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Abstract
We propose a model of portfolio selection under ambiguity, based on

a two-stage valuation procedure which disentangles ambiguity and ambi-
guity aversion. The model does not imply "extreme pessimism" from the
part of the investor, as multiple priors models do. Furthermore, its analyt-
ical tractability allows to study complex problems thus far not analyzed,
such as joint uncertainty about means and variances of returns.
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1 Introduction
Traditional portfolio selection models, such as Markowitz's (1952), assume that
the distribution of asset returns is objectively known by the decision maker.
Several models recently relaxed this assumption, taking into account the pos-
sibility that the decision maker is unable to form a unique probability distri-
bution. Most of these models are �rmly grounded in decision theory and make
theoretical appeal to the literature about ambiguity. Ambiguity (or Knightian
uncertainty) arises when a decision maker is unable to unambiguously assign
probabilities to the events which are relevant to her decision.

We base portfolio selection on a model of decisions under ambiguity proposed
and axiomatized by Klibano�, Marinacci and Mukerji (2003 - henceforth KMM).
According to their model a decision maker maximizes:

E� [' (E� [u (W )])]
where W is stochastic future wealth, ' and u are increasing and concave func-
tions, � and � are probability measures and E� and E� denote expected values
with respect to such measures. The inner expectation (with respect to the mea-
sure �) is akin to a von-Neumann Morgenstern expected utility. The investor
realizes that to di�erent distributions of asset returns correspond di�erent values
of the expected utility of wealth. The measure � assigns second-order probabili-
ties to the distributions which are deemed plausible by the investor and hence to
expected utility values. Instead of simply averaging over expected utilities, the
decision maker applies a concave transform before taking the outer expectation,
because she dislikes mean-preserving spreads in expected utility values.

The model di�ers considerably from models previously used to study portfo-
lio selection under ambiguity and carries new implications both from a positive
and a normative perspective. Most existing models are based on Gilboa and
Schmeidler's (1989 - henceforth GS) multiple priors preferences. Among them,
Epstein and Wang (1994), Dow and Werlang (1992) and Chen and Epstein
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(2002). Roughly speaking, an investor with multiple priors preferences has got
several priors (probability distributions) and, after choosing a portfolio, she
selects the prior which yields the lowest expected utility given her choice. An-
other class of models, based on robust control techniques, includes Maenhout
(2004), Anderson, Hansen and Sargent (2003) and Uppal and Wang (2003). In
the latter models agents have a reference prior, but recognize the possibility of
misspeci�cation and account for it in their decisions, by considering alternative
priors and a penalty for deviating from the reference one.

The model we propose does not belong to either of the two classes men-
tioned above and we believe it has got some advantages over them. First, it
allows to overcome a shortcoming of existing models: both those based on mul-
tiple priors and those based on robust control share a common feature, that is
they require the solution of a maxmin problem; due to the limited analytical
tractability of maxmin problems, these models restrict attention to very special
sets of alternative priors, namely to sets of normal distributions wich have di�er-
ent means, but the same variances and covariances. Our model, instead, thanks
to the smoothness of the preference functional we adopt and the simplicity of
the �rst order condition for an optimal portfolio, allows to deal simultaneously
with uncertainty about means, variances and covariances of returns. This is
especially important in normative contexts, where uncertainty about variances
and covariances has been proven to be as important as ambiguity about means
(see e.g. Jagannathan and Ma - 2003). Another advantage of the model is that
it allows for a distinction between ambiguity, coming from multiple probabil-
ity distributions, and ambiguity aversion, parametrized by the concavity of the
function '. This distinction is not possible in the other models, where the set
of priors over which minimization takes place determines both the degree of
ambiguity and ambiguity aversion. Models of ambiguity aversion are attracting
the attention of �nancial economists not only because they are a useful device
to understand the behavioral implications of ambiguity aversion for �nancial
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decisions, but also because they are theoretically well-founded decision tools,
suited to address real-world situations where the lack of su�cient information
about the distribution of asset returns makes classical decision rules inadequate.
In this perspective, the model makes it possible for the investor to separately
quantify ambiguity (for example, stemming from objective imprecision of sta-
tistical estimates) and her subjective attitude towards ambiguity, parametrized
by '. Furthermore, as documented in the last section of the paper, there are
situations in which preferences displaying "extreme pessimism", such as multi-
ple priors, have paradoxical consequences, which our model has not. In Section
4 we will prove that in our framework it is optimal to take all priors into con-
sideration, although giving less importance to the most optimistic ones: this
is in sharp contrast with the multiple priors model, where the decision maker
behaves as if she was considering only one of the priors.

The paper is organized as follows: Section 2 describes the salient features of
the model. Section 3 conducts a preliminary analysis of the general properties of
an optimal portfolio. Section 4 specializes to an instance of the model. Section
5 presents an application. Section 6 concludes the paper.

2 The model
We consider the one-period allocation problem of an agent who has to decide
how to invest a unit of wealth at time 0, dividing it among n + 1 assets. The
gross return on the i-th asset after one period is a random variable denoted by
Ri. The (n� 1) vector of the returns on the �rst n assets is denoted by R and
the (n�1) vector of portfolio weights, indicating the fraction of wealth invested
in each of the �rst n assets is denoted by x.1 The end-of-period wealth Wx1We assume that there are no frictions of any kind: securities are perfectly divisible; thereare no transaction costs or taxes; the agent is a price-taker, in that she believes that herchoices do not a�ect the distribution of asset returns; there are no institutional restrictions,so that the agent is allowed to buy, sell or short sell any desired amount of any security (this
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(depending on the portfolio choice x) is equal to:
Wx = Rn+1 + x| �R��!1 Rn+1�

where �!1 is a column vector of 1s of dimension n. The above de�nition of Wx
implicitly accomodates the requirement that the portfolio weights sum up to
unity.

Let (
; � (
) ; �) be a measure space and assume that for each ! 2 
 we are
given a measure � (!; �) on the Borel �-algebra B �Rn+1� of subsets of Rn+1.
Assume also that, for each B 2 B �Rn+1�, � (!;B) is � (
)-measurable. Both
� and � (!; �) are assumed to be probability measures. As a consequence, there
exists a probability measure P de�ned on the product �-algebra � (
)�B �Rn+1�
such that:

P (A�B) = Z
A � (!;B) d� (!) 8A 2 � (
) ; B 2 B �Rn+1�

Furthermore, if f 2 L1 �
� Rn+1� 2 , then the function
! ! Z

Rn
f (!; r) d� (!; r)

is �-a.s. well-de�ned, belongs to L1 (
) and the conditional version of Fubini's
theorem (see Ash and Dol�eans Dade (1999)) ensures that:Z

A�B f (!; r) dP (!; r) = Z
A
Z
B f (!; r) d� (!; r) d� (!)

for any A 2 � (
) and B 2 B �Rn+1�.
assumption can be weakened, by simply requiring that at an optimum institutional restrictionsare not binding).2From now on, Lp (
), p 2 [1;1), denotes the space of all functions f (!) de�ned on
 such that jf (!)jp is integrable with respect to �. Similarly, Lp �
� Rn+1�, p 2 [1;1),denotes the space of all functions f (!; r) de�ned on 
�Rn+1 such that jf (!; r)jp is integrablewith respect to P , and, when a measure � (!; �) on B �

Rn+1� is given, Lp �Rn+1� denotes thespace of functions f (r) such that jf (r)jp is integrable with respect to � (!; �). Statementswhich hold almost surely with respect to �, P or � (!; �) will be said to hold �-a.s., P -a.s. or
� (!; )-a.s. respectively.

5



We identify the return on the i-th asset Ri with the i-th component of
the element extracted from the sample space �Rn+1;B �Rn+1��, so that each
conditional probability measure � (!; �) on B �Rn+1� can be interpreted as a
distribution of asset returns. We assume that Ri 2 L2 �
� Rn+1� and Ri 2
L2 �Rn+1� for each i and each � (!; �) in a set of �-measure 1.

The investor chooses the portfolio weights x in order to solve the following
maximization problem:

supx2Rn E� [' (E� [u (Wx)])] (1)
which is a shorthand for:

supx2Rn
Z

 '

�Z
Rn+1

u (Wx) d� (!; r)� d� (!)
As we have anticipated in the introduction, the above objective function,

�rst axiomatized as a speci�cation of preferences by Klibano�, Marinacci and
Mukerji (2003), is conceptually very simple. Uncertainty about future asset
returns cannot be described by a unique probability distribution, but the in-
vestor is able to identify a set of probability measures which could be plausible
descriptions of the randomness inherent in the asset allocation problem. Each
probability measure � (!; ) yields a von-Neumann Morgenstern expected utility
value E�(!) [u (Wx)], where u is concave, strictly increasing and �nite-valued.
Since u is concave and strictly increasing and Wx is linear in the asset returns,
then u (W ) 2 L1 �
� Rn+1�, u (W ) 2 L1 �Rn+1� and E�(!) [u (W )] is a � (
)-
measurable function belonging to L1 (
). By considering all the probability
measures � (!; �) for ! in 
, we obtain a whole range of expected utility values;
formally, we have a mapping U : 
! R de�ned by:

U (!) = E�(!) [u (Wx)]
The investor subjectively assigns a degree of likelihood to the probability

measures � (!; �) , that is she forms a subjective measure �, assigning a proba-
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bility to a �-algebra � (
) of subsets of 
. This is compatible, for example, with
a Bayesian framework in which the distribution of asset returns is parametrized
by a vector � and the investor assigns a non-degenerate probability distribution
to the parameter vector �.

Since U (!) is a measurable function and belongs to L1 (
), the investor is
able to evaluate the integral:

E� [' (U)]
where ' is again taken to be a concave, strictly increasing and �nite-valued
function. The above expectation is an "expected utility of expected utilities":
if � is non-degenerate, the expected utility U is a random variable; the investor,
instead of simply maximizing the expected value E� [U ] of the possible values
of U , maximizes the expectation E� [' (U)] of a concave transform of U . The
concavity of ' reects the fact that the investor dislikes mean-preserving spreads
in expected utility values, as highlighted by Jensen's inequality:

E� [' (U)] � ' (E� [U ])

3 Preliminary analysis
If maximization problem (1) admits an interior solution x� and if both u and '
are di�erentiable, the following �rst order necessary condition must be satis�ed3:

E� �'0 (E� [u (Wx�)]) E� �u0 (Wx�) �R��!1 Rn+1��� = 0 (2)
When there is no ambiguity the above condition simpli�es to:

E� �u0 (Wx�) �R��!1 Rn+1�� = 0 (3)
which has a simple economic interpretation: if the portfolio allocation is opti-
mal, the marginal increase in utility obtained selling one dollar worth of asset3We assume that di�erentiation under the integral sign is legitimate and the dominatedconvergence theorem applies: for example it su�ces that u0 (Wx� ) be bounded � (!; �)-a.s. forany ! in a set of �-measure 1 and '0 �E�(!) [u (Wx� )]� be bounded �-a.s.
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n+1 and investing the proceeds into any one of the other assets, must have zero
expected value. When ambiguity is present, i.e. � is non-degenerate, condition
(3) does not necessarily hold for every � (!; �); there might be some probability
measures � (!; �) under which a reallocation of the portfolio increases the ex-
pected utility value E� [u (Wx)]; however, once one accounts for the e�ect of the
reallocation on the whole range of expected utility values, the overall marginal
bene�t of the reallocation must be zero.

The �rst order condition is better understood in the light of the following
proposition (proved in the Appendix):
Proposition 1 Let ' and u be of class C1. Assume at an optimum u0 (Wx�) is
bounded � (!; �)-a.s. for any ! in a set of �-measure 1 and '0 �E�(!) [u (Wx�)]�
is bounded �-a.s. Then, there exists a probability measure ��, equivalent to �,
such that condition (2) is equivalent to:

E�� �E� �u0 (Wx�) �R��!1 Rn+1��� = 0
or to:

EQ �u0 (Wx�) �R��!1 Rn+1�� = 0 (4)
where Q = � � �� and

d��d� = '0 (E� [u (Wx�)])E� ['0 (E� [u (Wx�)])]
Condition (4) is easily compared to condition (3), arising in the case without

ambiguity. The di�erence between the two optimality conditions lies in the prob-
ability measure used to evaluate expected marginal utility. Without ambiguity,
the unique probability measure � is used, while in the presence of ambiguity
expectations are formed under a di�erent probability measure Q, which depends
on the portfolio chosen by the investor (the Radon-Nykodym derivative d��=d�
is a function of x�). This is consistent with the empirical evidence motivating
models of ambiguity aversion, for example the classic Ellsberg's (1961) paradox,
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where the same prior cannot explain all of the decision maker's choices. Were
the investor to choose a di�erent portfolio, she would use another probability
measure, di�erent from Q, to evaluate her new choice.

Proposition 1 sheds some light on the implications of optimal choice in the
KMM framework: while KMM (2003) axiomatize and provide a full charac-
terization of individual preferences, their paper only presents some numerical
examples to illustrate instances of individual choice and does not give a gen-
eral characterization of the consequences of optimal choice within any class of
decision problems. Equation (4) extends the classical result on equalization of
expected marginal utilities in portfolio choice (see e.g. Cochrane - 2001) to the
KMM framework. A qualitative analysis of the Radon-Nykodym derivative pro-
vides some insights on the optimal allocation rule and the dependence of Q on
the portfolio chosen by the investor: when ' is concave, '0 is decreasing; this
implies that the original measure � is distorted by subtracting weight from those
distributions which yield high expected utility values and adding more weight
to those distributions which yield low expected utility values. Roughly speak-
ing, the measure Q is a weighted average of the priors �, where the weights
are not assigned according to the original hyper-prior �, but according to a
more cautios one (note that how probabilities are reallocated depends on x� via
the distributions of wealth it induces). This is a crucial di�erence with respect
to max-min models �a la Gilboa and Schmeidler (1989): in a max-min model
the investor displays extreme pessimism and chooses the prior which yields the
lowest expected utility, while all other priors are discarded; here all the priors
are considered, but the investor gives more importance to the most pessimistic
ones. Section 5 presents an example where this di�erence seems to imply a more
reasonable behavior by the investor.
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4 A tractable implementation
To implement the model described in the previous section, we need to specify
the functions u and ' characterizing the investor's preferences, as well as the
set of probability distributions � and a second-order probability distribution �
over them.

We assume u has CARA form:
u (W ) = �e�W

where  is the coe�cient of absolute risk aversion.
We further assume that, for each ! 2 
 there exist an (n� 1) vector m!

and an (n� n) symmetric and positive de�nite matrix �! such that, under the
probability measure � (!; ), the vector of returns R has a multivariate normal
distribution with expected value m! and variance-covariance matrix �!. Fi-
nally, we assume that Rn+1 is equal to a constant Rf , i.e. the (n+ 1)-th asset
is risk-free.

The joint hypothesis of normality and CARA utility implies that in the
standard case when there is no ambiguity, i.e. 
 = f!g is a singleton, to
solve maximization problem (1) is equivalent to solving Markowitz's portfolio
selection problem

supx2Rn
�Rf + x| �m! ��!1 Rf�� 2x|�!x

�
whose well-known solution is:

x� = 1��1! �m! ��!1 Rf� (5)
Although one will not generally be able to �nd a closed-form solution x� to

the �rst order condition
E� �'0 (E� [u (Wx)]) E� �u0 (Wx) �R��!1 Rf��� = 0

it is possible to resort to numerical procedures to solve it. However, since
iterated numerical integration is often a burdensome task, it is desirable to be
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able to calculate explicitly the two inner expected values, which is made possible
by the above speci�cation.

As to the function ', we choose an investor with constant ambiguity atti-
tude4, as de�ned by KMM:

' (U) = �e��U
The following result characterizes the optimal portfolio allocation:

Proposition 2 The �rst order condition for an optimal portfolio is solved by:

x� = 1��1 �m��!1 Rf� (6)
where:

m = E� [m!]
� = E� [�!]

and

d�d� = '0 (E� [u (Wx�)]) E� [u (Wx�)]E� ['0 (E� [u (Wx�)]) E� [u (Wx�)]] (7)
The optimal portfolio (6) is easily compared to Markowitz's optimal portfolio

(5): the vector of expected returns m! and the variance-covariance matrix �!,
which are unique when 
 is a singleton, are replaced by an average of all the
vectorsm! and the matrices �! associated with the probability measures � (!; ).
However, the averages are not computed using the original measure �, which
assigns second-order probabilities to the di�erent priors, but another measure
� equivalent to �: switching from � to � the investor attaches more weight to
the most pessimistic priors and less weight to the most optimistic ones.4As explained by KMM, the intuition behind constant ambiguity attitude is that trans-lating distributions of expected utility values by a constant does not change the preferenceordering.
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Proposition 2 is of normative interest because it relates to a vast literature
questioning the validity of Markowitz's portfolios when expected returns, vari-
ances and covariances are uncertain (see e.g.: Frankfurter, Phillips and Seagle
- 1971, Barry - 1974, Bawa and Klein - 1976, and Jobson and Korkie - 1980).
The proposition suggests that, according to the decision rule proposed in our
model, Markowitz's portfolios are optimal even in the presence of parameter un-
certainty, provided that appropriate averages of the parameter estimates made
by the investor are used.

5 An example
In this section we apply the methodology explained in the previous section to
a simple portfolio selection problem, with a single risky asset. The example is
inspired by a recent strand of the asset pricing literature, which documents the
existence of multiple regimes in stock returns (e.g.: Ang and Bekaert - 2001,
Davis and Veronesi - 2001 and Whitelaw - 2001). It seems natural to interpret
the existence of multiple regimes as ambiguity about asset returns: under each
regime, returns have a di�erent probability distribution and the investor is not
able to identify which one correctly describes returns next period. We use the
estimates reported by Guidolin and Timmerman (2004): analyzing a value-
weighted portfolio of US stocks, they �nd that speci�cation tests suggest the
adoption of a Markov-switching model with two regimes, dubbed "bull" and
"bear" respectively. Under both regimes monthly stock returns are normally
distributed. A bull market is characterized by low volatility (3.3%) and high
excess expected returns (1.11%), while in a bear market volatility is high (6.3%)
and expected returns are low (-0.93%). The unconditional probability of being
in a bull market is 79.1%, while that of being in a bear market is 20.9%. Table
1 summarizes their �ndings, adopting the notation of our model.
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Table 1
Distributions of returns to the risky asset

m�Rf � � (!i)
� (!1) 1.11% 3.3% 79.1%
� (!2) -0.93% 6.3% 20.9%

Asset returns may follow either the probability distribution � (!1) or � (!2).Both distributions are normal, although they have di�erent mean m andvariance �2. � (!i) are the second order probabilities assigned to the twodistributions.We interpret the two regimes as two probability distributions (� (!1) and
� (!2)) and the unconditional probabilities of the two regimes as second-order
probabilities (� (!1) and � (!2)). Table 2 displays the optimal portfolio and the
optimal reallocation of second-order probabilities as the coe�cient of ambiguity
aversion � increases ( is set equal to 5).

Table 2
Optimal portfolios and re-allocations of second-order

probabilities
� � (!1) � (!2) m�Rf p�2 x�
1 77.45% 22.55% 0.651% 4.16% 74.78%
10 77.35% 22.65% 0.648% 4.17% 74.44%
100 76.46% 23.54% 0.630% 4.20% 71.27%
1 (maxmin) 0 100% -0.93% 6.30% -46.87%
� is the coe�cient of ambiguity aversion, � (!i) are the second-order proba-bilities, as re-allocated at an optimum, m�Rf and �2 are the average excessreturn and variance of the risky asset under � and x� is the optimal share ofwealth to be invested in the risky asset.As predicted by Proposition 2 the optimal reallocation of probabilities puts

more mass on the bear regime, where expected utility is lower, and less mass
on the bull regime, where expected utility is higher. As ambiguity aversion
increases, this behavior is more pronounced: therefore, the fraction of wealth
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invested in the risky asset diminishes. Table 2 also reports the optimal behavior
of an agent who solves a maxmin problem (KMM prove that as the coe�cient
of ambiguity aversion goes to in�nity, the optimal behavior coincides with that
of a multiple priors agent �a la Gilboa and Schmeidler). An agent considering
only the worst case scenario would behave as if the probability distribution un-
der the bear regime truly described asset returns. The outcome of applying a
maxmin decision rule is clearly far from being reasonable: behaving as if the
bear regime was the only possible regime and expected excess returns were neg-
ative, the agent would sell the risky asset short and ignore completely the fact
that in the bull regime the expected excess return is positive. On the contrary,
an investor with two-stage preferences has a more reasonable behavior and takes
into consideration both regimes, although she prudentially overweighs the bear
regime. We believe that this simple example, although admittedly stylized, il-
lustrates why a decision rule �a la KMM might be more sensible than a maxmin
decision rule in some normative contexts. It is not uncommon for an agent to
face an investment decision where no single prior seems adequate to describe
the distribution of asset returns. In such a situation, it would be possible to
follow a maxmin criterion, whereby the decision maker considers only the worst
prior. Following the alternative criterion proposed by KMM, which is equally
justi�able on formal grounds, the decision maker would average all the priors
in a cautious way. The two criteria conform to sets of axioms giving a di�erent
de�nition of individual rationality. 5 Our example is meant to show how fol-
lowing the latter criterion one might avoid some odd consequences of maxmin;
the argument would be strengthened by the simple observation that even a
hundred-fold increase in the coe�cient of ambiguity aversion produces only a5Note that, although in GS's setting it is not possible to separate tastes and beliefs inthe maxmin representation of individual preferences, the main equivalence theorem in GSguarantees that a decision maker applying a maxmin criterion when a set of probabilitymeasures is exogenously given or predetermined, conforms to GS's axioms.
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small reallocation of weights among priors and that to obtain a reallocation
close to that of the limiting maxmin case one would have to raise the ambiguity
aversion to implausibly extreme levels.

6 Concluding remarks
We have addressed the problem of optimally selecting a portfolio of assets
when the probabilistic distribution of asset returns is not known with precision.
We adopt a speci�cation of individual preferences, axiomatized by Marinacci,
Klibano� and Mukerji (2003), which posits that agents have many �rst-order
priors, to which they assign probabilities by forming a second-order prior. Our
model di�ers in many respects from previous models of portfolio selction under
ambiguity (uncertainty about the true distribution of asset returns), based on
Gilboa and Schmeidler's (1989) multiple priors preferences. The model is com-
putationally very tractable, which makes it suitable to analyze complex prob-
lems not addressed by the previous literature, for example joint uncertainty
about means and variances of returns. A novel feature of the model is that
it allows to disentangle ambiguity and ambiguity aversion. Furthermore, the
behavioral implications of the model di�er from those of previous models based
on multiple priors preferences: it turns out that at an optimum the investor
behaves as if she took decisions using a weighted average of all the priors, but
giving more weight to the more pessimistic ones; this is an important di�erence
with respect to the multiple priors model, where the investor behaves as if she
was considering only one prior, i.e. the worst one. We have also provided an
example where this di�erence determines a very di�erent optimal behavior by
the investor.
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7 Appendix
Proof of Proposition 1. The optimality condition is:

E� �'0 (E� [u (W )]) E� �u0 (W ) �R��!1 Rn+1��� = 0
where u0 (W ) is bounded � (!; �)-a.s. for any ! in a set of �-measure 1 and
'0 �E�(!) [u (W )]� is bounded �-a.s.

Under the assumptions stated in Section 1, E� [u (W )] is � (
)-measurable;
furthermore, '0 is continuous since ' 2 C1, hence '0 (E� [u (W )]) is � (
)-
measurable; it is also strictly positive. De�ne:

� = '0 (E� [u (W )])E� ['0 (E� [u (W )])]
where the denominator is �nite given the boundedness assumption on '0 �E�(!) [u (W )]�.

The optimality condition can be rewritten as:
E� ��E� �u0 (W ) �R��!1 Rn+1��� = 0

Since � > 0 and E� [�] = 1, � can be used to de�ne a change of measure and
write the optimality condition as:

E�� hE� hu0 �fW� �R��!1 Rn+1�ii = 0
where �� is another probability measure, absolutely continuous with respect to
�, with Radon-Nikodym derivative

d��d� = �
The above double expectation is just a double integral:Z



Z
Rn

u0 (W ) �R��!1 Rn+1� d� (!; r) d�� (!)
Since u0 (W ) is bounded � (!; �)-a.s. for any ! in a set of �-measure 1 and

Ri 2 L2 (Rn) for any i, the inner integral belongs to L1 (
), Tonelli's theorem
guarantees that the integralZ


�Rn u0 (W ) �R��!1 Rn+1� d� � ��
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is well-de�ned and equals the above double integral.
Thus, the optimality condition becomes:

EQ �u0 (W ) �R��!1 Rn+1�� = 0
where Q = � � ��.
Proof of Propositon 2. Recall that

E� �u0 (W ) �R��!1 Rf�� = �E� [u (W )] �m! ��!1 Rf � �!x�
The �rst order condition

E� �'0 (E� [u (W )]) E� �u0 (W ) �R��!1 Rf��� = 0
becomes:

E� ��'0 (E� [u (W )]) E� [u (W )] �m! ��!1 Rf � �!x�� = 0 (8)
Since

�'0 (E� [u (W )]) E� [u (W )]
is strictly positive we can divide both sides of (8) by its expectation, obtaining:

E� �� �m! ��!1 Rf � �!x�� = 0
� = '0 (E� [u (W )]) E� [u (W )]E� ['0 (E� [u (W )]) E� [u (W )]]

or
E� [m!]��!1 Rf � E� [�!]x = 0

where the measure � is de�ned by d�d� = �. Invertibility of � = E� [�!] is proved
as follows: for each !, �! is positive de�nite, i.e. for any x 6= 0

x>�!x > 0
but this implies that also � is positive de�nite (hence invertible), because:

x>�x = x>E� [�!]x = E� �x>�!x� > 0
This proves the proposition in the text.
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