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Abstract

The influence of heterogeneous time preferences on the term structure is in-
vestigated. Motivated by the Preferred Habitat Theory of Modigliani and Sutch,
a model for intertemporal preferences accounting for preferred habitats is pro-
posed. In a heterogeneous world, preferred habitats can explain humps in the
yield curve. Agents with a long habitat prefer long term bonds to shorter in-
struments as the Preferred Habitat Theory predicts.

Introduction

In their famous analysis of ’Operation Twist’, Modigliani and Sutch (May 1966) de-
velop what is since then called the ’Preferred Habitat Theory’ of the term structure
of interest rates. The main feature of said theory is that the investment horizon of
investors should have a major influence on term premia of long term bonds. To give
an example, if the majority of investors has a ten-year horizon, it seems plausible
to assume higher prices and, hence, lower yields for zero-coupon bonds with ten
years to maturity. Modigliani and Sutch use this argument in order to justify the
introduction of long term rates into the econometric model employed to test the
success of the economic policy ’Operation Twist’.

So far, there has not been the attempt to investigate systematically the influence
of preferred habitats on interest rates in a general equilibrium model. The present
paper aims at filling this gap. For this purpose, a continuous-time pure exchange
economy with a financial market is studied where agents have different time prefer-
ences. A definition of the notion of ’Preferred Habitat’ is given and a specific class
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of functions, the class of logistic densities, is proposed as a model for Preferred
Habitat Time Preferences. The main goal of the present paper is to examine the in-
fluence of such time preferences on the term structure and to show that there is an
influence on the shape of the yield curve, as the Preferred Habitat Theory predicts,
if heterogeneous agents live in the economy.

The heterogeneity of agents just alluded to is an important aspect of the model.
If homogeneity of agents is assumed as in most existing equilibrium models of the
term structure (confer Cox, Ingersoll, and Ross (1985), Sun (1992), e.g.), agents do
not trade and a preferred habitat effect does not exist. If, however, different types
of agents are present in the economy, trade occurs and the form of the yield curve is
altered. When the habitat of some agents is sharp enough, long-term interest rates
around the habitat are lowered. In this sense, the Preferred Habitat Theory is able
to explain humped yield curves.

In general, yields are composed of two summands: the first depends on the time
preferences of agents, whereas the second is determined by the risk parameters
of aggregate consumption and risk aversion of agents. I focus here on the first
summand. It turns out that the larger is the share an agent plans to consume
out of aggregate endowment at some time t, the higher is his contribution to the
corresponding yield to maturity. Since the share is usually highest around a habitat
of an agent, it follows that an agent sets the yields who correspond to his habitat.
This interplay between different agents can lead to humped yield curves.

In a variation of the standard model, I study the portfolios chosen by agents
forced to trade in bonds only. It is shown that agents with a long habitat tend to
invest in long term bonds borrowing from impatient agents.

In their seminal paper, Cox, Ingersoll, and Ross (1981) perform a compara-
tive statics analysis of equilibrium interest rates across different homogeneous
economies and find no impact of time horizon (habitats) on interest rates. This
is consistent with our finding that there is no influence of time preferences on the
form of the yield curve in homogeneous economies and stresses again the impor-
tance of allowing for heterogeneity.

Among the few papers which explicitly model heterogeneity of agents without
losing tractability are Constantinides and Duffie (1996) who allow for distinct en-
dowment streams and Dumas (1989) as well as Wang (1996) who study economies
populated by two classes of agents exhibiting distinct degrees of risk aversion. The
paper of Wang (1996) is closest to ours in its setup since he also considers a pure
exchange economy in continuous time. The way the growth of aggregate output is
modeled is inspired by his approach.

The paper is organized as follows. The next section discusses the concept of a
preferred habitat in an intertemporal utility framework. In Section 2, the general
equilibrium model with a financial market is described. Section 3 derives the com-
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plete markets equilibrium. The term structure shape is analyzed in Section 4. In
Section 5, a variation of the model is studied in which agents trade in long- and
short-term bonds. The final section concludes.

1 Modelling Preferred Habitat Time Preferences

Think of a person who invests in the bond market with the specific goal of insuring
herself against a decreasing standard of living upon retiring. Such an investor has a
higher preference for consuming out of the portfolio when retiring than at the time
the investment is made. She has a long habitat. The aim of the present section is to
develop a type of intertemporal utility function which describes such people with
a higher propensity to consume at a certain point in time H, their habitat, than at
other times.

The typical intertemporal utility function over contingent consumption streams
(ct(ω)) takes the form

U(c) = E
∫∞

0
e−ρtu(ct)dt

for some rate of time preference ρ > 01. This utility function is characterized by
three properties: it satisfies the independence axiom, and it displays stationarity
and impatience.

U satisfies the axiom of cardinal independence for states of nature as well as
points in time because for any two processes c and d which coincide on a set A ⊂
Ω × [0,∞[ one can arbitrarily alter the common value of c and d on A without
changing the preference ordering: if, say, c is preferred to d, then for every c′
c̃ = c′1A + c1Ac is preferred to d̃ = c′1A + d1Ac ,

U(c̃) > U(d̃) .

The independence axiom implies the existence of a time-additive expected utility
representation for U :

U(c) = E
∫∞

0
u(t, ct)dt ,

compare Debreu (1960). Since I will keep the independence axiom for states of na-
ture (and, hence, the von Neumann-Morgenstern representation of the utility func-
tion), only the intertemporal aspect of the utility function U will be considered in
the following.

For a deterministic consumption stream (ct), the utility is

U(c) =
∫∞

0
e−ρsu(cs)ds .

1For the heuristic discussion of this section, the horizon is set equal to ∞.
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The preference ordering induced by U is stationary in the sense that the delayed
utility Ut given by

Ut(c) =
∫∞
t
e−ρsu(cs)ds

leads to the same ordering of (delayed) consumption streams:

Ut(c) = e−ρtU((ct+s)s≥0) .

In particular, the rate of time preference ρ remains constant over time.

For ρ > 0 the agent is globally impatient. A positive rate of time preference
implies that the long distant future does not matter much for current decisions.
This is frequently used as a justification for the assumption of impatience.

My claim is that people with a (long) habitat do not have stationary time pref-
erences nor are they globally impatient. If one has a habitat, for example, of ten
years, then it is plausible to assume that one is patient up to said habitat and that
one becomes very impatient at and after the habitat. As a consequence, one’s rate
of time preference changes over time. Thus, the preferences are not stationary. To
model preferred habitat time preferences, the assumption of stationarity will be
dropped. I will therefore allow for time-varying rates of time preference.

As far as impatience is concerned, it seems plausible to allow for periods of
patience for agents with a long term habitat. Before their habitat, such agents will
tend to delay consumption and will have a negative rate of time preference. I keep,
however, the reasonable property that the very long distant future does not matter
much for current decisions. I require the time preference density f to decrease
exponentially in the long run: there is a ρ̄ > 0 with

f(t) ∼ e−ρ̄t (t →∞) .

Strictly positive and smooth (C2) functions f with finite integral,∫∞
0
f(t)dt <∞ ,

are henceforth called time preference densities. Without loss of generality, one may
assume

∫
f(t)dt = 1.

Definition 1 A time preference density f is said to display a preferred habitat in
h > 0 iff

• f has a unique maximum in h;

• f decreases exponentially in the long run, that is, there is a long-run rate of
time preference ρ̄ > 0 with

lim
t→∞

f(t)eρ̄t = 1 .
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Figure 1: Density of the logistic distribution with mean 0 and variance 1. The dashed line
represents the density of the standard normal distribution.

Note that the standard time preference density ρe−ρt is included in this defini-
tion. It displays a habitat at h = 0 and describes the short-run oriented individuals
of the Hicksian world.

As a parametric class of time preference densities with a preferred habitat in h,
I take the class of logistic densities,

f(t;h,γ) = γ exp(−γ(t − h))
(1+ exp(−γ(t − h)))2 ,

see Figure 1. The corresponding distribution functions are

F(t;h,γ) = (1+ exp(−γ(t − h)))−1 .

h is the unique maximum, the habitat, and γ, the long-run rate of time preference,
inversely relates to the variance of F , which is π2

3γ2 . Note that the density is a bell-
shaped curve as the normal density, but in contrast to the latter, it has fatter tails.
The logistic densities will be the reference model for preferred habitat preferences
and will be used to illustrate the results. I wish to stress that the structural results
are independent of the specific form chosen for f .

Before concluding this discussion of time preferences, a final remark is in order.
It is important not to confuse stationarity and time consistency. Individuals are said
to act in a time inconsistent manner, if they wish to revise the plan chosen at time 0
at a later time t > 02. Here, individuals’ rates of time preference change over time.
This change, though, is foreseen, and an adequate consumption plan is formulated
in such a way as to avoid the necessity of a later revision. Their preferences are not
stationary, but they act in a time consistent manner.

2Time preferences of the type ”always discount the next period higher than the period following
the next period” lead to time inconsistent behavior. Such time preferences were first studied by
Strotz (1956).
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2 The Model

The horizon of the economy is finite, T̄ < ∞. Uncertainty is modeled through a
filtered probability space (Ω,F , P , (Ft)t≥0) endowed with a one-dimensional Brow-
nian motion W . The output K of the economy, or aggregate endowment, grows at
rate X

dKt
Kt

= dXt ,

and the growth rate X is modeled as the solution of the stochastic differential equa-
tion

dXt = (φ1 −φ2Xt)dt + ξdWt ,
with constant parameters φ1 ∈ R,φ2, ξ ∈ R+. Two distinct cases are treated. For
φ2 = 0, X is a Brownian motion with drift φ1, and for φ2 > 0 X is a stationary
Ornstein-Uhlenbeck process. It is useful to have the conditional distributions of
the increments of X at hand. In the first case, φ2 = 0, these are

L(Xt+s −Xt|Ft) = N(φ1s, ξ2s) . (1)

For φ2 > 0, X is explicitly given by

Xt+s = e−φ2s

(
Xt +

∫ t+s
t
φ1eφ2(u−t) du+

∫ t+s
t
ξeφ2(u−t) dWu

)
,

which leads to

L(Xt+s −Xt|Ft) = N
((
φ1

φ2
−Xt

)(
1− e−φ2s

)
,
ξ2
(
1− e−2φ2s

)
2φ2

)
. (2)

For shorter notation, the conditional mean of the increment is denoted by µ(s,Xt)
and the conditional variance by σ 2(s).

The asset market consists of a stock with price (St) paying the aggregate output
K as a dividend and a market for borrowing and lending at a short rate (rt). βt =
exp(

∫ t
0 rudu) denotes the money market account. Stock price S and interest rate

r are determined endogenously. Both processes S and r are assumed to be Itô-
processes. This class is large enough to contain possible equilibrium prices.

The I agents have homogeneous expectations Pi = P and constant relative risk
aversion 1. Their endowment consists of si shares of the stock,

∑
si = 1. Agents

possibly differ in their time preferences f i which are assumed to display a preferred
habitat. Their utility function is thus

Ui(c) = E
∫ T̄

0
f i(t) log(ct)dt .
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Without loss of generality, time preference densities are normalized to be probabil-
ity densities. Fi denotes the associated distribution functions.

Taking stock price and interest rate as given, agents form a portfolio (θ1, θ2) in
the stock and the money market account in order to finance their desired consump-
tion stream c. The admissible portfolio/consumption policies are specified in the
following

Definition 2 A triple (θ1, θ2, c) of progressively measurable processes is called an
portfolio/consumption policy with prices (S, β), if the following conditions hold true:

E
∫ T̄

0
c2
t dt < ∞ (3)

∫ T̄
0

(
θ1
u

)2
d[S]u < ∞ a.e. (4)

∫ T̄
0
θ2
udβu < ∞ a.e. (5)

The consumption/portfolio policy (θ1, θ2, c) is admissible for agent iwith prices (S, β)
if the value Vt = θ1

t St + θ2
t βt of the portfolio satisfies the budget and no ruin restric-

tions

V0 = siS0 (6)

dVt = θ1
t (dSt +Ktdt)+ θ2

t dβt − ctdt a.e. (7)

Vt ≥ 0 a.e. (8)

The following concept of equilibrium is standard.

Definition 3 A stock price S, an interest rate r and consumption portfolio policies(
θ1i, θ2i, ci

)
i=1...I form an equilibrium if

• all markets clear, ∑
θ1i = 1,

∑
θ2i = 0,

∑
ci = K (9)

• for every agent i, ci maximizes utility Ui over all admissible consumption/port-
folio policies.

3 Equilibrium

The Negishi method is used to derive the equilibrium. In a first step, efficient al-
locations are characterized by some vector λ = (λ1, . . . , λI) of weights. This will
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also shed some light on the relevance of heterogeneous time preferences on con-
sumption decisions. As a by-product, one obtains the utility of some representative
agent in explicit form. By the Second Welfare Theorem, every efficient allocation can
be supported as an Arrow-Debreu equilibrium where investors can trade arbitrary
consumption streams at the initial date. The Arrow-Debreu consumption price is
given by the marginal felicity of the corresponding representative agent. Using this
marginal felicity as a state-price in the sense of Duffie (1992), one obtains candidates
for equilibrium stock price and short rate. It remains to show that these candidates
and the efficient allocation form a dynamic equilibrium (confer Duffie and Huang
(1985)).

Definition 4 For every vector of weights λ ∈ ∆ = {
x ∈ RI+ :

∑
xi = 1

}
the utility of

the representative agent corresponding to λ is

U(c;λ) = max∑
ci=c

∑
λiUi(ci) . (10)

As is well known, an allocation is Pareto efficient if and only if it solves the social
welfare problem (10) for some λ. In our case, the problem can be solved explicitly.

Theorem 1 (Representative agent) For every vector of weights λ ∈ ∆, the represen-
tative agent’s utility is given by

U(c;λ) = E
∫ T̄

0
fλ(t) log ct dt + const. , (11)

where the time preference density fλ of the representative agent is

fλ(t) =
I∑
j=1

λjf j(t) .

The corresponding Pareto efficient allocation which solves the social welfare problem
(10) is given by the sharing rules

xi(c, f , λ)t = λif i(t)∑
j λjf j(t)

ct . (12)

If aggregate consumption is efficiently allocated, agent i gets a share

αit := x
i(c, f , λ)t
ct

= λ
if i(t)
f λ(t)

.

The share is the relative weight agent i places on the point in time t with respect to
the ”market’s” weight fλ(t). This shows that at a habitat, an agent will in general
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consume a greater share of total endowment than at other times. However, the
share increases only if the market’s time preference density does not rise at the
same time, that is, if there are other people who do not have a preferred habitat at
this point.

Define the rate of time preference of the representative agent as

ρ(λ)t = − ∂∂t log fλ(t) = −
∂
∂t f

λ(t)
f λ(t)

.

In the same manner,

ρit = −
∂
∂t

log f i(t)

is the rate of time preference of agent i.

Lemma 1 The rate of time preference of the representative agent is a convex combi-
nation of the agents’ time preferences:

ρ(λ)t =
∑
i

αitρ
i
t ,

where the weights αi are the shares of consumption of the agents.

The natural candidate for an equilibrium consumption price and a state-price
is the marginal felicity of some representative agent. As the following theorem
shows, it is the vextor λ? = s of initial shares owned by agents which characterizes
the equilibrium.

Theorem 2 (Equilibrium) An equilibrium is given by the stock price

St = Kt
1− Fs(t)
f s(t)

, (13)

where Fs is the distribution function to f s , interest rate

rt = ρ(s)t +φ1 −φ2Xt − ξ2 , (14)

consumption plans
ci(s)t = xi(K, f , s)t ,

and portfolio strategies

θi1t = si(1− Fi(t))
1− Fs(t) (15)

in the stock. There is no trading on the money market,

θi2t = 0 .

The asset market given by the stock price and the money market account is com-
plete.
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3.1 Analysis of the short rate

The short rate r is the sum of the rate of time preference ρ(s) and a component
which does not depend on time preferences, but only on X and its risk parameters,

φ1 −φ2Xt − ξ2 .

The short rate is a linear function of the rate of growth X. Interestingly, a high
current growth rate Xt has a negative impact on the short rate. This is due to the
mean-reverting property of X. High values of X will force X back to its long-run
level and the drift of X, φ1 −φ2Xt decreases.

Heterogeneity of time preferences has a deterministic influence on interest rates.
The influence on the short rate is given by the rate of time preference ρs of the repre-
sentative agent which is a weighted average of individuals’ rates of time preference.
If one denotes by

r it = ρit +φ1 −φ2Xt − ξ2

the short rate which prevails in the homogeneous economy where only agent i lives,
then it follows as an obvious corollary of Lemma 1

Corollary 1 (Conjecture of Dumas) The short rate of the heterogeneous world is a
convex combination of the short rates that prevail in the homogeneous worlds,

r(s)t =
∑
i

αitr
i
t .

In particular,
min
i
r it ≤ r(s)t ≤ max

i
r it .

The preceding corollary was conjectured in Dumas (1989) who studied the case
of heterogeneous degrees of risk aversion among agents. In the case of heteroge-
neous time preferences, it turns out that the short rate of the heterogeneous world
is in between the bounds given by the short rates of the homogeneous economies
and the conjecture of Dumas holds true(which is not always the case, confer Wang
(1996)).

Since the rate of output growth X is a Brownian motion for φ2 = 0 and an
autoregressive Ornstein-Uhlenbeck process for φ2 > 0, so is the short rate if the
rate of time preference ρ(s)t = ρ is constant. This type of model has been studied by
Merton (1970) (for the Brownian case) and by Vasǐcek (1977) (forφ2 > 0). In general,
ρ(s) varies with time and the resulting short rate is as in the models proposed by
Hull and White (1990).
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3.2 Portfolios

The number of shares held in equilibrium is given by the fraction of the quantiles of
the time preference distributions of agent i and the representative agent. The more
weight an agent puts on the future, compared to the market’s weight, the more she
invests in the stock. Individuals with a long habitat will, therefore, initially defer
consumption by investing in the stock (and re-investing the dividends obtained) in
order to increase the number of shares of the stock in their portfolio. This strategy
allows them to finance their higher consumption at their habitat. I repeat that this
occurs only if there are other people who do the converse (have a short habitat). In
a homogeneous economy, agents are forced to hold the stock at all times.

The fact that the portfolio strategies do not depend on the state of the world is
due to the specific choice of logarithmic felicity functions3.

4 Analysis of the Term Structure

Since the asset market is complete, zero-coupon bonds can be duplicated by trading
in the risky asset and the money market account. It is well known, that the price of
a zero-coupon bond with maturity T is given by the Euler formula

BTt = E
[
f s(T)K−1

T

f s(t)K−1
t

∣∣∣∣∣Ft
]
.

Thus, the yield curve is determined. A calculation yields

Theorem 3 Equilibrium bond prices are

Bs,t+τt = f s(t + τ)
f s(t)

exp

(
−µ(τ,Xt)+ ξ

2

2
τ + 1

2
σ 2(τ)

)
. (16)

The yield curve is therefore given by

ys,t+τt = 1
τ

∫ t+τ
t

ρ(s)u du+ µ(τ,Xt)τ
− ξ

2

2
− σ

2(τ)
2τ

.

Like the short rate, the long-term yields consist of two summands - the first,

1
τ

∫ t+τ
t

ρ(s)u du ,

is due to the time preferences of the agents, whereas the second,

µ(τ,Xt)
τ

− ξ
2

2
− σ

2(τ)
2τ

,

is caused by the dynamics of the growth rate X and risk aversion.

3For more general CRRA felicities, a risk coefficient must be included, see Riedel (1998).

11



4.1 Long-term Yields

Before I begin a more concrete study of the term structure, I give an interesting
characterization of the long-rate4 ys∞ = limτ→∞y

s,t+τ
t .

Theorem 4 Assume φ2 > 0. In homogeneous economies populated by agent i, the
long yield is

yi∞ = ρ̄i −
ξ2

2
.

The long yield of the heterogeneous economies is determined by the lowest long
yield which prevails in the homogeneous economies:

ys∞ = min
i
yi∞ = min

i
ρ̄i − ξ

2

2
.

The long yield is therefore constant as it must be, if arbitrage is to be precluded
(confer the important result in Dybvig, Ingersoll, and Ross (1996)). Again, one part is
determined by time preferences and the other by the risk parameters of the model.
The value−ξ2

2 is the long-run value of the Vasiček-model, ignoring time preferences.
The long-run behavior of rates of time preferences determines the second part of
the long yield.

Note that the agent with the lowest long-run rate of time preference sets the
long yield. In the present model, this is plausible since it is the agent with the
highest long-run interest who has the highest impact on long-run interest rates.
The phenomenon, however, is more general. For example, the same result holds
in an economy where agents exhibit different degrees of risk aversion Wang (1996).
Dybvig, Ingersoll, and Ross (1996) show that the long yield can never fall and is equal
to the lowest value the long yield can possibly assume. Here, the lowest possible
value for the long yield is determined by the lowest value the long yield can have in
one of the homogeneous worlds populated by one type of agent only.

4.2 Logistic Time Preferences

Up to here, the results are general and do not depend on the specific choice of
the time preference densities f i. To illustrate the effect of preferred habitats, it is
assumed from now on that there are two agents (I = 2) with logistic time preference
densities. Agent 1 is impatient, that is his habitat is h1 = 0 and agent 2 has a long
habitat, h2 > 0.

4By letting the horizon T̄ of the economy tend to infinity, one obtains the yields yτ· for all
maturities and may therefore take the limit.
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Let us first assume, that the rate of growthX is a Brownian motion, that isφ2 = 0.
Then µ(τ,x) = φ1τ and σ 2(τ) = ξ2τ . The yield curve is

yt+τt = 1
τ

∫ t+τ
t

ρ(s)u du+φ1 − ξ
2

2
.

The part caused by the dynamics of X is constant and only the rates of time pref-
erence determine the shape of the yield curve. Interest rates are deterministic.

Let

f i(t) = exp(−γi(t − hi))(
1+ exp(−γi(t − hi)))2 i = 1,2

be the time preference densities of the agents and Fi, i = 1,2 the corresponding
distribution functions.

Lemma 2 The rate of time preference of the logistic time preference densities is

ρi(t) = γi(2Fi(t)− 1) . (17)

In homogeneous economies, the short rate is r it = ρi(t)+ const. It is increasing
towards the level γi + const., where γi is the long-run rate of time preference of
the time preference density as defined in Definition 1. As the short rate is rising, so
is the yield curve, since it is the average over the future short rates. As long as only
one type of agent is present, the yield curve is always increasing, regardless of the
habitat of the agents.

The rate of time preference of an agent with a long habitat is the rate of an
agent with a short habitat, shifted by the habitat h. Therefore, if the two long-run
rates of time preference do not differ too much, the short rate in the homogeneous
economy, where all agents display a short habitat, will be higher than the short
rate in the homogeneous economy, where all agents have a long habitat. Hence, the
shape of the yield curve does not change if one compares different homogeneous
economies.

The shape of the yield curve changes only if different types of agents are present.
By Lemma 1, in the heterogeneous economy, the rate of time preference ρ(s) is a
time-varying average of the individuals’ rates ,

ρ(s)t = αtρ1
t + (1−αt)ρ2

t ,

where α = α1 is the share of consumption of agent 1 in equilibrium.

Two typical pictures of the mixed rate of time preference ρ(s) are shown in
Figures 2 and 3. Initially, the impatient agent 1 consumes a large share of the
aggregate endowment, as 0 is his habitat. Hence, α is close to 1, and the mixed
rate ρ(s) is very close to the impatient agent’s rate ρ1. Later, the roles are reversed

13
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Figure 2: Rates of time preference. Agents have log-utility. Agent 1 is impatient, h1 = 0.
The habitat of agent 2 is h2 = 30 and the long-run rates of time preference are γ1 = 0.2
and γ2 = 0.1. ρ1 is represented by a dotted line and ρ2 by a dashed line. The rate of time
preference ρ(1

2) of the representative agent with s1 = 1
2 is represented as a solid line.
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Figure 3: Rates of time preference. The parameter values are as in Figure 2, except for the
long-run rates of time preferences, which are reversed: γ1 = 0.1 and γ2 = 0.2.

and agent 2 starts consuming a larger share of aggregate endowment. Around her
habitat h2, her share 1−α is close to 1, and ρ(s) begins to approach rate ρ2. If the
long-run rates γi do not differ too much, this results in a local maximum for ρ(s),
since curve ρ2 lies below curve ρ1 .

In the long run, the behavior of ρ(s) depends on the long-run rates of time
preference γi. The limit value of the share

α = s1f 1(t)
s1f 1(t)+ s2f 2(t)

=
(

1+
(
s2f 2(t)
s1f 1(t)

))−1

is determined by the limit of the likelihood quotient

f 2(t)
f 1(t)

∼ exp
(
−(γ2 − γ1)t

)
(t →∞) .

Hence, α tends to 1 if γ1 < γ2 and to 0 if agent 2 is less impatient in the long run,
γ2 < γ1. In the knife-edge case γ1 = γ2, both agents remain in the economy and
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Figure 4: The consumption shares of the agent with the long habitat in the mixed economy.
The habitat is in h = 30 and the long-run rates of time preference are γ1 = 0.2 and γ2 = 0.1
for the solid line and γ1 = 0.1 and γ2 = 0.2 for the dashed line.
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Figure 5: The yield curves. The parameter values are as in Figure 2. In addition, φ2 = 0 is
assumed. The yields fluctuate around the level r̄ = φ1−ξ2. The yield curves of the homo-
geneous economies, y0 and y1 are represented by dotted and dashed lines, respectively.

αt →
(
1+ s2

s1

)−1
. Typical curves of the share 1−α of agent 2 are given in Figure 4.

The share starts at a relatively low level and increases up to the habitat. If agent 2 is
less impatient, she also dominates in the long run. Her share continues to increase
towards 1. Otherwise, her share decreases again to the long-run level of zero.

This has the following impact on the mixed rate of time preference: Near 0 the
mixed rate ρ(s) follows the rate ρ1 because agent 1 dominates, in the sense that
she consumes a large part of the aggregate endowment. Later, around the habitat,
agent 2 takes over. Therefore, the rate of time preference ρ(s) decreases to the
lower rate ρ1, attains a minimum, and then follows the curve ρ1. If agent 2, with
the long habitat, is less impatient in the long run, the mixed rate ρ(s) stays close
to ρ2 after the habitat. This case is depicted in Figure 2. If γ1 < γ2, ρ(s) again
approaches ρ1, see Figure 3.

The resulting yield curves, which are the average, up to a constant, of the rates
of time preference, are shown in Figures 5 and 6. The averaged curve is naturally
smoother than the original one. One sees a certain overshooting of the yields prior
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Figure 6: The yield curves. The parameter values are as in Figure 3. In addition, φ2 = 0 is
assumed. The yields fluctuate around the level r̄ = φ1−ξ2. The yield curves of the homo-
geneous economies, y0 and y1 are represented by dotted and dashed lines, respectively.

to the habitat and lower yields around the habitat - a hump appears in the yield
curve. Therefore, in the heterogeneous economy, where people actually trade in
equilibrium, preferred habitats for consumption create humps in the yield curve.

In order to isolate the effects of preferred habitats on the yield curve, the case
of deterministic interest rates (φ2 = 0) has been analyzed. In general, interest rates
are stochastic. As already noted, apart the effect of time preferences, a Vasiček-type
model is the outcome. It is well known that three types of yield curves, increasing,
decreasing and single-humped, are possible in this case. The presence of hetero-
geneous preferred habitats causes an additive shift of the ’Vasiček’-curve and can
lead to additional humps.

5 The Demand for Long-Term Bonds

Preferred habitats produce humps in the yield curve when there are different types
of agents present in the economy. The resulting curves seem to indicate that there is
a high demand for long-term bonds whose maturity correspond to a specific habitat.
One may argue, though, that agents do not trade in bonds, since the market spanned
by the stock and the money market account is complete. The question is whether
they would buy long-term bonds if needed. For this reason, a variation of the model
is studied, in which the risky stock is replaced with a long-term bond. Agents use
the bond market to finance their (excess) demand, instead of the stock market, as
in the preceding sections.

The variation of the model goes as follows. There is no longer trade in the stock.
Instead, agents consider their endowment eit = siKt as an exogenously given income
stream. To finance their excess demand εit = ci(s)t − eit, they use the bond market.
Trade occurs in the money market account β and in the long term bond BT̄ , whose
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maturity is the horizon T̄ of the economy. To ensure completeness of this financial
market, assume φ2 > 0, which yields stochastic interest rates.

The next theorem is devoted to the dynamics of the long-term bond BT̄ = Bs,T̄ .

Theorem 5 Bond price dynamics are

dBT̄t
BT̄t

=
(
ξσ T̄t + rt

)
dt + σT̄t dWt (18)

where the volatility is
σT̄t = ξ

(
1− e−φ2(T̄−t)

)
.

Since the volatility of the long term bond BT̄ is strictly positive, the financial
market is complete. Agents can therefore finance their equilibrium excess demand
εit by trading in bonds. The corresponding portfolio strategy can be stated in closed
form.

Theorem 6 To finance their excess demand εi, the agents hold

θ1i
t = si(Fs(t)− Fi(t))

BT̄t f s(t)K−1
t

(
1− e−φ2(T̄−t)

) (19)

shares of the long-term bond and

θ2i
t = − s

i(Fs(t)− Fi(t))e−φ2(T̄−t)

βtf s(t)K−1
t

(
1− e−φ2(T̄−t)

) (20)

shares of the money market account.

In particular, agent i invests in the long-term bond if and only if she places more
weight on the future than the market does:

1− Fi(t) > 1− Fs(t) .

If people use the bond market to finance their demand, long-term bonds are
indeed bought by those who have a long habitat. Again, it is worth to be pointed
out that the behavior of the agents depends on the preferences of the other agents
or the ”market”- you lend long and borrow short if you are more interested in distant
payments than the average agent.

17



6 Concluding Remarks

This article studies a continuous-time pure exchange economy populated by agents
with different time preferences. It is shown that preferred habitats influence the
behavior of agents and the shape of the term structure when different types of
agents are present in the economy. Agents whose time horizon is longer than the
average time horizon of the market participants invest in long-term bonds whereas
their impatient counterparts do the converse and prefer short-term instruments
to long ones. If there is a sharp habitat of a significantly large class of investors,
humps appear in the yield curve.

Our results can be seen as supporting the traditional Preferred Habitat Theory
formulated by (Modigliani and Sutch May 1966). Their intuition that time prefer-
ences should play a major role in term structure theory is confirmed in our model.

Appendix: Proofs

Proof of Theorem 1 : Since the expected utility functionals are time-additive, one
can maximize pointwise for every t and ω:

max∑
cit=ct

∑
λif i(t) log(cit) .

The solution is

xi(c, f , λ)t = λif i(t)∑
j λjf j(t)

ct . (21)

It follows that

U(c;λ) = E
∫ T̄

0
fλ(t) log ct dt +

∫ T̄
0

∑
λi log

(
λif i(t)
f λ(t)

)
dt .

Since the second summand is independent of the consumption stream c, it plays
no role in utility maximization. �

Proof of Lemma 1 : By direct calculation,

ρ(λ)t = −
∂
∂t f

λ(t)
f λ(t)

= −
∑ λif i(t)

f λ(t)

∂
∂tf

i(t)
f i(t)

=
∑
αitρ

i
t .

�
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Proof of Theorem 2 : The consumption market clears since (ci) is an efficient
allocation. The clearing of the financial market is clear from the definitions of θi.

It remains to show that the strategy θi finances the consumption plan ci when
the stock price S is given by (13). First, ci is clearly square-integrable, since so is
aggregate endowment c, and (3) holds true. Since θi1 is continuous, (4) is satisfied.
Set Vit = θi1t St. Then Vi0 = siS0 and the initial budget constraint (6) is satisfied.
Moreover, Vit ≥ 0, since S and θi1 are nonnegative, and (8) is also satisfied. For the
intertemporal budget constraint (7), note first that from (13)

dSt = 1− Fs(t)
f s(t)

dKt −
(f s(t))2 + (1− Fs(t)) ∂∂tf s(t)

(f s(t))2
Ktdt

= 1− Fs(t)
f s(t)

Kt (µtdt + ξdWt)−Ktdt − ρ(s)t 1− F
s(t)

f s(t)
Ktdt

= µtStdt + ξStdWt −Ktdt + ρ(s)tStdt ,
hence

dSt +Ktdt = (µt + ρ(s)t) Stdt + ξStdWt . (22)

On the other hand, the dynamics of Vi are

dVit = si
(
1− Fi(t))
f s(t)

dKt −
sif i(t)f s(t)+ si (1− Fi(t)) ∂∂t f s(t)

(f s(t))2
Ktdt

= si
(
1− Fi(t))
f s(t)

(µtKtdt + ξKtdWt)−αitKtdt

+s
i (1− Fi(t))
f s(t)

ρ(s)tKtdt

= θi1t
1− Fs(t)
f s(t)

((µt + ρ(s)t)Stdt + ξStdWt)− citdt ,

which by (22) is equal to

= θi1t
1− Fs(t)
f s(t)

(dSt +Ktdt)− citdt .

Hence, θi finances ci.

The asset market is complete because S has nondegenerate volatility ξ > 0. �

Remark 1 The above proof of the equilibrium relations does not show how the equi-
librium prices and strategies are to be found. In general, this is done by using the
Negishi method. First, one computes an Arrow-Debreu equilibrium. Here , it is
given by the efficient allocation x(c; s) and the consumption price ψ(s)t = f s(t)c−1

t ,
which is the marginal felicity of the associated representative agent. Using ψ(s)
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as a state-price in the sense of Duffie (1992), one obtains the candidate stock price

via St = ψ(s)−1
t E

[∫ T̄
t Kuψudu

∣∣∣Ft] and the candidate for the short rate via rt =
−E

[
dψ(s)t
ψ(s)t

∣∣∣Ft].
Proof of Theorem 3 : By the usual Euler formula,

Bs,Tt = E
[
f s(T)K−1

T

f s(t)K−1
t

∣∣∣∣∣Ft
]

= f s(T)
f s(t)

exp(
ξ2

2
(T − t))E [exp(−(XT −Xt))|Ft] .

One therefore has to compute the conditional Laplace transform of a normal random
variable, which yields

Bs,Tt = f
s(T)
f s(t)

exp

(
ξ2

2
(T − t)− µ(T − t,Xt)+ 1

2
σ 2(T − t)

)

�

Proof of Theorem 4 : Since µ(τ,x) and σ 2(τ) are bounded, one has

µ(τ,Xt)
τ

− ξ
2

2
− σ

2(τ)
2τ

→ −ξ
2

2

as τ tends to infinity. ρ(i)t is a continuous function which converges to ρ̄i, thus

1
τ

∫ t+τ
t

ρ(i)u du→ ρ̄i .

Because of f j(t) ∼ e−ρ̄jt, the consumption share of agent i satisfies

αit ∼
sie−ρ̄it∑
sje−ρ̄jt

= si
(∑

sje(ρ̄
i−ρ̄j)t

)−1
.

If ρ̄i >minj ρ̄j , then e(ρ̄i−ρ̄j)t →∞ for some j, hence αit → 0. Agents whose long run
rate of time preference ρ̄i is not minimal do not contribute to the long run value of
ρ(s). Hence, ρ(s)t → minj ρ̄j . This in turn implies

1
τ

∫ t+τ
t

ρ(s)u du→ min
j
ρ̄j

and ys∞ = minj y
j
∞ follows. �

Proof of Lemma 2 : Fi solves the differential equation

f i(t) = γiFi(t)(1− Fi(t)) . (23)
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The logarithmic derivative is therefore

∂
∂t

log f i(t) = ∂
∂t

(
logγi + log Fi(t)+ log(1− Fi(t))

)

= f i(t)
Fi(t)

− f i(t)
1− Fi(t)

and by applying (23), one obtains

= γi(1− Fi(t))− γiFi(t) = γi(1− 2Fi(t)) .

�

Proof of Theorem 5 : By (16), the bond price is a function of the growth rate
Xt and time t:

BT̄t = exp

(
−
∫ T̄
t
ρudu− µ(T̄ − t,Xt)+ ξ

2

2
(T̄ − t)+ σ

2(T̄ − t)
2

)
,

with µ(T̄ − t, x) =
(
φ1
φ2
− x

)(
1− e−φ2(T̄−t)

)
and σ 2(T̄ − t) = ξ2

(
1−e−φ2(T̄−t)

)
2φ2

. The
partial derivatives are

∂
∂t
BT̄t = BT̄t

(
ρt + (φ1 −φ2Xt) e−φ2(T̄−t) − ξ

2

2
− ξ

2

2
e−2φ2(T̄−t)

)

∂
∂x
BT̄t = BT̄t

(
1− e−φ2(T̄−t)

)
∂2

∂x2
BT̄t = BT̄t

(
1− e−φ2(T̄−t)

)2
.

Itôs formula yields

dBT̄t
BT̄t

=
(
ρt + (φ1 −φ2Xt) e−φ2(T̄−t) − ξ

2

2
− ξ

2

2
e−2φ2(T̄−t)

)
dt

+
(
1− e−φ2(T̄−t)

)
dXt + 1

2

(
1− e−φ2(T̄−t)

)2
d[X]t

=
(
ρt + (φ1 −φ2Xt) e−φ2(T̄−t) − ξ

2

2
− ξ

2

2
e−2φ2(T̄−t)

)
dt

+
(
1− e−φ2(T̄−t)

)
(φ1 −φ2Xt)dt + ξ

(
1− e−φ2(T̄−t)

)
dWt

+ξ
2

2

(
1− e−φ2(T̄−t)

)2
dt

=
(
ρt +φ1 −φ2Xt − ξ

2

2
− ξ

2

2
e−2φ2(T̄−t) + ξ

2

2

(
1− e−φ2(T̄−t)

)2
)
dt

+ξ
(
1− e−φ2(T̄−t)

)
dWt

=
(
ρt +φ1 −φ2Xt − ξ2e−φ2(T̄−t)

)
dt + ξ

(
1− e−φ2(T̄−t)

)
dWt

= (rt + ξσ T̄t )dt + σT̄t dWt ,
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with σT̄t = ξ
(
1− e−φ2(T̄−t)

)
. �

Proof of Theorem 6 : Let Vit = θ1i
t BT̄t +θ2i

t βt be the value of the portfolio formed
by (θ1i, θ2i). One has Vi0 = si, hence the initial budget constraint is satisfied. In
order to check that the strategy (θ1i, θ2i) finances the excess demand εi, one has to
show that the intertemporal budget constraint

dVit = θ1i
t dBT̄t + θ2i

t dβt − εitdt
holds true. Now,

Vit =
si
(
Fs(t)− Fi(t))
f s(t)

Kt ,

which yields

dVit = si
(
Fs(t)− Fi(t))
f s(t)

dKt +Ktds
i (Fs(t)− Fi(t))

f s(t)

= VitdXt +
si(f s(t)− f i(t))f s(t)− si(Fs(t)− Fi(t)) ∂∂tf s(t)

(f s(t))2
Ktdt

= Vit (φ1 −φ2Xt)dt + Vit ξdWt + (siKt −αitKt)dt + ρstV it dt
= Vit ξdWt + Vit

(
ρst +φ1 −φ2Xt

)
dt − εitdt . (24)

Note that

θ1i
t =

Vit
BT̄t
(
1− e−φ2(T̄−t)

)
and

θ2i
t =

−Vit e−φ2(T̄−t)

BT̄t
(
1− e−φ2(T̄−t)

) .
Therefore,

θ1i
t dBT̄t + θ2i

t dβt − εitdt = Vit ξdWt + Vit
ξσ T̄t + rt

1− e−φ2(T̄−t)dt +
Vit e−φ

2(T̄−t)

1− e−φ2(T̄−t) rtdt − εitdt
= Vit ξdWt + Vit

(
ξ2 + rt

)
dt − εitdt . (25)

Because of ξ2 + rt = ρst +φ1 −φ2Xt, (24) and (25) are equal and the proof is done.
�
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