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Abstract

We use an affine asset pricing model to jointly value stocks and bonds. This enables

us to derive endogenous correlations and to explain how economic fundamentals

influence the correlation between stock and bond returns. The presented model

is implemented for G7 post-war economies and its in-sample and out-of-sample

performance is assessed by comparing the correlations generated by the model with

conventional statistical measures. The affine framework developed in this paper is

found to generate stock-bond correlations that are in line with empirically observed

figures.
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1 Introduction

The research on the pricing of fixed-income securities and equities has traditionally

evolved along separate lines. Since each of these two research areas was successful in

generating significant innovations, only recently some authors have started to chal-

lenge this clear-cut separation by proposing models that make use of a unifying pricing

theory for stocks and bonds (See Beltratti and Shiller (1992), Bekaert and Grenadier

(2001), Campbell and Viceira (2001), and Mamaysky (2002)). A research topic that

naturally conveys both areas of research is the analysis of cross-market correlations.

Stock-bond correlations are at the core of many financial decisions such as problems

related to risk management and the optimal allocation of financial assets.

In view of the broad spectrum of practical applications and theoretical questions re-

lated to the correlation between stocks and bonds, it is not surprising that a number

of important articles address very different aspects of this research topic. 1 In general,

contributions differ with respect to the scope of the economic foundation and the fo-

cus on statistical fit. We identify three major lines of research: econometric articles,

papers based on fundamental economic models, and articles that uncover empirical

stylized facts of stock-bond correlations.

Prominent contributions that address correlations from an econometric perspective

are the Constant Correlation GARCH of Bollerslev (1990), the BEKK GARCH of En-

gle and Kroner (1995), and the Dynamic Conditional Correlation GARCH of Engle

and Sheppard (2001), among others. Focusing on stock and bond returns, Guidolin

E-mail addresses: sd2123@columbia.edu (S. d’Addona), axel.kind@unisg.ch (A. H. Kind).
1 Since this paper focuses on stock-bond correlations, we do not explicitly discuss the rich
literature on stock-stock correlations. The most important aspects covered in this literature
are financial contagion (e.g. Barberis et al. (2005), Forbes and Rigobon (2002), and Kodres
and Pritsker (2002)), asymmetric correlations (e.g. Ang and Chen (2002), Longin and Solnik
(2001), and Ribeiro and Veronesi (2002)), and applied topics such as optimal asset allocation
decisions (Ang and Bekaert (2002) among others).
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and Timmermann (2005) introduce multiple regimes to allow for a state-dependent

comovement structure between these asset classes. 2 While financial econometrics has

developed powerful and effective tools to analyze, describe, and predict the correla-

tion of individual and aggregate financial series, this line of research has added little

to the economic understanding of the factors driving this correlation.

To explain and understand some of the underlying economic linkages between finan-

cial assets, some authors have proposed valuation models that jointly price these two

assets classes. Barsky (1989) presents the first theoretical model that focuses on the

comovement of stock and bond prices. By setting up a simple, yet ambitious, general

equilibrium model, he states that the stock-bond comovement, which is driven by

productivity shocks and changes in the market risk, crucially depends on the risk-

aversion parameter of the representative investor. Beltratti and Shiller (1992) follow a

simpler approach that is more suitable for being calibrated on data. To derive theoret-

ical correlations between stock prices and long-term bond yields, Beltratti and Shiller

(1992) extend the well known Campbell and Shiller (1988) dividend-ratio model and

jointly price stocks and bonds. In the empirical part of their paper, Beltratti and

Shiller (1992) analyze the US and UK markets and find that the correlations implied

by their model are on average much lower than realized correlations. Using the same

framework, Campbell and Ammer (1993) employ a VAR to decompose the variance-

covariance matrix of excess stock and bond returns. They identify two components

that govern the stock-bond covariance: while unexpected shocks of the real inter-

est rate drive returns of stocks and bonds in the same direction, expected inflation

increases excess stock returns and lowers excess bond returns. Campbell and Am-

mer (1993) investigate the second moments of the innovations in the excess stock

returns and excess ten-year bond returns and obtain, for post-war US data, slightly

2 In a recent contribution, Andersen et al. (2005) provide an extensive survey on correlation
forecasting.
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positive correlations. According to these authors, this finding can be explained by

the low variability of real interest rates and by increases in expected inflation which

drive correlation down. Finally, Fleming et al. (1998) model investors’ demand curves

based on a mean-variance optimization scheme to investigate the information-driven

volatility linkages between stocks and bonds.

Given the limited empirical success of fundamental economic models in explaining

observed correlation and in view of the formal difficulties in maintaining analyti-

cal tractability, a third line of research has recently emerged. It aims at identifying

and understanding stylized facts and historical patterns of the stock-bond correla-

tion by directly focusing on data. Gulko (2002) finds evidence in favor of decoupling

of stock and bonds during stock market crisis, a phenomenon often referred to as

flight-to-quality. Similarly, Connolly et al. (2005a) and Connolly et al. (2005b) obtain

supportive results for the flight-to-quality hypothesis. In particular, they find that

rising stock market uncertainty tends to decrease the comovement between stock and

bonds and thus increase the diversification benefits. On the same lines, David and

Veronesi (2004) and Li (2002) show that uncertainty about macroeconomic factors

(especially expected inflation) has significant predictive power with respect to the

covariance and correlation of stock and bond returns. Finally, Andersen et al. (2004)

investigate the impact of macroeconomic news on stocks and bonds and find that cor-

relation calculated on high frequency data is higher in expansion periods and lower

(and negative) in periods of economic contraction.

In this paper we take an economic approach based on the fundamental valuation of

future expected cash flows and contribute to the second line of research. The general

approach of this paper is similar to both Beltratti and Shiller (1992) and Campbell

and Ammer (1993). However, while those authors apply an extension of the Camp-

bell and Shiller (1988) model, originally developed for pricing equities, to both stocks

and bonds, we address the problem from the opposite direction. As in Bekaert and
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Grenadier (2001), Li (2002), and Mamaysky (2002), we use an affine pricing model,

traditionally employed for pricing fixed-income securities, to jointly value stock and

bond indices. Our contribution is threefold. First, we propose an endogenous formula

for the stock-bond correlation developed in an affine asset pricing framework. This

correlation formula is purely determined by the dynamics of the underlying economic

fundamentals and fully abstracts from historical prices of equities and bonds. The

correlation formula is kept as general as possible by allowing all factors to be corre-

lated with each other and with the pricing kernel. 3 Second, we analyze the effect of

the model parameters on the stock-bond correlation and provide an intuitive under-

standing of those relationships. In contrast to Fleming et al. (1998), all the factors

in our model are observable, which facilitates a straightforward interpretation of the

results. Third, while most model-based correlation studies investigate the US market,

we contribute an empirical analysis of stock-bond correlations performed on G7 post-

war economies and provide evidence that model correlations are in line with empirical

observed figures.

The remainder of the paper is organized as follows. In Section 2 we present the affine

asset pricing framework and derive the theoretical relationships used in the empirical

investigation. Section 3 introduces the data set used for the empirical analysis. In Sec-

tion 4 we describe the estimation procedure and discuss the results of the empirical

investigation. Section 5 concludes. 4

3 In an independent contribution, Li (2002) derives a formula for the covariance of stock
and bond returns in a similar affine setting, using a different modeling of factor correlations.
4 To economize space, proofs, algebraic derivations, and additional empirical results are
provided in the working paper version of this article which is freely downloadable from the
authors’ webpages.
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2 Model

In modern finance the fair price of any asset is calculated as the conditional expec-

tation of its future payoffs multiplied with a stochastic discount factor, or pricing

kernel. Thus, in a discrete time environment, prices can be computed as

P ∗

t = Et[W
∗

t+1M
∗

t+1], (1)

where W ∗

t+1 represents the cash flows generated by the asset in time t + 1 and M∗

t+1

is the stochastic pricing kernel. For the time being let us consider prices and payoffs

as nominal rather than real (i.e. inflation adjusted) quantities. Here and henceforth,

an asterisk denotes nominal variables. The existence of the stochastic discount factor

is ensured by assuming that there are no arbitrage opportunities in the economy.

Conditions for the uniqueness of the kernel are derived in Harrison and Kreps (1979).

By assuming that M∗ is conditionally lognormal we can apply standard arguments

as described in Campbell et al. (1996) and obtain the following general form for the

logarithmic kernel:

−m∗

t+1 = δ + r∗t + ǫm∗

t+1, (2)

where ǫm∗

t+1 ∼ N(0, σ2
m∗

) are the i.i.d. shocks of the nominal pricing kernel, δ = 1
2
σ2

m∗
,

and r∗t is the risk-free interest rate. Due to the relationship between the nominal

and the real stochastic discount factor, m∗ = m − π, it is straightforward to obtain

the expression for the real pricing kernel. To capture the mean reverting nature of

the real short rate, a discrete-time version of the Vasicek (1977) model is adopted:

rt+1 = r + αr (rt − r) + σrε
r
t+1, where r is the unconditional mean of the real short

rate, σr is its conditional volatility, and the error εr
t+1 ∼ N(0, 1) is i.i.d. An analogous

process is chosen for the inflation rate: πt+1 = π+απ (πt − π)+σπε
π
t+1. To account for

the interaction with the inflation, we can represent the real interest rate innovation
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as:

σπεπ
t+1 = βπσrε

r
t+1 + σ̟ǫ̟

t+1, (3)

where βπ is a factor that governs the covariance between rt and πt. The error term

ǫ̟
t+1 ∼ N(0, 1), i.i.d., represents the part of the inflation shocks which is orthogonal

to the real interest rate.

By letting the interest rate and inflation be correlated, we extend the standard affine

pricing models as implemented in Bekaert and Grenadier (2001) and Campbell et al.

(1996). Further, to price the risk associated with inflation, we allow the inflation pro-

cess to be correlated with the real stochastic discount factor. On the contrary, Bekaert

and Grenadier (2001) impose independence between the real kernel and inflation to

obtain neutrality of monetary aggregates. Given the correlation structure among the

interest rate, inflation, and the discount factor, we can conveniently represent the

innovations of the kernel as ǫm∗ = βσrǫ
r
t+1 +βσπǫπ

t+1 +σηǫ
η
t+1, where β is the common

factor of the shocks that governs the covariance between m∗ and r∗. The error term

ǫ
η
t+1 is independently and identically distributed as N(0, 1) and conveys those fluc-

tuations of the nominal pricing kernel which are orthogonal to the real interest rate

and inflation. Since ǫ
η
t+1 only affects the average level of the term structure but not

its slope, we get the following simplified equation for the logarithmic pricing kernel:

m∗

t+1 = −δ − r∗t − βσrǫ
r
t+1 − βσπǫπ

t+1.

2.1 Bonds

A default-free bond price is the sum of a finite stream of known nominal discounted

cash flows and, consequently, its fair value is determined by all variables necessary to

identify the nominal discount rate: real interest rate and inflation. The affine guess

for bond prices we adopt in this paper relates the fair value at time t of a bond with
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maturity n to the relevant state variables in the following way:

−pn∗
t = An + Bnrt + Cnπt. (4)

The roots of the above equation assume the following recursive form:

An = An−1 + δ + (1 − αr) rBn−1 + (1 − απ) π (Cn−1 + 1)−

−1
2

[

(Bn−1 + β)2 σ2
r + (Cn−1 + β)2

σ2
π + 2 (Bn−1 + β) (Cn−1 + β)βπσ

2
r

]

,

Bn = (1−αn
r )

(1−αr)
, and Cn = (1−αn

π)
(1−απ)

α2
π.

(5)

This result proves the validity of the initial affine bond pricing guess in Eq. (4) and

enables us to derive bond returns for any maturity. We now apply the simple definition

of a one-period logarithmic return to a bond with maturity n and obtain

bn−1∗
t+1 = −An−1 − Bn−1rt+1 − Cn−1πt+1 + An + Bnrt + Cnπt. (6)

2.2 Stocks

Stocks can be viewed as an infinite stream of dividends. In contrast to fixed-income

securities, the cash-flow stream of equities is not known in advance and has to be

estimated for valuation purposes. To obtain theoretical stock returns, it is convenient

to consider the real stock price, P s
t , as an expectation of its real future payoffs at time

t + 1:

P s
t = Et[P

s
t+1 exp (dt+1)Mt+1], (7)

where dt = ln
(

1 + Dt

P s
t

)

is the logarithmic dividend yield and Dt is the real dividend

in time t. As noted by Lewellen (2004) and other authors, by ruling out financial
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bubbles, it is economically reasonable to model the dividend yield as an exogenous

mean-reverting stochastic process: dt+1 = d+αd

(

dt − d
)

+σdε
d
t+1.

5 To account for the

interaction with the real interest rate, we can represent the dividend yield innovation

as:

σdε
d
t+1 = βdσrε

r
t+1 + σνǫ

ν
t+1, (8)

where βd is a factor that governs the covariance between rt and dt. The error term ǫν
t+1

is independently and identically distributed as N(0, 1) and represents the orthogonal

part of the dividend yield fluctuations with respect to the real interest rate and the

pricing kernel.

Unlike bonds, the affine pricing guess for stocks involves a recursion to infinity:

ps
t = lim

n→∞
(Fn + Gnrt + Hndt) , (9)

with:

Fn = −δ + Fn−1 + Gn−1 (1 − αr) r + (1 − αd) d(Hn−1 + 1)+

+1
2

[

(Gn−1 − β)2
σ2

r + (1 + Hn−1)
2
σ2

d + 2 (Gn−1 − β) (1 + Hn−1)βdσ
2
r

]

,

Gn = (Gn−1αr − 1) ⇒ G = lim
n→∞

Gn = − 1
(1−αr)

,

Hn = (Hn−1αd + αd) ⇒ H = lim
n→∞

Hn = αd

(1−αd)
.

(10)

5 By modeling the dividend yield as a mean reverting process, we relate to papers such as
Campbell and Shiller (1988), Lewellen (2004), Li (2002), Mamaysky (2002), and Stambaugh
(1999), among others. However, several papers (See e.g. Campbell and Yogo (2003) and
Lamont (1998)) document the difficulties of rejecting the null hypothesis of a unit root
in dividend-yield series. In fact, by performing Dickey and Fuller (1979) and Phillips and
Perron (1988) tests using the G7 dividend-yield series, we are able to reject the hypothesis
of a unit root only in few cases. We thank an anonymous referee for helping us in clarifying
this point.
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We derive the expression of nominal stock returns simply by applying the definition

of a one-period logarithmic return and adding realized inflation:

s∗t+1 = Fn−1 − Fn + G (rt+1 − rt) + H (dt+1 − dt) + dt+1 + πt+1. (11)

Some aspects of the stock pricing model presented above deserve further attention.

First, it is worth noting that modeling the dividend yield process instead of the

dividend growth process facilitates the derivation of the pricing formula in Eq. (7).

Other authors (e.g. Bekaert and Grenadier (2001)) choose to model the dividend

growth and consequently obtain an expression for the price-dividend ratio. Second,

by modeling the dividend yield process as correlated with the real interest rate, we

allow the equity premium to be driven by both interest rate and dividend yield risk. 6

2.3 Stock-Bond Correlation

To obtain the theoretical formula for the correlation between stock and bond returns,

we first use Eqs. (6) and (11) as well as the expectation properties on linear functions

to calculate the covariance between s∗t and bn∗
t . By using the standard correlation

formula, we get:

−GBσr − Cσπ − βπσ2
r (Bn−1 + GCn−1) − Bn−1H− βπCn−1H

√

(B2 + C2 + 2BCn−1βπσr)
√

G2σ2
r + σ2

π + (1 + H)2σ2
d + 2GH + 2Gβπσ2

r + 2βπH
.

(12)

where B = Bn−1σr, C = Cn−1σπ, and H = (1 + H)βdσ
2
r .

At this point, it is worth investigating the driving forces of the stock-bond correlation.

Not surprisingly, none of the long-term means of the three factors driving the stock

and bond prices, r, π, and d, have an influence on the correlation. This result is intu-

6 For a formal explanation of this result we refer to Eq. (14) in Subsection 4.1 on page 17.
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itive because the long-term means affect the expected values but not the variability

of the factors.

To analyze in more detail the derived correlation formula, we first consider the covari-

ance in the numerator of Eq. (12) and then the standard deviations of stock and bond

returns. The covariance between stocks and bonds can be split into five terms, the first

two related to interest rate risk and inflation risk, respectively, and the other three

related to the cross covariances among the three sources of uncertainty: real interest

rate, inflation, and dividend yield. In the following, we provide a discussion of each

term as well as some comparative static results. Assuming a non-explosive process

for the interest-rate, the first term of the covariance, −GBn−1σ
2
r , is always positive.

Thus, the covariance between stock and bond returns increases with the volatility

of the real interest rate. This result is intuitive since the real interest rate discounts

future cash flows of both stocks and bonds and thus affects their prices in the same

direction. Further, a higher persistence parameter of the short rate, αr, has a positive

contribution to the stock bond covariance. The impact of the inflation process can

be analyzed in a similar way. The second term of the covariance, −Cn−1σ
2
π, is always

negative. Consequently, the covariance between stock and bond returns tends to fall

as inflation shocks get larger. This finding mirrors the different impact of inflation

rates on cash flows deriving from stocks and bonds. More precisely, while real stock

returns are assumed to be fully hedged against inflation shocks (the dividend is spec-

ified as yield and thus in real terms), real bond returns are negatively effected by an

unexpected growth of inflation. Similarly, with a high persistence parameter, απ, the

covariance tends to assume negative values.

The remaining terms in the numerator of Eq. (12) arise from the comovement of

the three factor processes. The third term of the covariance, −βπσ2
r (Bn−1 + GCn−1),

captures the effect of the correlation between the real interest rate and inflation. The

fourth term, −Bn−1 (1 + H)βdσ
2
r , refers to the impact of the dividend-yield process

10



on the covariance. A positive dividend-yield premium implies a negative βd and thus

a positive contribution of this term on the stock-bond covariance. A higher σr in-

creases the magnitude of this influence. Further, the stock-bond covariance increases

for higher persistence parameters of both real interest rate and dividend-yield pro-

cess. Finally, the last term, −βπβdσ
2
rCn−1 (1 + H), reflects the correlation between the

dividend yield and the inflation rate. It is positive as long as the correlation between

these factors is positive.

The standard deviations of the stock and bond returns in the denominator in Eq. (12)

differ in several ways. First, the volatility of bond returns is easier to understand as it

depends solely on the parameters of the interest rate and inflation process. In contrast,

the stock return volatility depends additionally on parameters of the dividend-yield

process, which adds three more terms to the volatility expression. By letting for the

moment the correlation between the processes be zero, we can gain some intuitive in-

sights on the volatility of stock and bond returns. 7 In this setting, the dividend-yield

variance only affects the stock-return volatility. The inflation variance has a differ-

ent impact on the two volatilities, although the sign is always positive. For a high

persistence parameter, απ, the influence of the inflation variance is stronger on bond

returns than on stock returns. 8 The intuition behind this last result is related to the

different nature of stock and bond cash flows. Since stock cash flows are expressed

in real terms, inflation volatility directly translates into volatility of nominal stock

returns (cf. Eq. (11)). On the other hand, bond cash flows are nominal and hence do

not depend on the level of inflation. The reason for the importance of the persistence

parameter, απ, for bond prices stems from the fact that present values of future cash

flows are affected by the inflation rate. For απ = 0, inflation shocks are temporary

7 We refer to Fig. 2 on page 28 for an analysis of the impact of the terms referring to the
comovement of the three factors.
8 For maturities of over one year, απ ≈ 0.618 implies an equal impact of the inflation
variance on stock and bond volatility.
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and thus do not affect the present value of future cash flows. Consequently, in this

case, the bond volatility does not depend on the magnitude of inflation shocks. For

απ ≥ 0, a given inflation shock does not immediately disappear but declines over time

and affects the bond price. Finally, the different impact of the variance of the real

interest rates, σ2
r , on bonds and stocks is caused by the different time horizon of their

cash flows. Since the value of stocks reflects an infinite dividend stream, stocks have

a higher duration than bonds and thus a higher interest-rate sensitivity. Only in the

limiting case of consols, i.e. bonds with infinite maturity, the influence of σ2
r on the

respective standard deviation is the same for both instruments.

[INSERT Fig. 1 AROUND HERE]

To investigate the overall impact of the different process parameters on the stock-

bond correlation, we provide in Fig. 1 some comparative statics. Starting from a base

scenario for the three factor processes, Panels A-D display the stock-bond correlation

as key parameters are perturbed. In order to ensure consistent values for the process

parameters and isolate the effects of the three factors, it is convenient to assume in

Panels A-C that the interest-rate innovations are uncorrelated to both the dividend-

yield and inflation shocks. 9 In fact, since Eq. (3) and Eq. (8) imply that |βπ| ≤
σπ

σr

and |βd| ≤ σd

σr
, setting βπ and βd equal to zero ensures that these conditions are

always satisfied and that the computed correlation is economically meaningful for

any combination of σr, σπ, and σd.

Fig. 1, Panel A, focuses on the effect of the interest-rate process and finds that

volatility increases stock-bond correlation over the whole domain. This is consistent

with the previous finding that real interest rate movements drive stock and bond prices

in the same direction. Moreover, other things equal, the persistence of the interest

9 It is worth noting that the assumption of independence among the factors is made only
for the sake of an easier interpretation of the correlation formula but is not pursued further
in the remainder of this paper.
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rate has a positive impact on the correlation because it increases the variability of

the interest rate and thus also the variability of stocks and bonds.

Fig. 1, Panel B, plots the stock-bond correlation for different volatility values of the

inflation rate. As mentioned, higher values of the persistence parameter, απ, and

diffusion term, σπ, lead to lower, and possibly negative, correlations of stock and

bond returns.

The influence of the dividend-yield process is displayed in Panel C of Fig. 1. Since a

high dividend-yield volatility increases the variability of stocks and has no influence

on bond returns, the absolute stock-bond correlation decreases and thus tends to zero,

as both σd and αd increase.

Finally, Fig. 1, Panel D, investigates the influence of βd by letting it vary from −0.02 to

0.02. According to Eq. (8), a larger |βd| implies, other things equal, a larger volatility

of the dividend-yield innovations, σd. To ensure that the dividend yield volatility

remains in the positive domain, βd and the correlation of the innovations of the

real interest rate and the dividend yield, ρr,d, must have the same sign. In Fig. 1,

Panel D, |ρr,d| is held constant at 0.01. Overall, for reasonable parameter values, the

impact of βd on the correlation is not very pronounced. Furthermore, the third term

of the covariance, Bn−1 (1 + H)βdσ
2
r , is found to have a very limited impact on the

stock-bond correlation. Since βd impacts the correlation almost exclusively through

its influence on the dividend yield volatility, the effect strongly resembles the one

presented in Panel C.

[INSERT Fig. 2 AROUND HERE]

Fig. 2 analyzes the impact of the correlations ρr,d and ρπ,d on the stock-bond model

correlation. As can be easily recognized, model correlations vary widely depending on

the values of ρr,d and ρπ,d. Moreover, the shape of the correlation surface is greatly

affected by the volatility and persistence parameters of the interest rate, inflation, and
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dividend yield. However, for realistic values of the process parameters the correlation

between stock and bond returns mostly falls in a plausible range.

3 Data

The financial time series of G7 countries used for the empirical analysis are the Datas-

tream Total Market Indices for stocks and the JP Morgan Government Indices for

bonds with the corresponding time series of dividend yields and durations. While all

the stock series date back to January 1973, 10 JP Morgan’s bond indices begin in the

80’s. The macroeconomic time series used for estimating the model are extracted from

the IFS-IMF database. For the short-term interest rate the one-month Treasury Bill is

used when available, otherwise, the one-month money-market rate is used. The long-

term interest rate is the ten-year Treasury Bond yield. The inflation rate is calculated

using the Consumer Price Index (CPI). All data has monthly frequency. However,

to calculate realized monthly correlations, the corresponding stock and bond indices

with daily frequency are employed. A preliminary evaluation of the data shows that

in the 80’s stock returns are higher than bond returns and this is associated with a

higher volatility. For most countries, the risk-return profile in the 90’s is fairly similar

to the 80’s. An important exception is represented by the stock-market downturn in

Japan and, to a lesser extent, by the high bond returns in Italy. Starting from the

year 2000, the ex-post risk-return profile of international indices changes dramatically

due to the global downward movement of equity prices following the new-economy

boom.

Having described the raw series of indices, we can now examine the historical evolu-

tion of international stock-bond correlations. Historical correlations calculated with

10 The stock series of the United Kingdom are provided with a longer history.
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an exponentially weighted moving average correlation (EWMA) on the whole data

sample display a similar pattern to rolling correlations adjusted for data outliers.

In general, we observe that the dates of stock outliers do not coincide with those of

bonds. In particular, the data point corresponding to October 1987, clearly influenced

by the Black Monday, October 19, happen to be excluded from all but one (Japan)

stock indices. Another outlier common to several stock markets (U.S.A., Germany,

and Canada) is August 1998. This data point can be easily associated with the Asian

crisis that culminated with the float of the ruble and, most importantly, with the

restructuring, on August 17, of the Russian debt maturing before January 1, 1999.

International stock-bond correlations follow a similar pattern over time. Solely Japan

exhibits a more independent evolution: its correlation is typically lower and, starting

from 1995, even negative. Many authors (most recently Goetzmann et al. (2005))

have studied the correlations of international stock indices and have reported clear

evidence for increasing correlations in the past few decades. It is worth noting that,

in spite of this partial erosion of the diversification opportunities among international

stock markets, the stock-bond correlation of all G7 countries has not risen but actu-

ally, in most recent years, fallen.

Finally, to investigate whether correlations vary over time, we divide the whole sam-

ple into five intervals of equal length and calculate Jennrich (1970) statistics for each

of the ten pairs of correlation matrices. Overall, the findings are very similar to the

evidence reported in Longin and Solnik (1995) and Kaplanis (1988). In 35 out of a

total of 70 cases, the null hypothesis of equal correlation matrices cannot be rejected

at a significance level of 5 percent. It is worth noting that the correlation matrix

obtained from the last period has the highest rate of rejections (21 rejections out of

28 comparisons). In particular, the last-period correlation matrices of U.S.A., France,

and Italy are significantly different from all previous periods at the one percent level.

We further observe that the results obtained by testing the equality of the variance-
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covariance matrices (instead of the correlation matrices) indicate a much higher rate

of rejection of the null hypothesis (65 cases, out of a total of 70 cases). As noted

by Kryzanowski and To (1987) and Kaplanis (1988), the rejection rate of the Jen-

nrich (1970) statistics can be affected by the time-varying volatility of the analyzed

series. 11

4 Empirical Results

4.1 Estimation Procedure

To obtain model correlations as outlined in Section 2, the process parameters for the

interest rate, inflation, and dividend yield are inferred from time-series data. The

parameters of the processes are estimated by maximum likelihood. By making use of

Eq. (3) and Eq. (8), we estimate βπ and βd as ρr,π
σπ

σr
and ρr,d

σd

σr
, respectively. 12

In addition to the process parameters of the three factors, it is possible to estimate

the parameter β which governs the slope of the term structure curve. In accordance

with Campbell et al. (1996), the expected spread between the return on a long-term

bond with maturity n and the one-period interest rate in an affine pricing framework

is given by Et[b
n∗
t+1] − y1

t = −Covt[b
n∗
t+1, m

∗

t+1] −
1
2
V art[b

n∗
t+1]. This can be rewritten as

Et[b
n∗
t+1] − y1

t = Bn−1λrσr + Cn−1λπσπ − λπr (Bn−1 + Cn−1)σ2
r −

1

2
V art[b

n∗
t+1], (13)

11 As noted by Goetzmann et al. (2005), the consistency of the Jennrich (1970) test statistics
assumes normally distributed asset returns. We thank an anonymous referee for pointing
out this aspect.
12 To ensure economically meaningful results and increase the numerical robustness of the
maximization algorithm, the estimation is performed by restricting the domain of volatilities
to positive values and the domain of persistence parameters to the region (0, 1).
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where λr = −βσr and λπ = −βσπ correspond to the market price of interest rate

risk and the market price of inflation risk, respectively. We can interpret the values

Bn−1 and Cn−1 in Eq. (13) as the loadings on these two sources of risk. The third

term in Eq. (13), with λπr = ββπ, arises because of the correlation between the

innovations of the inflation rate and the real interest rate. Since β has to be negative to

ensure economically meaningful (positive) market prices of risk, a positive correlation

between these two factors will increase the overall term spread.

Following a similar procedure we derive the relation between the equity premium and

the dividend risk. We can represent the expected spread between the return on a

stock and the riskless interest rate as Et[s
∗

t+1]− y1
t = −Covt[s

∗

t+1, m
∗

t+1]−
1
2
V art[s

∗

t+1].

Using Eq. (8) and substituting Covt[s
∗

t+1, m
∗

t+1] = −Gβσ2
r − Hββdσ

2
r into the above

equation, we get

Et[s
∗

t+1] − y1
t = −Gλrσr + Hλdσr −

1

2
V art[s

∗

t+1], (14)

where λd = ββdσr is the market price of the dividend yield risk. Similarly to the

above discussion for the bond premia, we can interpret the values −G and H in Eq.

(14) as the loadings of the stock on the interest rate and dividend risk.

We obtain an estimate for β by numerically solving Eq. (13) while using for its left

side the difference between the ten-year bond yield and the one-month interest rate.

According to Eq. (13), a positive term spread implies a negative β, and the steeper

the interest rate curve the smaller the value of β. By multiplying β, which also governs

the covariance between m∗ and r∗, with the volatility of the short rate, we get the

market price of interest-rate risk. For the US economy the average annualized excess

return of the ten-year bond over the one-month interest rate is 134 basis points and

the standard deviation is 0.33%. During our sample period, all G7 countries but Italy

have on average an upward sloping interest rate curve and thus positive market prices
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of interest-rate risk.

Similarly, Eq. (14) can be used to extract βd and obtain the market price of dividend

risk λd. It would be sufficient to approximate the left side of Eq. (14) with the average

historical excess return of stocks and solve for βd. However, since we are not primar-

ily interested in matching the empirical equity premium, we choose to estimate βd as

previously described.

For the out-of-sample analysis, we estimate process parameters with an alternative

procedure that only requires the calculation of a closed-form formula. More precisely,

the mean of each of the processes is estimated as a simple average from the relevant

time series, the mean-reversion parameters, are estimated as the first order autocor-

relation from the relevant time series and the variance is obtained from the data is

an unbiased and consistent estimator of the unconditional variance. 13

4.2 Results

In this section we address both the in-sample correlation fit and the out-of-sample

forecasting accuracy of the presented affine model.

[INSERT Tbl. 1 AROUND HERE]

Tbl. 1 compares for all G7 countries the endogenous correlation implied by the affine

model with the realized correlation computed on the total-return time series of stock

and bond indices. For both the endogenous and the standard Pearson correlation, the

distribution of the estimate is non-normal as it is bounded between [−1, +1]. Hence,

for obtaining confidence intervals, we transform the statistical correlation according

13 While this estimation technique does not directly generate standard errors, it is con-
siderably faster and thus very well suited for performing the high number of estimations
required in the out-of-sample analysis based on rolling windows. Moreover, the estimation
results obtained by this procedure are very similar to those obtained by MLE.
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to the method proposed by Fisher (1925).

The distribution of the estimated endogenous correlation is obtained by simulating

the estimated parameters and by calculating the correlation implied by the model

for each set of simulated parameters. Since, as described in the previous subsection,

both the volatility parameters and the persistence parameters are obtained with a

restricted estimation, only the transformed parameters may be correctly simulated

by means of normal deviates. To test the robustness of the model, we repeat in Panel

B, C, and D, the comparison of in-sample model correlations and Pearson correla-

tions for three sub-periods of equal length. By analyzing Tbl. 1, we can draw some

preliminary results.

First, the affine model seems to generate correlations that are a priori plausible. This

is a positive result since in a similar study Beltratti and Shiller (1992) find that the

correlations obtained with an extended version of the Campbell and Shiller (1988)

model are much smaller (and very close to zero indeed) than the empirical ones.

Second, the endogenous factor-based correlations are in a reasonable range from ac-

tually realized correlations. For the whole sample, the endogenous model correlations

and the realized correlations are not statistically different at the 5% level in two out of

seven cases: USA and Japan. These results are found to be reasonably robust with re-

spect to the sample period (cfr. Tbl. 1, Panels B-D). For the three sub-periods tested,

model correlations fall in the 95% confidence interval in 9 out of 21 cases. Even in the

last sub-sample, when all G7 realized stock-bond correlations turn negative, in two

out of seven cases (UK and Italy) the model correlation falls into the 95% confidence

interval. The fact that the third sub-sample broadly coincides with the period of “ir-

rational exuberance” of the late ninetees is likely to worsen the fit of the model. For

instance, if stock prices fully decouple from basic economic fundamentals such as the

dividend yield, the presented model can hardly match the empirical stock volatility.

In the third sub-sample, the US annual stock market volatility is 17.72% compared to
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14.20% in the first sub-sample and 15.04% in the second sub-sample. However, it turns

out that the higher stock volatility in the last sub-sample is not backed by a higher

dividend-yield volatility, which is overall indicative of an irregular price development

of stocks. Since the unexplained stock volatility dampens stock-bond correlations, it

is not surprising that our model generates for the US correlations estimates that are

higher (in absolute value) than the observed ones. The third sub-sample might further

be affected by the 2001:I-2001:IV recession. As pointed out by Andersen et al. (2004)

and other authors, one can empirically observe that stock-bond correlations tend to

become negative in periods of economic downturn. The model captures this shift in

sign for the US and Japan, although the correlation values are distant from actual

realizations.

Third, correlations implied by the affine pricing model do not show any systematic

bias. In four of the G7 countries, model correlations are higher than observed corre-

lations. This result is confirmed in the sub-periods, where in 9 out of 21 cases model

correlations are lower than realized correlations.

Given the mixed evidence regarding the existence of time-varying correlations, a phe-

nomena discussed in Section 3 of this paper and also well documented in the fi-

nancial literature (e.g. Longin and Solnik (1995), Kaplanis (1988), Ragunathan and

Mitchell (1997), and Glabadanidis and Scruggs (2003), among others), we also intro-

duce a time-varying correlation measure obtained by estimating the process param-

eters based on rolling windows. This enables us to test the out-of-sample predicting

performance of the affine model. The model is calibrated on a window of ten years of

monthly data that slides over the whole sample generating a time series of expected

endogenous stock-bond correlations for the following month. 14

14 To check the robustness of the results, we have calibrated the model employing sliding
windows with different lengths. Although the alternative sliding windows tested (60, 80,
100, and 150 months) do not exacerbate the results, we observe that the correlation time
series smooth out as the length of the window increases.
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In Tbl. 2 we compare these monthly forecasted model correlations with three proxies

of the “true” stock-bond correlation: an exponentially weighted moving correlation

(Panel A), the realized correlation calculated on stock and bond returns with daily fre-

quency (Panel B), and the in-sample BEKK correlation estimated on all available data

(Panel C). To put the results in perspective, each panel also presents the predicting

performance of a simple rolling correlation and a Constant Correlation Multivariate

GARCH model (CC MV-GARCH) as proposed by Bollerslev (1990). These methods

use directly the return series of stocks and bonds and are thus expected to deliver

more accurate correlation forecasts. Tbl. 2 presents, as a goodness-of-fit statistic, the

mean squared error (MSE). As additional information, we also report the root mean

squared error (RMSE) which is intuitive to interpret since it has the same dimension

as the correlation itself. As expected, the statistical models systematically outperform

model correlations and the differences in MSE are almost always statistically different

even at the one percent level. The only two exceptions occur for UK (Panel a and

Panel B) and Italy (Panel B). However, the difference in the MSE is never statistically

significant.

[INSERT Fig. 3 AROUND HERE]

[INSERT Tbl. 2 AROUND HERE]

Finally, to get a better feeling of the fit of the forecasting ability of the model corre-

lation, we display the data underlying the results presented in Tbl. 2, Panel A. Fig.

3 plots the model and the EWMA correlation for the United States and the United

Kingdom. For Japan and France, forecasting ability appears to be poor and upward

biased. For four countries (U.S.A., U.K., Germany, and Canada), the graphs show a

reasonably good fit. However, for two of them (U.S.A. and Canada), the goodness

of fit decreases towards the end of the sample and this could be attributable - as

previously argued - to the “irrational exuberance” in the late nineties and to the

21



following turmoil on financial markets. In the case of Italy, the performance of the

model correlation appears less accurate, but this could be explained by the fact that

a large portion of the sample period coincides with the years of the financial market

bubble.

5 Conclusion

When modeling the correlation between stocks and bonds researchers face a serious

trade-off between empirical accuracy and economic rigor. Currently, important re-

search efforts are directed towards the development of advanced statistical methods

to best fit the historical comovement of financial assets. At the other end of the re-

search spectrum, some authors propose simple general-equilibria models that convey

strong economic reasoning but can hardly be successfully implemented. This paper

takes a middle-way approach by tracing back the correlation of financial assets to

the dynamics of some fundamental variables that drive their prices. More precisely,

this paper shows how a simple three-factor affine pricing model can value both bonds

and stocks and is well suited for generating endogenous correlations based on eco-

nomic fundamentals. Our model implies that the volatility of the real interest rate

increases the correlation between stocks and bonds. This result is intuitive, given that

the real interest rate discounts both future dividends and cash flows deriving from

fixed-income securities. Inflation shocks tend to reduce the correlation between stocks

and bonds, which reflects the fact that in our model stocks provide complete insur-

ance with respect to future inflation. Similarly, a higher variability of the dividend

yield boosts the variability of stock returns and reduces the correlation of stocks and

bonds. We calibrate the model for G7 economies using post-war monthly data and

show that the obtained correlation values are realistic and not very far from con-

ventional statistical measures. This result represents an improvement over previous
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empirical attempts of extracting correlations from a unified pricing model for stocks

and bonds.
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Fig. 1. Driving Forces of Stock-Bond Correlation

This figure shows the effects of the persistence parameters, volatility parameters, and βd on the model correlation
between a stock and a bond with a duration of ten years. Panel A analyzes the impact of the short-rate parameters
αr and σr . Panel B analyzes the impact of the inflation parameters απ and σπ. Panel C analyzes the impact of the
dividend-yield parameters αd and σd. Panel D focuses on the relationship between βd and the model correlation.
According to Eq. (8), βd affects the volatility of the dividend yield, σd, for a given value of σr . The initial parameter
values of the basis scenario are αr = 0.9, απ = αd = 0.95, σr = σπ = 0.005, and σd = 0.0002. All parameter values
refer to monthly frequency.
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Fig. 2. Impact of Factor Correlations

This figure shows the effects of different combinations of the factor correlations ρr,d ∈ [−0.95, 0.95] and
ρπ,d ∈ [−0.95, 0.95] on the model correlation between bond and stock returns. The basic scenario (Panel A) employs
parameter values for the factor processes obtained by averaging the estimates for the whole available sample over
all countries: αr = 0.9686, σr = 0.00033, απ = 0.9717, σπ = 0.00012, αd = 0.9923, and σd = 0.00023. For this
basic scenario the ranges of the factor correlations imply the following ranges for βπ and βd: βπ ∈ [−0.35, 0.35],
βd ∈ [−0.62, 0.62]. Panel B-D display the same relationship by solely altering few parameters: Panel B: αd = 0.97;
Panel C: αr = 0.90, απ = 0.99; Panel D: αr = 0.98, απ = 0.98, σπ = 0.0005. All parameter values refer to monthly
frequency.
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Fig. 3. Out-of-Sample Model Correlations and EWMA - USA and UK

This figure plots the out-of-sample model correlation computed with a 100 months rolling window and the correlation
obtained from an exponentially weighted moving average model for both variances and covariances with a weighting
factor γ = 0.97. Panel A refers to the US economy while panel B refers to Great Britain.
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Table 1
In-Sample Analysis of Model Correlation

This table presents both the endogenous model correlation and the empirical correlation between equity and

bond series. For each correlation value, the five percent confidence interval is calculated. ‘LCI’ indicates the lower

confidence interval and ‘HCI’ the higher confidence interval. Finally, ‘z-stat.’ values of less than 1.96 indicate that the

model correlation falls into the 95% data-correlation confidence interval. Panel A presents the results for the entire

sample. In Panels B, C, and D correlations and confidence intervals are calculated for three equally spaced sub-intervals.

U.S.A. Japan Germany U.K. France Italy Canada

Panel A: Total Sample

Sample start Jan80 Jan84 Jan80 Jan80 Feb85 Jan88 Jan85

Sample end Mar03 Nov02 Mar03 Feb03 Sep02 Mar03 Mar03

Model 0.278 0.049 -0.229 -0.177 0.562 0.530 0.588

LCI 0.260 0.042 -0.231 -0.179 0.556 0.519 0.576

HCI 0.296 0.057 -0.228 -0.176 0.569 0.541 0.602

Data 0.174 0.097 0.126 0.283 0.288 0.354 0.175

LCI 0.058 -0.034 0.009 0.171 0.159 0.220 0.043

HCI 0.286 0.224 0.240 0.388 0.407 0.475 0.300

z-stat 1.818 0.720 5.982 7.799 4.921 2.955 7.328

Panel B: First Sub-Sample

Sample start Jan80 Jan84 Jan80 Jan80 Feb85 Jan88 Jan85

Sample end Sep87 Apr90 Sep87 Sep87 Dec90 Jan93 Jan91

Model 0.182 0.651 0.292 -0.000 0.364 0.915 0.894

LCI 0.158 0.579 0.242 -0.003 0.346 0.904 0.888

HCI 0.206 0.717 0.343 0.003 0.382 0.924 0.898

Data 0.368 0.319 0.332 0.384 0.381 0.578 0.089

LCI 0.177 0.101 0.137 0.195 0.162 0.382 -0.144

HCI 0.532 0.508 0.502 0.545 0.564 0.725 0.313

z-stat 1.921 3.841 0.416 3.835 0.155 6.825 11.305

Panel C: Second Sub-Sample

Sample start Oct87 May90 Oct87 Oct87 Jan91 Feb93 Feb91

Sample end Jun95 Aug96 Jun95 Jun95 Nov96 Feb98 Feb97

Model 0.098 0.593 0.111 0.166 0.945 0.618 0.752

LCI -0.022 0.593 0.110 0.163 0.938 0.590 0.720

HCI 0.221 0.594 0.112 0.169 0.951 0.646 0.782

Data 0.299 0.035 0.186 0.323 0.612 0.574 0.495

LCI 0.102 -0.192 -0.019 0.127 0.441 0.377 0.299

HCI 0.474 0.258 0.375 0.494 0.739 0.722 0.651

z-stat 1.991 5.538 0.727 1.583 8.858 0.532 3.664

Panel D: Third Sub-Sample

Sample start Jul95 Sep96 Jul95 Jul95 Dec96 Mar98 Mar97

Sample end Mar03 Nov02 Mar03 Feb03 Sep02 Mar03 Mar03

Model -0.547 -0.827 0.037 0.490 0.086 0.256 0.714

LCI -0.553 -0.843 0.030 0.457 0.074 0.246 0.673

HCI -0.540 -0.808 0.044 0.523 0.097 0.265 0.753

Data -0.185 -0.133 -0.123 -0.016 -0.105 -0.173 0.074

LCI -0.374 -0.348 -0.319 -0.219 -0.330 -0.407 -0.159

HCI 0.020 0.095 0.083 0.189 0.132 0.083 0.299

z-stat 4.054 8.949 1.527 5.238 1.580 3.322 6.872
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Table 2
Forecasting Performance of Model Correlations

This table presents an overview of the forecasting performance of correlations obtained from the affine pricing model

described in Section 2. For the sake of comparison, the performance of more traditional approaches that are not

supported by an underlying economic model are presented (Rolling Correlation and CC MV-GARCH). For each

month, forecasts are compared with correlation measures obtained with the EWMA model (Panel A), the standard

Pearson formula applied on daily data (Panel B) and the full BEKK MV-GARCH model (Panel C). The first number

is the mean squared error (MSE), the second number is the root mean squared error (RMSE). ‘⋆’ indicates that the

null hypothesis of equal MSE between the rolling correlation/CC MV-GARCH correlation and the model correlation

cannot be rejected at a five percent significance level.

U.S.A. Japan Germany U.K. France Italy Canada

Sample start Apr81 Jan84 Apr81 Jan80 Feb85 Jan88 Jan85

Sample end Mar03 Nov02 Mar03 Feb03 Sep02 Mar03 Mar03

Panel A: EWMA

Model Corr. 0.082 0.881 0.204 0.039 0.391 0.316 0.199

0.286 0.939 0.452 0.198 0.626 0.562 0.446

Rolling Corr. 0.027 0.043 0.017 0.046⋆ 0.032 0.042 0.040

0.165 0.207 0.132 0.214 0.178 0.206 0.200

CC MV-GARCH 0.021 0.039 0.014 0.037⋆ 0.028 0.032 0.024

0.144 0.197 0.118 0.191 0.168 0.178 0.155

Panel B: Realized

Model Corr. 0.228 0.621 0.310 0.164 0.459 0.472 0.509

0.478 0.788 0.557 0.405 0.677 0.687 0.713

Rolling Corr. 0.173 0.153 0.162 0.239⋆ 0.216 0.527⋆ 0.288

0.416 0.391 0.402 0.489 0.465 0.726 0.537

CC MV-GARCH 0.166 0.147 0.155 0.231⋆ 0.228 0.502⋆ 0.285

0.407 0.384 0.393 0.480 0.477 0.709 0.534

Panel C: BEKK

Model Corr. 0.242 0.470 0.325 0.082 0.259 0.214 0.272

0.492 0.686 0.570 0.286 0.509 0.463 0.522

Rolling Corr. 0.111 0.071 0.030 0.027 0.051 0.146 0.041

0.333 0.266 0.174 0.165 0.225 0.382 0.203

CC MV-GARCH 0.127 0.075 0.032 0.025 0.052 0.138 0.045

0.357 0.274 0.179 0.158 0.228 0.372 0.213

30


