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1 Introduction

The goal of the paper is to provide a general framework for pricing of real options
in discrete time; since option pricing cannot be separated from the problem of
the optimal exercise time of an option, we solve for the optimal timing as well.
Valuation of real options and optimal exercise strategies explicitly derived in
the paper are relevant to many practical situations where individuals make at
least partially irreversible decisions. Simple real options cover such situations
as timing an investment of a fixed size, scrapping of a production unit, capital
expansion program, etc. Embedded real options are relevant in such cases as new
technology adoption, timing an investment (partially) financed by debt with an
embedded option to default in the future, human capital acquisition, and many
others (see, for example, [17], papers in the volume [11], and the bibliography
therein). Usually, continuous time models are used. We believe that the discrete
time approach has certain advantages over the continuous time approach to
modeling of real options.

First of all, discrete time is more natural for economics, and it allows one to
obtain analytical results in some situations, where continuous time models are
either not applicable, or do not lead to simple analytical results. In Section 3,
the discrete time approach allows us to incorporate in a more tractable way such
important aspects of economic reality as “time-to-build”, and demonstrate ana-
lytically that some general claims made in [4], in the framework of the Gaussian
model, are not quite correct. In Section 4, in a model of gradual capital expan-
sion, we obtain simple formulas for the expected values of capital stock in every
time period; in continuous time models, a much more sophisticated technique is
needed (for comparison, see a Gaussian model in [3] and a non-Gaussian model
in [7]). There are also natural questions, such as the rates of job creation and job
destruction (see, e.g., [15] and [13]), which cannot be addressed in the Brownian
motion setting under the standard assumption that labor is instantly adjustable,
because the rates will be infinite. In the discrete time model, one can obtain
finite closed form solutions. Second, for many important variables, the data are
available only quarterly or even annually. If new pieces of information arrive
quarterly, it does not make much sense to assume that investment decisions can
be taken any moment; discrete time models with time periods of one day, week
or month seem to be more reasonable. Some options – for example, renewing a
labor contract or awarding a grant to a research project – can be exercised only
at certain dates (typically, once a year), and therefore, a discrete time model is
appropriate as well. From the point of view of econometrics, when only a list of
observations at equally spaced moments in time is available, it is easier to fit a
transition density to the data in a discrete time model than in a continuous time
one. Finally, the most challenging task in the case of real options (and perpetual
American options) is to determine the optimal exercise strategy. The proof of
optimality of the exercise price is simpler in discrete time than in continuous
time, and it does not require sophisticated results from the theory of stochastic
processes in continuous time (for comparison, see Boyarchenko and Levendorskǐi
(2004)).
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In fact, the appearance of continuous time models in economics was mainly
due to the success of these models in finance, and their tractability. Notice,
however, that even in finance, the success of simple models is gone. Relatively
simple models use the (geometric) Brownian motion as the underlying stochastic
process (see, for example, [19]). However, these models proved to be rather inac-
curate, and have been amended in many ways, none of which being as tractable
as the Brownian motion model. In particular, nowadays processes with jumps
are widely used (see, for instance, [12] and [18]). The normality of commodity
price processes is rejected by the data as well (see, for example, [16] or [23]).
Assume, for the moment, that we are willing to sacrifice the accuracy of a model
for its simplicity, and decide to use the Brownian motion model. The apparent
advantage is a well-known manageable scheme: with the help of Ito’s lemma
write down a second order differential equation for the value of an option, em-
ploy economic arguments to add appropriate boundary conditions, such as value
matching and smooth pasting, and, using the general solution to the differential
equation, reformulate the problem as a system of algebraic equations. In ele-
mentary situations, a closed form solution can be derived, and a simple exercise
strategy results; in other situations, numerical procedures are available.

Unfortunately, this scheme is uncomplicated only when one considers really
simple options. If a part of the option value comes from instantaneous payoffs
due at certain future dates, a closed form solution to the optimal exercise problem
is no longer available. If we consider an option whose value comes from different
streams in different regions of the state space, the resulting system of algebraic
equations may involve too many unknowns, and it becomes messy indeed. If we
consider embedded options, then there is no general result about the optimal
exercise rule, apart from the heuristic smooth pasting condition, and it is not
even clear whether the formal solution satisfying the smooth pasting condition
exists. In addition, if one incorporates jumps, the intuitive justification for the
smooth pasting condition in [17] is lost, and there is no reason to believe that
this principle always holds2. In fact, it may fail as it was shown in [8] and [9].

To summarize, for a broad range of applications, continuous time real options
models lose much of their tractability. This paper provides a tractable alternative
approach for pricing of real options assuming that an option is the right to
abandon or acquire a stream of stochastic payoffs g(Xt), and the underlying
stochastic process Xt is a random walk (under a risk neutral measure chosen by
the market) on the real line. We solve models with simple real options in three
steps:

(1) assume that the optimal exercise price is known and write down the Bell-
man equation for the value of an option (say, option to invest or option to
default etc.);

(2) solve the Bellman equation explicitly;

(3) find the optimal exercise boundary using the explicit form of the value

2We are grateful to Avinash Dixit for pointing out to us that this principle may not hold
in a discrete time model.
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function in terms of the expected present value operators (EPV-operators).

The first step of the above algorithm is straightforward. The second step is well
known in analysis as the Wiener-Hopf factorization method. In this paper, we
explain the method in a simple setup when the transition density is modeled as
exponential distributions on the negative and positive half-axis. The form of the
value function allows one to guess the optimal exercise boundary quite easily, and
if one accepts the hypothesis that the optimal exercise rule can be described in
terms of a certain threshold, then the proof of optimality requires no knowledge
of stochastic analysis and optimal stopping theory. The proof of optimality
in the class of all stopping times is more involved but the representation of
the solution in the form of the EPV-operators allows us to give a short proof
(see Appendix A). A sufficient (but by no means necessary) condition for our
methodology to work is that the payoff stream is a monotone function of the
underlying stochastic factor. If the payoff is instantaneous, we represent its value
as the EPV of a stream of stochastic payoffs, and use the general scheme.

Note that the standard approach in probability literature uses the direct link
of the Winer-Hopf factorization to the first passage problem for a Lévy process
or random walk, and it can be directly applied for standard payoffs of the put
and call options in the geometric Lévy model or Lévy model (see, e.g., [1] and the
bibliography therein); each type of payoffs should be treated individually, the
proofs are long and technically involved, and it is difficult to adjust the standard
approach to payoffs of a general form.

The results of the paper are valid for general random walks but it may become
difficult to apply the Wiener-Hopf factorization formula. However, one of the
advantages of the discrete time setting is that the transition density of a random
walk can be approximated by exponential polynomials on each half-axis with
desired accuracy and simplicity, although there is certainly a trade-off between
the two. The family of transition densities given by exponential polynomials is
fairly flexible, and such densities can account for fat tails and skewness observed
in empirical distributions of commodity prices. At the same time, modeling with
these distributions is tractable. The computations reduce to finding roots of a
polynomial and straightforward algebraic manipulations. To find the optimal
exercise boundary, one only needs to find a unique zero of a monotone function.

In the case of embedded options (i.e., options on options), the conventional
approach requires one to solve a system of non-linear equations. A solution to a
non-linear system is not unique. Therefore there is no guarantee that a numerical
procedure gives the correct solution. As opposed to the standard approach, we
use the argument similar to the backward induction in discrete time models
with finite time horizon. We solve for the value and optimal exercise time (if
necessary) of the most distant option in a sequence of embedded options, then
we move to the second to last option, etc. For each option in the sequence, we
just repeat the three steps described earlier.

The rest of the paper is organized as follows. In Section 2 we show how
to derive the EPV of a payoff stream in the following model situations: (i) a
perpetual stream, (ii) a stream that is lost at a random time, and (iii) a stream
that starts to accrue at a random time. For the last two cases we also determine
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the optimal time to abandon or to acquire the stream. Finally, we calculate the
expected waiting time for the option to be exercised. In the next two sections,
we demonstrate the advantages of our approach in two situations. In Section 3,
we consider a model of irreversible investment with construction lags. We study
how the investment threshold changes when it takes time to build a project,
and how it depends on uncertainty. In Section 4, a model of gradual capital
expansion is studied, and in appendices, we provide the proof of optimality in
the class of all stopping times, and derive analytical formulas for a more general
class of random walks than in the main body of the text.

2 Model situations

2.1 Perpetual stream of payoffs

We assume that the underlying stochastic process Xt is a random walk (un-
der a risk-neutral measure chosen by the market) on the real line, that is,
Xt = X0 + Y1 + Y2 + · · · + Yt, where Y1, Y2, . . . are independently identically
distributed random variables on a probability space Ω, and X0 is independent of
Y1, Y2, . . .. This process specification implies that the dates when observations
and/or decisions to exercise options can be made are equally spaced, and time
periods are normalized to one. Let the random walk X have the transition den-
sity, p (the method of the paper can be applied to random walks on lattices as
well). Let g be the payoff function, and q ∈ (0, 1) be the discount factor per
period. The transition operator, T , is defined by

(Tg)(x) = Ex[g(X1)] ≡ E[g(X1)|X0 = x].

Given p, one calculates the EPV of a stochastic payoff tomorrow:

Ex[qg(X1)] = q(Tg)(x) = q

∫ +∞

−∞
p(y)g(x + y)dy.

To compute the EPV of a stochastic payoff t periods from now, we use the
Markov property of a random walk: Ex[qtg(Xt)] = qt(T tg)(x). Let

M(z) = E
[
ezY1

]
=

∫ +∞

−∞
ezyp(y)dy

be the moment generating function of Y1. If g(x) = ezx, then the transition
operator acts on g(x) = ezx as follows (Tg)(x) = M(z)ezx. By the law of iterated
expectations, we have

Ex[qtg(Xt)] = (qM(z))t
ezx.

The next step is to calculate the normalized EPV of a perpetual stream of payoffs
g(Xt), which we denote Eg(x):

(Eg)(x) = (1− q)Ex

[ ∞∑
t=0

qtg(Xt)

]
= (1− q)

∞∑
t=0

qt(T tg)(x).
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The normalization is convenient because

(E1)(x) = (1− q)Ex

[ ∞∑
t=0

qt1(Xt)

]
= (1− q)

∞∑
t=0

qt = 1.

In order to find u(x) = (Eg)(x), we write the Bellman equation

u(x) = (1− q)g(x) + qEx[u(X1)], ∀ x

in the form
(1− q)−1(I − qT )u(x) = g(x), ∀ x. (2.1)

One can view (2.1) as an infinite system of algebraic linear equations with an
infinite matrix (operator)

A = (1− q)−1(I − qT ).

To solve the linear system, one needs to invert the matrix (operator) A; the
inverse A−1 will be denoted E . The norm of the operator qT (in L∞(R)) is
q < 1, hence the operator A is invertible in L∞(R), and we have

u(x) = (Eg)(x) = (A−1g)(x), (2.2)

for a bounded measurable g. The same formula can be used with some un-
bounded g. For instance, if g(x) = ezx and 1− qM(z) > 0, then

u(x) = (Eg)(x) = (1− q)
∞∑

t=0

(qM(z))t
ezx =

(1− q)ezx

1− qM(z)
, (2.3)

and
(Ag)(x) = a(z)g(x), (2.4)

where
a(z) = (1− q)−1(1− qM(z)). (2.5)

Sufficient conditions for (Eg)(x) and Ag(x) to be finite are: g is measurable, and

|g(x)| ≤ C exp(σ+x), x ≥ 0, (2.6)
|g(x)| ≤ C exp(σ−x), x ≤ 0, (2.7)

where constant C is independent of x, and σ± satisfy

1− qM(σ) > 0, ∀ σ ∈ [σ−, σ+]. (2.8)

These conditions are necessary if g is monotone on each half-axis.
Below, we introduce a factorization of the operator A, which will allow us

to solve the Bellman equation in entry and exit problems. We explain the con-
struction in a simple case when the transition density is of the form

p(y) = c+λ+e−λ+y1(0,+∞)(y) + c−(−λ−)e−λ−y1(−∞,0](y), (2.9)
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where c+, c− > 0, and λ− < 0 < λ+. Here parameter c+ is the probability of
an upward jump per time period. If an upward jump has happened, then the
probability of a jump from the current state x into an interval [x+y, x+y +dy]
is λ+e−λ+ydy. Parameters c− and λ− admit a similar interpretation. If we
want to have a continuous p, we must require that c+λ+ + c−λ− = 0, and then
the normalization requirement M(0) = 1 leads to c+ = λ−/(λ− − λ+), and
c− = λ+/(λ+−λ−). We have constructed a two-parameter family of probability
densities. The moment generating function is

M(z) =
c+λ+

λ+ − z
+

c−λ−

λ− − z
=
−λ−λ+

λ+ − λ−

[
1

λ+ − z
− 1

λ− − z

]
,

hence

M(z) =
λ−λ+

(λ+ − z)(λ− − z)
. (2.10)

It is easy to see that a(z) defined by (2.5) has zeros β+ = β+(q) ∈ (0, λ+) and
β− = β−(q) ∈ (λ−, 0), which are the roots of the quadratic equation

z2 − (λ+ + λ−)z + (1− q)λ+λ− = 0. (2.11)

We find

β±(q) = 0.5 ·
(
λ+ + λ− ±

√
(λ+ + λ−)2 − 4(1− q)λ−λ+

)
. (2.12)

Factorize a(z) as

a(z) = (1− q)−1 (β+ − z)(β− − z)
(λ+ − z)(λ− − z)

.

Since

a(0) = (1− q)−1 β+β−

λ+λ−
= 1,

we may write
a(z) = a+(z)a−(z),

where

a+(z) =
λ+(β+ − z)
β+(λ+ − z)

, a−(z) =
λ−(β− − z)
β−(λ− − z)

.

Introduce

κ+
q (z) = a+(z)−1 =

β+(λ+ − z)
λ+(β+ − z)

(2.13)

and

κ−q (z) = a−(z)−1 =
β−(λ− − z)
λ−(β− − z)

, (2.14)

and notice that

1− q

1− qM(z)
= a(z)−1 = a+(z)−1a−(z)−1 = κ+

q (z)κ−q (z). (2.15)
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Next, define operators A± and E± as follows. For g(x) = ezx,

A±g(x) = a±(z)g(x), E±g(x) = a±(z)−1g(x). (2.16)

Evidently,

a+(z) =
λ+

β+
+

β+ − λ+

β+
· λ+

λ+ − z
,

and ∫ +∞

0

λ+e−λ+yez(x+y)dy =
λ+

λ+ − z
ezx.

Hence, A+ acts on exponential g as follows

(A+g)(x) =
λ+

β+
g(x) +

β+ − λ+

β+

∫ +∞

0

λ+e−λ+yg(x + y)dy. (2.17)

Similarly,

(A−g)(x) =
λ−

β−
g(x) +

β− − λ−

β−

∫ 0

−∞
(−λ−)e−λ−yg(x + y)dy, (2.18)

(E+g)(x) =
β+

λ+
g(x) +

λ+ − β+

λ+

∫ +∞

0

β+e−β+yg(x + y)dy, (2.19)

(E−g)(x) =
β−

λ−
g(x) +

λ− − β−

λ−

∫ 0

−∞
(−β−)e−β−yg(x + y)dy. (2.20)

Note that we can use (2.17)–(2.20) to define A±g(x) and E±g(x) for any mea-
surable g that satisfies (2.6)–(2.7). It is obvious that E+ = (A+)−1, and
E− = (A−)−1 and vice versa, and (2.15) can be written as

E = A−1 = E+E− = E−E+. (2.21)

Using (2.21), we can find the solution to the Bellman equation (2.3) in two steps:
first, calculate g1(x) = (E+g)(x), and then

u(x) = (E−g1)(x) = E−E+g(x). (2.22)

Alternatively, we may calculate g2(x) = (E−g)(x) first, and then

u(x) = (E+g2)(x) = E+E−g(x). (2.23)

We conclude this subsection by the list of important properties of operators E±
and A±. The first statement is immediate from (2.17)–(2.20).

Proposition 2.1 (a) If g(x) = 0 ∀ x ≥ h, then ∀ x ≥ h

(E+g)(x) = 0, (A+g)(x) = 0. (2.24)

(b) If g(x) = 0 ∀ x ≤ h, then ∀ x ≤ h

(E−g)(x) = 0, (A−g)(x) = 0. (2.25)
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Denote by Y + and Y − random variables on R+ and R−, respectively, with the
distributions

F+(dy) =
β+

λ+
δ(dy) +

λ+ − β+

λ+
β+e−β+y1(0,+∞)dy,

and

F−(dy) =
β−

λ−
δ(dy) +

λ− − β−

λ−
(−β−)e−β−y1(−∞,0)dy,

where δ(dy) is a unit point mass at zero. F±(dy) are probability distributions
since β+/λ+ > 0, (λ+ − β+)/λ+ > 0, β+/λ+ + (λ+ − β+)/λ+ = 1, β−/λ− > 0,
(λ− − β−)/λ− > 0, and β−/λ− + (λ− − β−)/λ− = 1.

Using (2.17)–(2.20) once again, we obtain

Proposition 2.2 The operators E± admit the representations

(E+g)(x) = E[g(x + Y +)], (2.26)

(E−g)(x) = E[g(x + Y −)]. (2.27)

Corollary 2.3 a) If g(x) ≥ 0 ∀x, then (E+g)(x) ≥ 0, ∀x. If, in addition, there
exists x0 such that g(x) > 0 ∀x > x0, then (E+g)(x) > 0 ∀x.

b) If g(x) ≥ 0 ∀x, then (E−g)(x) ≥ 0, ∀x. If, in addition, there exists x0

such that g(x) > 0 ∀x < x0, then (E−g)(x) > 0 ∀x.
c) If g is monotone, then E+g and E−g are also monotone.

2.2 Payoff stream that is lost when a threshold is crossed
from above

Assume that the payoff stream g(Xt) is a continuous non-decreasing function of
Xt, the typical example being a firm facing demand uncertainty and a constant
variable cost. Let G be the rate of output, and C the variable cost. For high
levels of the log-price of the firm’s output, Xt, the profit flow g(Xt) = GeXt −C
is positive, and for low levels, it is negative. Should the (log) price fall sufficiently
low, to a certain level h, it may become optimal to cease production. Fix h, a
candidate for the exit threshold (the optimal choice of h will be analyzed in the
next subsection), and denote by V (x; h) the value of the firm with this choice of
the exit threshold. In the region x > h, the value of the firm, V (x; h), obeys the
Bellman equation

V (x; h) = g(x) + qEx[V (X1;h)].

After the exit, the value is zero:

V (x; h) = 0, x ≤ h. (2.28)

It is convenient to solve the problem for the normalized value function V(x; h) =
(1− q)V (x; h):

(1− q)−1(I − qT )V(x; h) = g(x), x > h, (2.29)
V(x; h) = 0, x ≤ h. (2.30)
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The Bellman equation (2.29) is similar to the Bellman equation (2.1) for the
values of the firm which exists forever, but unlike the latter, the former holds
for x > h only.

For a set U , denote by 1U the indicator function of U and the multiplication
operator by the same function. The next theorem, which explains the essence
of the Wiener-Hopf factorization method, states that V can be calculated by
a formula which is similar to (2.22); the new element is the multiplication-by-
1(h,+∞)-operator, which must be inserted between the factors E− and E+.

Theorem 2.4 Assume that conditions (2.6)–(2.8) hold. Then a solution to the
problem (2.29)–(2.30) in the class of measurable functions satisfying (2.6)–(2.7)
exists. It is unique and given by

V(x; h) = (E−1(h,+∞)E+g)(x). (2.31)

Remark 2.1. a) From the technical point of view, the calculation of the solution
to the problem (2.29)–(2.30) is no more difficult than the calculation of the value
of the firm which never stops producing:

(1) calculate g1 = E+g:

g1(x) =
β+

λ+
g(x) +

λ+ − β+

λ+

∫ +∞

0

β+e−β+yg(x + y)dy;

(2) set g2(x) = g1(x) for x > h, and g2(x) = 0 for x ≤ h;
(3) calculate V = E−g2:

V(x) =
β−

λ−
g2(x) +

λ− − β−

λ−

∫ 0

−∞
(−β−)e−β−yg2(x + y)dy.

Notice that now we may not inverse the order of application of E+ and E−; the
inverse order appears when we solve the problem for a stream which is abandoned
as Xt reaches a certain threshold h from below; and then we use the indicator
function 1(−∞,h) instead of 1(h,+∞).

b) The representation of the normalized EPV in the form (2.31) is convenient
for the choice of the optimal exercise boundary. Using the (independent) random
variables Y + and Y −, we can write (2.31) in another form

V(x; h) = E
[
1(h,+∞)(x + Y −)g(x + Y − + Y +)

]
. (2.32)

Proof of Theorem 2.4. Here we will use properties stated in Proposition 2.1.
Rewrite equation (2.29) as

(AV)(x;h) = g(x) + g−(x), ∀x,

where g− ∈ L∞(R) vanishes for x > h. Equivalently,

(A+A−V)(x;h) = g(x) + g−(x), ∀ x. (2.33)

Multiply (2.33) by the inverse E+ to A+:

(A−V)(x; h) = (E+g)(x) + (E+g−)(x), ∀ x. (2.34)
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Since g−(x) = 0 for x > h, we have E+g−(x) = 0, x > h, on the strength of
(2.24). Therefore

(A−V)(x;h) = (E+g)(x), ∀ x > h. (2.35)

Multiply (2.35) by 1(h,+∞). Since V(x; h) = 0, x ≤ h, we have (A−V)(x; h) =
0, x ≤ h (see (2.25)). Thus, the LHS in (2.35) does not change, and (2.35)
becomes

(A−V)(x; h) = 1(h,+∞)(x)E+g(x), ∀ x. (2.36)

Now it remains to apply the inverse E− = (A−)−1 to obtain (2.31). Note that
(2.28) holds in view of (2.25). Theorem 2.4 has been proved.

Now we are in a position to determine the optimal exit threshold, h∗. Assume
that

g(+∞) > 0 and g(−∞) < 0 (2.37)

(one limit or both may be infinite; in the example of a firm under the demand
uncertainty, only g(+∞) is infinite). Set w = E+g. From (2.31), we have

V(x; h) = E[(1(h,+∞)w)(x + Y −)], (2.38)

where Y − is the random variable on R− defined after Proposition 2.1. Clearly,
the larger the value of the product 1(h,+∞)w, the larger is the value V(x;h).
Hence, the optimal choice of h should replace all negative values of w by zero,
and leave positive ones as they are. By assumption, g is continuous and non-
decreasing, therefore, by Corollary 2.3, w is also continuous and non-decreasing.
Properties (2.37) ensure that w changes sign. Moreover, w can be locally con-
stant only if g(x) is constant above a certain level x0, but even then w is strictly
increasing on (−∞, x0). Hence there exists a unique zero, h∗, of function w, and
w(x) < 0, ∀x ≤ h∗, w(x) > 0, ∀x > h∗. We have proved

Theorem 2.5 Let the payoff stream g(Xt) be an increasing function of Xt, that
satisfies (2.6)–(2.8). Then the optimal exit threshold is a unique solution to

w(h∗) = (E+g)(h∗) = E[g(h∗ + Y +)] = 0, (2.39)

where Y + is the random variable on R+ defined after Proposition 2.1, and the
normalized rational value of the stream is given by (2.31) with h = h∗.

We would like to emphasize that here uncertainty is modeled as a random walk,
nevertheless equation (2.39) for the optimal exercise boundary is of almost the
same form as in many fields of economics, where uncertainty is modeled as
random draws from a stationary probability distribution. Also we stress that
contrary to the Brownian motion model, the exercise boundary in the present
model is not necessarily the price at which the option is exercised. It is optimal
to exercise the option the first time τ such that Xτ ≤ h∗.
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2.3 Payoff stream that is lost when a threshold is crossed
from below

Consider the case of a decreasing g; an example is the profit flow of a firm with
uncertainty on supply side. The price of the firm’s output, P , is constant and
the variable cost C follows a geometric random walk. The instantaneous profit
g(Xt) = PG− eXt is a decreasing function of Xt, and it is positive for low levels
of Xt and negative for high levels of Xt. It may be optimal to exit should the
cost level become too high. Assuming that the exit threshold is given, writing
down the Bellman equation, and repeating all the steps in Subsection 2.2 with
(−∞, h), E− and E+ in place of (h, +∞), E+ and E−, respectively, we obtain

Theorem 2.6 Let the payoff stream g(Xt) be a decreasing function of Xt, that
satisfies (2.6)–(2.8). Then the optimal exit threshold is a solution to

(E−g)(h∗) = E[g(h∗ + Y −)] = 0, (2.40)

and the normalized rational value of the stream is

V(x, h∗) = (E+1(−∞,h∗)E−g)(x). (2.41)

2.4 Alternative interpretation of the optimal exit rule

In Appendix C, we prove that the operators E± admit another interpretation
as normalized EPV-operators under supremum and infimum processes X̄t =
max0≤s≤t Xs and Xt = min0≤s≤t Xs, respectively:

E+g(x) = (1− q)E


∑

t≥0

qtg(X̄t) | X0 = x


 , (2.42)

E−g(x) = (1− q)E


∑

t≥0

qtg(Xt) | X0 = x


 . (2.43)

Now, if the payoff stream is a non-decreasing function of the underlying stochas-
tic factor, then the optimal exit rule can be formulated as follows: starting from
the current value X0 = x, consider all sample paths of the process Xt, and along
each sample path, disregard all temporary drops of Xt. Then calculate the EPV
of the stream, and if it is non-positive, give up the right for the stream. It
looks as if a firm’s manager contemplating an exit is too optimistic. However,
the same manager becomes too pessimistic when making investment decisions.
See Subsection 2.5, where the investment rule is expressed in terms the infimum
process for the profit flow.

If the payoff stream is a non-increasing function of the underlying factor, then
the exit decision is stated in terms of the infimum process for the underlying
process Xt. However, in terms of the payoff stream gt = g(Xt), the exit rule is
stated in terms of the supremum process, as in the case of a non-decreasing g.

12



2.5 Payoff stream that starts to accrue at random time

Suppose that we want to price the stream of payoffs that starts to accrue after
the underlying stochastic factor, Xt, crosses a certain barrier, h. First, we let
the payoff stream g to be an increasing function of Xt, a typical example being
investment into a firm specific technology under demand uncertainty. Let h be
the investment threshold, and τh the random time when Xt reaches h or crosses
it from below the first time. The value of the option to invest is

v(x) = Ex

[ ∞∑
t=τh

qtg(Xt)

]
.

We can represent v(x) in the form

v(x) = Ex

[ ∞∑
t=0

qtg(Xt)

]
+ Ex

[
τh−1∑
t=0

qtg1(Xt)

]
, (2.44)

where g1(Xt) = −g(Xt) is a decreasing function of Xt. The first term in (2.44)
is independent of h, and the second term is the value of the stream that is
abandoned at random time τh. Therefore the optimal exercise rule for this option
is: invest when the current level x of X satisfies (E−g1)(x) ≤ 0, equivalently
(E−g)(x) ≥ 0. Therefore the optimal investment threshold h∗ is the solution to
the equation E−g(h∗) = 0. Multiplying (2.44) by (1− q), and using (2.41) with
g1 instead of g, and (2.21), we obtain

(1− q)v(x) = Eg(x) + (E+1(−∞,h∗)E−g1)(x) = (E+E− − E+1(−∞,h∗)E−)g(x).

Finally, since 1− 1(−∞,h∗) = 1([h∗,+∞), we derive

V(x; h∗) := (1− q)v(x) = E+1[h∗,+∞)E−g(x). (2.45)

Theorem 2.7 Let the payoff stream be an increasing measurable function sat-
isfying (2.6)–(2.8). Then it is optimal to exercise the right for the stream when
(E−g)(Xt) becomes non-negative, and the normalized option value is given by
(2.45), where h∗ is the solution to the equation E−g(h∗) = 0.

Now, suppose that the payoff stream is a decreasing function of the underlying
stochastic factor, a typical example being investment under supply uncertainty.
Straightforward modification of the reasoning above gives

Theorem 2.8 Let the payoff stream be a decreasing function satisfying (2.6)–
(2.8). Then it is optimal to exercise the right for the stream when (E+g)(Xt)
becomes non-negative, and the normalized option value is

V(x, h∗) = E−1(−∞,h∗]E+g(x), (2.46)

where h∗ is the solution to the equation (E+g)(h∗) = 0.
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2.6 General random walks

For a general random walk, the operators E± are defined by (2.42)–(2.43), in
terms of the supremum and infimum processes, and they can be applied to
a measurable stream g that satisfies (2.6)– (2.8). Propositions 2.1, 2.2 and
Corollary 2.3, hence, the main theorems above are valid. The proof of Theorem
2.4 in the general case contains additional subtle points (see [10] and [9]) but
the proof of Theorem 2.5 can be repeated word by word. Explicit formulas for
the action of E±g, when the probability densities of positive and negative jumps
given by exponential polynomials, are given in Appendix B.

2.7 Expected waiting time

Consider an option to acquire a stream of payoffs g(Xt), where g is an increasing
function. Assume that the current value X0 = x < h∗, and consider the waiting
time Rx till the option will be exercised. This is the random variable defined
by Rx = min{t > 0 | Xt ≥ h∗}. The expected waiting time can be calculated as
follows:

E[Rx] = Ex

[ ∞∑
t=0

1(−∞,h∗)(X̄t)

]
= lim

q→1−0
Ex

[ ∞∑
t=0

qt1(−∞,h∗)(X̄t)

]

= lim
q→1−0

1
1− q

E+1(−∞,h∗)(x) = lim
q→1−0

1
1− q

∫ h∗−x

0

p+
q (y)dy,

where p+
q is the probability density of Y + = Y +(q). Notice that here one must

consider the process under the historical measure and not a risk-neutral one,
and q above is just an auxiliary parameter needed for computational purposes.
If the transition density is given by exponential polynomials on each of half-axis,
then the limit can be easily calculated. In particular, if the transition density is
given by (2.19), we obtain for x < h∗:

1
1− q

∫ h∗−x

0

p+
q (y)dy =

(1− e−β+(q)(h∗−x)) + e−β+(q)(h∗−x)β+(q)/λ+

1− q
,

where β+ = β+(q) is given by (2.12). Both terms in the numerator are positive,
therefore, if β+(q)/(1 − q) is unbounded as q → 1, the limit is clearly infinite,
and hence, the expected waiting time is infinite. From (2.12), we find that
E[Rx] < +∞ iff λ− + λ+ < 0. If λ− + λ+ < 0, we obtain

β+(q) =
λ+λ−

λ+ + λ−
(1− q) + O((1− q)2),

and therefore
E[Rx] =

1
m

(h∗ − x + 1/λ+), (2.47)

where m = 1/λ+ + 1/λ− = E[X1 −X0]. Condition λ− + λ+ < 0 admits a clear
interpretation: the expected waiting time is finite iff the drift of the underlying
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factor, m, is positive, and if it is positive, then (2.47) says that the expected
waiting time is inversely proportional to the drift. It is also proportional to the
distance to the barrier plus a constant term 1/(mλ+) = 1/(1 − c−/c+) > 0,
which increases with the frequency of downward jumps.

3 Investment lags

Typically, models of irreversible investment assume that a project is brought on
line immediately after the decision to invest is made. In fact, in many instances
investments take time, which is referred to as “time-to-build”, “construction
lag”, and “gestation period”. In [4], it is shown numerically that conventional
results on the effect of price uncertainty on investment are weakened or reversed
if there are lags in investment. That model is set in continuous time and the
underlying stochastic factor follows a geometric Brownian motion. We are going
to demonstrate similar effects analytically in discrete time, and correct certain
general claims made in [4].

Let the project completion take n periods after the decision to invest has
been made. When the project is completed, the firm will produce 1 unit of
output every period and sell the output at the spot price P = ex. The marginal
cost of production, w is constant. The fixed cost of production, I, has to be
paid in equal installments during the construction period. The present value
of the deterministic stream of payoffs I/n that accumulates for n periods is
(1 − q)−1(1 − qn)I/n. Clearly, such a value is generated by a perpetual stream
(1−qn)I/n. The future value (at date t = n) of this stream is q−n(1−qn)I/n. If
the investment is made at the spot price P = ex, then the expected firm’s profit
at date t = n will be

Ex[eXn ]− w − 1− qn

qn
· I

n
= M(1)nex − w − 1− qn

qn
· I

n
.

Discounting n periods back, we may write the payoff flow as

g(x) = qn

(
M(1)nex − w − 1− qn

qn
· I

n

)
.

The investment threshold, h∗, is defined by (2.40):

(E−g)(h∗) = qn

(
M(1)nκ−q (1)eh∗ − w − 1− qn

qn
· I

n

)
= 0,

equivalently,
κ−q (1)eh∗ = M(1)−n(w + I(q−n − 1)/n). (3.1)

It is natural to assume that M(1) > 1, which means that the expected revenue
increases with time. Thus, the first factor on the RHS decreases with the in-
vestment lag. Since (q−n − 1)/n =

∑
j≥1(− log q)jnj−1/j!, the second factor

on the RHS increases with n, and so one may expect that the overall effect of
the investment lag is ambiguous. Since qM(1) < 1 (otherwise, the value of the
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project is infinite), we conclude that in the region of very large investment lags,
the investment threshold increases with n, and the intuition is clear: part of the
investment cost is suffered in the first period, and although it is the n-th part
of the total cost, this part will outweigh the potential benefits which will be ex-
ponentially discounted over a long time interval. For moderate investment lags,
the situation is more interesting. Assume that the time period in the model is
not very large (say, a day, week or month). Then the discount factor per period,
q, is close to one. Assume further that n is not very large so that the product
−n log q is small (less than 1/3, say; for reasonable values of the discount factor,
this means that the lag is 3-4 years or smaller). Then the product n log M(1) is
also small because qM(1) < 1, and we can use the Taylor formula and derive an
approximation to the RHS in (3.1) of the form

w + I(− log q) + n[−(w + I(− log q)) log M(1) + (log q)2I/2].

We see that if the investment lag is moderate, then the investment threshold is
an increasing or decreasing function in n depending on the sign of the difference
(log q)2I/2−(w+I(− log q)) log M(1). For instance, if the prospects are not very
good: log M(1) is much smaller than − log q, and the fixed cost I is relatively
large with respect to the variable cost w, then the investment threshold may
increase when the lag increases. However, if the prospects are bright: log M(1) >
− log q/2, then the investment threshold decreases for all w and I. We conclude
that depending on the characteristics of the project, “time-to-build” increases
or decreases the investment threshold.

The effect of uncertainty (measured by the variance of X) can be described
in a simpler fashion. For any length of the construction period, there exists a
critical value of the variance of the underlying stochastic factor such that for
all the variances below the critical value, the investment threshold increases if
the uncertainty measured by the variance increases. For all the variances higher
than the critical value, the investment threshold decreases in uncertainty, so that
it may even drop below the certainty investment barrier. Thus, a general claim
[4], p.617: “Unless abandonment is possible, an increase in uncertainty always
delays investments” is not quite correct.

Let the transition density for X be given by (2.9). For simplicity assume
that λ+ = −λ− (positive and negative jumps, on average, have the same size),
and set l = (λ+)−1 = −(λ−)−1. (This is the average size of jumps. Since
λ+ > 1, we have l ∈ (0, 1).) We have E[Y1] = (λ+)−1 + (λ−)−1 = 0, and
var(X1) = (λ+)−2 + (λ−)−2 = 2l2. Clearly, the bigger the size of an average
jump, the larger is the variance. In other words, uncertainty increases if jumps
become bigger on average. We rewrite (3.1) as

M(1)nκ−q (1)eh∗ = w + (q−n − 1)I/n. (3.2)

In (3.2), the RHS is independent from l. We only need to study the product
M(1)nκ−q (1) as a function of l. From (2.10),

M(1) =
λ+λ−

(λ+ − 1)(λ− − 1)
=

1
1− l2

.
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Next, using (2.12), we find β− = −√1− q/l, so that from (2.14)

κ−q (1) =
(λ− − 1)β−

λ−(β− − 1)
=

1 + l

1− 1/β−
=

1 + l

1 + l/
√

1− q
.

Straightforward calculations show that M(1)nκ−q (1) is decreasing in l (hence h∗

is increasing in l) on the interval where

2n√
1− q

l2 + (2n +
1√

1− q
− 1)l − 1/

√
1− q + 1 < 0. (3.3)

Given the “construction lag”, n, (3.3) specifies the interval for the level of un-
certainty, where the conventional intuition concerning the behavior of the in-
vestment threshold applies. When the critical level lup (the positive root of the
quadratic polynomial on the LHS) is crossed, the investment threshold starts to
decrease with uncertainty. We must observe the condition β+ =

√
1− q/l > 1,

therefore we need lup <
√

1− q. It can be shown that this condition is satisfied
if 4n(− log q) is of order 1. Since n(− log q) = Tr, where r is the discount rate in
the corresponding continuous time model, and T is the investment lag in years,
the effect of the decrease of the investment threshold with the further increase
of uncertainty can be observed for investment lags of several years.

Since M(1) → +∞ as l → 1, we see that for any given n, there exists another
critical value lc > lup such that for all l ∈ (lc, 1), (M(1))nκ−q (1) > 1, i.e., the
investment threshold drops below the investment threshold in the case of no
uncertainty (l = 0). This possibility can realize only when lags are large and/or
future is discounted heavily.

4 Incremental capital expansion and expected
capital stock

Consider an operating firm whose production function depends only on capital:
G(K) = dKθ, where d > 0 and θ ∈ (0, 1). A similar situation was considered
in [2] for a two-period model of partially reversible investment, in [17] for the
geometric Brownian motion model, and in [6] for Lévy processes. At each time
period t, the firm receives eXtG(Kt) from the sales of its product, and, should
it decide to increase the capital stock, suffers the installation cost C · (Kt+1 −
Kt). The firm’s objective is to chose the optimal investment strategy K =
{Kt+1(Kt, Xt)}t≥1,K0 = K,X0 = x, which maximizes the NPV of the firm:

V (K, x) = sup
K

Ex


∑

t≥0

qt(eXtG(Kt)− C(Kt+1 −Kt))


 . (4.1)

Here we treat the current log price x and capital stock K as state variables,
and K as a sequence of control variables. Due to irreversibility of investment,
Kt+1 ≥ Kt, ∀t. To ensure that firm’s value (4.1) is bounded, we assume that
qM(1) < 1, and β+ > 1/(1− θ), where β+ was defined by (2.12).
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Formally, the manager has to choose both the timing and the size of the
capital expansion. However, it is well-known (see, for example, [17]) that for
each level of the capital stock, it is only necessary to decide when to invest.
The manager’s problem is equivalent to finding the boundary (the investment
threshold), h(K;C), between two regions in the state variable space (K, x):
inaction and action ones. For all pairs (K, x) belonging to the inaction region, it
is optimal to keep the capital stock unchanged. In the action region, investment
becomes optimal. To derive the equation for the investment boundary, suppose
first that every new investment can be made in chunks of capital, ∆K, only.
In this case, the firm has to suffer the cost C∆K, and the EPV of the revenue
gain due to the investment of a chunk of capital can be represented in the
form of the EPV of the stream g(Xt) = qM(1)(G(K + ∆K) − G(K))eXt −
(1 − q)C∆K. Thus, the multi-shot investment problem reduces to the one-
shot problem studied above3. On the strength of (2.40), the optimal exercise
boundary is determined from the equation (E−g)(x) = 0, which can be written
as

qM(1)(G(K + ∆K)−G(K))κ−q (1)ex = (1− q)C∆K. (4.2)

Dividing by ∆K in (4.2) and passing to the limit, we obtain the equation for
the optimal threshold, h∗ = h∗(K):

qM(1)κ−q (1)G′(K)eh∗ = C(1− q),

which for the given form of production function reduces to

qM(1)κ−q (1)θdKθ−1eh∗ = C(1− q). (4.3)

Set

B =
qM(1)κ−q (1)θd

1− q
,

then the optimal exercise price is

eh∗ = eh∗(K) =
CK1−θ

B
. (4.4)

The rigorous justification of this limiting argument can be made exactly as in
the continuous time model in [6]. Let h = h(K;∆) be the solution to (4.2).
Then, on the strength of (2.45), the option value associated with the increase of
the capital by ∆K, at the price level ex < eh∗ , is

(1−q)−1E+1[h∗,+∞)(x)
(
qM(1)(G(K + ∆K)−G(K))κ−q (1)ex − (1− q)C∆K

)
.

As ∆K → 0, we have h = h(K; ∆) → h∗(K); therefore, dividing by ∆K and
passing to the limit, we obtain the formula for the derivative of the option value
of future investment opportunities w.r.t. K:

V opt
K (K, x) = (1− q)−1E+1[h∗,+∞)(x)

(
qM(1)G′(K)κ−q (1)ex − (1− q)C

)

= E+1[h∗,+∞)(x)
(
BKθ−1ex − C

)
. (4.5)

3The authors are indebted for this simplifying trick to Mike Harrison; our initial proof was
more involved.
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Equations (4.4) and (4.5) imply together that

V opt
K (K, x) = Ce−h∗E+1[h∗,+∞)(x)

(
ex − eh∗

)
. (4.6)

Let u(x) = 1[h∗,+∞)(x)
(
ex − eh∗

)
. Then for x < h∗,

(E+u)(x) =
β+(λ+ − β+)

λ+

∫ +∞

0

e−β+y1[h∗,+∞)(x + y)
(
ex+y − eh∗

)
dy

=
β+(λ+ − β+)

λ+

[
ex

∫ +∞

h∗−x

e(1−β+)ydy − eh∗
∫ +∞

h∗−x

e−β+ydy

]

=
(λ+ − β+)

λ+
· eβ+(x−h∗)+h∗

β+ − 1
.

Now we may substitute (E+u)(x) into (4.6) and using (4.4) derive

V opt
K (K, x) =

(λ+ − β+)C
λ+(β+ − 1)

eβ+(x−h∗) =
(λ+ − β+)C
λ+(β+ − 1)

(
B

C

)β+

Kβ+(θ−1)eβ+x.

Integrating w.r.t. K, we derive the option value of investment opportunities:

V opt(K, x) =
(λ+ − β+)C
λ+(β+ − 1)

(
B

C

)β+

eβ+x

∫ +∞

K

kβ+(θ−1)dk

=
(λ+ − β+)CK1−β+(1−θ)

λ+(β+ − 1)(β+(1− θ)− 1)

(
B

C

)β+

eβ+x (4.7)

Given the spot price P = ex, the value of the firm with the capital stock K is
the EPV of the stream of revenues, calculated under the assumption that the
capital stock remains constant in the future, plus the option value of investment
opportunities:

V (K, x) =
dKθex

1− qM(1)
+ V opt(K, x). (4.8)

Our next goal is to determine the optimal amount of investment and the
dynamics of the capital stock. As it was stressed in [20], the benchmark models
of uncertainty introduced in [17] do not suggest specific predictions about the
level of investment. Since the investment rule itself is not observable, one has to
use the data on investment and capital stock to evaluate investment models. In
[3] the behavior of the capital stock of a new born firm in a Gaussian model is
examined. Paper [7] does the same for the case when the uncertainty is modeled
as a Lévy process. In both cases, fairly sophisticated mathematical techniques
are used. Below, we obtain the recurrent formulas for the expected value of
capital at any time period in the future by using the elementary calculus.

Direct calculations show at the moment of entry, the firm will install the
stock of capital given by:

BKθ−1ex = C, (4.9)
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and the firm’s value is a function of the spot price only:

V (x) = Cδ

(
B

C

) 1
1−θ

e
x

1−θ , (4.10)

where

δ =
κ+

q (1)
qM(1)θ

+
λ+ − β+

λ+(β+ − 1)(β+(1− θ)− 1)
.

Let I be the fixed cost of entry, which can be viewed as a deterministic stream
of expenditures (1− q)I to which the investor commits at the time of entry. By
(2.40), it is optimal to enter when (E−(V (·)− (1− q)I)) (x) = 0, equivalently

Cδ

(
B

C

) 1
1−θ

κ−q (1/(1− θ))e
x

1−θ = (1− q)I,

therefore the price that triggers new entry is

ehe =
[

(1− q)I
Cδκ−q (1/(1− θ))

]1−θ
C

B
. (4.11)

Denote the moment of entry t = 0. Since investment is irreversible, the capital
stock cannot be decreased, and it is increased when (and only when) the supre-
mum process X̄t jumps. Therefore, after the entry, the capital stock dynamics
is given by

Kt =
(

B

C

) 1
1−θ

e
X̄t
1−θ = K0e

X̄t−X0
1−θ .

The expected capital stock at time t > 0 is

E[Kt] = K0E
[
e

X̄t−X0
1−θ

]
= K0E

[
e

X̄t
1−θ | X0 = 0

]
.

Using equations (2.16) and (2.42), we may write

∞∑
t=0

qtE
[
e

X̄t
1−θ | X0 = 0

]
=

κ+
q (1/(1− θ))

1− q
. (4.12)

Equation (4.12) tells us that in order to find the expected stock of capital at any
time t, one needs to know the coefficients ct of the Taylor series of the function
κ+

q (1/(1− θ))/(1− q): if κ+
q (1/(1− θ)) /(1− q) = 1 +

∑∞
t=1 ctq

t, then

E[Kt] = K0E
[
e

X̄t
1−θ | X0 = 0

]
= ctK0.

To find ct, recall that

κ+
q

(
1

1− θ

)
=

(
λ+ − 1

1−θ

)
β+(q)

λ+
(
β+ − 1

1−θ

) =
λ+(1− θ)− 1

(1− θ)λ+

[
1 +

1
β+(q)(1− θ)− 1

]
,

(4.13)
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where β+(q) is given by (2.12). We can write

β+(q) =
λ+ + λ−

2
+

λ+ − λ−

2

(
1 +

4λ+λ−

(λ+ − λ−)2
q

)1/2

. (4.14)

Set A = 2λ+λ−/(λ+−λ−)2, then the square root on the RHS can be written as

(1 + 2Aq)1/2 = 1 +
∞∑

t=1

atq
t, (4.15)

where a1 = 1, and for t > 1, at = At(−1)t−1(2t − 3)(2t − 5) · · · 3 · 1/t!. Using
(4.14) and (4.15), we derive β+(q) = λ+ + 0.5(λ+ − λ−)

∑∞
t=1 atq

t, and

β+(1− θ)− 1 =
(
λ+(1− θ)− 1

)
(

1 + γ

∞∑
t=1

atq
t

)
, (4.16)

where γ = (λ+ − λ−)(1− θ)/ (λ+(1− θ)− 1) /2. Next, we define b1, b2, . . ., by

(
1 + γ

∞∑
t=1

atq
t

)−1

= 1 +
∞∑

t=1

btq
t. (4.17)

Straightforward computations show that bt can be calculated recurrently

bt = −γ

t∑

k=1

akbt−k, (4.18)

where b0 ≡ 1. Substituting (4.17) into (4.16), and (4.16) into (4.13), we obtain
the Taylor series for κ+

q (1/(1− θ)):

κ+
q (1/(1− θ)) = 1 + (λ+(1− θ))−1

∞∑
t=1

btq
t.

Finally, we write

κ+
q (1/(1− θ))

1− q
= κ+

q (1/(1− θ))

(
1 +

∞∑
t=1

qt

)
= 1 +

∞∑
t=1

ctq
t,

where

ct = 1 +
1

λ+(1− θ)

t∑
n=1

bn = E
[
e

X̄t
1−θ | X0 = 0

]
(4.19)

are the coefficients in the formula for the expected value of the capital at time t.
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A Optimality in the class of all stopping times

We consider the option to acquire a stream g, which is an increasing function of
the stochastic factor. Denote by G the normalized EPV of the stream g. Then
V(x, h∗) is the value of the perpetual option with the instantaneous payoff G.
According to Lemma on p.1364 in [14], to prove the optimality of V(x, h∗) given
by (2.45), it suffices to check the following two conditions:

V(x, h∗) ≥ max{G(x), 0}, ∀ x (A.1)

(the option value is non-negative, and not less than the payoff), and

(1− q)−1(I − qT )V(x, h∗) ≥ 0, ∀ x, (A.2)

that is, the discounted value tomorrow is not higher than the value today. By
our choice of h∗, w(x) = E−g(x) ≥ 0 for all x ≥ h∗, therefore V(x, h∗) =
E+1[h∗,+∞)w(x) ≥ 0 for all x. Further,

V(x, h∗) = E+E−g(x)− E+1(−∞,h∗)w(x) = Eg(x)− v(h∗; x) = G(x)− v(h∗; x),

where v(h∗; x) = E+1(−∞,h∗)w(x). Due to the choice of h∗, we have w(x) < 0
∀x < h∗, so that v(h∗;x) ≤ 0 for all x, and hence V(h∗; x) ≥ G(x) for all x. We
conclude that (A.1) holds. Under a very weak regularity assumption on p, it is
proved in [10] that for any h,

V(x, h) = qTV(x, h), x < h. (A.3)

Using more elaborate arguments as in [9] and [8] in a continuous time model,
one can prove that (A.3) holds if the probability density p exists. Thus, (A.2)
holds on (−∞, h∗), and it remains to verify (A.2) for x ≥ h∗. Introduce W (x) =
(1−q)−1(I−qT )V(h∗; x). Using equalities E = (1−q)(I−qT )−1 and E = E+E−,
we obtain

W (x) = (E+E−)−1E+1[h∗,+∞)E−g(x) = (E−)−11[h∗,+∞)E−g(x), (A.4)

and also

W (x) = (1− q)−1(I − qT )E+E−g(x)− (1− q)−1(I − qT )E+1(−∞,h∗])E−g(x)

= g(x) + (1− q)−1(−I + qT )E+1(−∞,h∗)E−g(x).

But if a function u vanishes outside (−∞, h), then E+u(x) = 0, x ≥ h, as well.
Therefore, for x ≥ h∗,

W (x) = g(x) + q(1− q)−1TE+1(−∞,h∗)E−g(x). (A.5)

By our standing assumption, g is non-decreasing, hence from (A.5), W (x) is
non-decreasing on [h∗,+∞). We apply E− to (A.4) and obtain

1[h∗,+∞)E−g(x) = E−W (x) = (1− q)E

[ ∞∑
t=0

qtW (x + Xt)

]
. (A.6)
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Suppose that W (h∗) < 0. Then there exists h1 > h∗ such that W (x) ≤ 0 for all
x ∈ (h∗, h1). It follows that for the same x, the RHS in (A.6) is non-positive.
But for these x, the LHS is positive by the very definition of h∗. Hence, our
assumption W (h∗) < 0 is false, and since W is non-decreasing on [h∗,+∞), the
condition (A.2) follows, and the proof of optimality is finished.

B Transition densities given by exponential
polynomials

B.1 The case of three exponentials

In this Subsection, we demonstrate how to obtain the transition density of a
desired shape. The density (2.9) has a kink (and maximum) at the origin. If we
want to have a smooth p (and allow for the maximum to be not at the origin),
we need to use more than two exponential functions. Suppose that we want to
model a density which has the maximum on the positive half-axis. Then we use
one exponential on the negative half-axis, and two on the positive one:

(c+
1 λ+

1 e−λ+
1 x − c+

2 λ+
2 e−λ+

2 x)1(0,+∞)(x)− c−λ−e−λ−x1(−∞,0](x), (B.1)

where c+
1 , c+

2 and c− are positive, and λ− < 0 < λ+
1 < λ+

2 . Later in this
Subsection, we show that for any choice of λ− < 0 < λ+

1 < λ+
2 , equation (B.1)

with c−, c+
1 , c+

2 given by simple formulas (B.6) defines a probability density,
which has the maximum on the positive half-axis. See Figure 1 for an example.
Similarly, one can construct a 3-parameter family of probability densities which
have the maximum on the negative half-axis. Should one wish to have a smooth
probability density which has the maximum at the origin, one must use two
exponential functions on each half-line or exponential polynomials of the form
(ax + b)eγx.

The moment generating function of the probability density (B.1) is

M(z) =
c+
1 λ+

1

λ+
1 − z

− c+
2 λ+

2

λ+
2 − z

+
c−λ−

λ− − z
.

At the end of this subsection we will show that the fundamental rational function
1− qM(z) = 0 has 3 real roots, call them β−, β+

1 and β+
2 . We have

λ− < β− < 0 < β+
1 < λ+

1 < λ+
2 < β+

2 . (B.2)

Clearly, (1− q)/(1− qM(z)) can be represented in the form

1− q

1− qM(z)
=

a+
1

β+
1 − z

+
a+
2

β+
2 − z

+
a−

β− − z
, (B.3)

where a+,j = (1− q)/(qM ′(β+
j )), j = 1, 2, a− = (1− q)/(qM ′(β−)). Hence,

(Eg)(x) =
∑

j=1,2

a+
j

∫ ∞

0

e−β+
j yg(x + y)dy − a−

∫ 0

−∞
e−β−yg(x + y)dy. (B.4)
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Similarly, we can consider a probability density given by linear combinations of
two or more exponents on each of the half-axis. If we use two exponentials for
each, we have two roots β±j , j = 1, 2, of the characteristic equation 1−qM(z) = 0
on each half-axis, and (B.2)–(B.4) change in the straightforward manner. One
can also use more than two exponentials on each axis, and obtain more elaborate
probability densities.

Now we show that any choice λ− < 0 < λ+
1 < λ+

2 defines a probability
density. Three conditions:

∫ +∞
−∞ p(x)dx = 1, p is continuous at 0, and p is

smooth at 0, give a linear system of three equations

c+
1 − c+

2 + c− = 1,

c+
1 λ+

1 − c+
2 λ+

2 + c−λ− = 0, (B.5)
c+
1 (λ+

1 )2 − c+
2 (λ+

2 )2 + c−(λ−)2 = 0.

Using Cramer’s rule, it is easy to find a unique solution (c+
1 , c+

2 , c−) to (B.5):

c− =
λ+

1 λ+
2

(λ+
1 − λ−)(λ+

2 − λ−)
, c+

j =
−λ−λk

(λ+
2 − λ+

1 )(λj − λ−)
, (B.6)

where j 6= k ∈ {1, 2}. It is easily seen that c+
1 , c+

2 and c− are positive, and that
p is positive as well.

The roots of 1− qM(z) are found as follows. Clearly, 1− qM(z) has 3 roots
at most. As z → λ− + 0, 1− qM(z) → −∞, and the same holds as z → λ+

1 − 0,
and as z → λ+

2 + 0. Under condition q ∈ (0, 1), 1 − qM(0) = 1 − q > 0, and
1 − qM(+∞) = 1 > 0. Hence, on each of the intervals (λ−, 0) (0, λ+

1 ), and
(λ+

2 ,+∞), 1− qM(z) changes sign. Therefore, on each of these three intervals,
there is exactly one root, which we have called β−, β+

1 and β+
2 , respectively.

B.2 General scheme for the computation of E+ and E−
Step 1. Calculate the moment-generating function M(z), and consider the
rational function 1 − qM(z). Find the roots of the denominator, λ±j , and the
numerator, β±j , with their multiplicities (sign “+” for the roots on the positive
axis, sign “-” for the ones on the negative axis).
Step 2. Define

κ+
q (z) =

∏

j

λ+
j − z

λ+
j

∏

k

β+
k

β+
k − z

, (B.7)

κ−q (z) =
∏

j

λ−j − z

λ−j

∏

k

β−k
β−k − z

. (B.8)

Step 3. If all the roots β±k are simple, we represent κ+
q (z) and κ−q (z) in the

form

κ+
q (z) = κ+

q (∞) +
∑

k

a+
k

β+
k − z

, κ−q (z) = κ−q (∞)−
∑

k

a−k
β−k − z

, (B.9)
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where

a+
k =

∏

j

λ+
j − β+

k

λ+
j

β+
k

∏

l 6=k

β+
l

β+
l − β+

k

, a−k = −
∏

j

λ−j − β−k
λ−j

β−k
∏

l 6=k

β−l
β−l − β−k

.

The case of multiple roots can be treated similarly.
Step 4. For a continuous g satisfying (2.6), we can calculate

(E+g)(x) = κ+
q (∞)g(x) +

∑

k

a+
k

∫ +∞

0

e−β+
k yg(x + y)dy, (B.10)

and for a continuous g satisfying (2.7), we can find

(E−g)(x) = κ−q (∞)g(x) +
∑

k

a−k

∫ 0

−∞
e−β−k yg(x + y)dy. (B.11)

Under condition (2.8), all the roots β±k are outside [σ−, σ+], therefore (2.6) and
(2.7) ensure the convergence of the integrals in (B.10) and (B.11).

C Proof of (2.42)–(2.43)

It suffices to consider g of the form g(x) = ezx. Define κ̃±q (z) by

κ̃+
q (z) = (1−q)E


∑

t≥0

qtezX̄t | X0 = 0


 , κ̃−q (z) = (1−q)E


∑

t≥0

qtezXt | X0 = 0


 .

We need to show that κ+
q (z) = κ̃+

q (z) and κ−q (z) = κ̃−q (z). We know that (2.15)
holds, and the Wiener-Hopf factorization formula [22] states that

(1− q)/(1− qM(z)) = κ̃+
q (z)κ̃−q (z). (C.1)

Comparing (2.15) and (C.1), we find κ̃+
q (z)/κ+

q (z) = κ−q (z)/κ̃−q (z). The LHS
is analytic in the right complex half-plane Rez > 0, and the RHS - in the left
complex half-plane. The LHS and RHS equal 1 at 0, and continuous up to
the boundary Rez = 0. One of the basic facts of the complex analysis (Morera’s
theorem) implies that both sides equal 1 in the right and left complex half-planes,
respectively.
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