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Abstract

This paper investigates the performance of international affine term structure models (ATSMs) that are driven

by a mutual set of global state variables. We discuss which mixture of Gaussian and square root processes is

best suited for modelling international bond markets. We derive necessary conditions for the correlation and

volatility structure of mixture models to accommodate various empirical stylized facts such as the forward

premium puzzle and differently shaped yield curves. Using UK-US data we estimate international ATSMs

taking into account the joint transition density of yields and exchange rates without assuming normality. We

find strong empirical evidence for negatively correlated global factors in international bond markets. Further,

the empirical results do not support the existence of local factors in the UK-US setting, suggesting that

diversification benefits from holding currency-hedged bond portfolios in these markets are likely to be small.

Altogether, we find that mixture models greatly enhance the performance of ATSMs.
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1 Introduction

Affine term structure models (henceforth ATSMs) driven by Markovian latent factors have received a

lot of attention in the literature that deals with the description of single economies, presumably due

to their analytic tractability which is convenient for pricing and risk management. However, relatively

little work has been done concerning their capabilities within the context of a mutual model for two

economies. With the increased integration of global capital markets, there is a deeply-felt need to

develop arbitrage free cross-country ATSMs that are (i) consistent with stylized empirical facts (ii)

while maintaining tractability.

For international bond markets, these stylized empirical facts encompass differently shaped yield

curves, time varying correlations across two countries’ yields and the forward premium anomaly. Those

empirical properties ought to be generated by the model in addition to the stylized empirical facts

that have been investigated so thoroughly in the literature on single economies (see e.g. Litterman and

Scheinkman, 1991; Duffee, 2002; Duarte, 2004; Dai and Singleton, 2003).

In the international context, Ahn (2004) and Dewachter and Maes (2001) present multi-national

three factor, pure square root models in which both economies are driven by a local (country-specific)

factor and a common (international) factor. Their models extend the earlier work of Nielsen and Saá-

Requejo (1993) and provide important implications for the forward premium puzzle and international

diversification effects within the framework of affine models. Further, Backus, Foresi, and Telmer (2001)

provide an extensive analysis of the forward premium anomaly and analyze in a discrete-time setting

whether standard ATSMs are consistent with the anomaly. An extension along these lines is provided

by Han and Hammond (2003), who try to reconcile the forward premium anomaly with a multi-country

pure square root model. Finally, to this end, Brennan and Xia (2004) propose a multi-country pure

Gaussian term structure model.

Although all of the above mentioned models ask whether a specific type of model specification is

able to reproduce the forward premium anomaly, none of the existing papers analyzes which specifica-

tion is most suited for jointly fitting yields across countries and generating well-documented features

in the international finance literature. Additionally, none of the existing models does make full use

of the range of admissible distributional capabilities. ATSMs allow for a much richer parametrization

while maintaining tractability and parameter identification. Every model specification type exhibits

theoretical properties which, altogether, reflect a trade-off between modelling time-varying volatilities,
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correlations between factors and economic theory. On the grounds of pure models, a system specified

entirely with Gaussian processes offers maximal flexibility with respect to magnitude and sign of con-

ditional and unconditional correlations among the state variables. However, this advantage is at the

cost of non-negativity of nominal interest rates (no-arbitrage) and time-varying conditional volatilities,

the domain of correlated square root (CSR) processes, which in turn are only able to display zero

conditional and non negative unconditional correlation.

Leaving the grounds of pure models implies further complications, since there is contradictory evi-

dence even within the single economy term structure literature. On the one hand, Dai and Singleton

(2000) state that across a wide variety of parameterizations of ATSMs, the data used in their study

consistently called for negative conditional correlations among the state variables. Such type of cor-

relations is precluded in multi-factor (pure) CSR models. On the other hand, using a different data

sample and different market prices of risk, Duffee (2002) notices that the goodness-of-fit rises monoton-

ically with the number of factors that affect conditional volatilities. Using the same market prices

of risk as Duffee (2002), Tang and Xia (2005) favor a model class with one square root process and

two Gaussian processes for a variety of data sets from different economies. The bottom line in this

discussion concerning the specification of single economy term structure models seems to be that when

conditional volatility is very pronounced in the data, models with more square root factors are more

appropriate. However, when the data strongly calls for negative correlations among factors, models

with more Gaussian factors should perform better. Joint modelling of exchange rates and yields im-

poses a final and heavy layer of difficulty on model specifications. Exchange rates exhibit a certain type

of heteroskedastic variation, which, in an no-arbitrage setting, has to be compatible with the model

implied variation that is generated as a function of market prices of risk and the Markovian latent state

variables.

We work within the most general general setting that satisfies the admissibility conditions from

Dai and Singleton (2000) extended to multiple countries. This setting is, in theory, flexible enough to

produce the above mentioned empirical facts. We investigate both theoretically and empirically the

tradeoffs arising from different specifications in an international context. In particular, we are interested

in the performance of mixture models, models with both Gaussian and CSR processes. In addition,

we explore whether there seem to exist local factors in international bond markets by assessing the

performance of models in which all economies are driven by the same set of common factors relative to

the performance of models in which some factors are local in the sense that that they have only impact
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on interest rates in one specific economy.

Using swap and LIBOR rates for the UK and the US and the corresponding exchange rate data, we

estimate a series of models by means of maximum likelihood using the closed form likelihood expansions

proposed in Aı̈t-Sahalia (2002), Aı̈t-Sahalia (2001) and Aı̈t-Sahalia and Kimmel (2002). To the best

of our knowledge, this study is the first one which estimates international ATSMs taking into account

the joint distribution of yields and the exchange rate without assuming normality of the transition

densities. Joint estimation gives us the opportunity to combine economic theory (no arbitrage) with time

series properties. Further, an estimation that does not assume normality removes the bias introduced

by a (false) normal assumption especially for high dimensional systems (see Frühwirth-Schnatter and

Geyer, 1996). Representatives of the A0(3), A1(3), A2(3), A3(3) are chosen according to the local factor

specification as well as maximally parameterized common factor specifications. All in all we estimate

eight models. All parameter estimates are admissible in the sense of Dai and Singleton (2000) and

imply time series of the latent state variables that “could have occurred”.

The best model according to its overall likelihood score is a model with two square root and one

Gaussian process. This model tightly reproduces in sample yields and provides slightly better in sample

forecasts of the signs of log exchange rate returns than a drift adjusted random walk. However, even

though this model provides a tight fit of the yield data, the random walk has superior forecasting quality

concerning levels of the exchange rate as well as yields for most maturities. Strikingly, the model most

widely used in international settings, the pure CSR model, provides the worst fit to the data. This

can probably be attributed to the strong negative correlation that seems to be present between the

state variables that drive international economies. Concerning the forward premium puzzle only the

representative from the A1(3) class generates risk premia that are volatile enough in order to generate a

negative Fama coefficient. Further, we find no empirical support for the existence of local factors driving

term structures and exchange rates across the US and UK, suggesting that diversification benefits from

holding currency-hedged bond portfolios in these markets are likely to be small.

The remainder of this paper is structured as follows. In Section 2 we give a detailed presentation

of our international affine term structure model. Section 3 discusses under which conditions differently

specified admissible models are capable to reproduce several stylized empirical facts reported in the

recent international finance literature. Section 4 describes the model estimation and presents the

empirical results. Finally, in Section 5 we present concluding remarks.
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2 Model Setup

2.1 Short Rates and Factors

We assume that the world economy consists of two countries, a domestic country d and a foreign

country f , and is represented by a filtered probability space (Ω,F ,Ft,P), where F = {Ft; 0 ≤ t ≤ T}.
Short rates are modelled in nominal terms and are assumed to be affine functions of N unobserved

state variables Y (t) = (Y1(t), Y2(t), . . . , YN (t))>:

ri(t) = δi
0 + δi>

Y Y (t), i ∈ {d, f} , (1)

where δi
0 is a scalar and δi

Y is a N × 1 vector that represents loadings on the latent factors Y (t).1

Further, under the objective probability measure P, the vector of state variables is assumed to follow

the affine diffusion

dY (t) = K(Θ− Y (t))dt + Σ
√

S(t)dW (t), (2)

where K, Σ and S(t) are N ×N matrices, Θ is an N × 1 vector and W (t) represents an N -dimensional

independent standard Brownian motion under P. Further, S(t) is a diagonal N × N matrix with

elements on the main diagonal given by:

S(t)ii = αi + β>i Y (t), (3)

where αi is a scalar and βi is an N × 1 vector given by i-th column of the matrix B = [β1, · · · , βN ].

To ensure admissibility and maximal flexibility, we work with the canonical models introduced

by Dai and Singleton (2000) (henceforth DS).2 They refer to N factor models, where the number of

factors driving the conditional variance is m ≤ N as elements of the class Am(N). Further, they

show that all admissible N factor models can uniquely be classified into N + 1 non-nested subfamilies

(m = 0, 1, . . . , N) and that all of the extant ATSMs in the literature reside within some subfamily

Am(N) and can be obtained from invariant transformations of the respective canonical model.3 For

1Alternatively we could choose a structural modelling approach that takes into account price levels and consumption and
make assumptions about the utility functions of representative agents as done by e.g. Constantinides (1992), but we are
mainly concerned with model implied interactions between short rates, pricing kernels and exchange rate. For a study with
pricing kernels in real terms see Brennan and Xia (2004).

2The admissibility conditions guarantee non-negativity of the conditional variances over the whole support of the state
vector Y (t) ∈ RN . See Duffie and Kan (1996) and Dai and Singleton (2000).

3DS introduce affine transformations TAY (t) = LY (t) + ν, where L is a nonsingular N ×N matrix and ν is an N × 1
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completeness, we refer to Appendix A where we report details about sufficient parameter restrictions

and normalizations provided by DS that guarantee admissibility and identification of the canonical

models.

We perform all analytical computations with the general specification in (1), for empirical investi-

gations we will, however, put several restrictions on the canonical specification. Current literature puts

a lot of emphasis on using local factors, i.e. factors that influence only the short rate of one specific

country while having no impact on the other short rates (see Ahn, 2004; Dewachter and Maes, 2001;

Brennan and Xia, 2004). In our model setup local factors can easily be accommodated by restricting

some of the elements of δd
y and δf

y to take on values of zero. For example, if we let Y1(t) represent the

common factor which affects all short rates in our world economy, then, restricting our attention to a

three factor world, we could let rd(t) = δd
1Y1(t) + δd

2Y2(t) and rf (t) = δf
1 Y1(t) + δf

3 Y3(t). Local factors

specific to one economy are modelled to be uncorrelated with the local factors specific to the other

economy. Thus, we restrict the entries in the K matrix such that the drift of the factors specific to one

economy is unaffected by the common state variables and the factors specific to the other economy. If

the above example were taken from the A3(3) family, then starting from the canonical representation,

we restrict K21, K23 and K31, K32 to be zero.

2.2 Bond Prices and Yields

Denote the time t price of a zero-coupon bond denominated in currency of country i ∈ {d, f} with unit

face value maturing at time T = t + τ by P i(Y (t), τ). In the absence of arbitrage opportunities prices

of zero-coupon bonds are given by

P i(Y (t), τ) = EQ
i

t

[
exp

(
−

∫ t+τ

t

ri(s)ds

)]

= EQ
i

t

[
exp

(
−

∫ t+τ

t

δi
0 + δi>

y Y (s)ds

)]
,

(4)

where EQ
i

t denotes expectation under the equivalent martingale measure of country i conditional on

time t. Thus, in order to compute equation (4) we need to work with the factor dynamics under the

equivalent probability measure Qi. Let dW i denote the vector of Qi Brownian motions. By applying

vector. Diffusion rescaling TD affects the diffusion parameters and the market prices of risk. Brownian motion rotation TO

rotates unobserved independent Brownian motions into other unobserved Brownian motions and finally permutation TP is a
reordering of the state variables. All these transformations preserve admissibility of the model and leave short rates, bond
prices and their distributions unchanged and are therefore termed “invariant transformations”.
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Girsanov’s theorem we have dW = dW i − Λi(Y (t), t)dt, where Λi(Y (t), t) is an N × 1 vector that

represents the market prices of factor risk in the respective country i. In this paper, we adopt the

market price of risk specification proposed by DS that is known as completely affine. In this specification

Λi(Y (t), t) =
√

S(t) · λi
1, where λi

1 is a constant N × 1 vector. From this, we can restate the dynamics

of the state vector under the respective equivalent martingale measure of country i ∈ {d, f} as

= K(Θ− Y (t))dt− Σ
√

S(t)Λi(Y (t), t)dt + Σ
√

S(t)dW i(t)

= Ki(Θi − Y (t))dt + Σ
√

S(t)dW i(t)
(5)

where Ki and Θi denote the Qi transformed mean reversion parameters that are given by

K̃i =
(K + ΣΦi

)
, Θ̃i =

(K + ΣΦi
)−1 (KΘ− ΣΨi

)
,

where the jth row of Φi is given by λi
1j · β>j and Ψi is an N × 1 vector whose jth element is given by

λi
1j · αj .

Given the affine structure of the factor dynamics under the equivalent martingale measure repre-

sented by equation (5) together with the affine structure of the short rates in equation (1), Duffie and

Kan (1996) show that bond prices denominated in their respective home currency are given by

P i(Y (t), τ) = exp
(
Ai(τ)−Bi(τ)>Y (t)

)
, (6)

where Ai(τ) and Bi(τ) are given by the solutions to the ODEs

dAi(τ)
dτ

= −Θi>Ki>Bi(τ) +
1
2

N∑

j=1

[
Σ>Bi(τ)

]2
j
αj − δi

0

dBi(τ)
dτ

= −Ki>Bi(τ)− 1
2

N∑

j=1

[
Σ>Bi(τ)

]2
j
βj + δi

y

(7)

with boundary conditions

Ai(0) = 0, Bi(0) = 0.

Here Ai(τ) is a scalar function and Bi(τ) is an N × 1 vector valued function. From e.g. Fisher and

Gilles (1996) we have that under the physical measure the instantaneous bond price dynamics in affine
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diffusion models are given by

dP i(Y (t), τ)
P i(Y (t), τ)

=
[
ri(t) + ei(t, τ)

]
dt− v(t, τ)dW (t),

where ei(t, τ) = Bi(τ)>Σ
√

S(t) Λi denotes the instantaneous expected excess return to holding the

bond and the instantaneous bond volatility is given by vi(t, τ) = Bi(τ)>Σ
√

S(t). Further, zero-coupon

yields defined as yi(Y (t), τ) = − 1
τ ln P i(Y (t), τ) are affine in the state variables and given by

yi(Y (t), τ) =
1
τ

[−Ai(τ) + Bi(τ)>Y (t)
]
. (8)

2.3 Pricing Kernels and Exchange Rates

Given the assumption of no-arbitrage and complete markets, there exists a positive and unique pricing

kernel (state-price density or state-price deflator) for each country i, denoted M i, such that the product

of the pricing kernel and any traded asset is a martingale under the physical measure P (see Harrison

and Kreps (1979) and Harrison and Pliska (1981)). This yields the fundamental pricing equation:

xi(t) = EPt
[
M i(T )
M i(t)

· xi(T )
]

i ∈ {d, f} , (9)

where xi(t) is the nominal value of a traded asset denominated in currency of country i which gives

claim to the stochastic cash flow xi(T ) denominated in currency of country i at time T . Equivalently,

equation (9) can be reformulated as

1 = EPt
[
M i(T )
M i(t)

·Ri(t, T )
]

i ∈ {d, f} , (10)

where Ri(t, T ) = xi(T )/xi(t) denotes the gross return from t to T generated by the asset in terms of

country i’s currency. As shown by Backus, Foresi, and Telmer (2001), in the absence of arbitrage, the

exchange rate is tightly linked to the pricing kernels of the two countries. Define the exchange rate

X(t) as the number of units of domestic currency that have to be paid at time t in order to obtain one

unit of foreign currency and consider two assets, one delivering a stochastic payoff in domestic currency

the other one in foreign currency. Taking the asset denominated in domestic currency and using the
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fundamental asset pricing equation (10) the return Rd(t, T ) must satisfy

1 = EPt
[
Md(T )
Md(t)

·Rd(t, T )
]

. (11)

However, we can also state the return on this asset in terms of the foreign currency since Rf (t, T ) =

(X(t)/X(T )) ·Rd(t, T ) and

1 = EPt
[
Mf (T )
Mf (t)

· X(t)
X(T )

·Rd(t, T )
]

. (12)

Since the law of one price implies that both relations have to hold, we must have

EPt
[
Md(T )
Md(t)

·Rd(t, T )
]

= EPt
[
Mf (T )
Mf (t)

· X(t)
X(T )

·Rd(t, T )
]

. (13)

By rearranging this equation and substituting T by t+τ we can see that the exchange rate is completely

and endogenously determined by the dynamics of the two pricing kernels since now the following relation

can be established
Md(t + τ)

Md(t)
· X(t + τ)

X(t)
=

Mf (t + τ)
Mf (t)

. (14)

Apart from the tight link to the pricing kernels, the exchange rate also has distinct empirical

features. Regressions of the exchange rate returns on the interest rate differential across countries

have very low R2 statistics, implying that the lion’s share of the variation of exchange rate movements

remains unexplained by the factor risks driving the term structure of the two countries. Therefore, we

differentiate between risk factors that drive the pricing kernel dynamics and those that drive the term

structure. Additionally, as many empirical investigations have shown (see also Section 4.1, especially

Figure 2), exchange rate volatility is extremely high as compared to the volatility of the interest rate

differential across two countries. In order to be able to account for this feature, we allow the pricing

kernels to additionally be driven by a source of risk BN+1 that is orthogonal to any other of the

term structure related risks Wi(t). This decomposition of pricing kernel variation into “explainable”

and “unexplainable” variation can also be found in Brandt and Santa-Clara (2002). They, however,

attribute the unexplained pricing kernel changes to market incompleteness. We rather follow the point

of view taken by Dewachter and Maes (2001) and accredit the unexplained variation to risk factors

governing other types of assets than those of the bond market.

Equipped with such practical and theoretical considerations, we specify the dynamics of the pricing
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kernel of country i as

dM i(t)
M i(t)

= −ri(t)dt− Λi(Y (t), t)> dB(t)− Φi dBN+1(t) (15)

where the pricing kernels are driven by a vector of N P-Brownian motions B(t) = (B1(t), . . . , BN (t))>

and an additional source of risk BN+1(t). dBi(t) is assumed to be independent of dBj(t) for i 6= j, i.e.

dBi(t) ·dBj(t) = 0. The two innovation vectors W and B are also assumed to be mutually uncorrelated

in order to reflect the difference between exchange rate risk and interest rate risk.4

Inspecting equation (14) as τ goes to zero together with the pricing kernel dynamics and an appli-

cation of Ito’s lemma yields the following dynamics for the exchange rate

d log X(t) = d log Mf (t)− d log Md(t)

=
(

rd(t)− rf (t) +
1
2

(‖Λd(Y (t), t)‖2 − ‖Λf (Y (t), t)‖2)
)

dt

+
1
2
((Φd)2 − (Φf )2)dt

+
(
Λd(Y (t), t)− Λf (Y (t), t)

)>
dB(t) + (Φd − Φf )dBN+1,

(16)

where ‖·‖ denotes the Euclidean norm. Equation (16) clearly shows that the uncovered interest rate

parity does not hold under the physical measure P. The expected rate is equal to the interest rate

differential plus a risk premium that investors demand to compensate for exchange rate risk. This

departure from the uncovered interest rate parity is solely due to differences in the market prices of the

risk factors driving both economies. Thus, the uncovered interest rate parity is assumed to hold under

the physical measure P only if each factor source of risk is compensated equally (in absolute terms) in

the domestic country and the foreign country.

3 Implications of the Model

In this section we illustrate empirical features inherent to different model specifications. We discuss

necessary conditions under which models are capable of reproducing negative correlations between short

rates across countries (see Singleton, 1994) and the forward premium puzzle. Backus, Foresi, and Telmer

4Non perfect correlations are a prerequisite for our estimation procedure. With completely affine market prices of risk,
the covariance matrix of the yield dynamics and the log exchange rate dynamics is singular for ρi = 1, i = 1, . . . , N and
Φi = 0.
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(2001) show that in affine models of the short rate the forward premium anomaly can be accounted

for under two conditions. The first condition calls for a positive probability of negative interest rates.

In the admissible framework, presented in this paper, this can only be accommodated by the inclusion

of Gaussian factors. Alternatively, a way to generate the forward premium anomaly is to allow for

asymmetric factor loadings (δ) across countries. The subsequent analysis is based on a general common

factor framework (with δ free), however since we estimate our models using local factors, we also discuss

the effect of restricting the model to a common factor - local factor setting.

3.1 Correlations

Although the Brownian motions driving the vector of state variables Y (t) are independent, conditional

and unconditional instantaneous correlations between the single factors can be different from zero due

to interdependencies in the drift. This becomes apparent by inspecting the mean-reversion matrix K in

(36). Unlike common specifications for square root models, where K is usually diagonal (e.g. Nielsen and

Saá-Requejo, 1993; Ahn, 2004; Hodrick and Vassalou, 2002), the canonical form allows for off diagonal

elements which implies that the drift of one factor will in general be a function of the other factors.

This results in a rich unconditional correlation structure which is necessary for an affine model to being

able to exhibit the empirical findings from Section 4.5

We can choose an invariant transformation of the canonical model that is suitable to eliminate

feedback among Gaussian processes and between Gaussian and correlated square root (CSR) processes.

The dependency structure is thereby transferred from K into the diffusion expression. To be more

specific, the procedure can be performed by an invariant affine transformation of the latent factors

Y (t) = (Y1(t), Y2(t), . . . , YN (t))> into Z(t) = (Z1(t), Z2(t), . . . , ZN (t))> with Z(t) = LY (t) + ν, where

L is a nonsingular N ×N matrix and ν is an N × 1 vector. Such a transformation is possible because

of the linear structure of affine term structure models and the fact that the factors are unobservable.6

Under the physical measure, the dynamics of the transformed Z(t) system are:

5In pure square root models the conditional volatility between the factor dynamics is zero due to admissibility.
6An example for the effect of such a transformation on the parameters can be seen by investigating the new factor loadings

ri(t) = δi
0 + δi>

Y Y (t) = δi
0 + δi>

Y L−1(Z(t)− ν) = δi
0 − δi>

Y L−1ν| {z }
δi∗
0

+ δi>
Y L−1

| {z }
δi∗>

Y

Z(t),

The transformed Σ matrix allows for inspection of the correlation structure implied by the model. The transformation of the
other parameters (K, Θ, Σ, αi, βi, λ) is equivalent.
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dZ(t) = LKL−1 (ν + LΘ− Z(t)) dt + LΣ
√

S∗(t)dW (t)

= K∗ (Θ∗ − Z(t)) dt + Σ∗
√

S∗(t)dW (t),
(17)

where

S∗(t)ii = αi + β>i L−1(Z(t)− ν), K∗ = LKL−1, Θ∗ = ν + LΘ, Σ∗ = LΣ

The desired transformations can be done by finding a matrix L and a vector ν such that KDD is

diagonalized and KBD is set to zero.

Denoting the transformed state variables by Z(t) we can rewrite any canonical model as:

ri(t) = δi∗
0 + δi∗>

y Z(t), i ∈ {d, f} , (18)

and

dZ(t) = K∗(Θ∗ − Z(t))dt + Σ∗
√

S∗(t)dW (t) (19)

with

K∗ =


 KBB

m×m 0m×(N−m)

0(N−m)×m KDD∗
(N−m)×(N−m)


 ,Σ∗ =


 Im×m 0m×(N−m)

ΣDB
(N−m)×m ΣDD

(N−m)×(N−m)


 ,

where KDD∗
(N−m)×(N−m) is a diagonal matrix (and the diagonal elements of ΣDD

(N−m)×(N−m) are equal to

one). Since we now have moved some of the dependency structure from the drift to the Σ matrix,

instantaneous conditional and unconditional covariances between the factors can be read off the Σ

matrix.

By using equation (18) and taking differences we obtain the dynamics of the two short rates:

drd(t) = δd∗>
y dZ(t) and drf (t) = δf∗>

y dZ(t).

The instantaneous covariance between rd(t) and rf (t) is given by

Cov(drd(t), drf (t)) =
N∑

k=1

δd∗
k δf∗

k Var(dZk) +
N∑

1≤l<m≤N

(δd∗
l δf∗

m + δf∗
l δd∗

m ) Cov(dZl, dZm), (20)
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and the instantaneous correlation is given by

Corr(drd(t), drf (t)) =
Cov(drd(t), drf (t))√

Var(drd(t)) ·Var(drf (t))
, (21)

with

Var(dri(t)) =
N∑

k=1

(δi∗
k )2 Var(dZk) + 2

N∑

1≤l<m≤N

δi∗
l δi∗

m Cov(dZl, dZm), i ∈ {d, f} . (22)

To inspect the properties of mixture/pure models, we fix the number of state variables to three

(N = 3). Let us first consider a model in which all state variables follow CSR processes (m=3). The

models proposed by Ahn (2004) and Dewachter and Maes (2001) fall into this class. In the maximal

A3(3) model we have the following specification:

ri(t) = δi
0 + δi

1Y1(t) + δi
2Y2(t) + δi

3Y3(t), i ∈ {d, f} ,




dY1(t)

dY2(t)

dY3(t)


 =




K11 K12 K13

K21 K22 K23

K31 K32 K33










Θ1

Θ2

Θ3


−




Y1(t)

Y2(t)

Y3(t)





 dt

+




1 0 0

0 1 0

0 0 1







√
Y1(t) 0 0

0
√

Y2(t) 0

0 0
√

Y3(t)







dW1(t)

dW2(t)

dW3(t)


 .

It can easily be seen that the state variables in this model are all conditionally uncorrelated with each

other. By imposing that all delta weights are greater or equal zero in order to ensure positive short

rates, we constrain the instantaneous correlation between two short rates to be nonnegative.7

In a next step, we now consider a specification in which only two factors drive the conditional

volatilities of all factors, i.e. m = 2. After a suitable transformation

ri(t) = δi∗
0 + δi∗

1 Z1(t) + δi∗
2 Z2(t) + δi∗

3 Z3(t), i ∈ {d, f} ,

7This is due to the fact that any two different (positive) linear combinations of uncorrelated random variables are positively
correlated to each other. In the empirical section our representative of the A3(3) class is the only model where we had to
drop the constraint of positive delta weights, since the data called for negative correlations.
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dZ1(t)

dZ2(t)

dZ3(t)


 =




K11 K12 0

K21 K22 0

0 0 K33










Θ1

Θ2

0


−




Z1(t)

Z2(t)

Z3(t)





 dt

+




1 0 0

0 1 0

σ31 σ32 1







√
Z1(t) 0 0

0
√

Z2(t) 0

0 0
√

α3 + Z1(t) + Z2(t)







dW1(t)

dW2(t)

dW3(t)


 .

In A2(3) models Z3(t) is Gaussian and can therefore become negative. Thus, an inconvenient feature

of all models in which m < N is that there is a positive probability of generating negative short rates.

However, by introducing a Gaussian process the model is now flexible enough to generate conditional

correlations between Gaussian and CSR factors. In our example we are now free to determine σ31

and σ32 as to introduce non-zero correlations between Z3(t) and Z1(t) and between Z3(t) and Z2(t).

The conditional correlations among the state variables driven by CSR processes, however, remain zero.

Inclusion of Gaussian processes enables modelling correlations between Gaussian and any other state

variables. This in turn implies that the correlation between any two short rates can now attain negative

values. This can easily be seen by examining equation (20) and noting that we can now assign negative

values to Cov(dZ1, dZ3) and Cov(dZ2, dZ3). Nevertheless, it should be clear that this flexibility comes

at the price of limiting the volatility dynamics of the short rate. Thus, as already noted in Dai and

Singleton (2000) there is an important tradeoff between modelling the structure of factor volatilities

and admissible non-zero conditional correlations between the factors driving the short rate and thus

between any two short rates.

Further as noted by Ahn (2004), common factor models, however, imply a lower bound on the

correlation of the short rates strictly greater than -1. The reason why common factors cannot generate

the full band of correlations is due to the fact that if either of the common factors increases, both, the

covariance and the volatilities in the denominator of equation (20) increase. In local factor models,

however, an increase in the local factor of country d raises the volatility of its short rate, but it does

not affect the volatility of short rate f , nor the covariance between the short rates of countries d and

f . Thus, when the local factor specific to country d explodes, the instantaneous correlation between

country d and country f tends to zero.
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3.2 Forward Premium Puzzle

Many empirical studies report that the changes in exchange rates and interest rate differential across

countries are negatively correlated although theory would suggest a positive relation (see Bansal (1997),

Bekaert (1996) and for a survey paper Engel (1996)). This finding has been entitled as “forward premium

anomaly”. In this section we show under which conditions affine models can reproduce this forward

premium anomaly. Consider the regression equation

log X(t + ∆)− log X(t) = a1 + a2(log F (t, t + ∆)− log(X(t))) + ε(t + ∆). (23)

From covered interest rate parity log F (t, t + ∆) − log(X(t)) ≈ (rd − rf )∆ for ∆ very small and the

slope coefficient a2 (also known as Fama coefficient) is given by

a2 =
Cov

(
log X(t+∆)

X(t) , (rd(t)− rf (t))∆
)

Var((rd(t)− rf (t))∆)
. (24)

The unbiased expectation hypothesis implies a1 = 0 and a2 = 1. However, assuming no arbitrage there

is no reason for the unbiased expectation hypothesis to hold under the physical measure. Under no

arbitrage a1 and a2 can be seen as affine “corrections” to account for the change in the drift of the

exchange rate that renders equation (23) true under the expectation taken with respect to the physical

probability measure. As mentioned above, a2 is therefore often reported to be negative. In our model,

the covariance term in a2 can become negative for various reasons. Define

d = rd(t)− rf (t) and p =
1
2

(‖Λd(Y (t), t)‖2 − ‖Λf (Y (t), t)‖2) ,

where d represents the interest differential across countries and p can be understood as exchange rate

risk premium. In fact, the expected appreciation of the log exchange rate under the physical probability

measure P in (16) is precisely (d+ p)dt. Now, consider the covariance term in equation (24). This term

can be rewritten as

Cov
(

log
X(t + ∆)

X(t)
, rd(t)− rf (t)

)
= Cov (d + p, d)

= Var(d) + Cov(d, p).
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Here we assume ∆ to be sufficiently small, allowing us to use directly the infinitesimal dynamics in (16)

without much error. Thus, in order to accommodate for the forward premium anomaly a model must

be able to generate Var(d) + Cov(d, p) < 0. Fama (1984) gives the two necessary conditions. First,

the covariance between d and p has to be negative, that is the interest rate differential has to covary

negatively with the risk premium demanded by investors to compensate for exchange rate risk. Second,

the variance of the exchange rate risk premium (p) has to be greater than the variance of the interest

rate differential (d).

With the completely affine market price of risk specification the regression slope a2 of our model is

given by

a2 =
Var(d) + Cov(d, p)

Var(d)
= 1 +

Cov(d, p)
Var(d)

(25)

with

Var(d) + Cov(d, p) =
1
2




N∑

k=1

ωkγk Var(Yk) +
∑

1≤l<m≤N

ηl,m Cov(Yl, Ym)


 (26)

Var(d) =
N∑

k=1

γ2
k Var(Yk) + 2

∑

1≤l<m≤N

γlγm Cov(Yl, Ym) (27)

where

γk = δd
k − δf

k (28)

ωk =
N∑

j=1

Bkj

(
(λd

j )
2 − (λf

j )2
)

+ 2γk (29)

ηl,m = γmωl + γlωm. (30)

Since any term in equation (26) can become negative, our model is able to account for the forward

premium puzzle. Clearly, the sign of the slope coefficient hinges greatly on γ and ω and the sign of

the covariances between the state variables. In order to build some intuition for what information is

contained in system (28) - (30), it is instructive to think of the short rate dynamics dr(t) in terms of

weights and factors since dr(t) = δ>y dY (t). From this relation it can be seen that the δ-weights inflate

(deflate) the variation in the factor dynamics. Hence, if an estimation puts a lot of weight on one

factor, the variation of that factor most likely explains much of the variation in the short rate. In our
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model, in which an economy is made up of its nominal short rate, a natural way of paraphrasing “our

estimation resulted in a high δ1” is to say that an economy has high exposure to factor Y1(t). Using this

terminology, the existence of the forward premium anomaly indicates a tendency for domestic (foreign)

investors that are less exposed to a specific factor than foreign (domestic) investors to demand a higher

risk premium in absolute terms for this factor and all other factors that are influenced by this factor,

all other things equal. To explore the relation in more depth, we again focus on specific examples of

three factor models.

Let us first consider the pure CSR specification, i.e. the A3(3) model. In this ATSM subfamily B is

given by the identity matrix. Thus, the Fama slope coefficient a2 becomes negative if

a Var(Y1) + bVar(Y2) + c Var(Y3) + dCov(Y1, Y2) + e Cov(Y1, Y3) + f Cov(Y2, Y3) < 0, (31)

where

a =
(
(λd

1)
2 − (λf

1 )2 + 2(δd
1 − δf

1 )
)

(δd
1 − δf

1 )

b =
(
(λd

2)
2 − (λf

2 )2 + 2(δd
2 − δf

2 )
)

(δd
2 − δf

2 )

c =
(
(λd

3)
2 − (λf

3 )2 + 2(δd
3 − δf

3 )
)

(δd
3 − δf

3 )

d =
(
(λd

1)
2 − (λf

1 )2 + 2(δd
1 − δf

1 )
)

(δd
2 − δf

2 ) +
(
(λd

2)
2 − (λf

2 )2 + 2(δd
2 − δf

2 )
)

(δd
1 − δf

1 )

e =
(
(λd

1)
2 − (λf

1 )2 + 2(δd
1 − δf

1 )
)

(δd
3 − δf

3 ) +
(
(λd

3)
2 − (λf

3 )2 + 2(δd
3 − δf

3 )
)

(δd
1 − δf

1 )

f =
(
(λd

2)
2 − (λf

2 )2 + 2(δd
2 − δf

2 )
)

(δd
3 − δf

3 ) +
(
(λd

3)
2 − (λf

3 )2 + 2(δd
3 − δf

3 )
)

(δd
2 − δf

2 ).

Since all unconditional variances and covariances have to be positive in a pure CSR model in order to

be admissible, it is clear that the sign of inequality (31) depends on the coefficients a to f . Further, we

can see that if both economies’ short rates are exposed equally to all factors, then (31) becomes zero

and there is no way to account for the anomaly. Strikingly, one can show that if we move to a setting

in which we also include local factors which only affect one short rate but not both, it is necessary

that the two countries are not exposed in the same way to the common factor in order to generate the

anomaly. This fact is documented in Backus, Foresi, and Telmer (2001).8

To find an example of how the mechanics work in an admissible CSR model, we can investigate under

8See Ahn (2004) for a model setup within this setting. Dewachter and Maes (2001) consider a similar setting, however
they assign the same weight to the common factor in both economies.
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what conditions the coefficient a in the above equation system becomes negative. For this exposure, we

restrict all δs to be positive. All other things equal, with the domestic economy being less exposed to

factor one than the foreign economy, that is δd
1 < δf

1 , we must have (λd
1)

2−(λf
1 )2 > 2(δd

1−δf
1 ). Thus, the

magnitude of the risk premium demanded by domestic investors has to be higher than that demanded

by foreign investors, in absolute terms. On the other hand, if δd
1 > δf

1 , i.e. the domestic economy has

a higher exposure to factor one, we need (λd
1)

2 − (λf
1 )2 < 2(δd

1 − δf
1 ) for a to be negative. This relation

of magnitude between the difference in the factor loadings and the difference in the respective squared

market prices of risk is the only way to account for the forward premium puzzle in the A3(3) model.

Now, consider a mixture model in which the conditional volatility of the short rate is driven only

by two of the three factors, i.e. one of the factor (Y3(t)) is a Gaussian factor and compute again the

coefficients in equation (26). In the A2(3) family these coefficients are

a =
(
(λd

1)
2 − (λf

1 )2 + β13

(
(λd

3)
2 − (λf

3 )2
)

+ 2(δd
1 − δf

1 )
)

(δd
1 − δf

1 )

b =
(
(λd

2)
2 − (λf

2 )2 + β23

(
(λd

3)
2 − (λf

3 )2
)

+ 2(δd
2 − δf

2 )
)

(δd
2 − δf

2 )

c = 2(δd
3 − δf

3 )2

d =
(
(λd

1)
2 − (λf

1 )2 + β13

(
(λd

3)
2 − (λf

3 )2
)

+ 2(δd
1 − δf

1 )
)

(δd
2 − δf

2 )

+
(
(λd

2)
2 − (λf

2 )2 + β23

(
(λd

3)
2 − (λf

3 )2
)

+ 2(δd
2 − δf

2 )
)

(δd
1 − δf

1 )

e =
(
(λd

1)
2 − (λf

1 )2 + β13

(
(λd

3)
2 − (λf

3 )2
)

+ 2(δd
1 − δf

1 )
)

(δd
3 − δf

3 )

+
(
(λd

3)
2 − (λf

3 )2 + 2(δd
3 − δf

3 )
)

(δd
3 − δf

3 )

f =
(
(λd

2)
2 − (λf

2 )2 + β23

(
(λd

3)
2 − (λf

3 )2
)

+ 2(δd
2 − δf

2 )
)

(δd
3 − δf

3 )

+
(
(λd

3)
2 − (λf

3 )2 + 2(δd
3 − δf

3 )
)

(δd
2 − δf

2 ),

where β13 and β23 are elements of the matrix B:

B =




1 0 β13

0 1 β23

0 0 0


 .

From the admissibility conditions we have β13, β23 ≥ 0.

Again, this model has the inconvenience that it generates negative short rates with a positive
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probability. Yet, the conditions that have to be fulfilled in order to generate the forward premium

anomaly are not as restrictive as in the A3(3) model. To see this consider again the coefficients a to

f . Clearly, coefficient c cannot become negative anymore. However, since the unconditional covariance

between the Gaussian factor and the CSR factors is not bounded to be positive, this model offers more

flexibility. That is, even if investors in the less exposed country do not demand a higher risk premium

in absolute terms, it is still possible for the model to generate a negative slope coefficient a2.

Next consider the A0(3) model. In this model class all state variables have constant variances

implying constant risk premia over time and zero correlation between the interest rate differential (d)

and the exchange rate risk premium (p). Thus, such model will never be able to generate a negative

Fama coefficient with the completely affine market price of risk specification.

Altogether, as reported in several other studies, completely affine models are heavily restricted in

their ability to generate the forward premium puzzle, since they need that the state variables driving the

term structure exhibit at least some conditional volatility and that the market prices obey restrictive

conditions.

Figure 1: Constructed UK and US zero coupon yields as implied by LIBOR and swap rates
(06.01.1998 – 07.01.2003).

4 Empirical Analysis

4.1 Data and Empirical Facts

For our empirical analysis we use fixed-for-variable swap data and LIBOR rates. The choice to model

the term structure by means of swap rates has recently been followed by many researchers, see for
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example Dai and Singleton (2000), Duffie and Singleton (1997), Collin-Dufresne and Goldstein (2002)

or Dewachter and Maes (2001). This is done mainly for two reasons. First, swap rates are truly

constant maturity yields, whereas in the Treasury market the maturities of constant maturity yields

are only approximately constant. Second, they may be more relevant for pricing issues since most

interest rate derivatives are priced by means of LIBOR and swap rates. One inconvenience of this

approach is that these rates are not strictly without default risk. However, as Duffie and Huang (1996)

and Collin-Dufresne and Solnik (2001) show, they are only minimally affected by credit risk because

of their special netting features. Another problem encountered when analyzing swap rates is that the

two-year contract is the shortest maturity available.9 We therefore augment the data with short-term

LIBOR rates which serve as a proxy for short-term swap rates that are not traded.

We retrieve LIBOR rates of 6 and 12 month maturities and swap rates for maturities of 2 to 5 years

for the UK and the US. To avoid seasonality effects (see Piazzesi (2003)) we retrieve these data every

Tuesday on a weekly basis from 06/01/1998 to 07/01/2003 (262 observations) from EcoWin. We then

use these rates to bootstrap zero-coupon LIBOR and swap yields according to Piazzesi (2003).10 The

as such constructed yields are visualized in Figure 1. To complete the data we retrieve middle quote

exchange rate data from Bloomberg.

Table 1: Summary statistics of the UK and US term structure
Means and standard deviations are reported in percentage points on an annual basis. ∆st+1 represents the
annualized weekly log-returns of the exchange rate, i.e. the returns from period t to t + 1.

uk3m uk6m uk1yr uk2yr uk3yr uk4yr uk5yr us3m us6m us1yr us2yr us3yr us4yr us5yr ∆st+1
mean 5.60 5.60 5.72 5.80 5.88 5.88 5.88 4.57 4.62 4.79 5.14 5.40 5.57 5.73 0.0037
std. 1.17 1.13 1.08 0.88 0.79 0.71 0.65 1.77 1.77 1.73 1.48 1.30 1.14 1.04 0.53
uk3m 1 0.99 0.96 0.87 0.79 0.75 0.73 0.82 0.80 0.77 0.71 0.65 0.61 0.56 0.06
uk6m 1 0.99 0.92 0.85 0.81 0.80 0.83 0.82 0.80 0.75 0.70 0.66 0.62 0.05
uk1yr 1 0.97 0.92 0.89 0.88 0.83 0.83 0.83 0.80 0.76 0.73 0.69 0.05
uk2yr 1 0.99 0.97 0.96 0.82 0.83 0.85 0.85 0.83 0.82 0.80 0.04
uk3yr 1 0.99 0.99 0.81 0.83 0.85 0.86 0.86 0.85 0.84 0.05
uk4yr 1 1.00 0.79 0.81 0.83 0.86 0.86 0.86 0.85 0.05
uk5yr 1 0.79 0.81 0.83 0.86 0.87 0.87 0.86 0.05
us3m 1 1.00 0.99 0.95 0.92 0.89 0.86 0.10
us6m 1 0.99 0.97 0.94 0.91 0.88 0.10
us1yr 1 0.99 0.97 0.94 0.92 0.10
us2yr 1 0.99 0.98 0.97 0.10
us3yr 1 1.00 0.99 0.10
us4yr 1 1.00 0.10
us5yr 1 0.10

As can be seen in Figure 1 the UK term structure is inverted at the beginning of the sample period.

9One year swap rates started trading in 1997. Prior to this year the shortest available maturity for swap contracts was
the two year contract.

10A practical problem when using swap and LIBOR rates together is that the data is recorded asynchronous since LIBOR
data are recorded at 11 a.m. London time, while swap data are typically recorded at the end of day. Jones (2002) proposes
a model to mitigate this problem. In our model we, however, ignore the problem of asynchronous recording.
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Table 1 reports some descriptive statistics of the data. For both, the UK and the US, average yields are

increasing, while their standard deviations are generally decreasing with maturity. Additionally, when

comparing the average yield curves, we can infer that yields are generally lower in the UK and that the

average yield curve in the UK is not as steep as in the US. Correlations within national bond markets

are extremely high (ranging from 0.73 to almost 1) and monotonically decreasing with maturity. Across

countries we also observe significant positive correlations ranging from 0.56 to 0.87, although to a lesser

degree and without a clear pattern. All in all, the high correlations across countries as well as across

maturities suggest that both term structures are driven by a common factor.

Another interesting fact is that the annualized log-returns of the exchange rate correlate positively

with each of the yields, taking on correlation values from 0.04 to 0.10. However, the log-returns of the

exchange rate are higher correlated to US yields than to UK yields, implying that the yield differentials

(“UK minus US”) are negatively correlated to exchange rate movements. This is clearly evidence

against the uncovered interest rate parity, which would suggest that the exchange rate appreciates

as the interest rate differential rises. Further, by inspecting the standard deviation relative to the

mean of the data elements, we find that the exchange rate returns are excessively volatile compared to

the yields. This statement also holds true as we compare the volatility of the yield differentials with

exchange rate returns. This evidence is depicted in Figure 2, which plots the interest rate differential

against annualized exchange rate returns.

Figure 2: Interest Rate Differential vs. Exchange Rate Returns
Comparison of the in-sample interest rate differential and annualized log exchange rate returns. The thick line
represents the interest rate differential which is computed by subtracting the US 3 months yields from the UK
3 month yields. The thin line shows the annualized log returns of the GBP/USD exchange rate.
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4.2 Estimation Procedure

Theoretically it is not necessary to include the exchange rate into the estimation, since it is endogenously

determined by the pricing kernel dynamics in an arbitrage free setting. However, the functional form

of the instantaneous drift and variance provides important information for the scale of the (differences

of) market prices of risk. An estimation that does not take into account the exchange rate is likely to

produce unrealistic implied exchange rate drifts and variances. To the best of our knowledge, we are

the first who directly estimate the joint dynamics of yields and exchange rate taking into account the

full distributional capabilities of the affine framework. In particular we do not assume the transition

densities from one observation to be multivariate normal or χ2 which is only the case for a very small,

restricted subset of the Am(N) families.

In the preceding literature on affine term structure models in a two economy framework Quasi Max-

imum Likelihood (QML) has been the predominant estimation procedure (e.g. Han and Hammond,

2003; Dewachter and Maes, 2001; Brennan and Xia, 2004), presumably due to its ease of application.

However, as pointed out in Frühwirth-Schnatter and Geyer (1996), the bias introduced by QML in-

creases with the dimensionality of the model. Closed form transition densities for maximum likelihood

estimation are only known for very few multivariate diffusion models. For example the transition den-

sities for canonical ATSMs, except for restricted pure Gaussian and restricted pure square root models,

are not known in closed form. In our application the dynamics of the exchange rate adds an additional

layer of complication, since its drift and diffusion depends on the latent state variables.

Recent research in the field has sought to find suitable approximations to work around the problem

of not having closed form transition densities. Apart from QML, which neglects the non-normality in-

herent to general diffusion models, a very intuitive and straightforward method is Simulated Maximum

Likelihood (SML) (see Pedersen, 1995; Santa-Clara, 1995; Elerian, 1998; Durham and Gallant, 2001;

Brandt and Santa-Clara, 2002), which already has found an application in international economics

(Brandt and Santa-Clara, 2002). Unfortunately SML is a computationally intensive procedure. How-

ever, it can be greatly enhanced with respect to speed and precision with variance and bias reduction

techniques such as control variates.

In order to being able to employ computationally intensive global optimization procedures for our

maximum likelihood estimation that need many likelihood function evaluations, we employ the tech-

nique from Aı̈t-Sahalia (2001), Aı̈t-Sahalia (2002) and Aı̈t-Sahalia and Kimmel (2002), who provide

formulae for the calculation of closed form expansions of the likelihood function for discretely sampled
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diffusions that theoretically can be developed with arbitrary accuracy (depending on the order of ex-

pansion). These formulae are obtained from comparing terms of equal order from a proposed form

of solution that is guessed from a Hermite expansion about the discretization ∆ of dt with the Kol-

mogorov transition partial differential equations. For systems that cannot be reduced to unit diffusions,

an additional expansion about the state variables is performed. Even though only the pure Gaussian

model is reducible in the sense of Aı̈t-Sahalia (2002) it is still possible to obtain the coefficients of the

likelihood function from a linear system that can be evolved and solved order by order. Despite the

fact that these equations are linear, for high dimensional systems like ours and high orders (higher than

2), solving these symbolic linear equations can become a non-trivial computational obstacle due to the

sheer size of the coefficient expressions.

We assume that at each month t, t = 1, . . . , T , N yields are observed without error. It is the same

number N that denotes the number of latent state variables that drives both economies. These yields

are for fixed times to maturity τ1, . . . , τN . The other k yields for the remaining maturities are assumed

to be measured with serially and mutually uncorrelated, mean-zero measurement error. Denote the

parameter vector by θ. Stack the N perfectly observed yields into a vector y(t) and the k imperfectly

observed yields into a vector ỹ(t). Given an initial value of θ, equation (8) can be inverted in order to

obtain an implied state vector Y0(t):

Y0(t) = H−1
1 (y(t)−H0). (32)

In equation (32), H0 is an N × 1 vector with element i given by Aj(τi)/τi, and H1 is a N ×N matrix

with row i given by Bj>(τi)/τi. The superscript j indicates that the coefficients are computed under

equivalent martingale measure Qj .

Given an implied state vector Y0(t), implied yields for the other k maturities can be computed. In

order to do this it is necessary to compute G0 and G1, which contain the solutions to the differential

equations (7) stacked in the same fashion as in H0 and H1. Stack these yields in a vector ̂̃y(t) = −G0 +

G1Y0(t). The measurement error is then given by et = ỹ(t)− ̂̃y(t). We assume that et
iid∼ MV N(0, C),

where C is the time-invariant diagonal variance-covariance matrix of the measurement errors et. The

associated log likelihood is denoted by le.

With observation times t0, . . . , tM , at each time tn we can evaluate the joint likelihood of the latent

state variables and the log exchange rate conditional on the realizations at tn−1 using the likelihood
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approximation of order one.

l(1)x (x(tn) | x(tn−1), ∆) = −2 log(2π∆)−Dv(x(tn)) +
C

(−1)
x (x(tn) | x(tn−1)

∆

+
1∑

k=0

C(k)
x (x(tn) | x(tn−1))

∆k

k!

(33)

where x(tn) =
(
Y0(tn) log X(tn)

)>
, Dv(x(t)) = 1/2 log(det(Var(x(t)))) and in our investigation ∆ =

1/52. The coefficients Cx are functions of the instantaneous drift and covariance matrix of latent state

variables and the log exchange rate and are computed according to the formulae in Aı̈t-Sahalia (2002).11

We are interested in the joint likelihood of the log exchange rate with the yields rather than with the

latent state variables. The transformation χ between the system of yields and the log exchange rate

and the system of latent state variables and the log exchange rate is

χ


 y

log X


 = χ(w) =


H1 0

0 1



−1

·




 y

log X


−


H0

0





 . (34)

The determinant of the Jacobian is

det J = det
(

∂χ(w)
∂w

)
= det


H1 0

0 1



−1

=
1

detH1
,

so that the joint likelihood of yields observed with error and without error with the log exchange rate

becomes
M∑

n=1

(
l(1)x (x(tn) | x(tn−1),∆)− log |detH1|+ le(tn)

)
. (35)

4.3 The Maximization Technique and Some Practical Considerations

The estimation procedure is subject to a number of complicating factors. First, a non-convex scalar

valued function is optimized over roughly thirty parameters which makes it quite unlikely to actually

find a global maximum. Second, the objective function, the likelihood function, is highly complex and

it is extremely complicated to provide analytic gradients for gradient based solvers.12 Third, even the

11The coefficients Cx are available from the authors upon request.
12Recall that the likelihood function involves a matrix that contains the solutions to N +1 dimensional differential equations

the parameters of which are non linear functions of the parameter vector θ. Additionally, the administrative and computational
effort to calculate the derivatives of the likelihood coefficients with respect to the parameter vector would be enormous since
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constraints are nonlinear, since stationarity imposes that the real part of the eigenvalues of the drift

matrix K be positive. Finally we encountered difficulties in numerically solving the differential equation

(7) for many admissible parameterizations. In this case we set the likelihood function to zero. These

considerations let us apply the following procedure for our estimates:

Step 1 Generate J admissible, random starting parameter vectors within a reasonable range. Start J

genetic optimization procedures with suitable penalty functions for the constraints, where for each

call of the likelihood function the implied realizations of the latent state variables are updated as

a function of the corresponding parametrization. Parameter vectors with implied state variables

that could not have occurred are rejected.

Step 2 Take the best solutions from Step 1 according to their likelihood score and employ a gradient

based solver (e.g. KNITRO, or donlp2) without updating the state variable vector.

Step 3 Update the state variables corresponding to the solution parameters from Step 2, discard para-

meters if the implied state variables are not admissible and go to Step 2 as long as the parameter

vectors have not converged. Finally, compute the outer product of the gradients.

In our estimation we chose J = 100 and an order one approximation of the likelihood function. We found

that genetic algorithms were the only tool capable of dealing with the discontinuities that arise when for

each iteration the state variable vector is updated. It is noteworthy that the state variables implied by

the maximizing parameterizations were all comparable in scale. Also, the achievable likelihood scores

are very sensitive to the initial time series of latent state variables. The time series of Y0 implied by

the parametrization for all models can be found in Figure 4.

4.4 Empirical Results

For our empirical investigation, we fix the numbers of factors that describe the joint term structure

in the US and the UK to three, i.e. N = 3. Dewachter and Maes (2001) give strong evidence that

three “international” factors result in a high explanatory power and that the loss in explanatory power

compared to a three factor model that models each market separately is rather insignificant.

For each of the four non-nested Am(3) subfamilies, i.e. A0(3), A1(3), A2(3), and A3(3), we estimate

two representatives. The first representative is preselected following the local factor string in the

literature (see Ahn (2004)). Specifically, these models are restricted such that there is one local UK

the coefficient expressions themselves are already quite large.
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factor and one local US factor the marginal distributions of which are conditionally and unconditionally

independent. Both of the local factors are allowed to affect the common factor by entering its drift,

diffusion or both. The common factor on the other hand does not enter the local factors SDEs.13 The

second representative of each of the four subfamilies is constructed to be a pure common factor model.

That is, in this second type of models, interest rates across both, the US and the UK, are modelled

to be driven by the same (common) set of state variables. Although the local factor and the common

factor model specification seem to differ largely, it has to be emphasized that local factor specifications

merely represent a number of restrictions on the common factor specification, which is the more general

specification. Therefore, each of the Am(3) models specified as a local factor model is nested in the

respective more general Am(3) common factor model. In the following subsections we will present the

results of the model estimations.

4.4.1 Common Factor Specification

The overall likelihoods of the estimated common factor models can be seen in Table 4.4.1.14 The best

model according to its likelihood score is the A2(3) model followed by the A1(3) model. The model

with worst performance is the pure CSR A3(3) model. Even with δ unrestricted (as can be seen in

Tables 5 and 9) the pure square root model achieved the lowest likelihood score of all models.

To grant a fair comparison of these four non-nested models we additionally compute Akaike Infor-

mation Criteria (AIC) for all of these models. The ranking order, however, remains the same. Both, the

A2(3) and the A1(3), are very successful in capturing the first two moments of the yield series (means

and volatilities) and are closely reproducing in-sample yields of the US and UK term structure. This is

documented in Figure 3 which plots the actual yields against the yields implied by the best model, the

A2(3) model. Although in-sample implied pricing errors are low, the forecasting ability of the models

remains to be questioned. We measure the forecasting ability of the models by means of Root Mean

Squared Forecast Errors (RMSEs). Duffee (2002) reports that the completely affine market price of risk

specification is unable to beat the random walk in forecasting future yields. The RMSEs reported in

Table 13 confirm this finding. As for all of the estimated models, the RMSEs for random walk forecasts

are, with just a few exceptions, lower than those implied by the estimated models suggesting a rather

13For the representative of the A1(3) class the dependency structure is exactly reversed in order to keep the common
factor/local factor specification symmetric.

14For the specification of the estimated models we refer to Appendix B. The parameter estimates are reported in Tables 5
through 12 in Appendix C.
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poor forecasting ability of the class of ATSMs.

Table 2: Comparison of Estimated Common Factor Models.
This table reports the log-likelihoods of all estimated common factor models along with the corresponding
Akaike scores. Likelihoods are estimated with closed form likelihood expansions. From equation (35), the total
likelihood of a model is given by the sum of three components. AIC denotes the Akaike information criterion.
The smaller the AIC value, the “closer” the model is to reality.

Free Total

Model Type Parameters
PM

n=1 l
(1)
x (tn) −PM

n=1 log |det H1|
PM

n=1 le(tn) Log-Likelihood AIC

A0(3) CF 32 1,610.4 2,767.2 15,138.5 19,516.1 -38,968.2

A1(3) CF 36 1,307.6 3,503.5 15,036.2 19,847.3 -39,622.6

A2(3) CF 37 2,057.6 3,800.5 14,949.7 20,807.8 -41,541.6

A3(3) CF 38 1,435.0 2,945.0 14,884.4 19,264.4 -38,452.8

Figure 3: Implied vs. Actual Yields.
Comparison of the in-sample implied and actual yields for maturities of 6 months, 2 years and 5 years (UK
and US). The yields are implied by the parameter estimates of the best model specification, i.e. the A2(3)
common factor model. The dashed line represents the model implied yields, whereas the solid line represents
actual yields.
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It remains to be answered why the model of choice for most of the previous studies, the A3(3)

model, in which all of the factors exhibit conditional volatility performs the worst relative to all other

affine model specifications. This fact can most likely be explained by its very restrictive correlation

structure. As pointed out, factors that are governed by CSR processes are theoretically not able to

display negative correlations, that is in pure CSR models all state variables are restricted to be positively

correlated to each other. However, as a result of our estimation we can observe realizations of latent

state variables that are negatively correlated, contradicting the theoretical specification. This further

indicates that the A3(3) class is not the best choice for our data sample. As already Dai and Singleton

(2000) have noticed in their single economy specification analysis on the US term structure, the data

called for negative correlations among state variables. In Figure 4 we plot the dynamics of the implied

state variables for each of the estimated models. With the bare eye it can be verified that the two

models which perform best produce state variables that are negatively correlated. This provides strong

evidence for negative correlations among the factors driving international bond markets.

To assess the ability of the models to capture exchange rate movements, we first consider the implied

Fama coefficients. Surprisingly, the only model that is able to account for the high unconditional

volatility of the exchange rate risk premia is the A1(3) model. The Fama coefficient over the sample

period generated by this model is -2.22, whereas the actual Fama coefficient computed by means of 1

month LIBOR rates amounts to -2.85. The implied coefficients of the other models, however, range

from 0.63 for the A2(3) model to 1 (or close to 1) for the A3(3) and the A0(3) model. The ability of

the A1(3) model to forecast exchange rates is again assessed by RMSEs. These are only slightly worse

than those of the random walk. The RMSE for the in-sample 1 week ahead forecast of the exchange

rate implied by the model is 0.024, whereas the error generated by a random walk is 0.023. For the 4

week ahead forecast the RSMEs are 0.026 and 0.020 for the model and the random walk, respectively.

However, although the model is not able to generate smaller forecast errors than the random walk, it

predicts slightly better whether the exchange rate is going to appreciate or depreciate in the future.

For the 1 week ahead forecast the model is able to predict the right direction of change in 56% of the

cases, the random walk is only right in 55%. Regarding the 4 week ahead forecast, the model succeeds

in 58%, whereas the random walk only succeeds with a probability of 56%.
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Figure 4: Implied State Vectors of the Common Factor Models.
Comparison of the model implied state vectors. Y3 is represented by the solid line, Y2 is shown by the dashed
line and the trajectory of Y1 is represented by the dotted line.
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4.4.2 Local vs. Common Factor Models: Do There Exist Local Factors?

Next, we estimate each of the four affine subfamilies in its local factor specification. In all estimated

models, except the A1(3) model, Y1 represents the local UK factor, Y2 is specific to the US and Y3

is a common factor that influences both countries’ interest rates. In the A2(3) model, we assign the

Gaussian factor to represent the common factor for symmetry reasons.15 In the A1(3) model we assign,

due to symmetry reasons, Y1 to represent the common factor, Y2 to be the local UK factor and Y3 to be

local to the US. Further, for the model estimation, we have restricted market prices of risk for factors

that are specific to the other country to zero. For example, if Y1(t) is the local UK factor and Y2(t) is

specific to the US economy, we restrict the market prices of risk λUK
2 and λUS

1 to zero.16

Table 3: Comparison of Estimated Local Factor Models
This table reports the log-likelihoods of all estimated local factor models along with the corresponding Akaike
scores. Likelihoods are estimated with closed form likelihood expansions. From equation (35), the total
likelihood of a model is given by the sum of three components. AIC denotes the Akaike information criterion.
The smaller the AIC value, the “closer” the model is to reality.

Free Total

Model Type Parameters
PM

n=1 l
(1)
x (tn) −PM

n=1 log |det H1|
PM

n=1 le(tn) Log-Likelihood AIC

A0(3) LF 27 1,617.1 2,729.6 14,840.1 19,186.8 -38,319.6

A1(3) LF 30 1,798.2 2,055.4 14,953.8 18,807.4 -37,554.8

A2(3) LF 31 932.5 3,098.0 14,844.8 18,875.3 -37,688.6

A3(3) LF 30 1,366.6 2,989.7 13,874.2 18,230.5 -36,401.0

As shown in Table 3 the model that performs best according to both, its likelihood and its AIC, is the

pure Gaussian model A0(3) followed by the A2(3) model. Again, as in the common factor specification,

the A3(3) model has the lowest likelihood value and also ranks last according to its AIC.

In order to compare the common factor specification with its nested local factor counterpart, we

compute likelihood ratios (LR). The LRs, reported in Table 4, are exceeding by far the 99% critical

values, implying that the common factor specifications are by far better suited to capture dynamics

15Remember that in Am(N) models the m < N factors that are driving the conditional volatility conventionally make up
the first m factors, i.e. the factors Y1, . . . , Ym are CSR factors and the remaining factors Ym+1, . . . YN are Gaussian. See
Appendix A.

16For further details concerning the specification of the local factor models refer to Appendix B.
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in the joint term structure and the exchange rate than local factor specifications. Together with the

analysis of the common factor specification above, this result provides conclusive evidence against local

factors in the joint UK-US term structure and the exchange rate. By definition, a local factor impacts

only one economy, has negligible effects on the other and is marginally uncorrelated. The state variables

implied by our common factor models have different impacts on the UK and US economies, however none

of them are insignificant as can be seen in Tables 9 to 12 in Appendix C. Further, as highlighted above,

the results in the common factor specification show the importance of flexible correlation structures

among the state variables, that allows some of the factors to be negatively correlated. Altogether,

this strongly indicates that local factors play a subordinated role. Similar results, although in another

setting are found in Inci and Lu (2004).

Table 4: Log-Likelihood Ratios.
This table reports the log-likelihoods ratios (LR) between the estimated common factor models and their nested
local factor counterpart. The likelihood ratios are χ2 distributed with degrees of freedom corresponding to the
difference between the number of free parameters in the common factor specification and the number of free
parameters in the respective nested local factor specification. The degrees of freedom are given in the column
labelled “df” and the critical value corresponding to the 99% confidence interval is given in the last column.

Model Type LR df Critical Value (99%)

A0(3) 658.6 5 15.09

A1(3) 2079.8 6 16.81

A2(3) 4000.8 7 18.48

A3(3) 2067.8 8 20.09

This issue has important implications for portfolio diversification across international bond markets.

Consider a UK-investor who currently holds only UK bonds and considers to additionally invest in

currency-hedged US bonds. Since both term structures and the GBP/USD exchange rate seems to be

driven by a set of common of factors rather than local factors, the return uncertainties of a currency-

hedged bond portfolio across those two countries would have the same sources of risk as his initially

undiversified position in UK bonds only. The evidence against local factors, thus, suggests that the

investor would not greatly enhance the mean-variance characteristics of his portfolio by additionally

investing in a currency-hedged portfolio of US bonds. If there would, however, exist local factors in
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the US bond market, the investor could achieve significant diversification benefits from holding the

currency-hedged bond portfolio in these markets.

5 Conclusion

We investigate the theoretical properties and the empirical performance of international canonical

affine term structure models that are driven by a common set of latent state variables. We derive

necessary conditions for the correlation and volatility structure of mixture models to accommodate the

empirical stylized facts concerning the forward premium puzzle and yield curves and show the tradeoff

that is inherent in the specification of ATSMs. Although models with Gaussian processes have the

inconvenience of negative interest rates with positive probability and restricting conditional volatility,

it seems that they are nevertheless – at least in theory – better suited to capture empirical stylized

facts of joint term structure dynamics since they allow for a more flexible correlation structure among

the driving state variables.

Using UK and US LIBOR and swap rate data, as well as GBP/USD exchange rate data we estimate

common factor, as well as local factor representatives from the A0(3), A1(3), A2(3), A3(3) models by

means of maximum likelihood. We take into account the joint distribution of yields and the exchange

rate without assuming normality of the transition densities. Strikingly, the model most widely used

in international settings, the A3(3) provides the worst fit to the data, in the local factor, as well as

the common factor setting. This can probably be attributed to the strong negative correlation that

seems to be present between the latent factors that drive international economies. The best model

overall comes from the common factor A2(3) class. Forecasts of the log exchange rate with this model

and the common factor A1(3) models are in the range of a drift adjusted random walk, forecasts for

the direction of the appreciation/depreciation of the log exchange rate are slightly better than a drift

adjusted random walk. Even though this model provides a tight fit of the yield data, we can confirm

the finding from Duffee (2002) that yield forecasts with completely affine market prices of risk are

not able to outperform a simple random walk forecast. Concerning the forward premium puzzle only

the representative from the A1(3) generates risk premia that are variable enough relative to the short

rate differential to generate a negative Fama coefficient. Further, we find strong evidence against the

existence of local factors inherent in the UK-US term structure and the exchange rate, indicating that

diversification effects are likely to be small when diversifying bond portfolios across these countries.
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An interesting question that is left for further research is the modelling with asymmetric factors,

where the local factors are modelled with different kinds of processes as well as modelling the joint

term structure dynamics with multiple (possibly correlated) common factors. Another open question

is whether there is evidence for local factors in the joint term structure and the exchange rate across

emerging markets.
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Frühwirth-Schnatter, S., and A. Geyer, 1996, “Bayesian Estimation of Economemtric Multi-Factor

Cox-Ingersoll-Ross-Models of the Term Structure of Interest Rates Via MCMC Methods,” Working

Paper, Vienna University of Economics and BA.

Han, B., and P. Hammond, 2003, “Affine Models of the Joint Dynamics of Exchange Rates and Interest

Rates,” Working paper, University of Calgary and Stanford University.

Harrison, M., and D. Kreps, 1979, “Martingales and Arbitrage in Multiperiod Security Markets,”

Journal of Economic Theory, 20, 381–408.

Harrison, M., and S. Pliska, 1981, “Martingales and Stochastic Integrals in the Theory of Continuous

Trading,” Stochastic Processes and Their Applications, 11, 215–260.

Hodrick, R., and M. Vassalou, 2002, “Do we need multi-country models to explain exchange rate and

interest rate and bond return dynamics?,” Journal of Economic Dynamics & Control, 26, 1275–1299.

Inci, A. C., and B. Lu, 2004, “Exchange Rates and Interest Rates: Can Term Structure Models Explain

Currency Movements?,” Journal of Economic Dynamcis & Control, 28, 1595–1624.

Jones, C. S., 2002, “Estimating Yield Curves From Asynchronous LIBOR and Swap Quotes,” Working

paper, University of Southern California.

Litterman, R., and J. A. Scheinkman, 1991, “Common Factors Affecting Bond Returns,” Journal of

Fixed Income, 1, 54–61.
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Appendix A: Admissibility and Identification Conditions for

Canonical Models

In the canonical models proposed by DS, the m factors that drive the conditional volatility convention-

ally make up the first block in the factor vector, such that Y (t) =
(
Y B

m×1, Y
D
(N−m)×1

)>
. Here, block

B denotes the square root part of the vector of state variables and D denotes the Gaussian part. The

coefficient matrices of the factor dynamics in equation (2) are:

K =


 KBB

m×m 0m×(N−m)

KDB
(N−m)×m KDD

(N−m)×(N−m)


 (36)

for m > 0, K upper or lower triangular for m = 0

Θ =


 ΘB

m×1

0(N−m)×1


 (37)

Σ = IN×N (38)

α =


 0m×1

1(N−m)×1


 (39)

B =


 Im×m BBD

m×(N−m)

0(N−m)×m 0(N−m)×(N−m)


 (40)

S(t)ii = αi + β>i Y (t), (41)

where βi represents the i-th column of B and S(t) is diagonal. Further, the coefficients in equation (1)

and in equations (36) - (41) are subject to the following admissibility conditions in DS:

[δd
Y ]j ≥ 0, [δf

Y ]j ≥ 0, m + 1 ≤ j ≤ N

KiΘ =
m∑

j=1

KijΘj > 0, 1 ≤ i ≤ m,

Kij ≤ 0, 1 ≤ j ≤ m,

Θi ≥ 0, 1 ≤ i ≤ m,

Bij ≥ 0, 1 ≤ i ≤ m, m + 1 ≤ j ≤ N.
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Appendix B: Model Descriptions

Local Factor Models

In the subsequent model descriptions we denote for notational convenience (λUK
i )2 − (λUS

i )2 = λ¥
i and

(λUK
i −λUS

i ) = λF
i . In all estimated models, except the A1(3) model, Y1 represents the local UK factor,

Y2 is specific to the US and Y3 is a common factor that influences both countries’ interest rates. In

the A2(3) model, we assign the Gaussian factor to represent the common factor for symmetry reasons.

In the A1(3) model we assign, due to symmetry reasons, Y1 to represent the common factor, Y2 to be

the local UK factor and Y3 to be local to the US. Further, for the model estimation, we have restricted

market prices of risk for factors that are specific to the other country to zero. For example, if Y1(t) is

the local UK factor and Y2(t) is specific to the US economy, we restrict the market prices of risk λUK
2

and λUS
1 to zero.

A3(3)
r

UK
(t) = δ

UK
0 + δ

UK
1 Y1(t) + δ

UK
3 Y3(t), r

US
(t) = δ

US
0 + δ

US
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0
BBBBBB@
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d log X(t)

1
CCCCCCA

=

0
BBBBBB@
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K31(θ1 − Y1(t)) + K32(θ2 − Y2(t)) + K33(θ3 − Y3(t))

rUK(t)− rUS(t) + 1
2
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dt
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0
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with φ(t) = 1 + β13Y1(t) + β23Y2(t).

A1(3)
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UK
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UK
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US
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with φ1(t) = 1 + β12 and φ2(t) = 1 + β13.
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Common Factor Models

For all common factor models we have: ri(t) = δi
0 + δi

1Y1(t) + δi
2Y2(t) + δi

3Y3(t), i ∈ {UK, US}.
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with φ(t) = 1 + β13Y1(t) + β23Y2(t).
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with φ1(t) = 1 + β12 and φ2(t) = 1 + β13.
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Appendix C: Estimated Model Parameters
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Table 5: Parameter Estimates of the A3(3) Local Factor Model.
This table reports the parameter estimates of the local factor A3(3) model. Parameters are estimated with
closed form likelihood expansions. Asymptotic standard errors for the parameters are given below the respective
parameter value in parentheses. On the left side of the table, parameters that are restricted to zero by the
local factor specification are marked by —. The right-hand side of the table gives the standard deviation of
the yields’ measurement error and the corresponding standard error in parentheses. Yields that are assumed
to be observed exactly are marked with “fixed”.

UK US

δ0 0.2336 -0.0054
(0.0031) (0.0020)

Index (i) Country

1 2 3 UK US

K1i 0.2364 — — σ(0.25) 0.0006 0.0016
(0.0439) (3e-05) (0.0002)

K2i — 0.2459 — σ(0.5) 0 0
(0.0259) (fixed) (fixed)

K3i -0.0002 -0.0168 2.3819 σ(1) 0.0013 0.0020
(0.0050) (0.0010) (8.4527) (0.0002) (0.0003)

Θi 4.0019 4.1985 0.4480 σ(2) 0 0.0030
(0.3791) (0.3791) (1.5883) (fixed) (0.0007)

δUK
i -0.0073 — -0.3335 σ(3) 0.0008 0.0034

(0.0002) (0.0066) (2e-05) (0.0010)

λUK
1i 0.0203 — 0.1283 σ(4) 0.0009 0.0037

(0.0202) (8.4437) (7e-05) (0.0018)

δUS
i — 0.0186 0.0291 σ(5) 0.0011 0.0044

(0.0002) (0.0046) (1e-06) (0.0027)

λUS
1i — 0.0355 0.0799

(0.0186) (8.4150)

(ΦUK)2 − (ΦUS)2 -0.0380745
(0.366694)

(ΦUK − ΦUS)2 0
(0.014411)
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Table 6: Parameter Estimates of the A2(3) Local Factor Model.
This table reports the parameter estimates of the local factor A2(3) model. Parameters are estimated with
closed form likelihood expansions. Asymptotic standard errors for the parameters are given below the respective
parameter value in parentheses. On the left side of the table, parameters that are restricted to zero by the
local factor specification are marked by —. The right-hand side of the table gives the standard deviation of
the yields’ measurement error and the corresponding standard error in parentheses. Yields that are assumed
to be observed exactly are marked with “fixed”.

UK US

δ0 0.1425 0.1462
(0.0020) (0.0021)

Index (i) Country

1 2 3 UK US

K1i 0.3646 — — σ(0.25) 0.0006 0.0011
(0.0324) (3e-05) (0.0001)

K2i — 0.3448 — σ(0.5) 0 0
(0.0457) (fixed) (fixed)

K3i 0.6026 -0.2375 1.0800 σ(1) 0.0015 0.0014
(0.5318) (0.5940) (0.0234) (0.0002) (0.0002)

Θi 4.6751 4.5911 — σ(2) 0 0.0021
(0.9712) (1.3566) (fixed) (0.0004)

β1i — — 0 σ(3) 0.0008 0.0023
(0.3340) (2e-05) (0.0006)

β2i — — 0 σ(4) 0.0009 0.0025
(0.3730) (6e-05) (0.0008)

δUK
i 0.0271 — 0.1014 σ(5) 0.0012 0.0029

(0.0003) (0.0011) (0.0001) (0.0013)

λUK
1i -0.0609 — 1.5745

(0.0166) (0.8164)

δUS
i — 0.0198 0.0790

(0.0003) (0.0009)

λUS
1i — -0.0152 1.6197

(0.0192) (0.8689)

(ΦUK)2 − (ΦUS)2 -0.178905
(1.26083)

(ΦUK − ΦUS)2 0
(0.0232314) 44



Table 7: Parameter Estimates of the A1(3) Local Factor Model.
This table reports the parameter estimates of the local factor A1(3) model. Parameters are estimated with
closed form likelihood expansions. Asymptotic standard errors for the parameters are given below the respective
parameter value in parentheses. On the left side of the table, parameters that are restricted to zero by the
local factor specification are marked by —. The right-hand side of the table gives the standard deviation of
the yields’ measurement error and the corresponding standard error in parentheses. Yields that are assumed
to be observed exactly are marked with “fixed”.

UK US

δ0 0.1634 0.1004
(0.0012) (0.0008)

Index (i) Country

1 2 3 UK US

K1i 3.7371 0.9195 — σ(0.25) 0.0007 0.0011
(3.6164) (0.0814) (4e-05) (0.0001)

K2i — 0.4209 — σ(0.5) 0 0
(0.0087) (fixed) (fixed)

K3i 1.1311 — 0.3470 σ(1) 0.0016 0.0019
(0.1167) (0.0124) (0.0002) (0.0003)

Θi 0.0191 — — σ(2) 0 0.0021
(0.0186) (fixed) (0.0003)

β1i — 0 0 σ(3) 0.0011 0.0022
(0.5185) (2.0438) (6e-05) (0.0004)

δUK
i 0.0577 0.1518 — σ(4) 0.0009 0.0024

(0.0015) (0.0015) (7e-05) (0.0007)

λUK
1i -2.7699 0.0739 — σ(5) 0.0014 0.0025

(3.6359) (0.0189) (0.0002) (0.0007)

δUS
i 0.1137 — 0.0650

(0.0029) (0.0010)

λUS
1i -2.9704 — -0.0005

(3.6270) (0.0245)

(ΦUK)2 − (ΦUS)2 0.204691
(0.319961)

(ΦUK − ΦUS)2 0
(0.00799437)
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Table 8: Parameter Estimates of the A0(3) Local Factor Model.
This table reports the parameter estimates of the local factor A0(3) model. Parameters are estimated with
closed form likelihood expansions. Asymptotic standard errors for the parameters are given below the respective
parameter value in parentheses. On the left side of the table, parameters that are restricted to zero by the
local factor specification are marked by —. The right-hand side of the table gives the standard deviation of
the yields’ measurement error and the corresponding standard error in parentheses. Yields that are assumed
to be observed exactly are marked with “fixed”.

UK US

δ0 0.0844 0.0797
(0.0004) (0.0004)

Index (i) Country

1 2 3 UK US

K1i 0.3604 — — σ(0.25) 0.0008 0.0013
(0.0412) (5e-05) (0.0001)

K2i — 0.3266 — σ(0.5) 0 0
(0.0200) (fixed) (fixed)

K3i 0.4870 0.0680 0.7595 σ(1) 0.0012 0.0016
(0.0163) (0.0024) (0.0147) (0.0001) (0.0002)

Θi — — — σ(2) 0 0.0020
(fixed) (0.0004)

δUK
i 0.0303 — 0.1059 σ(3) 0.0007 0.0023

(0.0008) (0.0012) (2e-05) (0.0005)

λUK
1i -0.0604 — 0.0420 σ(4) 0.0009 0.0025

(0.0206) (0.0065) (7e-05) (0.0010)

δUS
i — 0.0212 0.0759 σ(5) 0.0011 0.0027

(0.0006) (0.0009) (0.0001) (0.0011)

λUS
1i — -0.0450 0.0341

(0.0277) (0.0075)

(ΦUK)2 − (ΦUS)2 0
(27.913961)

(ΦUK − ΦUS)2 0
(0.26785)
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Table 9: Parameter Estimates of the A3(3) Common Factor Model.
This table reports the parameter estimates of the common factor A3(3) model. Parameters are estimated
with closed form likelihood expansions. Asymptotic standard errors for the parameters are given below the
respective parameter value in parentheses. The right-hand side of the table gives the standard deviation of the
yields’ measurement error and the corresponding standard error in parentheses. Yields that are assumed to be
observed exactly are marked with “fixed”.

UK US

δ0 -0.0316 -0.0031
(0.0013) (0.0024)

Index (i) Country

1 2 3 UK US

K1i 0.5141 0 -0.1086 σ(0.25) 0.0006 0.0011
(0.0439) (0.0166) (0.0192) (3e-05) (0.0001)

K2i 0 0.5960 0 σ(0.5) 0 0
(0.0190) (0.0259) (0.0120) (fixed) (fixed)

K3i -0.4174 0 0.7643 σ(1) 0.0010 0.0018
(0.0117) (0.0137) (0.0197) (9e-05) (0.0003)

Θi 1.1406 1.5224 0.7954 σ(2) 0 0.0022
(0.0302) (0.0406) (0.0320) (fixed) (0.0004)

δUK
i -0.0123 0.0260 0.0597 σ(3) 0.0008 0.0023

(0.0004) (0.0006) (2e-05) (0.0006)

λUK
1i -0.1108 0.0131 -0.2017 σ(4) 0.0009 0.0026

(0.0147) (0.0259) (8e-05) (0.0010)

δUS
i 0.0332 -0.0208 0.0313 σ(5) 0.0011 0.0027

(0.0009) (0.0012) (0.0015) (0.0001) (0.0011)

λUS
1i -0.1896 -0.0028 -0.2302

(0.0189) (0.0286) (0.0328)

(ΦUK)2 − (ΦUS)2 0.0249739
(0.0805578)

(ΦUK − ΦUS)2 0
(0.00321977)
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Table 10: Parameter Estimates of the A2(3) Common Factor Model.
This table reports the parameter estimates of the common factor A2(3) model. Parameters are estimated
with closed form likelihood expansions. Asymptotic standard errors for the parameters are given below the
respective parameter value in parentheses. The right-hand side of the table gives the standard deviation of the
yields’ measurement error and the corresponding standard error in parentheses. Yields that are assumed to be
observed exactly are marked with “fixed”.

UK US

δ0 0.0854 0.0743
(0.0006) (0.0009)

Index (i) Country

1 2 3 UK US

K1i 0.7051 -0.0002 — σ(0.25) 0.0007 0.0012
(0.4205) (0.0543) (5e-05) (0.0002)

K2i 0 0.7499 — σ(0.5) 0 0
(0.0343) (1.2743) (fixed) (fixed)

K3i 0.0998 0.7409 1.0372 σ(1) 0.0010 0.0017
(0.1374) (0.3526) (0.0155) (9e-05) (0.0003)

Θi 2.2788 0.6668 — σ(2) 0 0.0020
(1.4343) (1.1490) (fixed) (0.0004)

β1i — — 0.1088 σ(3) 0.0007 0.0021
(0.1242) (2e-05) (0.0004)

β2i — — 0.5543 σ(4) 0.0009 0.0023
(0.2050) (9e-05) (0.0008)

δUK
i 0.0001 0.0259 0.0202 σ(5) 0.0012 0.0024

(0.0001) (0.0004) (0.0002) (0.0001) (0.0008)

λUK
1i -0.3455 -0.3967 1.0832

(0.4235) (1.2513) (0.5216)

δUS
i 0.0067 0.0139 0.0185

(0.0002) (0.0005) (0.0003)

λUS
1i -0.3638 -0.3708 1.1181

(0.4235) (1.2860) (0.4764)

(ΦUK)2 − (ΦUS)2 0.117586
(0.219478)

(ΦUK − ΦUS)2 0.00129949
(0.00470785)
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Table 11: Parameter Estimates of the A1(3) Common Model.
This table reports the parameter estimates of the common factor A1(3) model. Parameters are estimated
with closed form likelihood expansions. Asymptotic standard errors for the parameters are given below the
respective parameter value in parentheses. The right-hand side of the table gives the standard deviation of the
yields’ measurement error and the corresponding standard error in parentheses. Yields that are assumed to be
observed exactly are marked with “fixed”.

UK US

δ0 0.0383 0.0583
(0.0005) (0.0009)

Index (i) Country

1 2 3 UK US

K1i 0.5641 — — σ(0.25) 0.0007 0.0010
(0.1867) (5e-05) (0.0001)

K2i 0.0062 0.3602 -0.0944 σ(0.5) 0 0
(0.0433) (0.0275) (0.0318) (fixed) (fixed)

K3i 0.5796 0.4092 0.3570 σ(1) 0.0001 0.0015
(0.0331) (0.0206) (0.0184) (0.0001) (0.0002)

Θi 7.0338 — — σ(2) 0 0.0019
(1.0847) (fixed) (0.0004)

β1i — 0 0 σ(3) 0.0008 0.0022
(0.0182) (0.0170) (2e-05) (0.0005)

δUK
i 0.0006 0.0146 0.0172 σ(4) 0.0008 0.0024

(0.0003) (0.0003) (0.0003) (7e-05) (0.0008)

λUK
1i 0.0104 1.5792 0.0846 σ(5) 0.0011 0.0023

(0.1872) (1.1406) (1.1709) (0.0001) (0.0009)

δUS
i 0.0045 0.0275 0.0172

(0.0003) (0.004) (0.0004)

λUS
1i 0.0310 1.6265 0.0653

(0.1867) (1.0449) (1.5442)

(ΦUK)2 − (ΦUS)2 0.555552
(1.04452)

(ΦUK − ΦUS)2 0
(0.0171855)
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Table 12: Parameter Estimates of the A0(3) Common Factor Model.
This table reports the parameter estimates of the common factor A0(3) model. Parameters are estimated
with closed form likelihood expansions. Asymptotic standard errors for the parameters are given below the
respective parameter value in parentheses. The right-hand side of the table gives the standard deviation of the
yields’ measurement error and the corresponding standard error in parentheses. Yields that are assumed to be
observed exactly are marked with “fixed”.

UK US

δ0 0.0838 0.0765
(0.0004) (0.0005)

Index (i) Country

1 2 3 UK US

K1i 0.5474 — — σ(0.25) 0.0006 0.0010
(0.0530) (3e-05) (0.0001)

K2i 0.6993 0.4084 — σ(0.5) 0 0
(0.0630) (0.0170) (fixed) (fixed)

K3i 0.4900 0.0371 0.6296 σ(1) 0.0009 0.0015
(0.0138) (0.0023) (0.0106) (6e-05) (0.0002)

Θi — — — σ(2) 0 0.0019
(fixed) (0.0004)

δUK
i 0.0295 0 0.0991 σ(3) 0.0007 0.0022

(0.0005) (0.0002) (0.0010) (2e-05) (0.0005)

λUK
1i -0.0905 -0.3062 0.0005 σ(4) 0.0008 0.0024

(0.1574) (1.4582) (0.0388) (6e-05) (0.0009)

δUS
i 0.0027 0.0207 0.0665 σ(5) 0.0011 0.0024

(0.0008) (0.0004) (0.0012) (0.0001) (0.0010)

λUS
1i -0.0233 -0.2982 0.0371

(1.0654) (20.4093) (6.3749)

(ΦUK)2 − (ΦUS)2 -0.0282269
(12.2683)

(ΦUK − ΦUS)2 0
(0.00498988)
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Table 13: In Sample RMSEs.
For yield and log exchange rate forecasts the system of latent state variables is simulated with the Euler
discretization scheme from equation (2). The starting values for the simulation are the state variables implied
by the same parameter vector that governs the evolution of the system.

Bond Maturity Forecast horizon CF A2(3) RW

UK 0.5 3m 0.000277 0.000449
UK 0.5 6m 0.000333 0.000636
UK 2 3m 0.000474 0.000485
UK 2 6m 0.000697 0.000580
US 0.5 3m 0.000606 0.000687
US 0.5 6m 0.000925 0.00106

US 2 3m 0.000728 0.000606
US 2 6m 0.000941 0.000809

UK 0.25 3m 0.000273 0.000431
UK 0.25 6m 0.000297 0.000630
UK 1 3m 0.000376 0.000537
UK 1 6m 0.000455 0.000693
UK 3 3m 0.000545 0.000427
UK 3 6m 0.000875 0.000520
UK 4 3m 0.000609 0.000383
UK 4 6m 0.000995 0.000462
UK 5 3m 0.000588 0.000336
UK 5 6m 0.00101 0.000403

US 0.25 3m 0.000465 0.000688
US 0.25 6m 0.000817 0.00107
US 1 3m 0.000734 0.000687
US 1 6m 0.000994 0.00102
US 3 3m 0.000724 0.000529
US 3 6m 0.000916 0.000659
US 4 3m 0.000712 0.000476
US 4 6m 0.000900 0.000563
US 5 3m 0.000603 0.000441
US 5 6m 0.000838 0.000508
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