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CONSISTENCY PROBLEMS FOR JUMP-DIFFUSION MODELS

LI CHEN ERHAN BAYRAKTAR H. VINCENT POOR

Abstract. In this paper we examine a consistency problem for a multi-factor

jump diffusion model. First we bridge a gap between a jump-diffusion model

and a generalized Heath-Jarrow-Morton (HJM) model, and bring a multi-

factor jump-diffusion model into the HJM framework. By applying the drift

condition for a generalized arbitrage-free HJM model, we derive the general

consistency condition for a jump-diffusion model. Then we consider the case

that the forward rate function has a separable structure, and obtain a specific

version of the general consistency condition. In particular, we provide the

necessary and sufficient condition for a jump-diffusion model to be affine, which

generalizes the result in [10]. Finally we discuss the Nelson-Siegel type of

forward curve structure, and give the necessary and sufficient condition for

the consistency of this class of models in the jump-diffusion case.

1. Introduction of the arbitrage-free Condition for Generalized

HJM Models

The purpose of this paper is to study the consistency problems for multi-factor
jump-diffusion term structure models of interest rates. Previous works ([4], [12],
[13], [14]) focus on the diffusion models without considering jumps. Because the
jump-diffusion models usually provide a better characterization of the randomness
in the financial market than diffusion models (see [1], [19]), there is an upsurge
in modeling the dynamics of interest rates with jumps (e.g. [3], [11], [16], [20]).
Therefore it is necessary to clarify the consistency conditions for a jump-diffusion
model.

Consider a Heath-Jarrow-Morton model (HJM, [15]) in the presence of a marked
point process. The dynamics of the forward curve can be given by

(1.1) dr(t, T ) = α(t, T )dt + σ(t, T )dBt +
∫

J

ρ(t, T, y)µ(dt, dy),

where B is a Brownian motion and µ(dt, dy) is a random measure on R+ × J with
the compensator ν(t, dy)dt. With the Musiela’s parameterization ([17]), (1.1) can
be rewritten as

drt(τ) =
(

∂

∂τ
rt(τ) + α(t, t + τ)

)
dt + σ(t, t + τ)dBt +

∫

J

ρ(t, t + τ, y)µ(dt, dy),
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where τ = T − t denotes the time to maturity. Therefore the price of a zero-coupon
bond can be given by

(1.2) P (t, τ) = e−
R τ
0 rt(u)du.

A measure Q is said to be a local martingale measure if the discounted bond price

D(t, τ) =
P (t, τ)

e−
R t
0 rs(0)ds

is a Q-local martingale, for each τ ∈ R+. It is well known that the existence of an
equivalent local martingale measure implies the absence of arbitrage (see e.g. [8]).

Under regularity conditions, Björk et.al. [5] gives the following lemma for the
arbitrage-free condition of the generalized HJM model defined by (1.1).

Lemma 1.1. An equivalent local martingale measure exists, if and only if and the
forward rate dynamics under this measure specified by (1.1) satisfies the following
relation for ∀ 0 ≤ t < T .

(1.3) α(t, T ) = σ(t, T )
∫ T

t

σ(t, s)ds−
∫

J

ρ(t, T, y)e−
R T

t
ρ(t,u,y)duν(t, dy).

Proof. See [5], Theorem 3.13 and Proposition 3.14.
Lemma 1.1 gives the drift condition for a generalized HJM model, which gener-

alizes the traditional arbitrage-free condition for diffusion HJM models. This result
provides us a way to derive the consistency conditions for a multi-factor model with
jumps.

The remainder of the paper is organized as follows. In Section 2, we bring a jump-
diffusion model into the generalized HJM framework, and derive the consistency
condition for the coefficient functions of the model. In Section 3, we discuss a
class of separable term structure models. In particular, the affine term structure is
investigated and the sufficient and necessary conditions for a jump-diffusion model
to be affine are derived. A typical non-separable term structure model, namely
Nelson-Siegal term structure is examined in Section 4. Brief concluding remarks
are made in Section 5.

1.1. Basic Notation. First we introduce the notation that will be frequently used
in the paper as shown in Table 1.

2. The Consistency Conditions for Multi-factor Jump-Diffusion

Models

Consider a multi-factor term structure model M with forward rates of the form:

rt(τ) = G(τ,Xt),

and the state process Xt follows a general Itô’s process with state space (D,D) under
a complete filtered probability space (Ω,F , (Ft),Px) satisfying the usual conditions
such that

(2.1) dXt = b(Xt)dt + c(Xt)dWt +
∫

E

N(dt, dz)k(Xt− , z), X0 = x,
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Table 1. Summary of Notation

Notation Implications

X A time-homogeneous Itô’s process with jumps
(D,D) The state space D := Rn and its Borel σ-algebra D := B(D)
C(D) The Banach space of continuous functions on D
bD The Banach space of bounded Borel-measurable functions on D
Cb(D) The Banach space consisting of all bounded continuous functions on D
Ck(D) The space of k-times differentiable functions f on the interior of D such that

all partial derivatives of f up to order k are continuous
R+, (R++) The set of positive (strictly positive) real numbers
G The infinitesimal generator of X
Leb The Lebesgue measure on R+

〈·, ·〉 The inner product in the vector space Rn

∇f The gradient of the function f on D

where G : R+×D 7→ R is a deterministic function, Wt is an n-dimensional standard
Px-Brownian motion and N(·, ·) is a Poisson random measure independent of W

with mean measure as Leb×ψ on R+×E. Here it is assumed that (Ft) is generated
by W and N .

Definition 2.1. A multi-factor jump-diffusion model M is said be consistent if the
induced dynamics of the forward rates G satisfies the relation (1.3).

Assumption 2.1. For the sake of simplicity for analysis, it is assumed that

• The function G ∈ C1,2(R+ ×D);
• The functions b : D 7→ Rn and c : D 7→ Rn×n are deterministic and

continuous, and k : D ×E 7→ Rn is deterministic and bounded continuous;
• ψ is a finite measure on E such that ψ(E) < ∞;
• (2.1) has a unique strong solution Xt(x) in D.

By Itô’s formula, the dynamics of the forward rates G(·, Xt) can be derived as
follows.

G(·, Xt) = G(·, x0) +
n∑

i=1

∫ t

0

∂xiG(·, Xs−)bi(Xs−)ds(2.2)

+
n∑

i=1

∫ t

0

∂xiG(·, Xs−)
n∑

j=1

ci,j(Xs−)dW j
t

+
n∑

i,j=1

∫ t

0

ai,j(Xs−)∂xi∂xj G(·, Xs−)ds

+
∫ t

0

∫

E

N(ds, dz)[G(·, Xs− + k(Xs− , z))−G(·, Xs−)],

where a(Xt) = 1
2c(Xt)c(Xt)T is a semi-positive definite matrix, which denotes the

diffusion.
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Lemma 2.1. Under Assumption 2.1, the infinitesimal generator G of X has the
following generic form:

Gf(x) =
n∑

i,j=1

ai,j(x)∂xi∂xj f(x) +
n∑

i=1

bi(x)∂xif(x)(2.3)

+
∫

D

[f(x + ξ)− f(x)]L(x, dξ), ∀ x ∈ D, f ∈ C2
b (D).

where L(·, ·) is a Markov kernel on (D,D) which is defined by

(2.4) L(x,B) = ψ{z ∈ E : k(x, z) ∈ B}, ∀ B ∈ D.

Furthermore, if L(x,D) > 0, for each x ∈ D, then L(·, ·) can be rewritten as

(2.5) L(x, dξ) = λ(x)Q(x, dξ),

where λ(·) represents the jump intensity of the process X and Q(·, ·) represents the
probability kernel of the jump magnitude.

Proof. By Itô’s formula, it is easy to deduce that for ∀ x ∈ D, f ∈ C2
b (D)

Exf(Xt) = f(x) +
n∑

i=1

∫ t

0

Ex [∂xif(Xs−)bi(Xs−)ds](2.6)

+
n∑

i,j=1

∫ t

0

Ex

[
ai,j(Xs−)∂xi∂xj f(Xs−)ds

]

+ Ex

[∫ t

0

∫

E

N(ds, dz)(f(Xs− + k(Xs− , z))− f(Xs−))
]

.

By the definition of the Poisson random measure N , the last term on the right hand
side (RHS) of (2.6) can be written as

Ex

[∫ t

0

∫

E

dsψ(dz)(f(Xs− + k(Xs− , z))− f(Xs−))
]

=
∫ t

0

ds

∫

D

(f(x+ξ)−f(x))L(x, dξ),

where L(·, ·) is defined in (2.4). Therefore we can rewrite (2.6) as

Ptf(x) = f(x) +
n∑

i=1

∫ t

0

Ex [∂xif(Xs−)bi(Xs−)ds](2.7)

+
n∑

i,j=1

∫ t

0

Ex

[
ai,j(Xs−)∂xi∂xj f(Xs−)ds

]

+
∫ t

0

dsEx

[∫

D

(f(Xs− + ξ)− f(Xs−))L(Xs− , dξ)
]

,
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where (Pt) denotes the transition semigroup of the Markov process X. By (2.7)
and the bounded convergence theorem, we derive that

G̃f(x) = lim
t↓0

Ptf(x)− f(x)
t

=
n∑

i,j=1

ai,j(x)∂xi∂xj f(x) +
n∑

i=1

bi(x)∂xif(x)

+
∫

D

[f(x + ξ)− f(x)]L(x, dξ), ∀ x ∈ D, f ∈ C2
b (D),

where G̃ is called the weak generator of X. Since X is a Feller process, by Lemma
31.7 in [21], we have G = G̃, which proves the first argument of Lemma 2.1. If
L(x,D) > 0, for each x ∈ D, since ψ(E) < ∞, then 0 < L(x,D) < ∞. Therefore
by simply defining λ(x) = L(x,D) and Q(x, dξ) = L(x,dξ)

λ(x) , we complete the proof.

Remark 2.1. Because X is a Feller process, the process

f(Xt)− f(x)−
∫ t

0

Gf(Xs−)ds

is a Px martingale for each f ∈ C2
b (D). In particular, if Gf = 0, then f(Xt) is a

martingale.

Lemma 2.2. If we define N ′(·, ·) as a random measure on (R+, D) given by

(2.8) N ′([0, t], B, ω) =
∫ t

0

∫

E

N(ds, dz, ω)1{z: k(Xs− (ω),z)∈B}, ∀B ∈ D,

then N ′(dt, dξ) has a compensator dtL(Xt− , dξ).

Proof. For each B ∈ D and s, t ∈ R+, we have

Ex

[∫ s+t

0

(N ′(du,B)− duL(Xu, B))|Fs

]
=

∫ s

0

(N ′(du,B)− duL(Xu− , B))

+EXs

[∫ s+t

s

(
∫

E

N(du, dz)1{z: k(Xu− ,z)∈B}

−duL(Xu− , B))]

=
∫ s

0

(N ′(du,B)− duL(Xu− , B)).

The second derivation comes from the definition of the filtration , the independence
condition for Poisson random measure N and (2.4). By monotone class theorem,
we can deduce that for each f ∈ D+,

Mf
t =

∫ t

0

∫

D

[N ′(du, dξ)f(ξ)− duL(Xs−, dξ)f(ξ)].

is a martingale, and since L(Xt− , ·) is predictable, therefore we finish our proof.
Now since we derive the dynamics of the induced forward rates, by fitting (2.2)

into Lemma 1.1, we can derive the following theorem of the consistency condition
for a jump diffusion model.
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Theorem 2.1. Under Assumption 2.1, a multi-factor jump-diffusion model M is
consistent, if and only if for each (τ, x) ∈ R+ × D, given the forward rates curve
G(τ, Xt), the coefficients a(x), b(x) and L(x, ·) satisfy the following constraint.

−∂τG(τ, x) +
n∑

i=1

∂xi
G(τ, x)bi(x) +

n∑

i,j=1

ai,j(x)∂xi
∂xj

G(τ, x)(2.9)

= 2
n∑

i,j=1

ai,j(x)∂xiG(τ, x)
∫ τ

0

∂xj G(u, x)du

−
∫

D

δ0(x, τ, ξ)L(x, dξ),

where δ0(x, τ, ξ) = [G(τ, x + ξ)−G(τ, x)]e−
R τ
0 (G(u,x+ξ)−G(u,x))du.

Proof. Since rt(τ) = G(τ, Xt), by the Musiela’s parameterization and Lemma
1.1, it follows from (2.2) that

n∑

i=1

∫ t

0

∂xiG(τ, Xs−)bi(Xs−)ds +
n∑

i,j=1

∫ t

0

ai,j(Xs−)∂xi∂xj G(τ,Xs−)ds(2.10)

= 2
n∑

i,j=1

∫ t

0

ai,j(Xs−)∂xiG(τ,Xs−)
∫ τ

0

∂xj G(u,Xs−)duds

−
∫ t

0

ds

∫

D

δ0(Xs− , τ, ξ)L(Xs− , dξ) +
∫ t

0

∂τG(τ, Xs)ds.

Under Assumption 2.1, we notice the there exist at most finite jumps for the process
X during the time 0 to t, for each t > 0, therefore without loss of generality, we
don’t distinguish between Xs− and Xs in (2.10), and replace both by x, therefore
we can obtain (2.9) by differentiating on both sides of (2.10) with respect to t.

Assumption 2.2. Now it is further assumed that the jump intensity λ(·) is a con-
tinuous function on D, and the jump kernel Q(x, ·) defined by (2.5) is independent
of x, which means that

(2.11) L(x, dξ) = λ(x)Q(dξ).

Remark 2.2. The models with the jump measure defined by (2.11) include two
specific classes: pure diffusion models (λ(·) = 0), and the models driven by Lévy
processes or more precisely, compound Poisson processes (the intensity λ is a con-
stant).

Now we can derive the following characterization theorem for a multi-factor
jump-diffusion model M.

Theorem 2.2. Under Assumptions 2.1 and 2.2, the jump measure Q(·) can be
freely chosen only subject to the regularity condition:

(2.12)
∫

D

δ0(x, τ, ξ)Q(dξ) < ∞, ∀ (τ, x) ∈ R+ ×D.

If the forward rate curve G(·, x) satisfies the condition that the functions ∂xiG(·, x),
∂xi∂xj G(·, x) and

∫
D

δ0(x, ·, ξ)Q(dξ) are linearly independent for all 1 ≤ i, j ≤ n



CONSISTENCY OF JUMP-DIFFUSION MODELS 7

and for all x in some dense set D0 ⊂ D, then the drift a(·), diffusion b(·) and jump
intensity λ(·) of the state process X are uniquely determined by G.

Proof. Set M = (n + 1) + (n + 1)n/2 and choose a sequence 0 ≤ τ1 < τ2 <, ..., <

τM , such that by the linear independence condition, we know the M ×M matrix
with ith row constructed by(

∂x1G(τi, x), ..., ∂x1G(τi, x), ∂x1∂x1G(τi, x), ..., ∂xn∂xnG(τi, x),
∫

D

δ0(x, τi, ξ)Q(dξ)
)

,

for each i = 1, 2, ..., n, is invertible. Therefore a(x), b(x) and λ(x) are uniquely
determined by the arbitrage-free condition (2.9), for each x ∈ D0. Because of the
continuity of a, b and λ, the extensions to the state space D are unique. This
completes the proof of Theorem 2.2.

Now by applying Theorem 2.2, we can discuss several specific cases. For simplic-
ity, throughout the following sections, it is assumed that the space E is R+, and
Assumptions 2.1 and 2.2 are satisfied.

3. Separable Term Structure Models

In this section, we consider the forward rate curve G(τ, x) has a separable struc-
ture1

(3.1) G(τ, x) =
m∑

k=1

hk(τ)φk(x).

where the function hk : R+ 7→ R is a deterministic function for each k = 1, ..., m.
Therefore according to Theorem 2.1, we have the following consistency conditions.

Proposition 3.1. A separable term structure model (3.1) is consistent, if and only
if the following equation holds.

m∑

k=1

(hk(τ)− hk(0))φk(x) =
n∑

i=1

Γi(τ, x)bi(x)(3.2)

+
∑

i,j=1

ai,j(x)(Λi,j(τ, x)− Γi(τ, x)Γj(τ, x))

+λ(x)Ψ(H(τ), x), ∀ (τ, x) ∈ R+ ×D,

1This class of models has been investigated by Filipović [14] in the diffusion case.
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where for ∀ 1 ≤ i, j ≤ n and v ∈ Rm,

Γi(τ, x) :=
m∑

k=1

Hk(τ)
∂φk(x)

∂xi
,

Λi,j(τ, x) :=
m∑

k=1

Hk(τ)
∂2φk(x)
∂xi∂xj

,

Ψ(v, x) :=
∫

D

(
1− e

Pm
k=1 vk(φk(x+ξ)−φk(x))

)
Q(dξ)

with Hi(τ) :=
∫ τ

0

hi(u)du,

H(τ) := (H1(τ), H2(τ), ...,Hm(τ))T ,

φ(x) := (φ1(x), φ2(x), ..., φm(x))T .

Moreover, if we assume the functions

Ψ(H(·), x), Γi(·, x), Λi,j(·, x)− Γi(·, x)Γj(·, x), ∀ 1 ≤ i, j ≤ n

are linearly independent for all x ∈ D0, then a, b, λ are uniquely determined by h,
φ and the measure Q.

Proof. All the results can be derived from Theorem 2.1 and 2.2 directly.
Now on setting

Bk(x) :=
n∑

i=1

bi(x)
∂φk(x)

∂xi
+

n∑

i,j=1

ai,j(x)
∂2φk(x)
∂xi∂xj

,

Ak,l(x) = Al,k(x) :=
n∑

i,j=1

ai,j(x)
∂ψk(x)

∂xi

∂ψl(x)
∂xj

, ∀1 ≤ k, l ≤ m,

it follows from (3.2) that
m∑

k=1

(hk(τ)− h0(0))φk(x) =
m∑

k=1

Hk(τ)Bk(x)−
m∑

k,l=1

Hk(τ)Hl(τ)Ak,l(x)(3.3)

+λ(x)Ψ(H(τ), x), ∀ (τ, x) ∈ R+ ×D.

Therefore once we know (a(·), b(·), λ(·), Q(·), (hi(0)0≤i≤n) and φ(·), we can derive
the regularity conditions for H(·). This is clarified by the following proposition.

Proposition 3.2. Suppose that the functions φ1, ..., φm are linearly independent.
Then the coefficient functions H1, ..., Hm solve a system of ODEs

(3.4)
dHk(τ)

dτ
= Rk(H(τ)), 1 ≤ k ≤ m,

where Rk has the form

Rk(v) = θk + 〈βk, v〉 − 〈αkv, v〉+ γk(v) v ∈ Rm(3.5)

with θk = hk(0).

Proof. Choose m mutually distinct points (xl)1≤l≤m in D such that the m×m

matrix
(
φk(xl)

)
is invertible. Then by multiplying the inverse matrix on both sides
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of (3.3) and setting θk = hk(0), we can obtain (3.5). It is easy to see Ri(·) has the
form of (3.9) by appropriately setting αk, βk and γk.

Remark 3.1. Notice that giving (a(·), b(·), λ(·), Q(·), (hi(0))0≤i≤n) is equivalent to
giving a multi-factor short rate model, therefore Proposition 3.2 provides a way to
solve the forward rate structure by applying the consistent requirements. Moreover
it implies a necessary condition for a model to be consistent: the existence of the
solution of the ODE system (3.4).

3.1. Affine Term Structure Models. Now we will take a look at the simplest
class of models, namely the affine term structure models, where the forward rate
curve G is defined as

(3.6) G(τ, x) = h0(τ) +
n∑

i=1

hi(τ)xi, ∀ (τ, x) ∈ R+ ×D,

Therefore if we set

φ0(0) = 1, φi(x) = xi, 1 ≤ i ≤ n,

according to Theorem 3.1, we can derive the following consistent condition for affine
term structure models:

h0(τ)− h0(0) +
n∑

i=1

xi(hi(τ)− hi(0)) =
n∑

i=1

Hi(τ)bi(x)−
n∑

i,j=1

ai,j(x)Hi(τ)Hj(τ)

+λ(x)(1−Ψ(H(τ)),(3.7)

where H(·) = (H1(·), ..., Hn(·))T and Ψ(v) =
∫

D
e−〈v,ξ〉Q(dξ), which is the Laplace

transform of the probability measure Q.
According to Proposition 3.1, we have the following results.

Proposition 3.3. If the functions a(x), b(x), λ(x) are affine, and Q(·) satisfies
(2.12), then the term structure of forward rates G(·, x) is affine. On the other hand,
if G(τ, x) is an affine function with respect to x as defined by (3.6), and

H1, ..., Hn,H1H1, H1H2, ..., HnHn, 1−Ψ(H)

are linearly independent functions, then the functions a(·), b(·) and λ(·) are affine.

Proof. The first part is well established by many literatures (e.g. [11]). Basically
one can show that given a jump-diffusion model with the drift, diffusion and jump
intensity being affine functions, the price of a zero-coupon bond price has an expo-
nential affine form and the coefficient functions solve a series of generalized Riccati
equations, and thus the term structure is affine. The second part can be deduced
by the solution property of the linear equation (3.7). Since the left hand side of
(3.7) is affine and the coefficient matrix is invertible and independent of x, therefore
the solution a(x), b(x) and λ(x) must be affine functions of x. This completes the
proof.

Proposition 3.3 provides a necessary and sufficient condition for a jump-diffusion
model to be affine, which generalizes the result proposed by Duffie and Kan in [10]
for diffusion models.
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Now it is assumed that a(·), b(·), λ(·) and Q(·) are given as affine functions,
and (hi(0))0≤i≤n are known. The following corollary can be directly derived from
Proposition 3.2.

Corollary 3.1. Under the consistency condition (3.7), if a(·), b(·), λ(·) and Q(·)
satisfy Assumption 2.1 and 2.2, the coefficient functions (Hi(·))0≤i≤n can be deter-
mined from a system of ODEs shown as follows. For ∀ k = 0, 1, ...n,

dHk(τ)
dτ

= Rk(H(τ)),(3.8)

where Rk has the form

Rk(v) = θk + 〈βk, v〉+ 〈αkv, v〉+ γk

∫

D

(
1− e−

Pn
j=1 vjξj

)
Q(dξ),(3.9)

where θk = hk(0).

Remark 3.2. The above system of ODEs (3.8) and (3.9) is called generalized
Riccati equations (GREs). The existence and uniqueness of GREs have been studied
in [9].

Generally speaking2, the only consistent polynomial term structure models3 are
the affine term structure models in the jump-diffusion case. Actually under some
regularity conditions, Filipović [14] has demonstrated that affine and quadratic
Gaussian models are the only two possible consistent models that can produce sep-
arable polynomial term structure in the diffusion case. Chen and Poor [7] show
that in order to retain the quadratic term structure, the state process Xt can only
follow a so-called quadratic Gaussian process that does’t allow jumps. Therefore, it
implies that importing jumps into the underlying state process of a term structure
model may yield a better fit to real market curves, whereas the model can not yield
an analytically tractable forward curve structure. Due to this factor, several alter-
native approaches have been adopted by researchers. One way is to mix affine jump
diffusion models with quadratic Gaussian models originally proposed by Piazzesi
[20], in which the jumps are linked to the announcement of target interest rates
by the Federal Reserve. Another approach is to apply a special Lévy process to
drive the dynamics of the state variables (see [2]). Then pricing bonds and other
derivatives can be achieved by approximating (see [6], [16]).

4. The Nelson-Siegel Curves

In this section, we discuss a typical non-separable term structure model, namely
the Nelson-Siegel curve family (see [18]). This curve family has been studied in
[12], and it turns out there does not exist a non-trivial consistent diffusion model
with the Nelson-Siegel forward curve. This is not an inspiring result in view of the
widespread applications of the Nelson-Siegel family in financial industry.

2one can always find some pathological examples to produce polynomial term structure models,
e.g. see [14].
3This means that φk(x) defined in (3.1) is a polynomial function of x, for each 1 ≤ k ≤ m.
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The Nelson-Siegel forward curves can be given by the form:

(4.1) G(τ, x) = x1 + (x2 + x3τ)e−x4τ , (x1, x2, x3) ∈ R3, x4 > 0.

Let us redefine D := R3 × R++ in this section. By (4.1), it is straightforward to
deduce that

∂τG(τ, x) = (x3 − x4x2 − x3x4τ)e−x4τ ,(4.2)

∇xG(τ, x) = (1, e−x4τ , τe−x4τ , −τ(x2 + x3τ)e−x4τ )T ,(4.3)

∇x(∂x4G(τ, x)) = e−x4τ (0, −x4, −x4τ, τ2(x2 + x3τ))T ,(4.4)

and
∂2

∂xi∂xj
G(τ, x) = 0, 1 ≤ i, j ≤ 3.(4.5)

By applying (4.2)-(4.5) into (2.9), we can derive the consistency condition. Notice
if we move the terms 2

∑n
i,j=1 ai,j(x)∂xiG(τ, x)

∫ τ

0
∂xj G(u, x)du to the LHS of (2.9),

for the Nelson-Siegel curve, (2.9) can be generally written as

(4.6) q0(τ, x) + q1(τ, x)e−x4τ + q2(τ, x)e−2x4τ = λ(x)
∫

D

δ0(x, τ, ξ)Q(dξ),

where q0(τ, ·), q1(τ, ·) and q2(τ, ·) are polynomial functions of τ . Since the consis-
tency condition requires (4.6) to be true for all (τ, x) ∈ R+ ×D, therefore we have
the following proposition.

Proposition 4.1. Under some regularity conditions, a non-trivial jump-diffusion
model with Nelson-Siegel forward curve is consistent if and only if the expectation
of δ0 under the measure Q has the form:

(4.7) δ(τ, x) = (p0(τ, x) + p1(τ, x)e−x4τ + p2(τ, x)e−2x4τ ),

where p0(τ, ·), p1(τ, ·) and p2(τ, ·) are polynomial functions of τ with the degree
d0 ≤ 1, d1 ≤ 3 and d2 ≤ 4, respectively and

δ(τ, x) = λ(x)EQ[δ0(x, τ, ξ)]

= λ(x)
∫

D

δ0(x, τ, ξ)Q(dξ).

Proof. By the consistent equation (4.6), first we need to prove that if λ(x) = 0,
there does not exist a non-trivial consistent model. Since λ(x) = 0 implies that

(4.8) q0(τ, x) = q1(τ, x) = q2(τ, x) = 0, ∀(τ, x) ∈ R+ ×D.

Therefore by a careful calculation, one can show that (4.8) implies the diffusion
a(x) is zero. A complete proof can be found in [12]. Therefore there does not exist
a non-trivial model such that λ(x) = 0, which completes the proof of the necessary
condition. Now we assume that (4.7) is true, and assuming that

p0(τ, x) = p0
0(x) + p0

1(x)τ(4.9)

p1(τ, x) =
3∑

i=0

p1
i τ

i(4.10)

p2(τ, x) =
3∑

i=0

p2
i τ

i.(4.11)
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Then by letting a12(·) = a13(·) = a23(·) = 0. Then the other parameters ai,j(·)
in a and b are uniquely determined by p0(τ, x), p1(τ, x) and p2(τ, x). To be more
precise, the further calculation will give the following results.

• p2
4(·) uniquely determines a4,4(·);

• p2
3(·) uniquely determines a3,4(·);

• p2
2(·) and p2

1(·) uniquely determine a2,4(·) and a3,3(·);
• p2

0(·) uniquely determines a2,2(·);
• p1

3(·) uniquely determines a1,4(·);
• p1

2(·) uniquely determines b4(·);
• p1

1(·) uniquely determines b3(·);
• p1

0(·) uniquely determines b2(·);
• p0

1(·) uniquely determines a1,1(·);
• p0

0(·) uniquely determines b1(·).
The requirement of a to be a semi-positive definite matrix imposes the regularity
condition on the coefficient functions of polynomials p0(τ, x),p1(τ, x) and p2(τ, x).
This completes the proof.

5. Conclusion

Motivated by the discussion of consistency problems for diffusion models, this
article investigated this issue in the jump-diffusion case. Different from the diffusion
case, here we have four elements to consider: the drift, diffusion, jump intensity
and jump size measure. This difference seems to give us more freedom for making
a model to be consistent. We have shown that the jump size measure Q can be
chosen freely, and once given the jump size measure, under the regularity condition,
the drift, diffusion and jump intensity are uniquely determined by the consistent
requirement.

For separable term structure models, in addition to the consistency condition
given by Proposition 3.1, we also derive a necessary condition by the existence of
the solution for the ODEs defined in (3.4). This indicates that once given the short
rate model and the functions φ(·), you can solve the term structure of the forward
rates by these ODEs. Therefore the price of a zero-coupon bond can be derived by
(1.2).

It has been demonstrated that there does not exist a non-trivial diffusion model
with the Nelson-Siegel-type forward curve. However, because of the freedom of
choosing the jump size measure, an appropriate choice of Q will possibly produce
the structure of δ(τ, x) as defined in (4.7) and (4.9)-(4.11). This possibility perhaps
can be interpreted by the inherent limitation of the Nelson-Siegel family. Because
the structure of a Nelson-Siegel curve is too simple to capture a daily forward curve,
there exists a large discontinuity in the estimated time series of the state processe
X = (X1, X2, X3, X4). This implies that the dynamics of X comprises jumps,
which can not be captured by diffusion models. Therefore, heuristically speaking,
this is why that the diffusion models can not yield Nelson-Siegel curves, whereas
jump-diffusion models can.
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