi)

with i = 1, 2 is a continuous process with finite variation, we deduce from I.4.34 c, and I.4.36 in

Jacod and Shirayev (1987) [28] that A is also a continuous process with finite variation. We first

prove that:

ε1Z1

E(ÃX̃b(Z1))
+

ε2Z2

E(ÃX̃b(Z2))
=

Ẑ

E(A)
(37)

For convienience, we denote Y i0 , Y
iS0E(X̃0). Without loss of generality assume that S0

0 = 1.

Hence, by (34) we have

Y i0 = E(N i − ÃX̃
b

(Zi)) = 1 + Y i0 • (N i − ÃX̃
b

(Zi)), i = 1, 2 (38)
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Therefore,

Ŷ0 = E(N −A) = 1 + Ŷ0 • (N −A)

= 1 + ε1Y 1
0 • (N1 − ÃX̃

b

(Z1)) + ε2Y 2
0 • (N2 − ÃX̃

b

(Z2))

= ε1Y 1
0 + ε2Y 2

0

where the third equality follows from (38), and we get (37).

From (37) and using the properties of the Doléans-Dade exponential semimartingales, we deduce

that:

Ẑ =
ε1Y 1
−Ẑ−

Ŷ−Z1
−
• Z1 +

ε2Y 2
−Ẑ−

Ŷ−Z2
−
• Z2 (39)

For convinience, we denote

ε1 ,
ε1Y 1Ẑ

Ŷ Z1

ε2 ,
ε2Y 2Ẑ

Ŷ Z2

From (39) we have

[Ẑ, X̃b −A] = ε1 • [Z1, X̃b − ÃX̃
b

(Z1)] + ε2 • [Z2, X̃b − ÃX̃
b

(Z2)] +

+ ε1 • [Z1, ÃX̃
b

(Z1)] + ε2 • [Z2, ÃX̃
b

(Z2)]− [Ẑ, A] (40)

Recall that we have:

Zi(X̃b − ÃX̃
b

(Zi)) = (X̃b − ÃX̃
b

(Zi))− • Zi + Zi− • (X̃b − ÃX̃
b

(Zi)) +

+ [Zi, X̃b − ÃX̃
b

(Zi)]

X̃b −A =
ε1Y 1
−

Ŷ−
• (X̃b − ÃX̃

b

(Z1)) +
ε2Y 2
−

Ŷ−
• (X̃b − ÃX̃

b

(Z2))
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Using Ito’s lemma and after some straightforward calculations we obtain:

Ẑ(X̃b −A) = (X̃b −A)− • Ẑ + Ẑ− • (X̃b −A) + [Ẑ, X̃b −A]

= (X̃b −A)− • Ẑ + ε1−Z
1
− • (X̃b − ÃX̃

b

(Z1))−

− ε1−(X̃b − ÃX̃
b

(Z1))− • Z1 +

+ ε2−Z
2
− • (X̃b − ÃX̃

b

(Z2))−

− ε2−(X̃b − ÃX̃
b

(Z2))− • Z2 + ε1− • [Z1, ÃX̃
b

(Z1)] +

+ ε2− • [Z2, ÃX̃
b

(Z2)]− [Ẑ, A] (41)

By the definition of P∗(X̃b) then we have Zi(X̃b− ÃX̃
b

(Zi)), i = 1, 2 is a P-local supermartingale.

Moreover, since Zi, Ẑ are P-local supermartingale, ÃX̃
b

(Zi) and A are predictable processes with fi-

nite variation, then Theorem VII.36 in Dellacherie and Mayer (1982) [16] implies that [Zi, ÃX̃
b

(Zi)]

and [Ẑ, A] are P-local martingale. Therefore (41) imples that Ẑ(X̃b−A) is a P-local supermartin-

gale.

We conclude that Ẑ belongs to the set P∗(X̃b) with the uppervariation process ÃX̃
b

(Ẑ), which

is continuous and satisfies

ÃX̃
b

(Ẑ) � A

Since then, we have:

Ŷ =
(

ε1Z1

E(ÃX̃b(Z1))E(X̃0)S0
+

ε2Z2

E(ÃX̃b(Z2))E(X̃0)S0

)
=

Ẑ

E(A)E(X̃0)S0

� Y ,
Ẑ

E(ÃX̃b(Ẑ))E(X̃0)S0
∈ Y ⊂ D

As a result, we have proved the convexity property of D. This completes the proof of the lemma.

�
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6 Existence results and characterization of the optimal so-
lution

In the newly established finite measure (S,S, µ), we define a S-measurable function U : S×R+ →

R ∪ {−∞} such that:

U((t, ω), x) = U1(t, x), t ∈ [0, T ], U((T, ω), x) = U2(x), a.s. (42)

and with the basic properties:

1. s 7→ U(s, x) is S-measurable for all x ≥ 0;

2. x 7→ U(s, x) is again a utility function in a sense of Definition 4.1 and satisfying (22) for

every s ∈ S.

We slightly abuse notation and omit the dependence in the state s ∈ S and write U(x) in place

of U(s, x) henceforth.

We shall denote by I : (0, U ′(0)) → (0,∞) the continuous, strictly decreasing inverse of the

marginal utility function U ′. we set I(y) = 0 for y > U ′(0). Notice that:

〈1, I(g)〉 =
∫ T

0

I1(gt, t)dt+ I2(gT ), g ∈ L0
+

Following Pham and Mnif (2002), we formulate the next result.

Lemma 6.1

u(x) = sup
g∈Cx

∫
U(g)dµ = sup

g∈Cx
E
[∫ T

0

U1(gt, t)dt+ U2(gT )
]

x > 0 (43)

1. If (W ∗, c∗) ∈ A∗(x) solves (21), then gt = c∗t for t ∈ [0, T ] and gT = W ∗T solves (43),

2. Conversely, if g∗ ∈ Cx solves (43), then (W, c) ∈ Cx, such that g∗T ≤WT , g
∗ � c, solves (21).

Proof. From (23) and the definition of U (42), then clearly we have the second equality in (43).

Moreover, since A∗(x) ⊂ Cx. Hence we already have:

u(x) ≤ sup
g∈Cx

∫
U(g)dµ (44)
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Now let g ∈ Cx, there exists a pair of (W, c) ∈ A∗(x) dominating g in a sense of (26). Since U1, U2

are nondecreasing, we deduce that

∫
U(g)dµ ≤ E

[∫ T

0

U1(ct, t)dt+ U2(WT )

]
(45)

and so by (21):

sup
g∈Cx

∫
U(g)dµ ≤ u(x) (46)

From (46) and (44) we have (43).

1. Suppose that (W ∗, c∗) ∈ A∗(x) solves (21). Then g ≡ c∗ +W ∗δT ∈ Cx and we have

u(x) = E

[∫ T

0

U1(c∗t , t)dt+ U2(W ∗T )

]
=
∫
U(g)dµ

which shows that g solves (43).

2. Suppose that g∗ ∈ Cx solves (43), then there exists (W, c) ∈ A∗(x) dominating g∗ in a sense

of (26). Since U1, U2 are nondecreasing, then

u(x) =
∫
U(g∗)dµ ≤ E

[∫ T

0

U1(ct, t)dt+ U2(WT )

]

which shows that (W, c) solves (21). �

We now define the conjugate function Ũ : S ×R+ → R ∪ {∞}:

Ũ(s, h) = sup
g>0

[U(s, g)− 〈g, h〉], h ∈ L0
+

To alleviate notations, we omit the dependence in the state s ∈ S.

Clearly, Ũ is a continuously differentiable, decreasing, strictly convex function satisfying (15),

(17), (18) and (19), and

〈1, Ũ(h)〉 =
∫ T

0

Ũ1(ht, t)dt+ Ũ2(hT )

where

Ũ1(y, t) = sup
x>0

[U1(x, t)− xy], y > 0

Ũ2(y) = sup
x>0

[U2(x)− xy], y > 0
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We now formulate dual problem:

ũ(y) = inf
h∈Dy

J̃(y;h) , inf
h∈Dy

∫
Ũ(h)dµ = inf

h∈Dy
E
[∫ T

0

Ũ1(ht, t)dt+ Ũ2(hT )
]

(47)

In order to proceed, we shall need the following assumption

Assumption 6.1

ũ(y) <∞, for some y > 0

Assumption 6.2 ÃX̃
b

(Z)T is bounded for any Z ∈ P∗(X̃b)

Assumption 6.3 S0 and X0 are bounded from below.

Clearly, the model described in Section 2.2 satisfying Assumptions 6.2 and 6.3.

We now state the main result of this paper.

Theorem 6.1 Assume that Assumptions 4.1, 6.1, 6.2, 6.3 and (22) hold true. Then we have

1. Existence to the dual problem (47)

(a) For all y > 0, ũ(y) < ∞ and there exists a unique (in the sense of ≡) optimal solution

hy ∈ Dy to problem (47). Moreover, hy ∈ D+
y .

(b) Given any x > 0, there exists a unique y∗ solution of infy>0[ũ(y) + xy] and characterized by

E
[∫ T

0

I1(h∗t , t)dt+ I2(h∗T )
]

= xy∗

where h∗ is the optimal solution of ũ(y∗).

2. Existence to the primal problem: Given any x > 0. There exists a unique (in the sense of ≡)

optimal solution g∗ to problem (43). This solution satisfies:

g∗t ≡ I1(h∗t , t)1t≤T + I2(h∗T )1T , t ∈ [0, T ]

and the solution to problem (21) (W ∗, c∗) satisfies:

E
[
h∗TW

∗
T +

∫ T

0

h∗t c
∗
t dt

]
= xy∗
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3. We have the duality relation:

u(x) = inf
y>0

[ũ(y) + xy]

ũ(y) = sup
x>0

[u(x)− xy]

The proof to Theorem 6.1 is broken into several lemmas.

Lemma 6.2 Under Assumptions 6.2 and 6.3. Let (yn, hn)n be a sequence in R+ × Dyn such

that yn is bounded. Then, there exists a sequence (yn1 , h
n
1 ) ∈ conv{(yk, hk), k ≥ n} that converges

µ-almost everywhere, to some (y∗, h∗) ∈ R+ × Dy∗ .

Proof. First, notice that from the definition of Yy and (27), it is not hard to show that the set

{(y, h) : y ∈ R+, h ∈ Dy}

is convex.

The sequence of nonnegative yn being bounded, it converges (up to a subsequence) to some

nonnegative y∗. Moreover, h ∈ Dy is bounded in L1. Indeed, we have∫
hdµ ≤ yE

[∫ T

0

Ztdt

E(ÃX̃b(Z)t)E(X0
t )S0

t

+
ZT

E(ÃX̃b(Z)T )E(X0
T )S0

T

]
< yC1, C1 ∈ R+ (48)

where by Assumptions 6.2, 6.3 and the fact that Z is a P-supermartingale.

Using Lemma A1.1 of Delbaen and Schachermayer (1994) [13], we can find a sequence hn1 ∈

conv {(yk, hk), k ≥ n}, which converges µ-a.e. to a function h∗ taking values in [0,∞]. Notice

also that the limit h∗ must be almost everywhere finite because (48). Moreover, h∗ ∈ Dy∗ by the

convexity of the set

{(y, h) : y ∈ R+, h ∈ Dy}

and Fatou’s lemma. �

Lemma 6.3 Under Assumptions 6.2, 6.3. Let C > 0, then the family{
Ũ(h)− : h ∈ Dy, y ∈ [0, C]

}
is uniformly integrable under µ.
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Proof. Notice that ∫
Ũ(h)−dµ = E

[∫ T

0

Ũ1(ht, t)−dt+ Ũ2(hT )−
]

(49)

We closely follow the proof of Lemma 5.2 in Bouchard and Pham (2002) [4]. Assume that

Ũ1(∞, t) < 0 for all t ∈ [0, T ] and Ũ2(∞) < 0 (otherwise there is nothing to prove).

First, we suppose that Ũ1(∞, t) = −∞ for all t ∈ [0, T ], and Ũ1(∞) = −∞. Let

φ1(., t) : (−Ũ1(0, t),∞)→ [0,∞), ∀ t ∈ [0, T ]

φ2(.) : (−Ũ2(0),∞)→ [0,∞),

denote the inverse functions of Ũi. The function φi are convex and strictly increasing. Since

Ũ1(0, t) = U1(∞, t) > 0 for any t ∈ [0, T ] and Ũ2(0) = U2(∞) > 0 hence φ1(0, t) and φ2(0) are

well-defined and finite for any t ∈ [0, T ]. It follows that for y ≥ 0:

φ1(Ũ1(ht, t)−, t) ≤ φ1(0, t) + ht, t ∈ [0, T ], φ2(Ũ2(hT )−) ≤ φ2(0) + hT , (50)

Hence, because of (48) we obtain

E
[∫ T

0

φ1(Ũ1(ht, t)−, t)dt+ φ2(Ũ2(hT )−)
]
≤ E

[∫ T

0

φ1(−Ũ1(ht, t), t)dt+ φ2(−Ũ2(hT ))
]

+

+
∫ T

0

φ1(0, t)dt+ φ2(0)

= E
[∫ T

0

htdt+ hT

]
+ C2

≤ yC1 + C2 ∀ y ≥ 0, h ∈ Dy (51)

with C2 is some constant such that∫ T

0

φ1(0, t)dt+ φ2(0) ≤ C2 <∞ (52)

By (17) and the l’Hospital rule:

lim
x→∞

φ1(x, t)
x

= lim
y→∞

y

−Ũ1(y, t)
= lim
y→∞

1

−Ũ ′1(y, t)
=∞, t ∈ [0, T ] (53)

lim
x→∞

φ2(x)
x

= lim
y→∞

y

−Ũ2(y)
= lim
y→∞

1

−Ũ ′2(y)
=∞ (54)

The uniformly integrability under P of the sequence Ũ1(ht, t)− and Ũ2(hT )− now follows from

(51), (53), (54) by the de la Vallée-Poussin theorem. This proves the required results.
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Now, we suppose that Ũ1(∞, t) > −∞ for any t ∈ [0, T ] and Ũ2(∞) > −∞. We may reduce

the problem to the first case by defining the functions:

φ1(x, t) ,

{
(−Ũ1)−1(x, t) for −Ũ1(0, t) ≤ x ≤ −Ũ1(∞, t),
ψ1(x, t) for x > −Ũ1(∞, t),

t ∈ [0, T ]

φ2(x) ,

{
(−Ũ2)−1(x) for −Ũ2(0) ≤ x ≤ −Ũ2(∞),
ψ2(x) for x > −Ũ2(∞),

where ψi is chosen so that

lim
x→∞

ψi(x)
x

=∞

and φ1(0, t) <∞ for any t ∈ [0, T ], φ2(0) <∞. Finally, by the same arguments as in the first case,

we obtain the required result. �.

The next Corollary is a useful result from the last lemma. We denote the domain of any function

U by dom(U) = {x > 0: U(x) <∞}.

Corollary 6.1 For each y ∈ dom(ũ), there is some hy ∈ D(y) for which the infimum defining

in (47) is attained. Differentiability of U1, U2 implies strict convexity of Ũ1, Ũ2, which in turn

implies uniqueness of the minimizing hy. Moreover, hy ∈ D+
y .

Proof. We take a minimizing sequence hn ∈ Dy such that:

ũ(y) ≤
∫
Ũ(h)dµ = E

[∫ T

0

Ũ1(hnt , t)dt+ Ũ2(hnT )
]
≤ ũ(y) + n−1. (55)

By lemma A.1.1 of Delbaen and Schachermayer in [13], there exists a sequence (up to subsequence)

hn1 ∈ conv(hn, hn+1, · · · )n≥1, that are µ–almost everywhere convergent to limit hy. We may suppose

that hy still satisfies the inequality (55). Since Dy is convex and closed in µ-measure, hence hy ∈ Dy.

By lemma 6.3 and by applying Fatou’s lemma to the sequence (Ũ(hn1 )+)n≥1, and to the right-hand

side of the inequality (54) we obtain:

ũ(y) ≥ lim inf
n→∞

∫
Ũ(hn1 )dµ ≥

∫
Ũ(hy)dµ ≥ ũ(y)

The uniqueness assertion is immediated by general duality results (see Theorem V.26.3 in [44]).

We now prove that hy ∈ D+
y . Fix any h ∈ D+

y , which is possible by Standing Assumption 2.3.

Define the convex combination:

hδ = δh+ (1− δ)hy, δ ∈ (0, 1/2)
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Note that as δ tends to 0, we have hδ → hy.

Recall that for any convex function Ũ we have

Ũ(x) ≥ Ũ(y) + (x− y)Ũ ′(y),

By the optimality of hy and the convexity of Ũ then we have:

0 ≥ 1
δ

∫ (
Ũ(hy)− Ũ(hδ)

)
dµ

≥
∫
〈(h− hy), I(hδ)〉dµ (56)

First, we shall show that the family

〈(h− hy), I(hδ)〉− is integrable under µ. (57)

or equivalently, ∫ T

0

(
(ht − hyt )I1(hδt , t)

)−
dt+

(
(ht − hyt )I2(hδT )

)−
is integrable under P.

Indeed, since I1, I2 are decreasing on non-negative, we have:(
(ht − hyt )I1(hδt , t)

)−
≤ hyt I1((1− δ)hyt , t),(

(hT − hyT )I2(hδT )
)−

≤ hyT I1((1− δ)hyT )

Applying Lemma 6.3 in Kramkov and Schachermayer (1999) [39], it follows that we can find

some constants ci, with i = 1, 2.., and some positive y1, y2 such that:(
(ht − hyt )I1(hδt , t)

)−
≤ c1Ũ1(hyt , t)1hyt≤y1

+ hyt I1((1− δ)hyt , t)1hyt>y1
,(

(hT − hyT )I2(hδT )
)−

≤ c2Ũ2(hyT )1hyT≤y2
+ hyT I2((1− δ)hyT )1hyT>y2

,

Notice that since δ ∈ (0, 1/2) hence

(1− δ)hyt ≥
1
2
y1, ∀ hyt > y1, (1− δ)hyT ≥

1
2
y2, ∀ hyT > y2,

From (15) it follows that I1, I2 are bounded on
[

1
2 (y1 ∧ y2),∞

[
. Hence we can find some c̃i such

that (
(ht − hyt )I1(hδt , t)

)−
≤ c1Ũ1(hyt , t)1hyt≤y1

+ c̃1h
y
t(

(hT − hyT )I2(hδT )
)−

≤ c2Ũ2(hyT )1hyT≤y2
+ c̃2h

y
T
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By (48) and since ũ(y) <∞, we get the desired result:∫
〈(h− hy), I(hδ)〉−dµ = E

[∫ T

0

((ht − hyt )I1(hδt , t))
−dt+ ((ht − hyt )I2(hδT ))−

]
≤ E

[∫ T

0

(
c1Ũ1(hyt , t)1hyt≤y1

+ c̃1h
y
t

)
dt

]
+

+ E
[
c2Ũ2(hyT )1hyT≤y2

+ c̃2h
y
T

]
< ∞

Now, to prove that hy ∈ D+
y we assume the contrary. Notice that as δ tends to 0, we have

h→ 0 everywhere. Moreover, we have I1(0, t) =∞ for any t ∈ [0, T ] and I2(0) =∞. Therefore, by

sending δ to 0, (56) implies the contradition, since the right-hand side term goes to ∞ by Fatou’s

lemma. �

Lemma 6.4 Under Assumption 6.1, 6.2 and 6.3. Let the optimal solution to the problem (47) for

some y > 0, is hy ∈ D+
y . Then ũ(y) is differentiable in y and we have:

yũ′(y) = E
[
−
∫ T

0

hyt I1(hyt , t)dt− h
y
T I2(hyT )

]
. (58)

Moreover, if in addition hy ∈ D+

y then

yũ′(y) = E
[
−
∫ T

0

Y yt I1(hyt , t)dt− Y
y
T I2(hyT )

]
(59)

for any Y y ∈ Yy that dominates hy in a sense of (27).

Proof. From Corollary 6.1 we know that the optimal solution to the problem (47) exists under

Assumption 6.1. Now fix any δ > 0 sufficiently small, we will show that

lim inf
δ↓0

− ũ(y(1 + δ))− ũ(y)
δ

≥ E
[∫ T

0

hyt I1(hyt , t)dt+ hyT I2(hyT )
]

(60)

and

lim sup
δ↑0

− ũ(y(1 + δ))− ũ(y)
δ

≤ E
[∫ T

0

hyt I1(hyt , t)dt+ hyT I2(hyT )
]

(61)

Let δ > 0. By using successively the definition of ũ(y), the convexity of Ũ1, Ũ2 and its properties

we obtain:

− ũ(y(1 + δ))− ũ(y)
δ

≥ E
[∫ T

0

Ũ1((1 + δ)hyt , t)− Ũ1(hyt , t)
−δ

dt+

+
Ũ2((1 + δ)hyT )− Ũ2(hyT )

−δ

]
≥ E

[∫ T

0

hyt I1((1 + δ)hyt , t)dt+ hyT I2((1 + δ)hyT )
]
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We then deduce by monotone convergence theorem:

lim inf
δ↓0

− ũ(y(1 + δ))− ũ(y)
δ

≥ E
[∫ T

0

hyt I1(hyt , t)dt+ hyT I2(hyT )
]

(62)

Now, without loss of generality we assume that δ ∈ (− 1
2 , 0). By the same arguments in the case

δ > 0, we obtain:

− ũ(y(1 + δ))− ũ(y)
δ

≤ E
[∫ T

0

hyt I1((1 + δ)hyt , t)dt+ hyT I2((1 + δ)hyT )
]

(63)

Same arguments as in the proof of Corollary 6.1 prove the the right-hand side of (63) is inte-

grable under P.

Since the right-hand side in (63) is integrable under P. Therefore we can apply the dominated

convergence theorem to (63) and obtain:

lim sup
δ↑0

− ũ(y(1 + δ))− ũ(y)
δ

≤ E
[∫ T

0

hyt I1(hyt , t)dt+ hyT I2(hyT )
]

(64)

From (62), (64) and the convexity of ũ(y) we get (58).

Now suppose that hy ∈ D+

y . Since there exists a process Y y ∈ Yy such that hy � Y y, we then

have:

−ũ′(y) ≤ E
[∫ T

0

Y yt I1(hyt , t)dt+ Y yT I2(hyT )
]

(65)

To prove the converse inequality, we take an arbitrary element h ∈ Dy, δ ∈ (0, 1
2 ) and consider the

process:

hδ = (1− δ)hy + δh

which also belongs to the set Dy by the convexity of Dy. Notice also that limδ→0 h
δ = hy. Since

hy solves ũ(y), then we have:

E
[∫ T

0

Ũ1(hyt , t)dt+ Ũ2(hyT )
]
≤ E

[∫ T

0

Ũ1(hδt , t)dt+ Ũ2(hδT )
]

(66)
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Then by the convexity of Ũ1 and Ũ2, we have:∫ T

0

Ũ1(hyt , t)dt+ Ũ2(hyT ) ≥
∫ T

0

Ũ1(hδt , t)dt

+
∫ T

0

(hyt − hδt )Ũ ′1(hδt , t)dt+

+ Ũ2(hδT ) + (hyT − h
δ
T )Ũ ′2(hδT )

≥
∫ T

0

Ũ1(hδt , t)dt+ Ũ2(hδT ) + (67)

+ δ
(∫ T

0

(ht − hyt )I1(hδt , t)dt+

+ (hT − hyT )I2(hyhδT )
)

Plugging (67) to (66) and dividing by δ, we obtain:

E
[∫ T

0

hyt I1(hδt , t)dt+ hyT I2(hδT )
]
≥ E

[∫ T

0

htI1(hδt , t)dt+ hT I2(hδT )
]

(68)

Since hδ ≥ (1− δ)hy, by the decrease and nonnegative of I1 and I2 we have:

0 ≤ E
[∫ T

0

hyt I1(hδt , t)dt+ hyT I2(hδT )
]

≤ E
[∫ T

0

hyt I1((1− δ)hyt , t)dt+ hyT I2((1− δ)hyT )
]

(69)

By the same arguments as in proof of Corollary 6.1 we deduce that the right-hand side of (69)

is integrable under P.

Therefore by applying the dominated convergence theorem to the left-hand side of (66), and

Fatou’s lemma to the right-hand side we get:

−ũ′(y) ≥ E
[∫ T

0

htI1(hyt , t)dt+ hT I2(hyT )
]
, ∀ h ∈ Dy (70)

≥ E
[∫ T

0

Y yt I1(hyt , t)dt+ Y yT I2(hyT )
]

(71)

where the last inequality follows from the fact that Y y belongs to Dy. From (65) and (71) we get

the desired result. �

The following lemma is adopted from Lemma 5.3 in Bouchard and Pham (2002) [4].

Lemma 6.5 Let Assumptions 6.1, 6.2 and 6.3 hold true. Given any x ∈ dom(V ) defined in (72),

there exists a unique optimal solution y∗ > 0 to the problem

V (x) , inf
y>0

[ũ(y) + xy] (72)
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Proof. Let (yn)n ∈ dom(ũ) be a minimizing sequence of the problem infy>0[ũ(y) + xy]. By

Corollary 6.1 for any yn there exists an optimal solution hy
n ∈ Dyn of ũ(yn). Let us now fix any

ε > 0 and x0 such that

φ1(x, t)
x

≥ 1
ε
, t ∈ [0, T ],

φ2(x)
x
≥ 1
ε

(73)

for x ≥ x0, where φi, i = 1, 2 are defined as in Lemma 6.3.

From (73) it follows that:

ũ(yn)− =
∫
Ũ(hy

n

)−dµ = E
[∫ T

0

Ũ1(hy
n

t , t)−dt+ Ũ2(hy
n

T )−
]

≤ E
[∫ T

0

x0dt+ x0

]
+ εE

[∫ T

0

φ1(Ũ1(hy
n

t , t)−, t)dt+ φ2(Ũ2(hy
n

T )−)
]

≤ x0C3 + ε(C2 + ynC1) (74)

or equivalently, we have:

ũ(yn) ≥ −x0C3 − ε(C2 + ynC1) (75)

Now we take n large enough, such that

ũ(yn) + xyn ≤ V (x) + 1

Hence by choosing ε = x/2 it follows from (75) that (yn)n is bounded.

By Lemma 6.2 there exists a sequence (yn1 , h
n
1 ) ∈ conv{(yk, hk), k ≥ n} that converges µ-a.e.

to some (y∗, h∗) ∈ R+ × Dy∗ . By the convexity of Ũi, i = 1, 2 we have:

Ũ(hn1 ) ≤ sup
m≥n

Ũ(hk)

so that

lim
n→∞

∫
Ũ(hn1 )dµ+ xyn1 = V (x) (76)

Hence we have:

ũ(y∗) + xy∗ =
∫
Ũ(hx)+dµ−

∫
Ũ(hx)−dµ+ xy∗

≤ lim inf
n→∞

Ũ(hn1 )+dµ− lim
n→∞

Ũ(hn1 )−dµ+ xy∗

≤ lim
n→∞

∫
Ũ(hn1 )dµ+ xyn1 = V (x)
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where the first inequality follows from Lemma 6.3 and Fatou’s lemma. The last inequality follows

from (76).

To prove that y∗ > 0, we assume the contrary, then:

ũ(0) =
∫
Ũ(0)dµ ≤

∫
Ũ(h)dµ+ xy = E

[∫ T

0

Ũ1(ht, t)dt+ Ũ2(hT )
]

+ xy (77)

for all y > 0 and h ∈ Dy. Using the properties of utility functions, we have:

E
[∫ T

0

(
Ũ1(ht, t) + htI1(ht, t)

)
dt+ Ũ2(hT ) + hT I2(hT )

]
≤ ũ(0) (78)

Plugging (78) into (77) and dividing by y > 0, we obtain:

E
[∫ T

0

htI1(ht, t)dt+ hT I2(hT )
]
≤ x, ∀ y > 0, h ∈ Dy (79)

As y → 0, h tends to 0 everywhere. Moreover, by the model setting we have I1(0, t) = ∞ for

any t ∈ [0, T ] and I2(0) =∞. Therefore, by sending y to 0 and using Fatou’s lemma, (79) implies

the contradiction since x <∞. Finally, the uniqueness of y∗ follows from the strict convexity of ũ

on {ũ <∞}. �

Lemma 6.6 Given x ∈ dom(V ) and let y∗ be an optimal solution of (70). Then for all y > 0 and

h ∈ Dy ∫
〈h, I(h∗)〉dµ− xy ≤

∫
〈h∗, I(h∗)〉dµ− xy∗ = 0 (80)

Proof. Fix y > 0, h ∈ Dy and define the convex combination:

(yε, hε) = ε(y, h) + (1− ε)(y∗, h∗), ε ∈ (0, 1/2)

Note that as ε tends to 0, we have (yε, hε)→ (y∗, h∗).

By the optimality of (y∗, h∗) and the convexity of Ũ then we have:

0 ≥ 1
ε

∫
Ũ
(

(h∗)− Ũ(hε)
)
dµ+ x(y∗ − y)

≥
∫
〈(h− h∗), I(hε)〉dµ+ x(y∗ − y) (81)

By the same arguments as in Corollary 6.1 it is not hard to show that the family

〈(h− h∗), I(hε)〉− is integrable under µ. (82)
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Sending ε to 0 in (81), using (82) and Fatou’s lemma again, we obtain:

0 ≥
∫
〈(h− h∗), I(h∗)〉dµ+ x(y∗ − y)

and (80) by choosing (y, h) = 1
2 (y∗, h∗) and then (y, h) = 2(y∗, h∗). �

Proof of Theorem 6.1

1. By Lemma 6.3 in Kramkov and Schachermayer (1999) [39], we deduce that there exists some

y0 > 0 such that ũ(y) < ∞ for all y ≥ y0. On the other hand, by using Lemma 6.3 in Kramkov

and Schachermayer (1999) again, there exists y1 > 0 such that for all y ∈ (0, y0) and h ∈ D we

obtain

Ũ1(yht, t) ≤ c(y)Ũ(y0ht, t)1y0ht<y1 + Ũ(yht, t)1y0ht≥y1

≤ c(y)Ũ(y0ht, t)1y0ht<y1 + Ũ(y
y1

y0
, t)1y0ht≥y1 , c(y) <∞

where the last inequality follows from the decrease of Ũ1. As regards Ũ2, the same assertion follows.

This proves that ũ(y) <∞ for y < y0 and so ũ(y) <∞ for all y ∈ (0,∞).

The rest of the assertion 1(a) follows from Corollary 6.1, and by the same arguments as in the

proof of Lemma 6.5.

1(b) Quite clearly that dom(V ) = (0,∞) whenever dom(ũ) 6= ∅. Then the assertion 1(b) follows

from Lemma 6.5.

2. Moreover, as a result of the last lemma, ũ is differentiable at y∗ and we shall have:

−y∗ũ′(y∗) = E
[∫ T

0

h∗t I1(h∗t , t)dt+ h∗T I2(h∗T )
]

= xy∗ (83)

Let us define

g∗t = I1(h∗t , t)1t≤T + I2(h∗T )1T

We will show that g∗ is a unique solution to the optimization problem (46).

Lemma 5.1, (71), 81 and (83) we deduce that g∗ belong to the set C−ũ′(y∗) ≡ Cx.
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Now, for an arbitrary g ∈ Cx, by the convexity of Ũi, we have:

∫ T

0

U1(gt, t)dt+ U2(gT ) ≤
∫ T

0

Ũ1(h∗t , t)dt+ Ũ2(h∗T ) +

+
∫ T

0

h∗t gtdt+ h∗T gT

≤
∫ T

0

U1(I1(h∗t , t), t)dt+ U2(I2(h∗T ) +

+
∫ T

0

h∗t gtdt+ h∗T gT −

−
∫ T

0

h∗t I1(h∗t , t)dt− h∗T I2(h∗T )

≤
∫ T

0

U1(g∗t , t)dt+ U2(g∗T ) +

+
(∫ T

0

h∗t gtdt+ h∗T gT

)
−

−
(∫ T

0

h∗t g
∗
t dt+ h∗T g

∗
T

)

Taking expectation, we obtain:

∫
U(g)dµ = E

[∫ T

0

U1(gt, t)dt+ U2(gT )
]
≤ E

[∫ T

0

U1(g∗t , t)dt+ U2(g∗T )
]

+

+ E
[∫ T

0

gth
∗
t dt+ gTh

∗
T − xy∗

]
≤ E

[∫ T

0

U1(g∗t , t)dt+ U2(g∗T )
]

≤
∫
U(g∗)dµ

The second inequality follows from Lemma 5.1 and the fact that g ∈ Cx, h∗ ∈ Dy∗ . This proves

the optimality of g∗.

Now let (W ∗, c∗) ∈ A∗(x) be any element that dominates g∗ in a sense of (26). By (83) and

from Lemma 5.1, we have:

xy∗ =
∫
〈h∗, I(h∗)〉dµ =

∫
〈h∗, g∗〉dµ ≤ E

[∫ T

0

h∗t c
∗
t dt+ h∗TW

∗
T

]
≤ xy∗

and hence:

E
[∫ T

0

h∗t c
∗
t dt+ h∗TW

∗
T

]
= xy∗
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3. For any fixed x > 0, by the definition of the dual set Dy we have:

u(x) ≤ inf
y>0

[ũ(y) + xy] (84)

Moreover, we have:

u(x) =
∫
U(g∗)dµ = E

[∫ T

0

U1(g∗t , t)dt+ U2(g∗T )
]

= E
[∫ T

0

Ũ1(h∗t , t)dt+ Ũ2(h∗T )
]

+ xy∗

=
∫
Ũ(h∗)dµ = ũ(y∗) + xy∗

This proves that:

u(x) = inf
y>0

[ũ(y) + xy] (85)

The second formula of assertion (3) follows from (85) and the general bidual property of the

Legendre-transform (see, e.g. Theorem III.12.2 in Rockafellar (1970) [44]).�
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