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Abstract

We estimate time varying risk sensitivities on a wide range of stocks’ portfolios
of the US market. We empirically test, on a 1926-2004 Monthly CRSP database,
a classic one factor model augmented with a time varying specification of betas.
Using a Kalman filter based on a genetic algorithm, we show that the model is able
to explain a large part of the variability of stock returns. Furthermore we run a
Risk Management application on a GRID computing architecture. By estimating
a parametric Value at Risk, we show how GRID computing offers an opportunity
to enhance the solution of computational demanding problems with decentralized
data retrieval.
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1 Introduction

The estimation of systematic risk has been one of the most studied topic in
empirical finance. Standard OLS estimation of market model sensitivities pro-
duces a beta that is supposed to be constant, but there is no evidence of such
statistical property. Indeed, time varying betas were studied by many authors.
In one of the earliest paper investigating the time series properties of risk sen-
sitivities, Blume (1971) found some evidence of mean reversion in the beta.
In a following empirical work, Blume (1975) shows stationarity for portfolios’
betas and unstable behavior for single stock’s betas. For explaining these find-
ings, the author claims that firms may tend to undertake riskier projects at the
beginning of their life, leading to the founded mean reversion nature of beta
for single stocks. Following these papers, Brenner and Smidt (1977) proposed
a non stationary model, where the risk sensitivity of a stock is related with
the value of the stock itself, showing further evidence of the time varying na-
ture of betas. Furthermore, in an empirical work, Francis (1979) provided an
analysis, on a decade of CRSP data, confirming his findings. Further evidence
on the US market is presented in Sunder (1980), where the null hypothesis of
market risk stationarity is tested against a random walk specification, and in
Ohlson and Rosenberg (1982), where an ARMR(1,1) model is proposed and
tested on an equally weighted portfolio based on 50 years of CRSP data. In
a following empirical work, Collins et al. (1987) confirmed the autoregressive
nature of risk sensitivities found in Ohlson and Rosenberg (1982), with a de-
tailed comparison of four different model specifications. On the other hand
some authors (e.g Fabozzi and Francis (1978) and Bos and Newbold (1984))
show compelling evidence of time varying systematic risk due to micro and
macro factors.
The introduction of more sophisticated econometric techniques in the finan-
cial literature, influenced also the empirical research on risk sensitivities. In
particular, following the seminal contributions by Engle (1982) and Bollerslev
(1986) on modeling heteroskedasticity in time series, GARCH techniques are
applied for modeling time varying risk sensitivities. In this strand of literature
Bollerslev et al. (1988) apply a GARCH model for estimating a conditional
CAPM model with the assumption of heteroskedaticity in the covariance be-
tween risky assets and market portfolio. By testing their assumption on the
US market, the authors find a strong support for their hypothesis of time vary-
ing covariance matrix for assets’ returns. In the same fashion, a Multivariate
GARCH application to model time varying betas is developed in Braun et al.
(1995). Furthermore the time varying nature of systematic risk is confirmed
on several international markets in Giannopoulos (1995). Alternatively, Schw-
ert and Seguin (1990) propose and estimate a single factor model of portfolio
returns heteroskedaticity: to estimate time-varying monthly variances for size-
ranked portfolios, they use predictions of aggregate stock return variances from
daily data.
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Most of the above studies have focused on the empirical test of stochastic
nature of betas regardless the “type” of the stock/portfolio investigated. The
first step in this direction is in Ghysels (1998), where the time varying nature
of the systematic risk for several industry portfolios is investigated. Following
this paper Groenewold and Fraser (1999) applied a Kalman filter estimation
to Australian industry portfolios, and argued that industrial sectors are di-
vided in two classes, one with time varying risk sensitivities and the other one
with relatively stable behavior. Interestingly enough Groenewold and Fraser
(1999) run also a recursive regression and a rolling regression on the same
data, finding inconsistencies in the obtained results. For investigating these
results Brooks et al. (1998) performed a horse race amongst three different
model specifications on the same market. Based on both in-sample and out-
of-sample forecast errors, they found overwhelming support for the Kalman
filter approach. A Kalman filter estimation is also performed by Black et al.
(1992) for analyzing the performance of UK Unit trusts in the ’80s.
Our paper is closely related with the presented empirical literature on esti-
mation of time varying risk sensitivities. Our contribution is twofold. First we
provide an up to date and detailed analysis of time varying nature of risk sen-
sitivities on the US market. By using a a Kalman filter approach augmented
with a genetic algorithm for the log-likelihood optimization, we investigate
the risk sensitivity for a broad class of portfolios as well as for a wide range
of stocks with different characteristics. 1 Second, we propose and estimate a
Value at Risk application on several stock portfolios based on the estimation
on a GRID computing environment, showing its potential for enhancing the
solution of computational demanding problems with decentralized data re-
trieval.
The remainder of the paper is organized as follows. In Section 2 we present
the market model framework as a theoretical background to the empirical in-
vestigation. Section 3 introduces the data set used in the empirical part and
provides descriptive statistics of the analyzed stock portfolios. In Section 4
we describe the estimation procedure and discuss the results of the empiri-
cal investigation on the US stock market. In Section 5 we implement the risk
management application and Section 6 concludes.

2 Theoretical Background

In this section we review the theoretical framework for our empirical estima-
tion. Starting from the Arbitrage Pricing Theory (APT) (cfr. Ross (1976),
Roll and Ross (1980) and Chen et al. (1986)), which models the statistical
evidence that asset payoff tends to move together, we derive a simple market

1 To economize space and keep the paper readable, results on sigle stocks are avail-
able upon request.
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model for stock returns. Standard assumptions of APT are that markets are
competitive and frictionless, and that returns are generated according to

R = a + Bf + ǫ (1)

with ǫ ∼ N(0, Σ) Σ diagonal, where R is an (Nx1) vector of returns, a is
the (Nx1) vector of intercepts of the factor model, B is the (NxN) matrix of
factor sensitivities, f is the (Nx1) vector of factors and ǫ is the (Nx1) vectors
of disturbances.
If a risk free asset exists and adopted factors are traded portfolios, exact factor
pricing holds. Throughout the paper we assume that a risk free asset is traded
and the market portfolio is the pricing factor. Therefore the pricing model can
be expressed using a market portfolio as a factor:

Re
it = βiR

e
mt + ǫit, (2)

where the superscript e indicates excess returns.
As a departure from the classical APT models we consider time varying factor
sensitivities. More specifically we assume a mean reverting process for the beta:

βit = βi + αi

(

βit−1 − βi

)

+ σiε
i
t, (3)

where βi is the unconditional mean of the sensitivity relative to the asset i,
σi is its conditional volatility, αi is the mean reversion parameter, and the
error εi

t ∼ N(0, 1) is i.i.d. Thus, considering both equations (2) and (3), the
proposed model for the asset returns is:

Re
it =βitR

e
mt + ǫit,

βit =βi + αi

(

βit−1 − βi

)

+ σiε
i
t.

(4)

3 Data

In this Section we present and describe the main features of the financial series
employed in this study. Our empirical exercise is mainly based on the 1926-
2004 Monthly CRSP database. Portfolios formed on Size (SIZE), Earning Price
(E-P), Dividend Price (D-P) and Industry (IND) are from Kenneth French’s
website.
SIZE portfolios are constructed at the end of each June using the June market
equity and NYSE breakpoints. The Market Value is computed as price times
shares outstanding. The available sample period is from July 1926 to December
2004.
D-P portfolios are formed are formed on dividend price ratios at the end of
each June using NYSE breakpoints. The dividend yield used in June of year t
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is the total dividends paid from July of t-1 to June of t per dollar of equity in
June of t. The available sample period is from July 1927 to December 2004.
E-P Portfolios are constructed with the earning price ratio at the end of each
June using NYSE breakpoints. The earnings used in June of year t are total
earnings before extraordinary items for the last fiscal year end in t-1. The
sample period covers from July 1951 to December 2004.
Finally the selected Industry portfolios are Manufacturing (SIC codes 2000-
3999), Utilities (SIC codes 4900-4999), Shops (SIC codes 5000-5999, 7000-
7999), Money and Finance (SIC codes 6000-6999) and Other 2 .
In order to better understand the empirical exercise, it is worth looking briefly
at the basic characteristics of the analyzed market. Table 1 presents, for each
of the analyzed portfolios, the mean and standard deviation of the return
time series. Panel A of Table 1 presents the descriptive statistics for the SIZE
based portfolios. During the entire sample period the SIZE portfolio, based
on the lowest quintile, outperforms by 46 basis points the portfolio based on
the highest quintile, confirming the well documented size effect (see Stattman
(1980), Roseberg et al. (1985) and Fama and French (1995) among others).
Panel B and C of Table 1 show the descriptive statistics for the E-P and D-P
based portfolios respectively. In these cases, the portfolios based on the highest
quintile systematically outperform the portfolios based on the lowest quintile,
confirming the well known value effect. (Cfr. for example Basu (1983)). Finally
Panel D, Table 1, presents the descriptive statistics of the chosen industry
portfolios. During the entire sample the portfolios seem to have a similar
volatility-return profile, except the Money portfolios that slightly outperform
the others.

[Table 1 about here.]

4 Empirical Results

4.1 Estimation Procedure

The estimation of the model presented in equation (4) is performed using a
Kalman filter, where the observation equation and state equation are specified
as follows:

Yt =ΦtSt + Rǫt,

St =A + FSt−1 + Qvt.
(5)

In the above state-space form Yt is a column vector that stores the asset
returns observed at time t; Φt is a column vector of the observable risk factor

2 A detailed description, along with the data, is available at
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french
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(in our case the market index) and St is a column vector of the unobservable
risk factor sensitivities. In our model specification, the unobservable variables
are supposed to follow a simple mean reverting autoregressive process. Thus,
A and F are respectively column vectors of the unconditional means and a
[assets x assets] diagonal matrix with the autoregressive parameters on the
diagonal. Furthermore, Q and R are diagonal matrices of the volatilities of
the unobservable and the observable variables respectively. Finally ǫt and vt

are column vectors of error terms with a N(0, I) probability distribution. To
guarantee and facilitate the correct estimation of the process parameters some
restrictions are imposed. For all processes the domain of the diffusion terms
is restricted to be positive. Once the restriction is imposed, the Kalman filter
is performed.
For implementing the algorithm we follow closely the procedure in Hamilton
(1994). First of all, we initialize the state-vector St with its expected value:

S1|0 = A + FS0, (6)

where S0 contains the guessed starting values of the state variables. The as-
sociated mean squared error (MSE i.e. the variance covariance matrix of the
initialized state vector) can be computed as:

P1|0 = FP1|0F
′ + Q′Q. (7)

By using the well known result from matrix algebra,
vec(ABC) = [(C ′ ⊗ A)vec(B)], we can easily compute the MSE as:

vec(P1|0) = [I − F ⊗ F ]−1vec(Q′Q). (8)

The second step of the algorithm consists of forecasting the observable vari-
ables and updating the Kalman filter. With the updates it is then possible
to calculate the new estimates for the state variable vector and its variance
covariance matrix. The forecast of the Yt vector is computed as:

Yt|t−1 = ΦSt|t−1, (9)

with a an estimation forecast error equal to:

ξt = Φ(St − St|t−1), (10)

and a covariance matrix of estimation forecast error:

E [ξ′tξt] = ΦPt|t−1Φ
′ + R′R. (11)

Once we have calculated the estimation forecasts and the relative estimation
errors, we can update the Kalman filter via:

St|t =St|t−1 + Pt|t−1Φ
′(ΦPt|t−1Φ

′ + R′R)−1ξt

Pt|t =Pt|t−1 − Pt|t−1Φ
′(ΦPt|t−1Φ

′ + R′R)−1ΦPt|t−1.
(12)
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Thus, new estimates for the state variable vector and its variance covariance
matrix can be calculated as:

St+1|t = A + FSt|t

Pt+1|t = FPt|tF
′ + Q′Q.

(13)

Last step of the Kalman filter procedure is to compute and maximize the
log-likelihood function. In our model the log-likelihood to be maximized is :

LT =
T
∑

t=1

Lt

=
T
∑

t=1

(

(2π)−
1

2 |ΦPt|t−1Φ
′ + R′R|− 1

2 e[−
1

2
ξ′(ΦPt|t−1Φ

′+R′R)−1ξ]
)

.

(14)

In order to maximize the expression in equation (14) we choose to implement a
genetic algorithm (GA) procedure. Two main features make GA more suitable
than other optimization algorithms: first, a GA is usually more robust than
other algorithms and it can tolerate approximate or even noisy design evalua-
tion; second, a Genetic Algorithm can be efficiently parallelized and therefore
take full advantage of a GRID based application. In the next subsection we
briefly describe the implemented algorithm.

4.2 Genetic Algorithm

Genetic algorithms are search algorithms based on the mechanics of natural
selection (see Goldberg (1989) for a complete reference). Following Poloni and
Pediroda (1997), a genetic algorithm can be described with a pseudo-code
structure such as:

do ng generation

do nind individuals

translate bits into variables

compute objective

end do

do some statistics on the population individuals

do Create a new population:

by cross over:

select individuals

and reproduce

by mutation:

select individuals

and mutate

end do

end do
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The key points of a GA are the operators used for selection and reproduction
that are crucial for the robustness and the efficiency of the algorithm.
In order to understand the mechanism of a GA, we illustrate in the next
subsection, some of the operators and functions used in our implementation.

4.2.1 Coding

For starting the algorithm, it is necessary to define the initial population, that
is any collection of solutions that could reasonably span the whole solution
space. In order to perform this task, we generated a random sampling over
that space, as explained in Montgomery (1996) and Del Vecchio (1997). 3 Each
design variable is then coded in a finite-length string; traditionally, GAs use
binary numbers to represent such strings: a string has a finite length and each
bit of a string can be either 0 or 1. For real function optimization, however, it
is more natural to use real numbers: the length of the real-number string cor-
responds to the number of design variables (cfr. Daisuke Sasaki and Himeno
(Barcelona, 11-14 September 2000)). We adopted this coding technique.
After the initial population is generated the process of selection is imple-
mented. The selection (reproduction) operator selects chromosomes, according
to their fitness function values, to choose a new generation. In the selection
procedure, the well-fitted individuals have more chances to be selected. It is
worth noting that it is not a deterministic choice: even solutions with a com-
paratively low fitness may be chosen and they may reveal good choices in the
evolution of the algorithm (see Periaux et al. (1997)).
The three selection techniques usually used are:

Roulette wheel is the first and most popular operator. A selection proba-
bility proportional to its fitness is assigned to each individual in the pop-
ulation. The operator is robust but computationally intensive, moreover it
could cause premature convergence if no scaling of fitness is applied.

Tournament overcomes the problem of fitness scaling and it is considered
more efficient and robust than roulette wheel. The characteristic of a tour-
nament is to keep the best of a group of individuals randomly selected. In
our implementation we used this operator.

Local Geographic Selection elsewhere named as step-stone island model,
is a particular case of Turnament Selection. The n-size individuals partici-
pating to the tournament are not selected randomly in the population but
through a local random walk in the neighbourhoods of a given individual
being the population distributed in a N dimensional grid.

Next step in the genetic algorithm is to fill up the new generation. The main
way to perform this task is through the cross-over operator. Amongst the

3 It is worth noting that, for avoiding local optimum solutions, the size of the
population has to be 2 to 4 times the size of variables, as noted by Rao (1996).
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cross-over operators one with the highest search robustness is the two points
cross-over ; in this operator, two points are randomly chosen and the genetic
materials (i.e the design variables) are exchanged between the parent variables
vectors, as shown below:

A 0 0 1 0 1 1 0 1 1 1 1 0 1 1 1 0 A’

−→

B 1 1 1 1 0 1 1 0 0 0 1 1 0 1 0 1 B’

Another powerfull cross-over operator has been implemented: the directional
cross-over ; it assume that a ”direction of improvement” can be detected com-
paring the fitness value of two reference individuals. The schema is shown
below:

(1) for all individuals i
(2) select individual i1, select individual i2
(3) create the new individual as:

x̄ = x̄i + S · sign(Fi − Fi1) · (x̄i − x̄i1) + T · sign(Fi − Fi2) · (x̄i − x̄i2)

where S and T are random numbers in the interval [0, 1], F is the value of the
fitness function for the corrisponding vector of variables x̄.
Finally in order to enhance population diversity, a mutation operator is per-
formed. A mutation is a random change in the genetic material of a single
individual; it is applied to genes by changing them with a low probability,
Pm. In our case, a mutation means switching a bit 0 to 1 and vice versa. This
operator enables the optimization to get out of local minima. 4 A mutation
algorithm can be described as follows:

A’ 1 1 1 0 1 1 1 0 −→ 1 1 1 0 0 1 1 0 A”

4.3 Results

In this subsection we address the in-sample accuracy of the presented model.
First it is interesting to assess the capability on the employed optimization
algorithm.

[Fig. 1 about here.]

Figure 1 help us in analyzing the computational performance of the Genetic
Algorithm. It shows, in term of absolute value reached by the optimized like-
lihood function, the gain obtained increasing the generations size. Clearly the
Genetic Algorithm has an asymptote that is reached, in our test, at 1000
generations. The maximum value attained for the log-likelihood function is

4 An intuitive characteristic of the mutation operator is that the higher the proba-
bility of mutation the more the search process functions like a pure random search.

9



6581.9. It is worth noting that, with 500 generations, the attained value is
6447.88, thus while diminishing the number of generations by a factor of two
would certainly help in speeding up the algorithm, the loss of accuracy is only
of about 2%
Table 2 presents parameters estimation on the selected stock portfolios. By
analyzing these results, we can draw some preliminary insight on the goodness
of fit of the proposed model. First, the model seems to be able to explain a
consistent part of the analyzed stock returns, with an R2 that range from 0.65
for the Money industry portfolio to 0.98 for the highest quintile SIZE portfo-
lio. This result is consistent with an relevant strand of the literature, started
by Jagannathan and Wang (1996). In their paper a conditional capital asset
pricing model with time varying betas and market risk premiums is tested.
Using returns on human capital and aggregate wealth they are able to explain
57% of cross sectional stock returns variability.
Analyzing in more details the presented panels some other features are worth
noting. In Panel A, where the SIZE portfolios are analyzed, the explanatory
power of the model is increasing in size, with an increment of 30 percentage
points in the statistics from the smallest to the biggest portfolio. This result is
well documented in literature (see for example Banz (1981), Fama and French
(1993) and Fama and French (1992)). Non surprisingly a related pattern is
followed by the estimated volatility parameters for the SIZE portfolios: where
the R2 is higher the volatility tends to be smaller, with an order of magnitude
in the first quintile versus the last quintile. Similar results can be inferred from
Panel B and Panel C, where the estimated parameters are presented for E-P
and D-P portfolios respectively. In these cases, even if the R2 range is nar-
rower, the variance of the growth stock portfolios seems to be better explained
by the model. Again the same pattern for the volatility of the unobservable
process is founded. Finally, Panel D presents the results for industry based
portfolios. While the model performs well in most of the analyzed portfolios,
it is worth noting its relative lack of accuracy for the Money portfolio with
respect to the other industries.

[Table 2 about here.]

[Fig. 2 about here.]

5 An application to Risk Management

In this section we apply the estimation method proposed in Subsection 4.1 to
a simple Value a Risk (VaR) exercise.
We processed our data using a computational GRID technology implemented
in a national facility as part of the research project EGRID.
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5.1 EGRID Project

As explained in details by Leto et al. in Leto et al. (2005), the EGRID project
is a research project funded by MIUR 5 . The aim of the project is to inves-
tigate the role of GRID technologies in the field of complex systems applied
to economics and finance. The MIUR evaluation committee assigned to the
EGRID project a further specific task: to implement a GRID infrastructure
allowing geographically distributed scientific communities involved in these
projects to share economic and financial data as well as applications. A pre-
liminary version of this infrastructure was released on October 9, 2004: it is
based on European Data Grid (EDG) middleware and is hosted as an inde-
pendent Virtual Organization (VO) within INFN-GRID. 6

The EGRID project manage to successfully implement the facility with the
following characteristics

• the possibility to handle approximately 1GB of data coming from various
stock exchanges;

• data privacy and security, i.e. the access to this resource had to be secure,
authorized and authenticated;

• check availability of machines to distribute the computing load.

In the Risk Management exercise proposed in this Section, we fully take ad-
vantage of the GRID infrastructure treating our application as multithread.
Loosely speaking, multithreading can be defined as a programming technique
that enables an application to handle more than one operation at the same
time. A main application has been created and launched in a “server machine”:
this program manages the Genetic Algorithm and constantly listens to a port
for communication with other programs running in “client machines” inside
the GRID (cfr. Fig. 3). Each client application elaborates a particular config-
uration (a genetic individual of the generation) as required by the server. In
this setting, the most challenging task was to make sure that multiple threads
do not interfere with each other in an undesired way.

[Fig. 3 about here.]

In a Risk Management setting, the VaR indicates, in percentage terms, the
maximum probable loss on a given portfolio, referring to a specific confidence
interval and time horizon. Historically the VaR literature has been evolved
following two main approaches: parametric and non parametric models (see
Jorion (2000) for a complete reference). In the latter class of models we can

5 Ministero dell’Istruzione, Università e Ricerca: Italian Ministry of Education, Uni-
versity and Research.
6 The national computing grid infrastructure of INFN (Istituto Nazionale di Fisica
Nucleare: Italian National Institute for Nuclear Physics).
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pinpoint full valuation models as Historical Simulation and Monte Carlo Sim-
ulation. The Historical Simulation uses past empirical distribution of returns
in order to simulate the probability distribution of future returns. The VaR is
then calculated as the chosen percentile of the simulated distribution. On the
contrary, Monte Carlo Simulation models are based on a simulation of pre-
determined risk factors which allow the risk manager to calculate the return
distribution. Again the VaR is determined as the relevant percentile of the
obtained distribution. On the other hand the parametric approach is based
on the estimation of a single parameter and has imbedded the simplifying as-
sumptions of normal distribution of returns and linearity of portfolio returns
with respect to the considered risk factors. These two hypothesis imply a nor-
mal distribution for portfolio returns. Consequently, it is possible to describe
the returns’ distribution simply with the first two moments and thus, the VaR
can be calculated using the relevant percentile from a standard Z-distribution.
In our empirical exercise we use a simple parametric approach, based on the
beta estimation performed in Section 4, for evaluating several stock portfolios
of the US market. Using the model proposed in equation 4, it is straightforward
to define the variance of a portfolio as:

σ2
p = w′ββ ′wσ2

m + w′Σw, (15)

where w indicates a column vector of assets weights, β is a column vector of
the estimated risk sensitivities, σ2

m is the variance of the market factor and
Σ the diagonal variance-covariance matrix of idiosyncratic variances. It is a
well known result that, as the number of assets in portfolio increases, the
idiosyncratic risk becomes negligible. Thus, for a well diversified portfolio we
can calculate the Value a Risk as:

V aR = αz

√

w′ββ ′wσ2
m

√
t; (16)

where αz indicates the relevant percentile of the Z-distribution and t is the
chosen time horizon.

[Table 3 about here.]

[Fig. 4 about here.]

The proposed VaR measure is tested on a set of equally weighted portfolios
based on the SIZE, E-P, D-P and Industry portfolios. The betas are estimated
from the time-varying sensitivities as proposed above, while the volatility of
the market is simply calculated as the historical standard deviation of the
market index returns. The chosen confidence interval is 5% one side losses
and the selected time horizon is one month. For assessing the accuracy of the
calculated Value at Risk we perform a Proportion of Failure (POF) test based
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on Kupiec (1995), calculated as:

LR = − 2ln

(

px
0(1 − p0)

(n−x)

px(1 − p)(n−x)

)

, (17)

where p0 is the probability of an exception implied by the chosen confidence
interval, n is the sample size, x is the actual number of exception and p is the
Maximum-Likelihood estimator x/n of p0.
Basically this test performs a Likelihood-Ratio with 5% level, based on the
number of exceedences in any given sample, where the null hypothesis is that
the estimated value for the exceedences matches its exact value.
Given its definition, the test is asymptotically χ2 distributed with one degree
of freedom; thus if the value of the test statistic exceeds the critical value of
3.84, the Value at Risk model can be seen as not reliable with a 95% confi-
dence level. Table 3 shows the performance of the Value at Risk measure via
a backtesting. The obtained results are more than encouraging. In all the an-
alyzed portfolios the POF statistic is well below its critical value. Thus, we do
not reject the null hypothesis of a reliable VaR measure. In order to put our
results in perspective, we estimate both the same VaR measure with an Ex-
ponential Moving Average (EWMA) estimation of the market volatility, and
a full parametric Value at Risk following the procedure proposed by Riskmet-
rics. 7 In the whole sample of the analyzed portfolios, employing the EWMA
volatility does not change the accuracy of the proposed VaR measure. More
importantly, in two out of four cases (Panel C and Panel D Table 3) the VaR
measure based on the model outperforms the full parametric VaR measure.
For further assessing the potential of a GRID structure in solving a Risk Man-
agement problem, we test our model on a portfolio composed by fifty stocks
randomly selected from the CRSP database. Interestingly enough, with the
use of the GRID infrastructure, we have obtained a reduction of computation
time proportional, to a certain extent, with the number of available clients. In
particular we measure the performance of a GRID infrastructure on a cluster
of eight nodes. The speed, shown in Figure 5 Panel A, is increasing dramat-
ically when 3 clients are employed, gaining 193 seconds with respect to a
single node, with a decrease of execution time from 426 to 233 seconds, corre-
sponding to a relative increase in performance of 45, 3%. Employing 5 nodes
is giving a further improvement in the performance with a relative speed-up
of 12%. For more than 5 nodes the gain become negligible, with an average
time of execution of 205 seconds. For further investigate the performance of
the employed GRID cluster, we separate the computation time of our exercise
in time employed by the Genetic Algorithm, time employed for communica-
tion amongst nodes and time for Kalman filter computation. Figure 5 Panel
B, shows the employed time by the three pieces of the whole algorithm incre-
mentally, displaying clearly where the bottlenecks arise. First of all, the GA

7 for a complete reference see http://www.riskmetrics.com
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is not parallelized in our implementation, thus it contribute with a constant
amount of time to the entire time spent in executing the algorithm. Secondly,
the communication time is also contributing nearly constantly to the total ex-
ecution time, showing even a minor time increase when the number of clients
increases. Third, the execution time employed by the Kalman filter is, as ex-
pected, gaining the most from the Grid architecture; this is mainly due to the
parallel structure of its code, that is taking full advantage of a distributed
computational capability. Finally it is worth noting that the performance of
the VaR is comforting, with a POF statistics well above the 5% critical value
for all the randomly selected fifty stocks portfolios.

[Fig. 5 about here.]

6 Conclusion

The estimation of systematic risk has been one of the most studied topics
in empirical finance. Historically important research contributions were de-
parting from the classical one factor constant beta model, exploring the two
possibilities of multi factors models and time varying sensitivities respectively.
This paper refers to the latter stream of literature by estimating time varying
sensitivities where the betas are supposed to be unobservable. By Estimating
the model via a Kalman filter augmented with a genetic optimization algo-
rithm, we are able to explain a large part of the observed time series variance
in several stock portfolios of the US market.
Furthermore we are able to calculate a Value at Risk measure, based on the
proposed model, on a GRID computing architecture. In this context, the use
of GRID computing offers an opportunity to enhance the solution of compu-
tational demanding problems with decentralized data retrieval.
Our results are more than promising in showing the accuracy of the proposed
model coupled with the capability of the GRID architecture in dealing, in a
reasonable amount of time, with CPU use intensive calculations and huge data
retrieval queries.
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Fig. 1. Genetic Algorithm Performance

This figure plots the performance, in term of absolute value of the obtained likelihood function, with
respect to the number of simulations employed. The GA is employed on the optimization process of a fifty
stocks portfolio, randomly selected, with a time span of 33 years. All the data are from the CRSP database.
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Fig. 2. Plot of Estimated Process

This figure plots the estimated path of the beta processes. Panel A through D show respectively the
estimated processes from SIZE, E-P, D-P and Industries portfolios. For the E-P portfolios the sample size
goes from July 1951 to December 2004, while for the D-P portfolios it goes from July 1927 to December
2004. The remaining data are from July 1926 to December 2004.
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Fig. 4. Plot of Value at Risk Backtesting

This figure plots the results from a Value a Risk Backtesting. Portfolios are equally weighted and based
on the Kenneth French portfolios. All returns are monthly value weighted. The decay factor chosen for
the Exponential moving average is 0.97, while its rolling window is five years. The left column shows the
actual returns with a VaR losses band calculated with the Full Model approach while the right column
shows the losses band calculated with the Full EWMA approach.
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Fig. 5. Performance gain on a GRID architecture.

This figure plots the performance of a 8 nodes GRID cluster in performing a Risk Manage-
ment application. The portfolio employed is generated randomly by picking fifty stocks from
the CRSP database, with a time span of 33 years. Panel A shows the total computational
time, while Panel B shows the time added, incrementally, to the total computational time by
the Genetic Algorithm, the communication time and the Kalman filter algorithm respectively.
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Table 1
Descriptive Statistics of Financial Series

This table reports the mean and standard deviation of the analyzed stock portfolios. The portfolios are

from the Kenneth French website. All returns are monthly value weighted.

∗ Sample starting July 1927.

∗∗ Postwar data available from July 1951.

Panel A: Size Portfolios

Qtn 1 Qtn 2 Qtn 3 Qtn 4 Qtn 5

Entire Sample

Mean 1.39% 1.26% 1.20% 1.12% 0.93%

Std 9.33 % 7.74% 7.07% 6.34% 5.25%

Postwar Sample

Mean 1.27% 1.24% 1.19% 1.16% 1.00%

Std 5.88% 5.47% 5.02% 4.72% 4.11%

Panel B: E-P Portfolios∗∗

Qtn 1 Qtn 2 Qtn 3 Qtn 4 Qtn 5

Postwar Sample

Mean 0.84% 1.01% 1.10% 1.33% 1.46%

Std 4.90% 4.19% 4.23% 4.16% 4.71%

Panel C: D-P Portfolios ∗

Qtn 1 Qtn 2 Qtn 3 Qtn 4 Qtn 5

Entire Sample

Mean 0.96% 0.98% 0.94% 1.12% 1.10%

Std 5.98% 5.36% 5.49% 5.49% 6.11%

Postwar Sample

Mean 1.04% 1.07% 1.02% 1.19% 1.17%

Std 5.07% 4.44% 4.18% 4.00% 3.88%

Panel D: Industry Portfolios

Manuf Utils Shops Money Other

Entire Sample

Mean 1.03% 0.97% 0.96% 1.13% 0.97%

Std 5.47% 5.59% 5.75% 5.86% 6.49%

Postwar Sample

Mean 1.08% 1.02% 1.02% 1.23% 1.08%

Std 4.45% 4.08% 5.27% 5.04% 4.83%
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Table 2
Parameter Estimation

This table reports the estimated parameters of the analyzed stock portfolios. The portfolios are from the

Kenneth French website. All returns are monthly value weighted.

∗ Sample starting July 1927.

∗∗Data available from July 1951.

Panel A: Size Portfolios

Qtn 1 Qtn 2 Qtn 3 Qtn 4 Qtn 5

β 1.099 1.311 1.292 1.181 0.965

(0.054) (0.041) (0.029) (0.015) (0.006)

α 0.850 0.817 0.839 0.785 0.320

(0.020) (0.031) (0.030) (0.061) (0.131)

σ 0.045 0.040 0.015 0.005 0.003

(0.003) (0.006) (0.002) (0.001) (0.001)

R2 0.667 0.818 0.902 0.949 0.985

Panel B: E-P Portfolios∗∗

Qtn 1 Qtn 2 Qtn 3 Qtn 4 Qtn 5

β 1.115 1.013 0.925 1.002 1.011

(0.025) (0.032) (0.019) (0.031) (0.031)

α 0.880 0.830 0.636 0.697 0.589

(0.045) (0.029) (0.148) (0.053) (0.108)

σ 0.003 0.015 0.011 0.037 0.051

(0.001) (0.004) (0.002) (0.007) (0.009)

R2 0.899 0.903 0.863 0.803 0.748

Panel C: D-P Portfolios ∗

Qtn 1 Qtn 2 Qtn 3 Qtn 4 Qtn 5

β 0.920 0.953 0.812 0.965 0.412

(0.030) (0.021) (0.026) (0.024) (0.142)

α 0.841 0.750 0.801 0.710 0.972

(0.026) (0.032) (0.028) (0.054) (0.008)

σ 0.017 0.018 0.019 0.025 0.014

(0.003) (0.002) (0.004) (0.004) (0.003)

R2 0.916 0.928 0.895 0.869 0.830

Panel D: Industry Portfolios

Manuf Utils Shops Money Other

β 1.013 0.891 1.185 0.870 1.070

(0.050) (0.041) (0.047) (0.032) (0.025)

α 0.935 0.898 0.916 0.756 0.758

(0.016) (0.021) (0.015) (0.045) (0.038)

σ 0.009 0.015 0.013 0.036 0.023

(0.003) (0.007) (0.002) (0.004) (0.004)

R2 0.883 0.934 0.848 0.653 0.884
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Table 3
Value at Risk Backtesting

This table reports the results of a Value at Risk Backtesting on the analyzed stock portfolios. The portfolios

are equally weighted based on the Kenneth French portfolios. All returns are monthly value weighted. The

decay factor chosen for the Exponential moving average is 0.97, while its rolling window is five years.

∗ Sample starting July 1927.

∗∗Data available from July 1951.

Panel A: Size Portfolio

Expected Actual LR test

VaR Full Model 44.000 40.000 0.404

VaR EWMA Model 44.000 40.000 0.404

VaR Full EWMA 44.000 40.000 0.404

Panel B: E-P Portfolio∗∗

Expected Actual LR test

VaR Full Model 29.000 28.000 0.040

VaR EWMA Model 29.000 27.000 0.156

VaR Full EWMA 29.000 27.000 0.156

Panel C: D-P Portfolio∗

Expected Actual LR test

VaR Full Model 43.000 43.000 0.005

VaR EWMA Model 43.000 42.000 0.051

VaR Full EWMA 43.000 34.000 2.331

Panel D: Industry Portfolios

Expected Actual LR test

VaR Full Model 44.000 41.000 0.227

VaR EWMA Model 44.000 41.000 0.227

VaR Full EWMA 44.000 36.000 1.647
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