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This paper provides a general framework for pricing of real options in continuous time for
wide classes of payoff streams that are functions of Lévy processes. As applications, we
calculate the option values of multi-stage investment/disinvestment problems (sequences
of embedded options, which we call Russian dolls), and study two models of expansion
of a monopoly. In the first model, each time when the stochastic demand reaches the
boundary of the inaction region or crosses it, the monopoly increases capital stock but
uses the same production technology. We assume that above a certain level, the sto-
chastic demand factor increases slower than in the standard geometric Lévy models, and
demonstrate that then the investment threshold is lower than in the standard models.
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the monopoly may find it optimal to simultaneously increase the capital stock and de-
crease the output price. The second model is driven by two factors: one factor follows
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other - demand uncertainty. The impact of these factors on new technology adoption
is analyzed. It is shown that depending on the situation and type of uncertainty, the
diffusion uncertainty and jump uncertainty can produce opposite effects.

Keywords: embedded options, technology adoption, capital expansion.

JEL Classification: D81, C61, G31

∗ Department of Economics, The University of Texas at Austin, e-mail: sboyarch@eco.utexas.edu
∗∗ Department of Economics, The University of Texas at Austin, e-mail: leven@eco.utexas.edu
We are thankful for discussion to Bob Kimmel, Max Stinchcombe, Stathis Tompaidis, and to participants of
a research seminar at the Economics Department at the University of Texas at Austin. We benefited from
discussions at 2005 North American Winter Meeting of the Econometric Society, Philadelphia, January 2005.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/9315274?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 SVETLANA BOYARCHENKO∗ AND SERGEI LEVENDORSKǏI∗∗

1. Introduction

The paper presents the general method for valuation of and optimal exercise strategies for
contingent claims of American type. In all dynamic models in economics under uncertainty one
needs to calculate the expected present values (EPV) of streams of payoffs that are acquired or
lost at some point in time. In many instances, such streams are acquired or lost at random time.
In some situations, this random time is exogenous, in other cases it is chosen by an optimizing
agent. In the latter case, one needs not only to calculate the EPV, but also to find when it
is optimal to acquire or abandon the stream of payoffs. For example, one may consider the
following debt covenants - a firm becomes bankrupt if its operating profit drops below zero.
Here the random time is a hitting time of the interval U = (−∞, h], and h is given exogenously,
it is the value of the underlying stochastic variable for which the profit is zero. On the other
hand, if a firm files for Chapter 11 - the U is the same as above, but h is the choice variable of
the firm that maximizes the value of the equity.

The standard methods are not involved only when the underlying uncertainty is modelled as
a (geometric) Brownian motion, a decision has to be made only once, and the payoff function
is of a simple form. In particular, in the now-classical theory of real options, the price of an
underlying asset is modelled as a geometric Brownian motion, and optimal exercise strategies
are described by simple explicit formulas (see Dixit and Pindyck (1996) and the bibliography
therein). The primary goal of this paper is to explain an alternative method that gives explicit
analytical answers for fairly general classes of stochastic processes and payoff functions, and for
embedded options with arbitrary number of embedded options. The method is more efficient
even in the case of Gaussian processes and provides solutions in a more meaningful form. The
form of the solution for the option value that we obtain suggests the following description of the
optimal exercise strategy. It is optimal to exercise the right for the stream of stochastic payoffs,
gt = g(Xt), the first time the EPV of the infimum stream g

t
= inf0≤s≤t gs becomes non-negative.

We call the last statement a universal record-setting bad news principle. This principle, stated
and applied here under less restrictive conditions than in Boyarchenko and Levendorskǐi (2005),
naturally generalizes and extends Bernanke’s (1983) bad news principle and record-setting news
principles spelled out in Boyarchenko (2004).

There are real options models that allow for jumps of a fixed size, with exponentially dis-
tributed time of arrival (see Dixit and Pindyck (1996)), and more general models use geometric
Lévy processes. However, in many real life situations, commodity price processes exhibit mean
reverting features (see Dixit and Pindyck (1996), Metcalf and Hasset (1995), Schwartz (1997)).
Also, the dynamics of prices of many commodities is bimodal of a sort: a long period of mod-
erate fluctuations in the region of high prices may be followed by a period of moderate fluctu-
ations in the region of low prices and vice versa, and the transition periods are typically short.
The standard device for situations of this sort are regime switching models. Unfortunately,
the standard mean-reverting and regime switching models lead to fairly complicated formulas
(see, e.g., Asmussen et al. (2004), François and Morellec (2004), Guo and Zhang (2004)), and
mean-reverting models are analytically tractable in the Gaussian case only. In addition, regime
switching models lead to systems of unknown functions whereas the method of the paper needs
only one unknown function. In Section 3, we extend the classical theory to allow for a fairly
general functions of the Brownian motion with embedded jumps or more general Lévy processes
to model prices, and, to some extent, bridges the gap between analytically tractable (geometric)
Lévy models and less tractable models, such as mean-reverting processes or switching models
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with non-Gaussian uncertainty. In Section 4, we demonstrate that it is possible to obtain an-
alytical solutions for sequences of embedded options of an arbitrary length. We assume that
each embedded option entitles its owner for a monotone stream, and the differences between the
streams are also monotone. Monotone means that streams and differences are all either non-
decreasing or non-increasing. We call these options Russian dolls: expanding and contracting,
respectively. Using the results obtained in Section 3, we explicitly solve the optimal stopping
problem for the most distant option, express its value as the EPV of a certain stream, and
prove that this procedure can be iterated. Natural examples of Russian dolls are multi-stage
projects, an investment program in a growing industry, and a disinvestment program for a firm
in a declining industry, when the number of investment/disinvestment actions is finite, and the
sizes of investment/disinvestments are fixed in advance.

In Sections 5 and 6, we consider two models of monopolistic expansion, when the number of
investment stages may be infinite, and the sizes of investments/disinvestments are not specified
in advance. In these two models, we study how the decisions in the geometric Brownian motion
framework may change if more general types of uncertainty are introduced.

Problems of timing investment or disinvestment, capital expansion/contraction program, tim-
ing new technology adoption and other problems in the real options theory are simplified if a
competitive firm is considered, and the price of output is the primitive of the model. Optimal
investment/disinvestment rules change (and may change significantly) if the strategic interac-
tions are introduced (see Dixit and Pindyck (1996), Grenadier (2000, 2002), Smit and Trigeorgis
(2004), Murto (2004) and the bibliography therein). Indeed, if the dynamics of the inverse
demand curve is taken as the primitive, then the presence of competitors influences the price
dynamics and/or investment decisions. To separate the dependence of investment/disinvestment
decisions on a chosen model of uncertainty from the influence of strategic interactions, we con-
sider only the case of a monopoly which takes the inverse demand curve as given; the underlying
uncertainty is modelled as the demand uncertainty (and uncertainty in the new technology fac-
tor). We leave for the future the study of strategic interactions under non-standard specifications
of uncertainty.

In the model constructed in Section 5, the monopoly increases capital stock when the stochas-
tic demand becomes sufficiently high, but uses the same production technology. The primitives
of the model are the Cobb-Douglas production function, and the inverse demand curve. For
simplicity, we assume that the investment is completely irreversible; an extension to the case
of partially reversible investment will be published elsewhere. The optimal capital expansion
program can be obtained as the limit of a sequence of optimal stopping problems (investment of
chunks of capital). We make the standard assumption that the inverse demand is a monotone
function of the stochastic factor; then each optimization problem in the sequence is equivalent
to the optimal exercise of a call-like American option with a monotone payoff stream. Hence,
we can use general results for simple options obtained in Section 3. We consider an example
when at high levels of the underlying stochastic factor the inverse demand grows slower than
in the standard exponential models, and demonstrate that the investment threshold in terms
of the price process may become much lower than in the standard models. The real options
approach recognizes the value of waiting when an irreversible decision has to be made in an
uncertain environment and recommends higher (respectively, lower) exercise threshold for a real
call (respectively, put) option than the naive net present value (NPV) rule does. The higher the
uncertainty, the more does the exercise threshold of a real option differ from the one prescribed
by the NPV rule. However, practitioners are known (see, for example, Lander and Pinches



4 SVETLANA BOYARCHENKO∗ AND SERGEI LEVENDORSKǏI∗∗

(1998)) to be uncomfortable with too high trigger prices of investment, which the classical real
options theory provides. The literature on strategic interactions demonstrates that the invest-
ment threshold may decrease significantly due to the competition. This conclusion is generally
valid if the investment threshold is expressed in terms of the inverse demand curve; in terms of
the price process, the answer may be the same as in the model of price-taking firms (optimality of
myopic behavior: see Leahy (1993) and Dixit and Pindyck (1996)). The results obtained in the
paper demonstrate that large differences between the NPV and real options exercise prices can
be naturally explained as artifacts of modelling the underlying price as a geometric Brownian
motion or more generally, as an exponential of a Lévy process. The differences decrease if we use
more general dependence on the stochastic factor. We also demonstrate that if above a certain
level, the rate of growth of the stochastic demand factor decreases, then in the intermediate
range, a monopoly may find it optimal to increase the capital stock and simultaneously decrease
the output price. Similar results can be obtained in a model of a firm in a declining industry (we
do not include this model in the paper in order to save space): if the expected rate of decline is
small but accelerates below a certain barrier, then during a transition period between a graceful
decline and rapid fall, the firm may find it optimal to disinvest part of capital and decrease the
production but increase prices.

Note that the use of an appropriate (not exponential) monotone function makes it unnecessary
to impose exogenous restrictions on the capital stock available for investment, or on the returns
to capital, which typically arise in the geometric Brownian motion model (see Dixit and Pindyck
(1996)).

In the second model (Section 6), the monopoly has an option to increase the output by
adoption of a new technology. Here we have the second course of uncertainty: the evolution
of the technology frontier. We generalize the model in Abel and Eberly (2002), who modelled
both factors as Brownian motions. For a different model of technology innovations, also for the
diffusion uncertainty, see e.g. Grenadier and Weiss (1997), Alvarez and Steinbacka (2001) and
the bibliography therein. We confront the implications of Gaussian models of uncertainty vs.
jump models of uncertainty, and demonstrate that the word “uncertainty” does not mean too
much in itself: depending on the situation and type of uncertainty, the diffusion uncertainty and
jump uncertainty can produce opposite effects. Although we have two sources of uncertainty,
we manage to reduce the problem of timing adoption to an optimal stopping problem on the
line.

The rest of the paper is organized as follows. In Section 2, we formulate the problem of
valuation of streams of payoffs which accumulate during a random time interval, give a short
overview of basic facts of the theory of Lévy processes, introduce the class of jump-diffusion
processes which will be used as model examples, define the EPV operators, and specify their
properties. In Section 3, we state and prove theorems for basic types of simple real options
assuming that the optimal stopping time is the hitting time of a semi-bounded interval.

In Section 4, we present sufficient conditions of optimality in the class of all stopping times,
and derive general theorems about embedded options with the arbitrary number of sequentially
embedded options. In Section 5, the underlying inverse demand curve is modelled as an arbitrary
monotone function of a Lévy process, and a problem of timing investment of a marginal unit
of capital is solved. In Section 6, a model of new technology adoption is examined. Section 7
concludes. Technical details are presented in the Appendix.
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2. Preliminaries

Let q > 0 be a constant discount rate, X = {Xt}t≥0 be a process with i.i.d. increments (i.e.
a Lévy process), and τ = τU be the hitting time of a subset U ⊂ R. In many situations in
economics and finance, the following problems need to be solved.
Problem I. How to calculate stochastic expressions

V1(x; τ) = Ex

[∫ τ

0
e−qtg(Xt)dt

]
;

V2(x; τ) = Ex

[∫ ∞

τ
e−qtg(Xt)dt

]
;

V3(x; τ) = Ex
[
e−qτG(Xτ )

]
.

Here and below Ex[f(Xt)] := E[f(Xt)|X0 = x]. By definition, V1(x; τ) is the present value of
the stream g that accumulates only until the random date τ ; V2(x; τ) is the present value of
the stream g that starts to accrue at the random date τ ; and V3(x; τ) is the present value of
the instantaneous payoff G which is received at the random date τ . All the three values are
conditioned on the current realization, x, of the underlying stochastic variable.
Problem II. Let V be one of the functions Vj or

V (x; τ) = Ex

[∫ τ

0
e−qtg(Xt)dt

]
+ Ex

[
e−rτG(Xτ )

]
.

Find the optimal stopping time τ which maximizes V (x; τ).
For example, g(Xt) is the profit stream of the firm, G(Xt) is the scrap value, and then τ is

the optimal time to exit the declining industry.
Under fairly weak regularity conditions, we reduce the problem of calculation of the stochas-

tic expressions listed above to a boundary value problem in the inaction region U c, with the
boundary condition specified on U . In order to solve explicitly the Bellman equation in the
inaction region, we use the Wiener-Hopf factorization technique in the operator form, as in
analysis, but we interpret the operators in the formulas for the solutions as the EPV-operators
under supremum and infimum processes, which greatly simplifies the proofs of optimality. We
use the form of the solution for the value function to guess a natural candidate for the optimal
action region. If the latter is a semi-infinite interval, then we give a very short and easy proof
of optimality in the class of hitting times of semi-infinite intervals. For the proof of optimality
in the class of all stopping times, one has to verify additional conditions for the value function.

2.1. Process specification. We need several basic facts of the theory of Lévy processes. The
moment generating function of a Lévy process can be represented in the form E

[
ezXt

]
= etΨ(z);

the function Ψ is called the Lévy exponent. The latter naturally appears when we calculate the
action of the infinitesimal generator of Xt, denoted L, on exponential functions: Lezx = Ψ(z)ezx.
In the paper, we restrict ourselves to the class of jump-diffusion processes introduced in Duffie
et al. (2000), with the infinitesimal generator of the form

(2.1) Lu(x) =
σ2

2
u′′(x) + bu′(x) +

∫ +∞

−∞
(u(x + y)− u(x))F (dy).

Here the density of jumps, F (dy), or Lévy density, is given by

(2.2) F (dy) = c+λ+e−λ+y1(0, +∞)(y)dy + c−(−λ−)e−λ−y1(−∞, 0)(y)dy,
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1(a, b)(·) denotes the indicator function of the interval (a, b), c± > 0, and λ− < 0 < λ+.
The coefficient c+ (respectively, c−) characterizes the intensity of upward jumps (respectively,
downward jumps). The parameter λ+ describes the relative intensity of large jumps: the smaller
the λ+, the larger is the probability of large upward jumps as opposed to small ones. Conversely,
the smaller the λ−, the larger is the probability of large downward jumps. If one of the c± is
zero, there are no jumps in the corresponding direction. The method of the paper can be applied
to much more general Lévy processes – see Boyarchenko and Levendorskǐi (2002a, b, 2005). As
we we will show, the choice (2.2) leads to simple formulas, and the calculations are not much
more difficult than in the Gaussian case. At the same time, different terms in (2.1) can represent
different stochastic factors. For instance, the Gaussian component, represented by the first two
terms, can be used to account for the industry specific uncertainty, and the jump part – for
the idiosyncratic one. Should we use a one-factor Gaussian model, and study, for example, how
the investment threshold changes due to the change of the variance, we could not separate the
impact of the industry specific and idiosyncratic shocks. Also, we can independently change the
size and intensity of downward and upward jumps by changing the parameters c± and λ±.

Computing the action of the infinitesimal generator (2.1) on ezx, we obtain the exponent Ψ(z)
corresponding to the Lévy density (2.2) (for the calculation, see the Appendix):

(2.3) Ψ(z) =
σ2

2
z2 + bz +

c+z

λ+ − z
+

c−z

λ− − z
.

2.2. EPV operators. Let T ∈ R+ be an exponentially distributed random variable with the
mean q−1 independent of the process X = {Xt}t≥0. The Prob(T = t) = qe−qt, therefore

Ex[g(XT )] := qEx

[∫ +∞

0
e−qtg(Xt)dt

]
.

Introduce the normalized EPV-operator of a stochastic process X:

Eg(x) = qEx

[∫ +∞

0
e−qtg(Xt)dt

]
.

This operator calculates the EPV of a stream qg(Xt). The normalization is convenient because

(E1)(x) = qEx

[∫ +∞

0
e−qt1(Xt)dt

]
= q

∫ +∞

0
e−qtdt = 1.

Applying E to g(x) = ezx and using the equality E
[
ezXt

]
= etΨ(z), we obtain that E acts on

exponential functions as the multiplication operator by the number q(q −Ψ(z))−1:

(2.4) Eezx = q

∫ +∞

0
e−(q−Ψ(z))t+zxdt = q(q −Ψ(z))−1ezx.

To ensure that the expectation were finite, it is necessary and sufficient that the real part of
q − Ψ(z) were positive. Since (q − L)ezx = (q − Ψ(z))ezx, we conclude that q−1(q − L) and
E are mutual inverses. To make this statement precise, we need to specify function spaces
between which q−1(q − L) and E act. The simplest choice is Cc(R) and C2

c (R), the Banach
space of continuous functions vanishing at infinity, and the Banach space of twice continuously
differentiable functions, whose derivatives up to the second order vanish at infinity. One of the
basic facts of the theory of Lévy processes is that q−1(q−L) : C2

c (R) → Cc(R) is invertible, and
its inverse is E (see, e.g., Sato (1999)). However, in many applications in economics and finance,
it is necessary to allow for the exponential growth as x → ±∞. The rate of growth can be (and,
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typically, is) different in the positive and negative directions. Suppose, we need to consider
functions, which grow not faster than eσ+x (respectively, eσ−x) as x → +∞ (respectively, as
x → −∞). Here σ− ≤ 0 ≤ σ+. Then it is natural to consider spaces Cs

0([σ−, σ+];R), of
functions, which are continuously differentiable up to the order s, and satisfy estimates: for
j ≤ s, g(j)(x)e−σ+x → 0, as x → +∞, and g(j)(x)e−σ−x → 0, as x → −∞. These functions form
the Banach space with the norm

||g|| =
s∑

j=0

sup
R

(eσ+x + eσ−x)−1|g(j)(x)|.

For instance, if the price of the firm’s output is modelled as Pt = P (Xt) = eXt , then we may take
any σ− < 0 and σ+ > 1 to include constant functions and P = P (x) in the space C2

0 ([σ−, σ+];R).
To ensure that q−1(q − L) acts from C2

0 ([σ−, σ+];R) to C0([σ−, σ+];R) := C0
0 ([σ−, σ+];R), the

moment generating function must be defined at z = σ±, and if we want q−1(q − L) to be
invertible, then even more stringent condition must be imposed.

Lemma 2.1. a) If Ψ(σ±) are well-defined, then the operator q−1(q − L) : C2
0 ([σ−, σ+];R) →

C0([σ−, σ+];R) is bounded.
b) If, in addition, q −Ψ(σ±) > 0, then this operator is invertible with the inverse E:

(2.5) q−1(q − L)E = Eq−1(q − L) = I.

For the proof, see, e.g., Boyarchenko and Levendorskǐi (2002a) and (2002b, Chapter 15). Note
that a similar definition and lemma are valid if we assume that the functions in question are
measurable, locally bounded, and grow not too fast at infinity:

(2.6) |g(x)| ≤ ceσ−x, for x < 0,

and

(2.7) |g(x)| ≤ ceσ+x, for x > 0,

where σ− < 0 < σ+ and c are independent of x. (The same conditions should hold for all
derivatives up to the order s).

We will also need the normalized EPV-operators of the supremum process X̄t = sup0≤s≤t Xs

and the infimum process Xt = inf0≤s≤t Xs. These EPV-operators act as follows:

E+g(x) := qEx

[∫ ∞

0
e−qtg(X̄t)dt

]
:= qE

[∫ ∞

0
e−qtg(X̄t)dt | X0 = x

]

and

E−g(x) := qEx

[∫ ∞

0
e−qtg(Xt)dt

]
:= qE

[∫ ∞

0
e−qtg(Xt)dt | X0 = x

]
.

Evidently, E+g(x) = Ex[g(X̄T )] and E−g(x) = Ex[g(XT )], where T is the exponential random
variable introduced at the beginning of this subsection. It is straightforward to check that E+

and E− also act on an exponential function ezx as multiplication operators by numbers, which
we denote κ+

q (z) and κ−q (z), respectively:

(2.8) E+ezx = κ+
q (z)ezx, E−ezx = κ−q (z)ezx.
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These numbers are

κ+
q (z) = qE

[∫ ∞

0
e−qtezX̄tdt

]
= E

[
ezX̄T

]
,(2.9)

κ−q (z) = qE

[∫ ∞

0
e−qtezXtdt

]
= E

[
ezXT

]
.(2.10)

2.3. Wiener-Hopf factorization. The Wiener-Hopf factorization formula reads: for z ∈ iR

E[ezXT ] = E[ezX̄T ]E[ezXT ].

For the reader convenience, we recall the outline of the proof. The formula above is based on
a trivial observation that XT = X̄T + XT − X̄T , on an evident fact that XT and XT − X̄T are
the same in law (to see this, it suffices to draw a picture of the sample path and turn it upside
down), and less obvious fact that XT and XT − X̄T are independent. For more details and
further references, see Rogers and Williams (2000), Section I.29.

Using (2.4), (2.9) and (2.10), we obtain an equivalent version of the Wiener-Hopf factorization
formula: for z ∈ iR
(2.11)

q

q −Ψ(z)
= κ+

q (z)κ−q (z)

(see, e.g., Sato (1999), Section 45). It is evident from (2.9) and (2.10) that κ+
q (z) (respectively,

κ−q (z)) admits the analytic continuation into the half-plane <z < 0 (respectively, <z > 0), and
it is continuous up to the boundary. Also, κ±q (0) = 1. The next important property - each of
the factors has no zeroes on its domain - follows from explicit analytical formulas for κ−q (z) and
κ+

q (z) (see, e.g., Sato (1999), Section 45, equations (45.2) and (45.3)). If (κ±q )(z) and (κ±q )−1(z)
grow not faster than a polynomial in the half-plane ∓<z ≥ 0, then the factorization (2.11)
satisfying the above properties is unique (see e.g. Boyarchenko and Levendorskǐi (2002a, b)),
which allows one to guess the factors in many cases, in particular, for jump-diffusions with the
Lévy exponent (2.2). Let β−1,2 and β+

1,2 be the negative and positive solutions of the characteristic
equation

(2.12) q −Ψ(z) = 0.

(They are separated by λ−, 0, and λ+: β−2 < λ− < β−1 < 0 < β+
1 < λ+ < β+

2 .) Then

(2.13) κ±q (z) =
β±1

β±1 − z
· β±2
β±2 − z

· λ± − z

λ±
.

Decomposing κ±q (z) into a sum of simple fractions:

(2.14) κ±q (z) = a±1
β±1

β±1 − z
+ a±2

β±2
β±2 − z

,

where a±1,2 > 0, we derive

(E+g
)
(x) =

∑

j=1,2

a+
j

∫ +∞

0
β+

j e−β+
j yg(x + y)dy,(2.15)

(E−g
)
(x) =

∑

j=1,2

a−j

∫ 0

−∞
(−β−j )e−β−j yg(x + y)dy(2.16)

(for the proof and explicit expressions for a±j , see the Appendix).
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Applying E , E+ and E− to g(x) = ezx and using (2.4) and (2.8)–(2.11), we obtain the third
version of the Wiener-Hopf factorization formula:

(2.17) Eg(x) = E+E−g(x) = E−E+g(x).

By linearity, (2.17) holds for linear combinations of exponents and integrals of exponents, hence
for wide classes of functions. Equation (2.17) means that the normalized EPV-operator of a Lévy
process admits a factorization into a product of the normalized EPV-operators of the supremum
and infimum processes.

Introduce Y +, a random variable on R+, defined as X̄T for Xt started at 0, and Y −, a random
variable on R−, defined as XT for Xt started at 0. Then we can write

(2.18) E+g(x) = E[g(x + Y +)], E−g(x) = E[g(x + Y −)].

It follows from (2.15) and (2.16), that the probability densities of Y + and Y − are
∑

j=1,2

a+
j β+

j e−β+
j ydy and

∑

j=1,2

a−j (−β−j )e−β−j ydy,

respectively.

2.4. Properties of EPV operators.

Proposition 2.2. (a) If g(x) = 0 ∀ x ≥ h, then ∀ x ≥ h

(2.19) (E+g)(x) = 0, ((E+)−1g)(x) = 0.

(b) If g(x) = 0 ∀ x ≤ h, then ∀ x ≤ h

(2.20) (E−g)(x) = 0, ((E−)−1g)(x) = 0.

Proof. Statements concerning E± follow immediately from (2.18). For the model example of
jump-diffusion processes, properties of (E±)−1 become evident upon the notice that (E+)−1 and
(E−)−1 admit the following analytical representation:

(
(E+)−1g

)
(x) = c1

+g′(x) + c0
+g(x) + b+

∫ +∞

0
λ+e−λ+yg(x + y)dy,(2.21)

(
(E−)−1g

)
(x) = c1

−g′(x) + c0
−g(x) + b−

∫ 0

−∞
(−λ−)e−λ−yg(x + y)dy,(2.22)

where b±, c0±, c1± are constants (see the Appendix for the proof and explicit expressions for
b±, c0±, c1±). The proof of the statements about the inverse operators (E±)−1 for wide classes of
Lévy processes is presented in Boyarchenko and Levendorskǐi (2002, Chapter 15). The proof is
based on the fact that (κ±q )−1(z) grows not faster than a polynomial in the half-plane ∓<z ≥
0. ¤

Corollary 2.3. a) If g(x) ≥ 0 ∀x, then (E+g)(x) ≥ 0, ∀x. If, in addition, there exists x0 such
that g(x) > 0 ∀x > x0, then (E+g)(x) > 0 ∀x.

b) If g(x) ≥ 0 ∀x, then (E−g)(x) ≥ 0, ∀x. If, in addition, there exists x0 such that g(x) > 0
∀x < x0, then (E−g)(x) > 0 ∀x.

c) If g is monotone, then E+g and E−g are also monotone.

Proof. Follows immediately from (2.18). ¤
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3. Simple options

We start with obtaining the values of several basic types of options on payoff streams g; in
the end of this Section, we also consider options with instantaneous payoffs. We formulate and
prove sufficient optimality conditions in the class of hitting times of semi-infinite intervals. For
simplicity of presentation, we assume that {Xt} is a jump-diffusion process with the Lévy expo-
nent given by (2.2) 1. Depending on the situation, payoff streams satisfy one of the conditions
(2.7) and (2.6) or both, where σ± satisfy q − Ψ(σ±) > 0. If Ψ is given by (2.2), an equivalent
condition is β−1 < σ− < 0 < σ+ < β+

1 , where β+
1 and β−1 are the positive and negative roots of

the characteristic equation (2.12), closest to 0. We will formulate the main results in two forms:
using the EPV operators E±, and independent random variables Y + = X̄T and Y − = XT on
R+ and R−, where T ∼ Exp(q) is the exponential random variable independent of {Xt}, and
Xt starts at 0. We would like to emphasize the fact that even though in the statements of main
theorems the values of options are given by stochastic expressions, analytical formulas for those
values are available as well. For general Lévy processes, the analytical expressions are rather
involved, but for diffusion processes with embedded jumps, option values are given by relatively
simple analytical formulas. We present an example of the analytical solution for the case of the
call-like American option later in this Section.

3.1. Valuation of an option to abandon a stream which is an increasing function
of the stochastic factor. Let g be an increasing function, the model example being g(x) =
Gezx−C, where Gezx is the operating profit of an active firm, and C is the coupon payment on
the debt. If the operating profit becomes too low (Xt becomes too low), it may become optimal
to default on the debt. Suppose that the firm defaults when Xt reaches or falls below h. For
h ∈ R, we denote by τ = τ−h = inf{t > 0 |Xt ≤ h} the hitting time of (−∞, h], and by 1(h,∞),
the indicator function of (h,∞), and the multiplication-by-1(h,∞) operator. We want to find

V−(x) = sup
h

Ex

[∫ τ−h

0
e−qtg(Xt)dt

]
.

We will obtain the solution to the latter problem in three steps. First, we assume that h
is given and write down the boundary value problem for the value function. Second, using
the Wiener-Hopf factorization method, we obtain an explicit solution of the boundary value
problem. Finally, using the explicit analytical expression for the value function, we guess the
natural candidate for the optimal exercise boundary, h, and verify its optimality.

Theorem 3.1. Let g be a measurable locally bounded function satisfying (2.7). Then

(3.1) V (x;h) := Ex

[∫ τ−h

0
e−qtg(Xt)dt

]
= q−1E−1(h,+∞)E+g(x).

Proof. Fix h, and consider the normalized value function

(3.2) V(x; h) = Ex

[∫ τ−h

0
qe−qtg(Xt)dt

]
.

1All results are valid for wide classes of Lévy processes satisfying the (ACP)-condition; for the definition, see
e.g. Sato (1999), p.288. This is a fairly weak regularity condition. For example, it is satisfied if, for every t > 0,
there exist a measurable function pt such that Ex[u(Xt)] =

R
R pt(x + y)u(y)dy
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It was shown in Boyarchenko and Levendorskǐi (2002b, Theorem 2.12, p. 63) that the stochastic
expression (3.2) is a bounded solution to the following boundary value problem:

(q − L)V(x; h) = qg(x), x > h,(3.3)
V(x; h) = 0, x ≤ h.(3.4)

Evidently, (3.3) is the Bellman equation in the inaction region. Using (2.5), we may rewrite
(3.3) as

(3.5) E−1V(x; h) = g(x), x > h.

Had the last equation been valid for any x ∈ R, we would have applied the operator E to both
sides of the equation and obtained the normalized value function as V(x; h) = Eg(x). We want
to consider (3.5) on the whole axis but the values of the LHS for x ≤ h are unknown. Hence,
problem (3.5), (3.4) is equivalent to the following problem: find a pair of functions V(·; h) and
g− ∈ L∞(R) such that

(i) V(·; h) vanishes on (−∞, h];
(ii) g− vanishes on (h,+∞): g−(x) = 0 for x > h;
(iii) functions V(·;h) and g− satisfy

(3.6) E−1V(x; h) = g(x) + g−(x), ∀x.

By (2.17), E−1 = (E+)−1(E−)−1. Apply the operator E+ to both sides of (3.6):

(3.7) (E−)−1V(x; h) = E+g(x) + E+g−(x), ∀x.

On the strength of (2.19), E+g−(x) = 0 for x > h. We may use this property in order to get
rid of g−(x). The multiplication of a function f(x) by 1(h,+∞) replaces values f(x), x ≤ h, with
zeroes. Therefore 1(h,+∞)E+g−(x) = 0 for all x. Also notice, that by (2.20), (E−)−1V(x; h) = 0
for x ≤ h, therefore the multiplication by 1(h,+∞) will not change the LHS in (3.7). Thus,
multiplying both sides of (3.7) by 1(h,+∞), we obtain an equivalent problem

(3.8) (E−)−1V(x; h) = 1(h,+∞)E+g(x), ∀x.

To finish the proof, it remains to apply the operator E− to both sides of (3.8) and multiply them
by q−1. ¤

Using the independent random variables Y + and Y − on R+ and R−, we may write (3.1) as

(3.9) V (x; h) = q−1E[1(h,+∞)(x + Y −)g(x + Y + + Y −)].

Theorem 3.2. Assume that g is a measurable locally bounded function satisfying (2.7), and
there exists h∗ such that

(3.10) E+g(x) > 0, x > h∗, and E+g(x) < 0, x < h∗.

Then it is optimal to abandon the stream g the first time Xt reaches or drops below h∗, and
V−(x), the rational price of the option, is given by (3.9) with h = h∗.

Proof. On the strength of (2.18), we may write (3.1) as

V (x; h) = q−1E
[(

1(h,+∞)E+g
)
(x + Y −)

]
.

Consider the RHS of the last equation: multiplication by 1(h,+∞) replaces values of E+g(x) on
(−∞, h] with zeroes. If h > h∗, then some positive values will be replaced with zeroes, and
this will reduce the option value. If h < h∗, then some negative values will contribute to the
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expected value, and the option value will be reduced again. Evidently, in order to maximize the
option value, one has to replace all negative values (and only them) of E+g(x) with zeroes. This
proves optimality in the class of hitting times of intervals of the form (−∞, h]. In Subsection
4.1, we show that if g is monotone then τ−h∗ is optimal in the class of all stopping times. ¤

3.2. Valuation of an option to abandon a stream which is a decreasing function of
the stochastic factor. Let g(Xt) be a decreasing function of Xt, the model example being
g(Xt) = R−CezXt , where R is the revenue of an active firm (assumed constant for simplicity),
and CezXt is the stochastic cost of production driven by supply shocks. If the profit g(Xt)
becomes too low (Xt becomes too high), it may become optimal to stop the production. Suppose
that the firm stops producing when Xt reaches or overshoots h. For h ∈ R, we denote by
τ = τ+

h = inf{t > 0 |Xt ≥ h} the hitting time of [h, ∞), and by 1(−∞, h), the indicator function
of (−∞, h), and the multiplication-by-1(−∞, h) operator. We want to find

V+(x) = sup
h

Ex

[∫ τ+
h

0
e−qtg(Xt)dt

]
.

Theorem 3.3. Let g be a measurable locally bounded function satisfying (2.6). Then

(3.11) V (x; h) := Ex

[∫ τ+
h

0
e−qtg(Xt)dt

]
= q−1E+1(−∞, h)E−g(x),

or equivalently,

(3.12) V (x; h) = q−1E[1(−∞, h)(x + Y +)g(x + Y − + Y +)].

Proof. For the proof, repeat all the steps in the proof of Theorem 3.2 with (−∞, h), E− and E+

in place of (h,+∞), E+ and E−, respectively. ¤

The proof of the next theorem is a straightforward modification of the proof of Theorem 3.2.

Theorem 3.4. Assume that g is a measurable locally bounded function satisfying (2.6), and
there exists h∗ such that

(3.13) E+g(x) > 0, x < h∗, and E+g(x) < 0, x > h∗.

Then it is optimal to abandon the stream g the first time Xt reaches or overshoots h∗, and V+(x),
the rational price of the option, is given by (3.12) with h = h∗.

3.3. Valuation of an option to acquire a stream which is a decreasing function of the
stochastic factor (put-like option). In this subsection, we consider a stochastic expression

V −(x) = sup
h

Ex

[∫ +∞

τ−h

e−qtg(Xt)dt

]
,

which is the value of the right for the stream of payoffs that starts to accrue when the boundary
h is reached or crossed from above.

Theorem 3.5. Let g be a measurable locally bounded function satisfying conditions (2.6)-(2.7).
Then

(3.14) V (x; h) := Ex

[∫ +∞

τ−h

e−qtg(Xt)dt

]
= q−1E−1(−∞, h]E+g(x),
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or equivalently,

(3.15) V (x; h) = q−1E[1(−∞, h](x + Y −)g(x + Y + + Y −)].

Proof. Observe that the normalized value function

V(x;h) = Ex

[∫ +∞

τ−h

qe−qtg(Xt)dt

]

= Ex

[∫ +∞

0
qe−qtg(Xt)dt

]
− Ex

[∫ τ−h

0
qe−qtg(Xt)dt

]
.

We may use (3.1) to obtain the value of the last stochastic expression:

V(x; h) = Eg(x)− E−1(h,+∞)E+g(x).

Using the Wiener-Hopf factorization E = E+E−, we proceed as follows:

V(x; h) = E− (
1− 1(h,+∞)

) E+g(x) = E−1(−∞, h]E+g(x).

¤

Theorem 3.6. Assume that g is a measurable locally bounded function satisfying conditions
(2.7)-(2.6), and there exists h∗ such that

(3.16) E+g(x) < 0, x > h∗, and E+g(x) > 0, x < h∗.

Then h∗ is the optimal exercise threshold, and V −(x), the rational price of the option, is given
by (3.15) with h = h∗.

Proof. The proof is the straightforward modification of the proof of Theorem 3.2. ¤

3.4. Valuation of an option to acquire a stream which is an increasing function of the
stochastic factor (call-like option). In this subsection, we obtain the value of the stochastic
expression

V +(x) = sup
h

Ex

[∫ +∞

τ+
h

e−qtg(Xt)dt

]
,

which is the value of the right for the stream of payoffs that starts to accrue at a stopping time
τ+
h . The following two theorems are the mirror reflections of Theorem 3.5 and Theorem 3.6:

the direction on the real axis changes, the supremum process and E+ are interchanged with the
infimum process and E−, respectively.

Theorem 3.7. Let g be a measurable locally bounded function satisfying conditions (2.6)-(2.7).
Then

(3.17) V (x; h) := Ex

[∫ +∞

τ+
h

e−qtg(Xt)dt

]
= q−1E+1[h,+∞)E−g(x),

or equivalently,

(3.18) V (x; h) = q−1E[1[h,+∞)(x + Y +)g(x + Y − + Y +)].
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Theorem 3.8. Assume that g is a measurable locally bounded function satisfying conditions
(2.7)-(2.6), and there exists h∗ such that

(3.19) E−g(x) > 0, x > h∗, and E−g(x) < 0, x < h∗.

Then h∗ is the optimal exercise threshold, and V +(x), the rational option price, is given by
(3.18) with h = h∗.

As the first application of Theorem 3.8, consider an investor who chooses time τ to invest
capital I into a technology that produces a commodity at rate G ever after. The output is
sold on the spot at the market price eXt , where Xt follows a Lévy process. We view I as the
present value of a stream qI of future expenditures. Let g(x) = Gex − qI. It may become
optimal to acquire this stream if x becomes sufficiently large, i.e., at random time τ+

h . The
investor’s problem is equivalent to choosing the investment threshold h so as to maximize the
option value of investment, which is the problem just solved above. Equation (3.19) is equivalent
to Gκ−q (1)eh∗ − qI = 0, therefore the trigger price of investment is

(3.20) eh∗ =
qI

Gκ−q (1)
.

It remains to compute the option value of investment when the investment threshold is chosen
optimally:

V +(x) = q−1(E+1[h∗, +∞)E−g)(x) = q−1(E+1[h, +∞)(·)
(
Gκ−q (1)e· − qI

)
)(x).

Using (3.20), we write the option value as

V +(x) = I(E+1[h, +∞)(·)(e·−h∗ − 1))(x).

Next, we use (2.15) to obtain, for x < h∗

V +(x) = I
∑

j=1,2

a+
j

[
ex−h∗

∫ +∞

h∗−x
β+

j e(1−β+
j )ydy −

∫ +∞

h∗−x
β+

j e−β+
j ydy

]
(3.21)

= I
∑

j=1,2

a+
j eβ+

j (x−h∗)

(
β+

j

β+
j − 1

− 1

)
= I

∑

j=1,2

a+
j eβ+

j (x−h∗)

β+
j − 1

.

As the next example, consider a simplest regime switching model, when the market price of
output assumes only two values: Pd < Pu. Transitions from one state to another are determined
by an underlying jump-diffusion process X: if Xt < 0, then P (Xt) = Pd, and if Xt ≥ 0, then
P (Xt) = Pu. Assume that Pd < qI < Pd. We may regard the investment opportunity as
the option to acquire a stream g(Xt) given by g(Xt) = g− := Pu − qI < 0 for Xt < 0, and
g(Xt) = g+ := Pd − qI > 0 otherwise. In order to find the trigger value of the stochastic factor
Xt, we need to solve E−g(h) = 0. For x ≤ 0, E−g(x) = E−g− = g− < 0, and for x > 0,

E−g(x) =
∑

j=1,2

a−j

∫ 0

−∞
(−β−j )e−β−j yg(x + y)dx

=
∑

j=1,2

a−j

[∫ −x

−∞
(−β−j )e−β−j yg−dy +

∫ 0

−x
(−β−j )e−β−j yg+dy

]

=
∑

j=1,2

a−j
[
g−eβ−j x + g+(1− eβ−j x)

]
.
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Therefore, h∗ is a unique positive solution of the equation
∑

j=1,2

a−j g+ = (g+ − g−)
∑

j=1,2

a−j eβ−j h.

3.5. Good and bad news principles. Both Theorems 3.2 and 3.4 deal with options to aban-
don a decreasing stream gt = g(Xt); only the directions on X-axis are different, which explains
the difference in the statements of the optimal exercise rules. In terms of gt, both rules can be
stated as
Good news principle: exercise the option to abandon a stream gt the first time the EPV of the
supremum stream ḡt = sup0≤s≤t gs becomes non-positive.

Theorems 3.6 and 3.8 deal with options to acquire an increasing stream gt; once again, the
difference in the statements are due to the difference of directions on the X-axis. In terms of gt,
both rules can be stated as
Bad news principle: exercise the option to acquire a stream gt the first time the EPV of the
infimum stream g

t
= inf0≤s≤t gs becomes non-negative.

Remark 3.1. It is interesting that in view of (2.18), optimal exercise rules (3.10), (3.13), (3.16)
and (3.19) can be formulated in essentially the same form as in many models in economics,
where uncertainty is modeled as draws from a given distribution: exercise the option when the
expectation of a certain function of a random variable becomes positive (or negative).

3.6. Options with instantaneous payoffs. To consider options with an instantaneous payoff
G, one should express G as the EPV of a stream g: G = q−1Eg, where g = (q − L)G = qE−1G.
Then

Ex
[
e−qτG(Xτ )

]
= Ex

[
e−qτEτ

[∫ +∞

τ
e−q(t−τ)g(Xt)dt

]]
= Ex

[∫ +∞

τ
e−qtg(Xt)dt

]
.

Function g is well-defined if G and its first and second derivatives satisfy (2.6) and (2.7). We
assume that G satisfies this condition, and, using equalities E−g = E−qE−1G = q(E+)−1G
and E+g = E+qE−1G = (E−)−1G, obtain analogs for Theorems 3.8 and 3.6 for options with
instantaneous payoffs:

Theorem 3.9. Assume that there exists h∗ ∈ R such that

(3.22) (E+)−1G(x) < 0, x < h∗, and (E+)−1G(x) > 0, x > h∗.

Then the option with the payoff G must be exercised the first time the threshold h∗ is reached or
crossed from below, and the option value is

(3.23) V ∗ = E+1[h∗,+∞)(E+)−1G.

Theorem 3.10. Assume that there exists h∗ ∈ R such that

(3.24) (E−)−1G(x) < 0, x > h∗, and (E+)−1G(x) > 0, x < h∗.

Then the option with the payoff G must be exercised the first time the threshold h∗ is reached or
crossed from above, and the option value is

(3.25) V∗ = E−1(−∞,h∗](E−)−1G.
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4. Extensions and ramifications

As in Section 3, we assume that Xt is a jump-diffusion with the Lévy exponent (2.2); all
results admit generalizations for a Lévy process satisfying the (ACP)-condition.

4.1. Optimality conditions in the class of all stopping times, and options to swap
a stream for another one. Consider a firm, which contemplates the switch from one type
activity to another one, addition of a new production unit, adoption of a new technology, closure
of one of the operating units, etc. In all these cases, the firm has an option to swap the old
stream of profits, go(Xt), for the new one, gn(Xt). (The cost of the switch can be included into
the new stream as the stream of coupon payments.) The option will be realized at the optimal
random time τ . We assume that τ ∈ M, where M is the class of stopping times satisfying
τ < +∞, a.s. Formally, we need to find the stopping time which maximizes the normalized
value function

(4.1) V (g1, g2; x) = sup
τ∈M

Ex

[∫ τ

0
e−qtgo(Xt)dt +

∫ +∞

τ
e−qtgn(Xt)dt

]
.

This class of options contains all the classes studied in Section 3: Theorems 3.6 and 3.8 consider
the case go = 0 and gn = g, and Theorems 3.2 and 3.4 - the case go = g and gn = 0. To ensure
that the stochastic expression in (4.1) was well-defined, we require that both go and gn satisfy
(2.7) and (2.6). Assume that at high positive levels of the stochastic factor Xt, stream go(Xt)
dominates stream gn(Xt), and the latter dominates the former at low negative levels. To be
more specific,

(4.2) function g(x) := gn(x)− go(x) is non− increasing on R,

and

(4.3) lim
x→−∞ g(x) > 0, lim

x→+∞ g(x) < 0.

Then it is natural to presume that it is optimal to swap stream go(Xt) for gn(Xt) when the
stochastic factor Xt reaches a certain threshold h∗ from above or crosses it.

Theorem 4.1. Suppose that functions go and gn satisfy conditions (2.7), (2.6), (4.2) and (4.3).
Then: a) equation

(4.4) E+go(h) = E+gn(h)

has a unique solution, denote it h∗;
b) the optimal stopping time is τ−h∗;
c) the option value is given by

(4.5) V (go, gn;x) = q−1E− {
1(h∗,+∞)E+go + 1(−∞,h∗]E+gn

}
(x),

or equivalently,

(4.6) V (go, gn; x) = q−1E[1(h∗,+∞)(x+Y −)go(x+Y ++Y −)+1(−∞,h∗](x+Y −)gn(x+Y ++Y −)].

Proof. a) Since g is monotone, it is measurable, and since it satisfies (2.7) and (2.6), function
E+g is continuous. Function g satisfies (4.3), therefore E+g satisfies (4.3) as well. Since g is
monotone, E+g is also monotone. We conclude that equation E+g(x) = 0 has a zero. To prove
that a zero is unique, assume that there exists x0 ∈ R such that for all x ≥ x0, g(x) = c (< 0).
Then E+g(x) = c on the same interval but it follows from (4.2) and (2.9) that E+g is a strictly
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decreasing continuous function on (−∞, x0); hence, the zero is unique. If such x0 does not exist,
then E+g is a strictly decreasing continuous function on R, and the zero is unique.

c) Assuming b) has been proved, equality (4.5) follows from (3.1) and (3.14).
b) will be deduced from the following lemma, which is of independent interest. In particular,

this lemma can be applied to optimal stopping rules of a more general form then in Theorem
4.1.

Lemma 4.2. Let an open set U ⊂ R and a measurable function W∗ satisfy the following condi-
tions:

W∗(x) = go(x), x ∈ U ;(4.7)
W∗(x) ≥ go(x), x 6∈ U, a.e.;(4.8)
EW∗(x) = Egn(x), x 6∈ U ;(4.9)
EW∗(x) ≥ Egn(x), x ∈ U.(4.10)

Then τ∗, the hitting time of U c, is the optimal stopping time in the class M, and V∗ := q−1EW∗
is the rational option price.

Remark 4.1. a) We can reformulate Lemma 4.2 as follows: the option price is generated by
a measurable stream W∗. Conditions (4.7)-(4.8) state that in the inaction region, this stream
coincides with the stream which the option generates prior to exercise, and in the action region,
the former equals or exceeds the latter. In the action region, after the action is undertaken,
the EPV of the stream matters, and evidently, the option value is generated by stream gn(Xt)
(condition (4.9)). On the other hand, in the inaction region, the option value must be at least
as big as the EPV of the stream gn(Xt) (condition (4.10)).

b) The difference in the formulation between pairs (4.7)-(4.8) and (4.9)-(4.10) is due to the
irreversibility of the swap. In the completely reversible case, the option value is generated by the
stream W (x) = max{go(x), gn(x)}, and conditions (4.9)-(4.10) hold without the EPV operators
E . The streams go and gn are on the equal footing.

c) If Xt satisfies the (ACP)-property, and W∗ is measurable and bounded, then V∗ = q−1EW∗
is continuous (see Sato (1999), p.288-289). The case of unbounded functions satisfying conditions
(2.6)-(2.7) can be reduced to the case of bounded functions, therefore V∗ is continuous.

d) The statement of Lemma 4.2 and the remark above are valid under weaker regularity
conditions on W : universal measurability suffices (for the definition, see Sato (1999), p.274). In
the setting of Theorem 4.1, W∗ turns out to be measurable (see Lemma 4.3).
Proof of Lemma 4.2. Notice that

V (go, gn; x) = Ex

[∫ +∞

0
e−qtgo(Xt)dt

]
+ V (0, gn − go; x) = q−1Ego(x) + V (0, g; x),

where g = gn − go, therefore the optimization of V (go, gn; x) is equivalent to the optimization
of V (0, g; x). Further, W satisfies (4.7)-(4.10) if and only if W̃ = W − go satisfies the same
conditions with go = 0, gn = g. On the strength of (4.7)-(4.8), W̃ is non-negative, a.e., and
it is measurable, since W and g0 are. Hence, equation (41.3) in Sato (1999) is applicable with
f = W : for any stopping time τ ,

(4.11) EW̃ (x) = Ex

[∫ τ

0
qe−qtW̃ (Xt)dt

]
+ Ex

[
e−qτEW̃ (Xτ )

]
.
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Using (4.7)-(4.8), and then (4.9)-(4.10), we derive from (4.11) the estimate

EW̃ (x) ≥ Ex
[
e−qτEW̃ (Xτ )

]
≥ Ex

[
e−qτEg(Xτ )

]
.

Hence, EW̃ (x) ≥ qV (0, g; x). If we take τ = τ∗ and apply (4.7) and (4.9) to (4.11), we obtain

EW̃ (x) = Ex
[
e−qτ∗EW̃ (Xτ∗)

]
= Ex

[
e−qτ∗Eg(Xτ∗)

] ≤ qV (0, g; x).

Lemma has been proved.
Notice that equation (4.11), the key element of the proof, has a simple meaning: the EPV of

a stream equals the EPV up to a stopping time τ plus the continuation value.
Now we can finish the proof of Theorem 4.1. As we have shown, it suffices to consider the

case go = 0, gn = g. First, we find W∗ which generates the option value V (0, g; x) = q−1EW∗(x).
Applying q − L, we find W∗(x) = (q − L)V (0, g; x). If τ∗ = τ−h∗ is chosen as the stopping
time, the option value is given by qV (0, g;x) = E−1(−∞,h∗]E+g(x) (see (3.1)), therefore, using
q−1(q − L) = (E)−1 = (E+)−1(E−)−1, we obtain W∗ = (E+)−11(−∞,h∗]E+g(x). Since 1(−∞,h∗] is
zero on (h∗,+∞), we can apply (2.20), and derive (4.7). For x ≤ h∗,

EW∗(x) = (E−E+g)(x)− E−1(h∗,+∞)E+g(x) = Eg(x)− 0,

that is, (4.9) holds. For x > h∗, we notice that by the definition of h∗, E+g is non-positive on
(h∗,+∞), therefore EW∗(x) ≥ (E−E+g)(x), and (4.10) holds. The last condition, (4.8), follows
from equations (6.71)–(6.72) in Boyarchenko and Levendorskíı (2005), which state that W∗ is
non-increasing on (−∞, h∗), and W∗(h∗ − 0) ≥ 0. Theorem 4.1 has been proved. ¤

For the future use, note the properties of W∗ for general go and gn:

Lemma 4.3. Function W∗(go, gn; ·) = go +W∗(0, g; ·) is measurable, and if go is non-decreasing,
then W∗(go, gn; ·) is non-decreasing as well.

By symmetry, we obtain the following analogs of Theorem 4.1 and Lemma 4.3.

Theorem 4.4. Suppose that functions go and gn satisfy conditions (2.7), (2.6), and

(4.12) function g(x) := gn(x)− go(x) is non− decreasing on R,

and

(4.13) lim
x→−∞ g(x) < 0, lim

x→+∞ g(x) > 0.

Then: a) equation

(4.14) E+go(h) = E+gn(h)

has a unique solution, denote it h∗;
b) it is optimal to swap stream go(Xt) for gn(Xt) when the stochastic factor Xt reaches h∗

from below or crosses it;
c) the option value is given by

(4.15) V (go, gn;x) = q−1E+
{
1[h∗,+∞)E−gn + 1(−∞,h∗)E−go

}
(x),

or equivalently,

(4.16) V (go, gn;x) = q−1E[1[h∗,+∞)(x+Y +)gn(x+Y ++Y −)+1(−∞,h∗](x+Y +)go(x+Y ++Y −)].

d) V (go, gn; ·) is generated by a measurable stream W (go, gn; ·): V (go, gn; ·) = q−1EW (go, gn; ·).
e) If go is non-decreasing, then W (go, gn; ·) is non-decreasing as well.
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Remark 4.3. Clearly, if g(x) ≥ 0 for all x, then it is optimal to swap stream go for stream gn

the first moment one is allowed to.

4.2. Embedded options: Russian dolls. Consider a firm in a growing industry, which con-
templates a multi-stage investment project. On each stage, an additional production facility can
be added or a new technology adopted, etc. Assume that the number of stages is finite, say, N ,
the order of stages is fixed, and the investment is irreversible. After (investment) stage k but
before stage k + 1, the profit flow is gk(Xt), and the fixed investment cost on stage k is Ik. For
k = 0, set g0(Xt) ≡ 0. The time τk of making investment on stage k is random; it is chosen by
a firm to maximize the EPV of the project. Set τN+1 = +∞, and denote by Vk(Xt) the value
of the firm for t ∈ [τk, τk+1), k = 1, 2, . . . , N . After stage N no further investment is expected,
therefore VN (Xt) = q−1EgN (Xt) is known. The firm needs to solve the following sequence of
optimal stopping problems, for k = N, N − 1, . . . , 1:
(RD)+. Find the optimal stopping time τ∗k to exchange stream gk−1(Xt) for the instantaneous
payoff Vk(Xt)− Ik.

We will call this sequence of embedded options a Russian doll. After the completion of all N
stages of investment, the firm can be associated with a Russian doll, containing a sequence of
smaller dolls inside. We solve the problem of the expanding firm by backwards induction, that
is by opening the Russian doll: in order to see the smaller doll (option), we must first remove
(resolve) the current one. The Russian doll associated with the expansion of investment project
will be called an expanding Russian doll.

On the other hand, a firm in a declining industry involved in a multistage contraction project
can be viewed as a Russian doll stripped of larger dolls that contained the current one before
the contraction had started. We call the multistage contraction option a contracting Russian
doll. To obtain the solution in this situation, we divine in some way the exact characteristics of
the smallest doll and then use this information to deduce the characteristics of the sequence of
larger dolls (in other words, we assemble the Russian doll).

Assume that
(i) profit functions gk are non-decreasing and satisfy (2.7) and (2.6);
(ii) for all k = 1, 2, . . . , N , the difference gk − gk−1 is non-decreasing, and for sufficiently large

x, gk(x)− qIk > gk−1(x), which means that as the stochastic factor assumes larger values,
the relative advantage of the next stage increases, and when Xt reaches a sufficiently high
level, then it must be optimal to make step k investment.

Theorem 4.5. Under conditions (i)–(ii), for k = N, N−1, . . . , 1, the following statements hold:
a) functions W 0

k := (q − L)Vk and Wk := W 0
k − qIk − gk−1 are defined on R (with a possible

exception of one point), and are non-decreasing;
b) limx→+∞Wk(x) > 0;
c) denote hk := inf{x | (E−Wk)(x) > 0}; then τ∗k = max{τ∗k−1, τ

+
hk
} is the optimal time for stage

k investment;
d) Vk−1 = q−1

(Egk−1 + E+1[hk,+∞)E−Wk

)
.

Note that c) means that it is optimal to make stage k investment when Xt reaches hk from
below or crosses it, the first time after stage k − 1 investment; hence, it is possible that several
investment stages will be simultaneous.

Proof. After stage k − 1 is completed but stage k is not, the value of the firm, Vk−1, is the
value of the option to swap stream gk−1 for stream (q − L)(Vk − Ik). Conditions (i)–(ii) imply
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that WN = (q − L)(VN − IN ) − gN−1 = gN − qIN − gN−1 is non-decreasing and positive in
a neighborhood of +∞. Thus, we obtain a) and b) for k = N . Now we prove that if a) and
b) hold for k = m, 1 ≤ m ≤ N , then c) and d) hold for the same k, and if c) and d) hold
for k = m, 2 ≤ m ≤ N − 1, then a) and b) hold for k = m − 1. Clearly, if Wm satisfies a)
and b) then E−Wm does, and E−Wm can be locally constant in a neighborhood of +∞ only.
If limx→−∞ E−Wm(x) is negative, then hm > −∞, and from Theorem 4.4, we conclude that c)
and d) hold with the same k = m, and Vm−1 is generated by a non-decreasing stream W 0

m−1:
Vm−1 = q−1EW 0

m−1. Function W 0
m−1 = (q − L)Vm−1 = q−1(q − L)(qVm−1) satisfies (4.7)-(4.8)

with go = gm−1, therefore W 0
m−1(x) ≥ gm−1(x), and using (i)–(ii), we conclude that conditions

a) and b) hold for k = m− 1. ¤

Now we consider a firm in a declining industry, which scraps its production facilities in a
predetermined order; timing depends on a realization of uncertainty. Let Ck be the scrap value
on stage k of disinvestment. Currently, the stream of profits is g0; after stage k but prior to
stage k + 1, it is gk, and after the last stage, the firm disappears, and its stream of profits and
value VN is zero. The firm needs to solve the following sequence of optimal stopping problems,
for k = N, N − 1, . . . , 1:
(RD)−. Find the optimal stopping time τ∗,k to exchange stream gk−1(Xt) for the instantaneous
payoff Ck − Vk(Xt).

Assume that
(i) profit functions gk are non-decreasing and satisfy (2.7) and (2.6);
(ii) for all k = 1, 2, the difference gk−gk−1 is non-increasing, and for sufficiently large negative

x, gk(x) + qCk > gk−1(x), which means that as the stochastic factor tends to −∞, the
relative advantage of the next contraction increases, and when Xt reaches a sufficiently low
level, then it must be optimal to make step k disinvestment.

The statement and proof of the following theorem are mirror reflections of Theorem 4.5 and its
proof.

Theorem 4.6. Under conditions (i)–(ii), for k = N,N−1, . . . , 1, the following statements hold:
a) function W 0

k := (q − L)Vk and Wk := W 0
k + qCk − gk−1 are defined on R (with a possible

exception of one point), and are non-increasing;
b) limx→−∞Wk(x) > 0;
c) denote hk := sup{x | (E+Wk)(x) > 0}; then τ∗,k = max{τ∗,k−1, τ

−
hk
};

d) Vk−1 = q−1
(Egk−1 + E−1(−∞,hk]E+Wk

)
.

5. Capital expansion program

5.1. Timing an investment of a marginal unit of capital. Consider a monopoly whose
production function depends only on capital: Q = Q(K). (A generalization to the case of a
production function with costlessly adjustable labor as in Abel and Eberly (1999) is straight-
forward but leads to more involved formulas below). For simplicity, assume that the inverse
demand function is factorizable: Dt = D̄(Qt)Zt, where Zt is the exogenous demand shock. We
assume that

(i) function G(Q) := QD̄(Q) is differentiable, increasing, concave and satisfies the Inada
conditions;

(ii) Zt = Z(Xt) is a non-decreasing function of a Lévy process Xt with the Lévy exponent Ψ;
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(iii) function Z satisfies estimate

(5.1) Z(x) ≤ c1e
γx, ∀ x,

where c1 > 0 and γ ≥ 0 are independent of x, and the no-bubble condition holds:

(5.2) q −Ψ(γ) > 0.

Remark 4.1. a) Under condition (i), when Kt units of capital is in place, the firm finds it
optimal to produce the maximal amount Qt = Q(Kt), and therefore, the revenue flow is

Rt = Q(Kt)D̄(Q(Kt))Z(Xt) = G(Kt)Z(Xt).

b) For a jump-diffusion with the Lévy exponent (2.2), (5.2) is equivalent to γ < β+
1 .

c) Conditions (5.1)-(5.2) guarantee that if the firm keeps the level of installed capital fixed:
Kt = K0, ∀ t, then the EPV of the revenue flow is finite:

(5.3) E

[∫ +∞

0
e−qtR(Xt)dt

]
≤ c1G(K0)

q −Ψ(γ)
< ∞.

Should the firm decide to invest a unit of capital, it suffers the installation cost C; the in-
vestment is irreversible. The firm’s objective is to choose the optimal investment strategy
K = {Kt+1(Kt, Xt)}t≥1,K0 = K, X0 = x, which maximizes the NPV of the firm:

(5.4) V (K, x) = sup
K

Ex

[∫ +∞

0
e−qt(Z(Xt)G(Kt)− qCKt)dt

]
.

A similar situation was considered in Dixit and Pindyck (1996) and Abel and Eberly (1999) for
the geometric Brownian motion model and extended by Boyarchenko (2004) for geometric Lévy
processes. In these papers, Z(Xt) = expXt, and therefore, condition (5.1) holds with γ = 1. As
Dixit and Pindyck (1996) show, the value of the firm is infinite unless an additional restriction
on the rate of growth of function G(K) as K → +∞ is imposed, and this condition is too
restrictive. We will show that if Z(Xt) behaves as expXt up to a certain threshold but above
the threshold the rate of growth of Z(Xt) decreases then the restriction on the rate of growth
of G(K) can be relaxed. As a by-product, we will show that, as the optimal capital increases,
the range within the monopoly price Pt fluctuates grows slower than in the standard geometric
Lévy model. Moreover, we will demonstrate that this range may shrink as the demand shock
reaches the intermediate region between the intervals of the fast exponential growth and of the
slower growth. This means that the firm may find it optimal to simultaneously increase the
capital stock and decrease the price of the output.

For the time being, to ensure that firm’s value (5.4) were bounded, we impose a resource
constraint: there exists K̄ < ∞ such that Kt ≤ K̄, ∀t. Later, we will show that if γ in (iii) is
sufficiently small, then the resource constraint is redundant: the expected rate of growth of the
optimal capital is not very large, and the value of the firm is finite even if the firm has unlimited
access to capital. Notice that if the demand shock Z is bounded (γ = 0), then there exists K̄
such that the firm would never want to choose Kt > K̄.

It is well-known (see, for example, Dixit and Pindyck (1996)) that in order to determine the
optimal capital expansion program, it is only necessary to decide when to invest at any given
stock of capital. Equivalently, one needs to find the investment threshold h(K), which is the
boundary between two regions in the state variable space (K, x): the action and inaction ones.
To derive the equation for the investment boundary, suppose first that every new investment
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can be made in chunks of capital, ∆K, only2. In this case, the firm has to suffer the cost C∆K,
and the EPV of the profit gain due to this investment can be represented in the form of the EPV
of the stream g(Xt) = (G(K + ∆K) − G(K))Z(Xt) − qC∆K. From Subsection 3.4, we know
that it is optimal to invest capital C∆K the first time the price of the firm’s output crosses the
investment barrier h(K; ∆K) that satisfies (3.19). For g defined above, (3.19) can be written as

E− [(G(K + ∆K)−G(K))Z(·)− qC∆K] (x) = 0,

or

(5.5) (G(K + ∆K)−G(K)) E−Z(x) = qC∆K.

Dividing (5.5) by ∆K and passing to the limit as ∆K → 0, we obtain the following equation
for the optimal investment threshold h∗ = h∗(K):

(5.6) G′(K)(E−Z)(h∗) = qC,

or

(5.7) G′(K)E
[∫ +∞

0
e−qtZ(h∗ + Xt)dt

∣∣X0 = 0
]

= C.

The last equation says that it is optimal to invest into a marginal unit of capital the first time
the EPV of the marginal profit, calculated under the assumption that the underlying stochastic
process {Xt} is replaced by the infimum process {Xt}, becomes non-negative3.

Let h = h(K;∆K) be a solution to (5.5). Then at the shock level x, the option value
associated with the chunk of capital ∆K is

q−1E+1[h, +∞)

[
(G(K + ∆K)−G(K)) (E−Z)(·)− qC∆K

]
(x).

As ∆K → 0, we have h(K;∆K) → h∗(K). Notice that capital accumulation extinguishes
the option value of investment, this means that the option value is decreasing in K (for more
detailed discussion, see Abel et al. (1996)). Therefore, dividing the above option value by ∆K
and passing to the limit as ∆K → 0, we obtain the following formula for the marginal option
value of capital:

V opt
K (K,x) = −q−1E+1[h∗, +∞)(x)

(
G′(K)(E−Z)(x)− qC

)
.

Substituting C from (5.6) into the above equation, we arrive at

qV opt
K (K,x) = −G′(K)E+1[h∗, +∞)(x)[(E−Z)(x)− (E−Z)(h∗)].

Introduce the notation

w(x) = E

[∫ +∞

0
qe−qt (Z(x + Xt)− Z(h∗ + Xt)) dt

∣∣X0 = 0
]

.

Then

(5.8) qV opt
K (K,x) = −G′(K)(E+1[h∗, +∞)w)(x).

2The authors are indebted for this simplifying trick to Mike Harrison; the initial proof (for geometric Lévy
case) in Boyarchenko (2004) was more involved.

3For the rigorous justification of the limiting argument see Boyarchenko (2004).
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Using independent random variables Y + = X̄T and Y − = XT supported on the positive and
negative half-axes, respectively (they were introduced in Subsection 2.2), we can write equations
(5.6) and (5.8) in the form

(5.9) G′(K)E[Z(h∗ + Y −)] = qC,

and

(5.10) qV opt
K (K, x) = −G′(K)E[1[h∗, +∞)(x + Y +)(Z(x + Y + + Y −)− Z(h∗ + Y −))].

We have proved

Theorem 5.1. Let conditions (i)–(iii) hold. Then the optimal capital expansion threshold h∗ =
h∗(K) is a unique solution of any of equivalent equations (5.6), (5.7) and (5.9), and the marginal
option value of capital is given by any of equivalent equations (5.8) and (5.10).

Consider the case when X is a jump-diffusion process defined by (2.3). We use (2.16), and
rewrite the equation for the threshold in the form

(5.11) G′(K)
∑

j=1,2

a−j

∫ 0

−∞
(−β−j )e−β−j yZ(h∗ + y)dy = qC;

the marginal option value of capital is

V opt
K (K, x) = −G′(K)

∑

j=1,2

a+
j

∫ +∞

h∗−x
β+

j e−β+
j yw(x + y)dy

= −G′(K)
∑

j=1,2

a+
j eβ+

j (x−h∗)
∫ +∞

0
β+

j e−β+
j yw(h∗ + y)dy,(5.12)

where

w(x) = q−1
∑

j=1,2

a−j

∫ 0

−∞
(−β−j )e−β−j y (Z(x + y)− Z(h∗ + y)) dy.

5.2. Option value. Integrating (5.12) w.r.t. K, we find the option value

(5.13) V opt(K, x) = −
∫ K̄

K
V opt

K (K ′, x)dK ′.

If we want to remove the resource constraint K ≤ K̄, we need to prove that the limit of the
integral (5.13) exists as K̄ → +∞, and then the value of the firm is given by (5.13) with
K̄ = +∞. In the Appendix, we show that if (5.1) holds, then a sufficient condition for the
convergence is

(5.14)
∫ +∞

1
G′(K ′)β+

1 /γdK ′ < +∞.

In the geometric Lévy case, when Z(Xt) = eγXt , this condition is necessary. In particular, if
G(K) = dKθ (d > 0, θ ∈ (0, 1)), then for the convergence of the integral in the case of the
jump-diffusion process, we must have θ < 1 − γ/β+

1 . In other words, θ must be sufficiently
less than one, which means that the returns to capital must decrease sufficiently fast. As Dixit
and Pindyck (1996) show in the geometric Brownian motion case, for typical parameters of a
process, this condition requires for θ to be too small. If the jump component is not very strong,
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then β+
1 is close to the one in the geometric Brownian motion case, and the same conclusion

holds.
Now, suppose that up to a moderate level of demand, the demand shock is fitted well by a

geometric jump-diffusion process with γ = 1, and θ ≥ 1 − 1/β+
1 . To ensure that the value of

the firm be finite, we may assume that above a certain high level Z̄ of the stochastic factor
Z(Xt), the rate of growth of Z(Xt) slows down, and (5.1) holds with sufficiently small γ > 0
so that θ < 1 − γ/β+

1 . Then the integral (5.14) converges, and the value of the firm is finite,
even if the resource constraint is dropped. Finally, assume that Z is uniformly bounded from
above: Z(x) ≤ c2, which implies that the demand shocks are bounded. Then the LHS in (5.7)
admits an upper bound via G′(K)c2q

−1. Since G satisfies the Inada conditions, G′(K) → 0 as
K → +∞. Hence, for sufficiently large K, the LHS in (5.7) will be smaller than the RHS for
any h∗, and it is not optimal to increase the capital stock above a certain level. The resource
constraint becomes redundant.

5.3. Examples. Consider the Cobb-Douglas production function Qt = dKρ
t , where d, ρ > 0,

and the inverse demand function Pt = ZtQ
−1/ε
t , where Zt = Z(Xt) is the demand shock, and

ε > 1 is the elasticity of demand. Then G(K) = d1−1/εKρ(1−1/ε), and the above results apply
provided θ := ρ(1 − 1/ε) ∈ (0, 1), and Z satisfies condition (iii). We consider two families of
functions Z; the process Xt is a jump-diffusion process with the Lévy exponent (2.2).
Example 5.1. First, consider the geometric Lévy case Z(Xt) = eγXt , where γ > 0. Condition
(5.2) is equivalent to γ < β+

1 . If there is no exogenous bound on the amount of capital available,
then the value of the firm is finite iff θ = ρ(1 − 1/ε) < 1 − γ/β+

1 . This means that for a given
γ > 0, either ρ or ε must be sufficiently small. However, if ρ ≤ 1− γ/β+

1 , then the elasticity of
demand may assume any value ε > 1. The revenue flow is Rt = (dKρ)1−1/εeγXt , and equation
(5.6) for the investment threshold becomes

(5.15) d1−1/ερ(1− 1/ε)Kρ(1−1/ε)−1κ−q (γ)eγh∗ = Cq.

The description of the optimal investment policy in terms of the demand shock is standard: when
a point (Xt,K) remains to the left of the boundary (5.15) of the inaction region: Xt ≤ h∗(K),
the monopoly keeps the capital level Kt = K fixed and increases or decreases the price of the
output as the demand does; when the demand shock factor Xt crosses level h∗(K), the firm
increases the capital stock to the new level K ′ so that Xt = h∗(K ′), and (Xt,K

′) is on the
boundary of the inaction region. At this moment, the firm increases the price, decreases it,
or keeps it fixed, if the production technology exhibits decreasing returns to scale, increasing
returns to scale, or constant returns to scale, respectively4. Indeed, when the demand shock
Z(Xt) is at the investment threshold, the monopoly charges price

P ∗ = P ∗(K, h∗(K)) = (dKρ)−1/εZ(h∗(K)) =
K1−ρ

dρ(1− 1/ε)κ−q (γ)
,

and the RHS increases in K if ρ < 1, decreases if ρ > 1, and remains constant if ρ = 1. The
smaller the γ > 0, the larger is κ−q (γ) = E[eγY − ], and the lower is the output price at the
moment of investment.

4Of course, we understand that the technology may exhibit increasing returns to scale only locally, for small
levels of capital. We mention the price behavior for increasing returns to scale production function only because
in numerical experiments we observe similar behavior for decreasing returns to scale technology and small rate of
growth of the demand shock, when the demand is in a certain range.
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Example 5.2. Consider the following demand shock. As Z(Xt) remains below a certain critical
value Z̄, the dynamics of the stochastic factor is given by the geometric Lévy process:

(5.16) Z(Xt) = Z̄eXt , Xt ≤ 0.

However, in the region above the critical level Z̄, the rate of growth of Z(Xt) slows down:

(5.17) Z(Xt) = Z̄[γ−1(eγXt − 1) + 1], Xt > 0,

where γ ∈ (0, 1). In the limit γ → 1, we recover the standard geometric Lévy case; in the limit
γ → 0, the shock follows the geometric Lévy process below 0, and the Lévy process above 0.

Consider equation (5.7) for the investment threshold. Since function Z = Z(x) is monotone,
(E−Z)(x) also is. Hence, (5.7) has a unique solution, h∗ = h∗(K). If h∗ ≤ 0, then the LHS of
(5.7) is independent of the values of Z(x) for positive x, hence h∗ is determined from the same
equation as in the geometric Lévy case:

(5.18) d1−1/ερ(1− 1/ε)Kρ(1−1/ε)−1E

[∫ +∞

0
e−qtZ̄eh∗+Xtdt

]
= C,

which is

(5.19) d1−1/ερ(1− 1/ε)Kρ(1−1/ε)−1κ−q (1)Z̄eh∗ = qC.

From (5.19), it is evident that h∗ ≤ 0 iff d1−1/ερ(1− 1/ε)Kρ(1−1/ε)−1κ−q (1)Z̄ ≥ qC.
Let d1−1/ερ(1 − 1/ε)Kρ(1−1/ε)−1κ−q (1)Z̄ < qC, then (5.19) has no non-positive solutions.

Therefore, the investment threshold h∗ is positive, and we have to use both (5.16) and (5.17).
We calculate (E−Z)(x) for x > 0:

(5.20) E−Z(x) = Z̄


γ−1κ−q (γ)eγx − γ−1(1− γ) +

∑

j=1,2

dγ,je
β−j x


 ,

where dγ,j are positive constants (see the Appendix). The investment threshold is the solution
to equation (5.6). Using (5.20), we write equation (5.6) in the form

(5.21) d1−1/ερ(1− 1/ε)Kρ(1−1/ε)−1Z̄


γ−1κ−q (γ)eγh∗ − γ−1(1− γ) +

∑

j=1,2

dγ,je
β−j h∗


 = qC.

In the upper panel of Fig. 1, we plot the graph of Z(x) for γ = 0.999 (which is close to the
geometric Lévy case γ = 1), γ = 0.6 and γ = 0.3. In the middle panel, we plot the boundary
of the inaction region in the (Z, K)-plane. Finally, in the lower panel, we plot the boundary of
the inaction region in the (P, K)-plane. Here, as a natural technical device, we use the explicit
parametrization of the curve (K, P ∗) by h∗: K = K(h∗) is found from (5.19) for h∗ ≤ 0, and
from (5.21) for h∗ > 0, and after that we calculate P ∗ = (dK∗)−1/εZ(h∗) = (dK(h∗))−1/εZ(h∗).
We take ρ = 0.9 (decreasing returns to scale case). As h∗(K) ≤ 0 (which implies that K is
below a certain level), the threshold is the same for all γ, and the boundary in the (P, K)-plane
is upward sloping which means that each increase of capital stock is accompanied by an increase
in the price of the output. For larger values of K, the boundary depends on γ, and it may
be even locally downward sloping, which means that an increase in the capital stock may be
accompanied by a decrease in the output price. The business returns to normality at sufficiently
large levels of capital stock: once again, an increase in the capital stock is accompanied by an
increase in the output price. To see this, we derive an approximate formula for the threshold
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Figure 1. Upper panel: dependence of the demand shock Zt = Z(Xt) (Example
5.2) on the Lévy process. Middle panel: the boundary of the inaction region in
(Z, K)-plane. Lower panel: the boundary of the inaction region in (P, K)-plane.
Discount rate: q = 0.08. Marginal cost: C = 2. Elasticity of demand: ε = 2.
Parameters of the production function: d = 1, ρ = 0.9. Parameters of the Lévy
process (diffusion with embedded downward jumps): σ2 = 0.2, b = −0.6, c− =
0.10, λ− = −2.

in the region of large K. As K → ∞, E−Z(h∗) = qC/G′(K) → ∞, hence eh∗(K) → ∞, and
E−Z(h∗) ∼ Z̄γ−1κ−q (γ)eγh∗ . Now we can write an approximate equation

d1−1/ερ(1− 1/ε)Kρ(1−1/ε)−1q−1Z̄γ−1κ−q (γ)eγh∗ = C

instead of (5.6) and obtain

P ∗ = (dKρ)−1/εZ(h∗) ∼ (dKρ)−1/ε Z̄

γ
eγh∗ ∼ qC

κ−q (γ)dρ(1− 1/ε)
K1−ρ.

The smaller the γ > 0, the larger is κ−q (γ), and the lower is the output price at the moment of
investment.

We see that the effect of the decrease of the monopoly price at the moment of investment is
observed when the production function exhibits almost constant returns to scale (ρ = 0.9), and
the demand shock grows slowly above a certain level (γ = 0.3). The same effect can be observed
for smaller ρ but then the rate of growth of the demand shock must be smaller as well - see Fig.
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Figure 2. Upper panel: dependence of the demand shock Zt = Z(Xt) (Example
5.2) on the Lévy process. Middle panel: the boundary of the inaction region in
(Z, K)-plane. Lower panel: the boundary of the inaction region in (P,K)-plane.
Discount rate: q = 0.08. Marginal cost: C = 2. Elasticity of demand: ε = 2.
Parameters of the production function: d = 1, ρ = 0.85. Parameters of the Lévy
process (diffusion with embedded downward jumps): σ2 = 0.2, b = −0.6, c− =
0.10, λ− = −2.

2, where ρ = 0.85. The effect is not observed for γ = 0.3 anymore but it is observed for γ = 0.1.

6. New technology adoption

In this Section, we assume that the manager of a firm chooses not only the optimal capital
stock, but also the optimal timing of an upgrade to the frontier technology. This model is
more complicated than the ones of the previous Sections because it is driven by two factors:
one characterizes the dynamics of the technology frontier, and the other incorporates all other
shocks in the economy. Powerfully, the method of the paper preserves the tractability even
in this two-factor model. Timing new technology adoption is one of the applications where it
is essential to model a stochastic technology factor as a process with jumps, because the new
technology is not introduced continuously. We believe that the most important component in
the evolution of the technology frontier is a compound Poisson process with upward jumps, with
possible inclusion of a small diffusion component. One may think about the diffusion component
in the technological process as moderate innovations in technology, which may be caused by (or
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lead to) small fluctuations in non-technological uncertainty; in this case, the interaction between
the technological factor and (small) innovations to non-technological factor is modelled as in the
standard Gaussian model. However, major technological breakthroughs should be modelled
as a jump process, and then it is natural to presume that if there is a correlation between
technological and non-technological factors, it should be described by a bivariate jump process.

A natural assumption is that the capital adjustment when the same technology is in place is
less costly than the adoption of the new technology; the extreme assumption is that the capital
adjustment is costless.

6.1. Model specification. We follow fairly closely the setup of Abel and Eberly (2002). There
are no costs of adjustment of the stock of capital, and the stock is chosen optimally, therefore
we may concentrate solely on the timing of adoption of the frontier technology. Let At be the
technology in place, and Ât be the frontier technology at date t. Suppose that the updating
happens at stopping times τ1 < τ2 < · · · , so that between the updates the level of technology
remains constant: for t ∈ [τi−1, τ), At = Aτi−1 . We take the inverse demand function Pt =
ZtQ

−1/ε
t as the primitive of the model, assume that the marginal cost of capital is constant

(normalized to 1 for simplicity), and the production function is Qt = dtK
ρ
t , where ρ > 0,

and dt is the factor which is determined by the technology in place. Solving for the optimal
level of capital between technology updates, we find Ct = (αρ)−1dα

t (ρ(ε − 1)/εZt)β, where
α = (ε − 1)/(ε − ρ(ε − 1)) and β = ε/(ε − ρ(1ε − 1)) are positive constants. Hence, the firm’s
cash flow is AtSt, where At = dα

t and St = (αρ)−1(ρ(ε− 1)/εZt)β.
Updating to the frontier technology is costly, and the cost of updating is proportional to the

updated cash stream: θAτiSτi , θ ∈ (0, 1). Let V (Aτi−1 , Ât, St) be the value of the firm net of the
value of its capital stock for t ∈ [τi−1, τ). Following Abel and Eberly (2002), we assume that
the value admits a representation

(6.1) V (Aτi−1 , Ât, St) = Aτi−1StV
1(Ât/Aτi−1),

and that updating occurs when the ratio Ât/Aτi−1 reaches a certain threshold, call it A∗.
In Abel and Eberly (2002), the technological factor Ât and non-technological factor St are

modeled as geometric Brownian motions: Ât/Aτi−1 = eat , St = eXt , where (at, Xt) is a two-
dimensional Gaussian process with the non-trivial correlation between components. We assume
that Ât/Aτi−1 = eX1

t , St = eX2
t , where Xt = (X1

t , X2
t ) is a two-dimensional Lévy process driven

by compound Poisson processes and two independent standard Brownian motions W 1
t and W 2

t .
To be more specific, we model X as the solution to the stochastic differential equation

(6.2) d

[
X1

t

X2
t

]
=

[
b1

b2

]
dt +

[
σ11 σ12

σ21 σ22

] [
dW 1

t

dW 2
t

]
+

∑

k

[
1
γk

]
dJck,λk;t,

where ck > 0, λk > 0, γk ∈ R, and Jc,λ;t denotes the compound Poisson process with the Lévy
density ce−λx1(0,+∞)(x). We may identify

∑
k Jck,λk;t as the jump component of the innovation

process (creation of essentially new technologies), and then γk describe the impact of unexpected
innovations on the dynamics of the non-technological factor. If γk < 0 (respectively, γk > 0),
then a positive jump in the frontier technology is accompanied by a negative (respectively,
positive) jump in the non-technological stochastic factor. The diffusion part of the process
describes small fluctuations in the non-technological factor, and related fluctuations in minor
technological improvements. If σ12 = 0, then σ21 describes the impact of the process of small
technological innovations on small fluctuations in the non-technological uncertainty, and if σ21 =
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0, then σ12 describes the impact of the latter on the former. The Lévy exponent of Xt, Ψ(z) =
Ψ(z1, z2), is defined by

E
[
e〈z, Xt〉

]
= E

[
ez1X1

t +z2X2
t

]
= etΨ(z).

For the process given by (6.2),

(6.3) Ψ(z) =
1
2
||Σ′z|| 2 + 〈b, z〉+

∫

R2\{0}

(
e〈z, y〉 − 1

)
F (dy),

where Σ = [σj,k]; b = (b1, b2) and ΣΣ′ are the drift and variance-covariance matrix of the
Gaussian component of the process, and

(6.4) F (dy) =
∑

k

ckλke
−λky11[0, +∞)(y1)δ0(y2 − γky1)dy1

is the Lévy density. Here δ0 is the one-dimensional Dirac delta-function.
W.l.o.g., set τi−1 = 0 and denote τ = τi = inf{t > 0|X1

t ≥ h}, where h = log A∗. Then the
value of the firm satisfies

V (A0, Ât, St) = Et

[∫ τ

t
e−q(s−t)A0Ssds

]
+ Et

[
e−q(τ−t)

(
V (Âτ , Âτ , Sτ )− θÂτSτ

)]
.

Substitute (6.1) into the last equation and divide it by A0St. Let

v(Xt) = V 1
(
eX1

t

)
= V 1(Ât/A0).

Notice that at the time of updating, Aτ = Âτ , hence V 1(Âτ/Aτ ) = V 1(1) = v(0). Now for
t ∈ [0, τ), we have

(6.5) v(Xt) = Et

[∫ τ

t
e−q(s−t)+X2

s−X2
t ds

]
+ Et

[
e−q(τ−t)+X2

τ−X2
t eX1

τ (v(0)− θ)
]
.

6.2. One source of uncertainty. First, we consider the case when only innovations to technol-
ogy occur, i.e., the factor X2

t is constant. The underlying stochastic process is a one-dimensional
Lévy process. Examining only technological innovations is not only instructive by itself, but as
we will show it in the next Subsection, the general case reduces to this special case. Of course,
the Lévy exponent of a one-dimensional process that appears after the reduction is made depends
on the Lévy exponent of the initial two-dimensional process. In Subsection 6.3, we will discuss
the impact of interaction between the two components of the process on the new technology
adoption threshold.

Let h be the threshold for updating. The objective of the firm is to choose h so as to maximize
the value

(6.6) v(x; h) = Et

[∫ τ

t
e−q(s−t)ds|Xt = x

]
+ Et

[
e−q(τ−t)eXτ (v(0;h)− θ)|Xt = x

]
.

To ensure that the value of the firm were finite, assume that X satisfies r − Ψ(1) > 0. In the
Appendix, we show that it is possible to rewrite (6.6) in the form

(6.7) v(x; h) = q−1 +
(E+1[h, +∞)

[
κ+

q (1)−1(v(0;h)− θ)e· − q−1
])

(x),

where e· denotes the exponential function x 7→ ex. Introduce

vopt(x;h) = v(x; h)− q−1.
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Recall that given the new technology is adopted at the threshold h, the value of the firm is

V (A0, Ât, St; h) = A0Stv(Xt;h) =
A0St

q
+ A0Stvopt(Xt; h).

The first term, A0St/q, is the EPV of the stream of profits, which the firm will generate provided
the current technology stays in place forever, and the second term is the option value of upgrading
to the frontier technology. In order to find the option value, we rewrite (6.7) in terms of vopt(x; h):

(6.8) vopt(x;h) =
(E+1[h, +∞)

[
κ+

q (1)−1(vopt(0;h) + q−1 − θ)e· − q−1
])

(x).

Suppose for a moment that we know the value V0 := vopt(0;h) at the moment of updating.
Assuming that V0 + q−1 − θ > 0 (a sufficient condition is qθ < 1, that is, the cost of updating
is not too high), and arguing as in the proof of (3.19), we conclude that the optimal updating
threshold h satisfies

(6.9) κ+
q (1)−1(vopt(0;h) + q−1 − θ)eh − q−1 = 0.

Using (6.9), we can simplify (6.8) for x < h:

(6.10) vopt(x; h) = e−h
(
q−1E+1[h, +∞)

(
e· − eh

))
(x) =

(
q−1E+1[h, +∞)

(
e·−h − 1

))
(x).

Equation (6.9) has two unknowns: h and vopt(0;h), however we can add the second equation by
letting x = 0 in (6.10):

(6.11) vopt(0;h) =
(
q−1E+1[h, +∞)

(
e·−h − 1

))
(0).

By substituting (6.11) into (6.9), and multiplying by qκ+
q (1), we obtain the equation for h:

(6.12) eh
(
E+1[h, +∞)

(
e·−h − 1

))
(0) + (1− qθ)eh − κ+

q (1) = 0.

We claim that if qθ < 1, then this equation has a unique solution on (0, +∞). Indeed, as
h → +∞, the LHS tends to +∞, and at h = 0, the LHS is negative:

(E+(e· − 1))(0) + (1− qθ)− κ+
q (1) = κ+

q (1)− 1 + (1− qθ)− κ+
q (1) = −qθ < 0.

Hence, a solution exists, and to see that it is unique, it suffices to check that the LHS in (6.12)
is convex. We will verify this, and obtain explicit formulas for h and vopt(0; h) after we specify
a process for the frontier technology.

Suppose that X is a diffusion process with exponentially distributed upward jumps. The Lévy
density is

(6.13) F (dy) = cλe−λy1(0, +∞)(y)dy,

where c > 0 and λ > 1 (the last inequality is necessary for the inequality r −Ψ(1) > 0 to hold,
which ensures the finiteness of the value function ). Then the Lévy exponent is Ψ(z) = σ2z2/2+
bz + cz/(λ− z), and the inequality r −Ψ(z) > 0 is satisfied provided q > σ2/2 + b + c/(λ− 1).
The characteristic equation has three roots: β− < 0 < 1 < β+

1 < λ < β+
2 . The factor κ−q (z) is

defined by κ−q (z) = β−/(β− − 1), and κ+
q (z) is given by (2.13) or (2.14). The value vopt(x; h)

satisfying (6.10) can be computed in exactly the same manner as the value V +(x) in (3.21):

vopt(x; h) = q−1
∑

j=1,2

a+
j eβ+

j (x−h)

β+
j − 1

, for x < h,



GENERAL OPTION EXERCISE RULES 31

and (6.12) assumes the form

(6.14)
∑

j=1,2

a+
j e(1−β+

j )h

β+
j − 1

+ (1− qθ)eh − κ+
q (1) = 0.

Denote by f(h) the LHS in (6.14). We have shown for the general case above that f(h) changes
sign on (0, +∞), and the root of (6.14) exists. To show the uniqueness of the root, we prove
that f is convex:

f ′′(h) =
∑

j=1,2

a+
j (β+

j − 1)e(1−β+
j )h + (1− qθ)eh > 0.

6.3. Two sources of uncertainty. For simplicity, assume that there is only one term in the
jump component. Set c = ck, λ = λk, γ = γk, assume that γ < λ − 1, and denote by ajk

the entries of the variance-covariance matrix ΣΣ′. In the Appendix, we show that the new
technology adoption threshold in the two-factor model (6.2) is the same as in the one-factor
model with the characteristic exponent

(6.15) Ψ1(z1) =
a11

2
z2
1 + b1z1 +

c1z1

λ1 − z1
,

where b1 = a12 + b1, c1 = cλ/(λ − γ), and λ1 = λ − γ. To ensure that the value of the firm
were finite, we need to impose two conditions ((A.9) and (A.10)), which in the case of one jump
component assume the form

(6.16) q1 := q − a22

2
− b2 − cγ

λ− γ
> 0,

and

(6.17) q − a11

2
− a12 − a22

2
− b1 − b2 − c(1 + γ)

λ− γ − 1
> 0.

Notice that both (6.16) and (6.17) imply that γ cannot be too close to λ, equivalently, if positive
technological jumps are accompanied by vigorous positive jumps in the non-technological factor,
then the value of the firm becomes infinite: the prospects are too good to be true. Probably,
the advocates of the New Economy had in mind similar models for shocks in technology and
non-technological uncertainty. We also need to require 1− q1θ > 0; if this condition is violated,
then new technology adoption is never optimal.

If the Gaussian component in the dynamics of the technology frontier is non-trivial, then the
characteristic equation has three roots β− < 0 < 1 < β+

1 < λ < β+
2 , and the equation for the

technology adoption frontier is (cf. (6.14))

(6.18)
∑

j=1,2

a+
j e(1−β+

j )h

β+
j − 1

+ (1− q1θ)eh − κ+
q1(1) = 0,

where a+
j and κ+

q1(1) are defined by the same formulas as in Section 2 with q1 in place of q. The
existence and uniqueness of the solution h of (6.18) is proved in Subsection 6.2.
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Figure 3. Adoption of new technology threshold A∗ as a function of the cor-
relation parameter γ, intensity of jumps c+, and steepness parameter λ. The
technology factor is compound Poisson. Parameters: θ = 5, q = 0.08, σ2

22 =
0.10, b1 = −0.01, b2 = 0.00. Upper panel: c+ = 0.25; lower panel: c+ = 0.10.

6.4. Dependence of the new technology adoption threshold, A∗, on diffusion and
jump uncertainty. We start with the study of the dependence of A∗ on the jump component
when the technological process has no Gaussian component: σ11 = σ12 = σ21 = 0. For the
calculation of A∗ in this case, see the Appendix. First, we fix the Gaussian component of the
non-technological factor, σ22, and change c, λ and γ (Fig. 3). Then we fix λ, and change c, σ22,
and γ (Fig. 4). The increase in c means that the total uncertainty of the technological factor
increases, the increase in λ−1 means that the average jump size becomes larger, and the increase
in σ22 means the increase in non-technological uncertainty. Finally, the increase in γ means that
the correlation between the two factors goes up. In these figures, it is clearly seen (and the same
effect is observed for other parameters’ values) that the new technology adoption threshold is
(a) an increasing function of (c, λ−1), that is, of the uncertainty in the technological factor, and

average jump size;
(b) a decreasing function of σ22, that is, of the uncertainty in the non-technological factor;
(c) a decreasing function of the “correlation coefficient”, γ, between the jump components in

the technological and non-technological factors.
Thus, the uncertainty in the technological factor and uncertainty in the non-technological one
affect the threshold in opposite directions. The dependence on the technological uncertainty can
be naturally explained in the framework of the record-setting news principles in Boyarchenko
(2004) as follows. In a situation similar to the call option with an instantaneous (random)
payoff, the record-setting good news principle applies, and the higher the uncertainty of good
news, the higher is the threshold. Clearly, this is the situation with new technology adoption:
once the new technology is in place, it remains fixed for a sizable time period. The feature (b)



GENERAL OPTION EXERCISE RULES 33

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
1.3

1.4

1.5

1.6

1.7

1.8

γ

A
*

σ2
22

=0.04
σ2

22
=0.08

σ2
22

=0.12

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
1.1

1.2

1.3

1.4

1.5

1.6

γ

A
*

Figure 4. Adoption of new technology threshold A∗ as a function of the corre-
lation parameter γ, intensity of jumps c+, and Gaussian uncertainty, σ22. The
technology factor is compound Poisson. Parameters: θ = 5, q = 0.08, λ = 15, b1 =
−0.01, b2 = 0.00. Upper panel: c+ = 0.25; lower panel: c+ = 0.10.

is not as transparent as (a). According to the record-setting news principles in Boyarchenko
(2004), if the option gives the right to a stream of payoffs (a cash flow here), then the record-
setting bad news principle applies, and the higher the uncertainty of bad news (the lower the
trajectories of the infimum process), the higher is the threshold. It may seem that the increase
in σ22 means the increase in the overall uncertainty in St, the non-technological factor, hence
in the uncertainty of bad news, and so the threshold should increase. Notice, however, that the
threshold is derived for the technological factor, but not for St, and the standard intuition may
be non-applicable. If σ22 increases, then b2 +σ2

22/2, the rate of growth of St increases; therefore,
the higher the expected rate of growth of St (hence, of the revenue), the sooner should the firm
take the advantage of adoption of the frontier technology.

The reader may wonder if the difference between the ways the new technology factor and
non-technological one influence the threshold is an artifact of the different ways these factors
are modelled: pure jump process and diffusion process with embedded jumps, respectively. In
Fig. 5, we demonstrate how the adoption threshold changes if we add the diffusion component
to technological process so that the Gaussian uncertainty in the non-technological factor drives
the Gaussian uncertainty in the technological factor (similar effects are observed when the latter
driver the former). We also show the threshold when there is no Gaussian uncertainty in the
technological factor. The conclusions (a)–(c) made above remain valid. The new technology
adoption threshold is

(a) an increasing function of the uncertainty in the technological factor;
(b) a decreasing function of the uncertainty in the non-technological factor;
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Figure 5. Adoption of new technology threshold A∗ as a function of the corre-
lation parameter γ, and the correlation coefficient σ12; σ21 = 0.0 (demand/prices
influence small improvements in the technology but not vice versa). Crosses:
no Gaussian uncertainty in the technological factor: σ11 = σ12 = σ21 = 0.
Other parameters: θ = 5, q = 0.08, λ = 15, b1 = −0.01, b2 = 0.00. Panels: (a)
c+ = c− = 0.2; (b) c+ = 0.2, c− = 0.1; (c) c+ = 0.1, c− = 0.2; (d) c+ = c− = 0.1.

(c) a decreasing function of the “correlation coefficient”, γ, between the jump components in
the technological and non-technological factors;

(d) an increasing function of the covariance coefficients, σ12 and σ21, between the Gaussian
components in the technological and non-technological factors.

Notice the important difference between the impact of the “correlation” between the Gaussian
and non-Gaussian sources of uncertainty on the threshold: A∗ is a decreasing function of
the “correlation coefficient”, γ, between the jump components in the technological and non-
technological factors, and an increasing function of the correlation coefficients σ12 and σ21

between the Gaussian components of technological and non-technological innovations. Hence,
the interaction between Gaussian sources of uncertainty, and the one between non-Gaussian
sources of uncertainty are not just qualitatively different: they are of opposite signs.

7. Conclusion

In the paper, we presented a general method for solving optimal stopping problems assuming
that the underlying source of uncertainty can be represented as a function of the Brownian
motion with embedded jumps. Our method uses the definition of the value of an option as the
EPV of an instantaneous payoff or a stream of payoffs. If the payoff is instantaneous, we view
it as the EPV of a stream of payoffs. Such a representation can be obtained in many situations.
Of course, everyone knows how to calculate the EPV of a perpetual stream of payoffs that starts
to accrue at a deterministic point in time. We show that the rational price of a payoff stream
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that starts to accrue at a random time (i.e., after the underlying stochastic variable Xt crosses
a certain barrier) can also be obtained in terms of the EPV’s of some payoff streams. In some
cases, the EPV has to be calculated under the assumption that the underlying stochastic process
is replaced by the infimum process Xt = inf0≤s≤t Xs. In other instances, it becomes necessary to
substitute the supremum process X̄t = sup0≤s≤t Xs for the underlying process. Similar results
hold for the value of a payoff stream that is lost at a random time. Clearly, one can price (real)
perpetual American options using the EPV’s of the payoff streams mentioned above or their
combinations.

The form of the solution for the option value that we obtain suggests the following description
of the optimal exercise strategy. If the payoff stream is a decreasing function of the underly-
ing stochastic factor, then it is optimal to exercise the option the first time the EPV of the
stream of payoffs calculated for the supremum process instead of the original stochastic process
becomes non-negative. Similarly, if the payoff stream is an increasing function of the underlying
stochastic factor, then it is optimal to exercise the option the first time the EPV of the stream
of payoffs calculated for the infimum process instead of the original stochastic process becomes
non-negative. This allows us to formulate a general optimal exercise rule: it is optimal to ex-
ercise the right for the stream of stochastic payoffs, gt, the first time the EPV of the stream
g

t
= inf0≤s≤t gs becomes non-negative. We call the last statement a universal record-setting bad

news principle. This principle naturally generalizes and extends Bernanke’s (1983) bad news
principle and record-setting news principles spelled out in Boyarchenko (2004). The represen-
tation in the form of the EPV operators under supremum and infimum processes allows us to
(relatively easily) prove not only theorems for basic types of investment/disinvestment prob-
lems, when the decision must be taken only once, but for certain sequences of embedded options
(Russian dolls) of arbitrary length as well.

As additional applications of our methodology, we considered two models of monopolistic
expansion. First, we calculated a capital expansion program for a monopoly which faces the
demand uncertainty, and showed that an appropriate choice of the dependence of the inverse
demand curve on the stochastic factor made it unnecessary to impose additional fairly stringent
conditions on the production function, as in Dixit and Pindyck (1996). It is worth mentioning
that the same choice leads to a lower investment threshold than in the geometric Brownian
(more generally, Lévy) model.

We also solved a problem of new technology adoption, where the manager of a firm chooses
not only the optimal capital stock, but also the optimal timing of an upgrade to the frontier
technology. The model is driven by two factors: one characterizes the dynamics of the technology
frontier, and the other incorporates all other shocks in the economy. Powerfully, the method of
the paper preserves the tractability even in this two-factor model. We believe that it is natural
to model the dynamics of the frontier technology as a process with upward jumps and not as a
pure diffusion process. We analyze how the interaction between the two stochastic factors affects
the process of new technology adoption, and show that the differences between the impact of the
diffusion component and the impact of the jump component on the adoption threshold are not
only quantitative but qualitative as well. This corroborates the conclusion made in Boyarchenko
and Levendorskǐi (1998) about a model with policy uncertainty and non-Gaussian uncertainty in
prices: an interaction of two stochastic factors enhances the impact of jumps on the investment
threshold.
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Appendix A

Proof of (2.3) Computing the action of the infinitesimal generator (2.1) on ezx, we obtain the
exponent Ψ(z) corresponding to the Lévy density (2.2):

Lezx =
[
σ2

2
z2 + bz + c+λ+

∫ +∞

0

(
e(z−λ+)y − e−λ+y

)
dy

−c−λ−
∫ 0

−∞

(
e(z−λ−)y − e−λ−y

)
dy

]
ezx

=
(

σ2

2
z2 + bz +

c+z

λ+ − z
+

c−z

λ− − z

)
ezx = Ψ(z)ezx.
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If g(x) = ezx, then
∫ +∞

0
e−β+

j ez(x+y)dy = ezx

∫ +∞

0
e(z−β+

j )ydy =
ezx

β+
j − z

,

therefore

E+ezx = κ+
q (z)ezx =

∑

j=1,2

a+
j

β+
j

β+
j − z

ezx.

Thus, (2.15) is proved for exponential functions. By expanding an arbitrary (sufficiently regular)
function g as a Fourier integral, we obtain (2.15). (2.16) is proved similarly.

Proof of (2.21)-(2.22) Set c1± = λ±
β±1 β±2

, c0± = (β±1 + β±2 − λ±)c1±, b± = 1 + c0±. If g(x) = ezx,
then

c1
+g′(x) + c0

+g(x) + b+

∫ +∞

0
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+ezx + c0
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2

ezx = (κ+
q (z))−1ezx.

Thus, (2.21) is proved for exponential functions. By expanding an arbitrary (sufficiently regular)
function g as a Fourier integral, we obtain (2.21). (2.22) is proved similarly.

Proof of (5.14). Let Z(x) satisfy (5.1), then

w(x) ≤ c1E

[∫ +∞

0
e−qt+γ(x+Xt)dt

]
≤ c1q

−1κ−q (γ)eγx ≤ c1q
−1eγx.

Therefore ∫ +∞

0
e−β+

j yw(h∗ + y)dy ≤ c1q
−1eγh∗

∫ +∞

0
e−β+

j y+γydy =
c1e

γh∗

q(β+
j − γ)

,
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and

V opt
K (K, x) ≤ c1G

′(K)eγh∗

q

∑

j=1,2

a+
j β+

j

β+
j − γ

eβ+
j (x−h∗).

Since γ ∈ (0, 1] and 1 < β+
1 < β+

2 , we obtain

(A.3) V opt
K (K, x) ≤ D(x)G′(K)e(γ−β+

1 )h∗(K),

where D(x) depends on x ≤ h∗(K) but not on K. Next, we notice that if W (Xt) is another
demand shock such that Z(x) ≤ W (x) for any x, then the corresponding thresholds are related
as h∗(K; Z) ≥ h∗(K; W ). This result follows immediately if one compares (5.11) for W

G′(K)
∑

j=1,2

a−j

∫ 0

−∞
(−β−j )e−β−j yW (h∗ + y)dy = qC

with the one for Z:
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j=1,2

a−j

∫ 0

−∞
(−β−j )e−β−j yZ(h∗ + y)dy ≤ qC.

For W (x) = c1e
γx, we have from (5.11) G′(K)κ−q (γ)eγh∗(K,W ) = qC, therefore the RHS in (A.3)

admits a bound via D1(x)G′(K)β+
1 /γ , and we conclude that (5.14) is a sufficient condition for

the convergence of the integral (5.13) with K̄ = +∞. In the geometric Lévy case, we obtain
that V opt

K (K, x) = D1(x)G′(K)β+
1 /γ , where γ = 1, therefore (5.14) is necessary as well. ¤

Proof of (5.20). W.l.o.g., Zc = 1. We have
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we obtain (5.20) with
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Proof of (6.7) If Xt = x, then using (3.17),

Et

[∫ τ

t
e−q(s−t)ds

]
= Et

[∫ +∞

t
e−q(s−t)ds

]
− Et

[∫ +∞

τ
e−q(s−t)ds

]

= q−1 − q−1(E+1[h, +∞)E−1)(x) = q−1 − q−1(E+1[h, +∞))(x).

Use the fundamental relationship between the infinitesimal generator and the EPV-operator
(2.5) to write the payoff eXτ (v(0;h) − θ) as the normalized EPV of a stream g(x) = q−1(q −
L)ex(v(0; h) − θ), substitute Eg(Xτ ) into (6.6), and apply (3.17) in order to write the second
term in (6.6) as

(E+1[h, +∞)E−
)
g(x) =

(E+1[h, +∞)E−q−1(q − L)(v(0;h)− θ)e·
)
(x)

=
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)
(x)

=
(E+1[h, +∞)(v(0;h)− θ)κ+

q (1)−1e·
)
(x).

(Here we used the Wiener-Hopf factorization formula (2.11) and (2.8).) Now it becomes possible
to rewrite (6.6) in the form (6.7). ¤
Proof of (6.15). For the sake of brevity, assume that σ11 = σ12 = σ21 = 0; the proof in the
general case is similar. For any s ≥ t and z = (z1, z2),

Et

[
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s +z2X2
s

]
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t +z2X2
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It is easy to see that for a fixed z2, Ψ1
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Hence,
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and
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which is the characteristic exponent of a pure jump process with exponentially distributed
upward jumps, and the Lévy density which depends on z2. Let Q1
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Then we can write (A.4) as

Et

[
ez1X1

s +z2X2
s

]
= ez2X2

t +(s−t)Ψ(0,z2)E
Q1

z2
t

[
ez1X1

s

]
.

Decomposing a sufficiently regular function f(X1
s ) as a Fourier integral, we have

(A.7) Et

[
ez2X2

s f(X1
s )

]
= ez2X2
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Q1
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t

[
f(X1

s )
]
.

Set Ψ1 = Ψ1
1, Q

1 = Q1
1, and q1 = q −Ψ(0, 1), and apply (A.7) with z2 = 1 to (6.5):

(A.8) v(X1
t ) = E Q1

t

[∫ τ

t
e−q1(s−t)ds

]
+ E Q1

t

[
e−q1(τ−t)eX1

τ (v(0)− θ)
]
.

If

(A.9) q −Ψ(0, 1) > 0,

then (A.8) is of the same form as (6.6), which we have studied already. The condition for the
value of the firm to be finite is

q1 −Ψ1(1) = q1 − (Ψ(1, 1)−Ψ(0, 1)) > 0,

which is equivalent to

(A.10) q −Ψ(1, 1) > 0.

Thus, we require both (A.9) and (A.10). If there is only one term in (6.4), then from (A.6), we
derive (6.15). ¤
The case of a pure jump technological process

Assume first that there is no Gaussian component in the technological factor (σ11 = σ12 =
σ21 = 0), and b1 = b1 < 0, that is, upward jumps in the frontier technology are followed by
periods of decline in the effectiveness of innovations. Then the characteristic equation

q1 −Ψ1(z1) = 0

has two roots β− < 0 < 1 < β+:

(A.11) β± =
q1 + c1 + λ1b1 ∓

√
(q1 + c1 + λ1b1)2 − 4q1b1λ1

2b1
,

(recall that we assume b1 < 0), and κ+
q1(z1) = β+(λ1−z1)/(λ1(β+−z1)) = β+/λ1+a+β+/(β+−

z1), where a+ = 1 − β+/λ1. The equation for the technology adoption frontier is obtained in
the same manner as (6.14), but there is no summation because there is a unique positive root:

(A.12)
a+e(1−β+)h

β+ − 1
+ (1− q1θ)eh − κ+

q1(1) = 0.
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