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Abstract 
 

Given that financial series are poorly described by Gaussian distributions, how can the volatility 
behavior of such series be explained?  Here we put forward a possible explanation to add the existing ones.  
We focus on a class of reduced variables that are independent and identically distributed.  These variables 
together with an extra exponential law are able to explain the volatility of the intraday Brazilian real-US 
dollar exchange rate for the year 2002. 
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1.  Introduction 
 

That financial data cannot be satisfactorily addressed by Gaussian distributions is 
now reasonably well established [1].  Financial systems might be complex.  Lévy-stable 
distributions and their variants have been suggested to model complex systems.  Because 
observed financial quantities are usually the sum of small terms (such as individual asset 
prices), a Lévy can be used to describe them.  This is because of the generalized central 
limit theorem that states that the non-trivial limit of normalized sums of independent and 
identically distributed variables is Lévy-stable [2].  And this is at odds with the classic 
central limit theorem that states that the limit of normalized sums of independent and 
identically distributed variables with finite variance is Gaussian. 
 There is too one empirical reason to model financial prices with the Lévy 
distributions.  Data usually exhibit fat tails, sligh skewness, and high kurtosis.  Yet 
although leptokurtosis can be accounted for by stable Lévy distributions, these have never 
been established in mainstream finance.  One reason is related to their property of infinite 
variance.  Since volatility (standard deviation) is a central concept to finance, it is useful for 
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the variance to be finite.  (The debate in the early days of modern finance can be 
appreciated in Cootner [3]). 

To remedy such a deficiency, econophysicists have recently put forward a truncated 
Lévy flight [4, 5].  This is a stochastic process with finite variance and characterized by 
scaling relations in a large but finite interval. 

Research in econophysics attempts at explaining a number of questions that emerge 
in such a non-Gaussian agenda.  Among these, one of interest is: what is the formation law 
(if any) for the volatility of a financial series of returns? 

There are stylized facts of financial volatility that are known for a long time.  An 
example is volatility clustering.  Volatility presents decaying autocorrelation and thus 
returns activity is clustered in time, a pattern which is easily detected even at the naked eye.  
Not surprisingly, the stylized facts of financial volatility have received widespread attention 
[6, 7].  Here we provide another framework to explain it and add to the existing literature 
on the subject. 

If the standard deviation is governed by a formation law, and besides that the 
asymptotic probability density function is not a Gaussian, it is of interest to learn in 
addition the conditions under which the classic central limit theorem does not hold [8].  
Given that the probability density function is not a Gaussian, how can we learn that the 
asymptotic regime has been reached?  This paper answers questions like that one by 
focusing on the behavior of the characteristic function. 

As for the volatility, we put forward a class of reduced variables that are 
independent and identically distributed and that seem to fit well a data set from the 15-
minute spaced Brazilian real-US dollar exchange rate for the year 2002.  In particular, such 
suggested variables together with an extra exponential law are able to explain the volatility 
behavior of the series fairly well. 

The rest of the paper is organized as follows.  Benchmark definitions and our 
reduced variables that are independent and identically distributed are presented in Section 
2.  Section 3 elaborates further on the latter.  Section 4 puts forward one exponential law 
and one power law to join the analytical framework in order to fit it into experimental data; 
we also develop a routine to perform that, which is presented in Section 5.  Section 6 
applies the routine to the real-dollar rate.  Section 7 studies the asymptotic behavior of the 
system by focusing on the skewness and kurtosis.  Section 8 focuses on the characteristic 
function.  And Section 9 concludes. 
 
 
2.  Benchmark definitions 
 

We first consider a sum of random variables 
 

nn xxxX +++= L21                                                                                                            (1) 
 
where a zero mean is assumed for ix .  The probability density of ix  is )(xf ii , which is 
assumed to be distinct for every ix .  Second moments of ix  and nX  are, respectively, 
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Characteristic function (CF) of  xi  is   (z)ψ i and that of nX  is (z)Ψ n .  Lévy [9] 

observes that for finite im  it holds true that 
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where functions iw (z)  and nΩ (z)  are such that 0 0iw ( ) = , 0 0nΩ ( ) = .  Provided that 
the ix  are independent, the CF of nX  is (z)ψ(z)ψ(z)Ψ nn L1= , where (z)ψ i  is the CF of ix .  
For the reduced variables we thus have 
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It follows from Eqs. (5) and (6) that 
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As ∞→n , the CF of the sum variable nX  can be written as (z)Ψ , and thus 
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where it holds true that 
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If 0=iλ , then 0=Ω(z)  and the CF of the reduced sum variable collapses to 22ze−  as 

∞→n , i.e. it collapses to a Gaussian distribution in accordance to the classic central limit 
theorem (CLT).  Results that interest most are those for which the conditions for the CLT 
does not hold; i.e. 0≠iλ .  The CLT falls into the special case to which 0=iλ . 
 
 
3.  Reduced variables which are independent and identically distributed 
 

Now we define the class of identically distributed reduced variables as follows. 
 
Definition 1.  Given random variables ix , suppose that their distributions )( ii xf  are such 
that jixfxf jjii ≠≠ ),()( .  Yet )()( jjii xfxf =  for the distributions of the reduced 
variables.  And their CF are such that )()( zz ji ψψ = . 
 

Variables ix  are also assumed, without loss of generality, to be ranked, i.e. 
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A permutation operator is defined as 
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and a vector nX

r
 is defined as 
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Thus it follows that 
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We also define 
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So Eq. (1) can be rewritten as 
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Now we define an event as an n-dimensional real vector generated according to the 
following rule. 
 
Definition 2.  An event E

r
 is created by first picking a permutation P  and then using Eq. 

(13) to build up a vector in which the kth component is randomly generated by a number 
from the distribution of 

ki
x . 

 
Such an event is a realization of vector nX

r
 followed by a permutation of any of its 

components according to Eq. (13).  For N events 
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and their sum is defined as 
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And for N large enough, sequence N, S,,S,S L21  has the same distribution of that for the 
sum variable nX , as in Eq. (1) . 

Now we can perform a series expansion of )z(w  and )z(nΩ  to yield 
 

∑∑
==

+≡
oddp

p
p

evenp

p
p zKIzKzw )(                          (18) 

 
∑∑
==

+=
oddp

p
np

evenp

p
npn zLIzL)z(Ω                   (19) 

 
where 1−=I .  Using Eqs. (5), (7), (18), and (19) produces 
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Note that npL  is uniquely determined by pK  and im .  The pK  is given by Eq. (18) and is 
entirely determined by the distributions )x(f ii .  And the summation in Eq. (21) is fully 
determined by the standard deviations. 
 
 
4.  Exponential and power laws 
 

Now we assume that im  is governed by law )i(gmi = .  Then we consider further 
particular cases in the form of an exponential and a power law. 
 
Case 1. Exponential law: Bi

i Aem −= , 0>B,A  
 
where 
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It can be found that 
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and 
 

p

n
ppp

n
p

R
R

mmm
−

−
=++ +++

1
12

1
22

1 L                       (25) 

 
Substituting Eqs. (22), (23), and (24) into Eq. (20) yields 
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Case 2. Power law: Bi i
Am = , 0>B,A  

 
Here function 
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is employed to produce 
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Considering Eqs. (27) and (28) together with Eqs. (20) and (21) produces 
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We will consider an extra power law in Section 6. 

 
 
5.  Measure of the standard deviations im  
 

For a series of events NE,E,E L21 , a list of nN'N =  numbers can be obtained, i.e. 
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where 2111122111 Eu,Eu,,Eu,Eu nnn ==== +L .  Eq. (31) can be thought of as an n-periodic 
stochastic process.  If the period is known with certainty, Eq. (31) can be used to make a 
list as follows. 
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 It can be shown [8] that the skewness and kurtosis of a statistical list X
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( )

( ) )()(

),()(

222
1

44
1

2/322
1

33
1

uKurt
mm
mmUKurt

uSkew
mm

mmUSkew

n

n

n

n

r

L

Lr

r

L

Lr

++

++
=

++

++
=

                     (33) 

 
At this point a practical difficulty emerges.  How to get the standard deviations im ?  

We are aware by the very nature of the process that they are not ordered.  Besides, it is not 
always possible to evaluate a standard variation of a stochastic variable from a single 
measure.  But such problems can be overcome by a rationale as follows. 

Take the jth period of our list, i.e. jnnj uuu ,,: 1)1( L
r

+− .  Calculate the standard 

deviations SD( X
r

) from pairs of a bidimensional list 
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Thus such an approach can be summarized as follows. 
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The routine above is nonstandard and produces only an approximate value for im .  

Yet when applied to experimental data it seems to be fairly effective, as next section will 
show. 
 
 
6.  Application to the Brazilian real-US dollar exchange rate 
 

Here the above routine is applied to the 15-minute spaced Brazilian real-US dollar 
exchange rate for the year 2002 (Fig. 1).  By employing Eq. (28) we get list ur  from such a 
set of data.  This list is made up of N′ = 6140 figures.  Then we use Eq. (31) to get list U

r
 

from a "daily" set of data (Fig. 2) which is built up as follows.  A "day" is considered to 
possess 20 data points of the original 15-minute series.  So the period of the process is n = 
20.  Since N′ = nN, the list U

r
is made up of 307 figures. 

The skewness and kurtosis of the two lists are 
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As can be seen, the hypothesis of an independent and identically distributed (IID) process is 
promptly discarded.  Indeed for an IID process we have 
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Using n = 20 and the results for ur  produces 
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which obviously does not hold. 



We then evaluate whether the process can be explained in terms of our suggested 
independent and identically distributed reduced (IIDR) variables.  To apply the technique 
summarized in Eq. (37) we consider N = 309 periods of size n – 1 = 19.  The standard 
deviations im  are shown in Fig. 3.  Applying Eq. (33) and using the values of im  produces 
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which is in good agreement with Eq. (38). 

Now we turn to the question of what the formation law for the standard deviations 
in Fig. 3 is.  Here we sketch an approximate answer.  We start with tentative exponential 
law Bi

i Aem −= .  Fig. 4 displays the data in Fig. 3 together with Bi
i Aem −= .  By using such 

an exponential law it can be shown with some algebra that 
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Thus employing Eq. (42) together with B (given in Table 1) yields 
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which is in good agreement with the experimental data. 

Secondly we try out the fitting of power law B
i Aim −= .  Fig. 5 shows the data using 

B
i Aim −= .  Here it can be shown that 
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In our example 0.0149, 0.7711A B≈ ≈  (Table 1), from which we obtain 
 



0246.31)(

,4296.1)(

=

=

UKurt

USkew
r

r

                         (45) 

 
which departures from the experimental data. 
 Just in case, we consider another power law, namely C/

i )iBA(m 1−+= .  Fig. 6 
presents results for this case.  The skewness and kurtosis are obtained directly from Eq. 
(33); as for im , we take the values in Fig. 6, with 3607.0/1)4973.02267.4( −+≈im .  We 
obtain 
 

5359.25)(

,3493.1)(

=

=

UKurt

USkew
r

r

                   (46) 

 
Table 2 gives a summary of results.  Thus the best fitting is obtained with the 

assumption that the process is an IIDR together with an exponential law describing the 
behavior of the second moment. 
 
 
7.  Asymptotic behavior 
 

If the standard deviation is governed by a formation law then the asymptotic 
probability density function (PDF) may not be a Gaussian.  Indeed from Eq. (9) one can 
realize that, if 0≠iλ , the conditions for the CLT to hold are not fulfilled.  We focus on the 
asymptotic behavior of the npL .  We simply make ∞→n  in both the exponential law (Eq. 
(26)) and the power law in Eq. (30).  This produces 
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from Eq. (26), and 
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from Eq. (30), where ( ) ∑
∞

=

=
0

1
p

rp
rζ  is the Riemman zeta function.  Note that we have 

00 =⇒= )z(Lp Ω  for 1−≥r , and the asymptotic PDF is Gaussian. 
For the other power laws we consider the behavior of the skewness and kurtosis [8]. 

We make 1>>n  in Eq. (33); here n = 1000 is considered to be large enough for practical 
purposes.  To compare our results we present in Table 3 the output for ∞→n .  As can be 
seen, no process is able to approach zero. 
 
 
8.  Characteristic function 
 

Note that the CF of the reduced variable can be written as 
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The function associated with ur  is )z(Wu , and that related to U

r
 is )z(WU .  Thus the 

functions related to an IID and an IIDR process are, respectively, 
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where im  is obtained from Eq. (37), as displayed in Fig. 3.  Fig. 7 shows both the real and 
imaginary part of Eqs. (50) and (51), where n = 19 has been used. 
 
 
9.  Concluding remarks 
 

If financial data cannot be satisfactorily addressed by Gaussian distributions, a 
question of interest is: what is the formation law (if any) for the volatility of the series?  
This paper tackles such a problem and sketches some tentative answers.  We then add to the 
existing literature on the subject.  To do that, we put forward a class of reduced variables 
that are independent and identically distributed and that seem to fit a financial data set well.  
The set is sampled from the intraday Brazilian real-US dollar exchange rate for the year 
2002.  We find that our suggested variable together with an exponential law are able to 
explain the volatility behavior of the series reasonably well. 



In particular, we find that the best fitting is obtained with the assumption that the 
process is independent and identically distributed for our reduced variable together with an 
exponential law, in which case the value for the kurtosis is closer to the experimental data. 

As for the asymptotic behavior of volatility, we find that our reduced variable 
cannot reach zero as the sample size approaches infinity; and this holds for all of our 
suggested exponential and power laws. 

Note that our results are based on the assumption that the stochastic process exhibits 
a characteristic period and in some cases that might not be true.  Furthermore, even in case 
of periodicity one might erroneously identify the period.  And when assuming that the 
standard deviation is governed by a formation law, the role of the autocorrelation function 
in the study of the properties of the system is neglected. 
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Table 1. Estimated models 
 Estimated value ± standard error 
IIDR 
Exponential law Bi

i Aem −=  
A = 0.0156 ±  0.000599 
B = 0.2070 ±  0.0101 

IIDR 
Power law B

i Aim −=  
A = 0.0149 ±  0.000899 
B = 0.7711 ±  0.0521 

IIDR 
Power law C/

i )iBA(m 1−+=  
A = 4.2267 ±  1.3063 
B = 0.4973 ±  0.3191 
C = 0.3607 ±  0.0807 

 

 

Table 2.  Skewness and kurtosis for experimental data under alternative assumptions 

 Experimental 
data 

IID (39) IIDR 
(41) 

Exponential law 
(43) 

Power law 
(45) 

Power law 
(46) 

Skewness 1.5287 0.6854 1.3497 1.3086 1.4296 1.3493 
Kurtosis 19.3846 5.7230 25.6804 23.9674 31.0246 25.5359 
Note: “IID (39)” is meant results obtained for the hypothesis of an IID process according to 
Eq. (39), and so on.  As can be seen, the exponential law provides a value for the kurtosis 
that is closer to the experimental data. 

 
 
Table 3. Comparison of results 
 Skewness Kurtosis 
IID ∞→n      0.0000 ∞→n      0.0000 
IIDR 
Exponential law Bi

i Aem −=  
∞→n      1.3008 ∞→n      23.1422 

IIDR 
Power law B

i Aim −=  
∞→n      1.1274 ∞→n      22.2813 

IIDR 
Power law C/

i )iBA(m 1−+=  
n = 1000     1.3378 n = 1000     25.2400 

It is apparent that no law can lead a process to the Gaussian zero. 
 
 
 
 



 
Fig. 1.  Brazilian real-US dollar 15-minute returns for the year 2002. 
 



 
Fig. 2.  Brazilian real-US dollar "daily" returns for the year 2002. 
 
 
 
 



 
Fig. 3.  Standard deviations im  against i . 
 



 
Fig. 4.  Fitting exponential law Bi

i Aem −= . 
 



 
Fig. 5.  Fitting power law B

i Aim −= . 
 



 
Fig. 6.  Fitting power law C/

i )iBA(m 1−+= . 
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Fig. 7.  Behavior of )z(W , which is related to an IID and an IIDR process.  Real and 
imaginary parts are in Figs. 7a and 7b respectively. 


