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Abstract

This paper provides a step-by-step hands-on introduction to the techniques used in

setting up and solving moral hazard programs with lotteries using Matlab. It uses a

linear programming approach due to its relative simplicity and the high reliability of the

available optimization algorithms.
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1 Introduction

This paper provides a hands-on, step-by-step introduction to setting up and numerically solving

moral hazard programs with lotteries using Matlab. It is intended as an introduction to com-

putational techniques which can be used in various mechanism design setups. The theoretical

justi�cation of the approach is based upon Prescott and Townsend's (1984a,b) seminal contri-

butions introducing methods through which incentive-constrained economies can be analyzed

in the space of probability measures of economic variables. By construction, such methods

involve optimization problems characterized with high dimensionality, which makes analytical

solutions infeasible. This disadvantage is, however, o�set by the fact that the intrinsically

non-linear moral hazard problems are relatively easily transformed into linear programs with

respect to the introduced probability measures. Furthermore, the method is completely general

as opposed to the alternative '�rst order approach' (see Rogerson, 1985), since the latter can be

used only under some restrictive assumptions. Townsend (1987, 1988) was among the �rst to

actually use linear programming techniques for obtaining numerical solutions to static incentive

constrained problems. These methods were then extended to dynamic economies in Phelan and

Townsend (1991) demonstrating their broad applicability. More recent contributions to the lit-

erature include Lehnert (1998), Prescott and Townsend (2000a,b), and Doepke and Townsend

(2001) who apply linear programming to various mechanism design problems.

The present paper is based on the assumption that the reader has a good knowledge of

the theory on incentive constrained problems1 and basic knowledge of programming in Matlab,

although I will try to limit the latter requirement by providing detailed explanations of the

included code and examples of its usage.

I concentrate on the solution of moral hazard programs with lotteries using linear program-

ming techniques due to the relative simplicity of the method and the high reliability of the

available optimization algorithms. As mentioned above, this does not mean that linear pro-

gramming is the only method available for solving moral hazard problems. In many cases one

can successfully implement the �rst order approach using non-linear constrained optimization

routines which are much faster because of their low dimensionality, but often the restrictions

on the functional forms that can be employed are very stringent and preclude the method's

applicability.

The linear programming formulation of the classic moral hazard problem described be-

low has the advantage of being easy to solve with the available Matlab optimization toolbox

functions, but it also has the disadvantage of being heavily time and memory-intensive. Nev-

ertheless, in most practical applications, and especially when the �rst order approach is not

valid, the linear programming method, which reformulates the moral hazard problem as one

with lotteries is the best feasible way to proceed. In addition, the continuing progress in in-

creasing computational speed and some advances in the algorithms used (e.g. the Danzig-Wolfe

decomposition algorithm described in Prescott, 1998) facilitate enormously the application of

linear programming.

1For a brief but excellent overview see Prescott (1999).
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2 Formulation of the Moral Hazard Problem With Lot-

teries

In this section I describe the linear programming formulation of a classic moral hazard problem

in its simplest form. In the end of the paper I will consider an alternative formulation in the

form of a social planner's problem.

Following Prescott (1999), let's state the moral hazard program with lotteries:

max
�

X
c;q;z

�(c; q; z)w(q � c)

s.t.
X
c;q;z

�(c; q; z)u(c; z) = U (1)

X
c:q

�(c; q; z)u(c; z) =
X
c;q

�(c; q; z)
p(qjẑ)

p(qjz)
u(c; ẑ); 8(z; ẑ 6= z) 2 Z � Z (2)

X
c

�(c; �q; �z) = p(�qj�z)
X
c;q

�(c; q; �z); 8 �q; �z (3)

X
c;q;z

�(c; q; z) = 1 and 8 c; q; z; �(c; q; z) = 0 (4)

The notation used is the standard one for the literature: c denotes agent's consumption,

q is the level of output and z is the level of action (e.g. e�ort) taken by the agent. The

function p(qjz) denotes the probability of achieving an output level of q, given an e�ort level

z supplied by the agent. In this way, p can be interpreted as a production function. The

utility function of the principal is given by w(:), whereas the one of the agent is u(c; z); where

u is strictly quasi-concave, increasing in c and decreasing in z: The main ingredients in the

above program are the choice variables �(c; q; z); representing the probabilities that the agent

is assigned a particular combination of consumption, output and e�ort levels (c; q; z). Thus,

the possible values of the �0s; satisfying the constraints (1)-(4) actually characterize the space

of possible contracts between the agent and the principal and the solution to the above linear

program, ��(c; q; z) represents the optimal contract. Note that both the objective function and

the constraints are linear in the probabilities �; despite the intrinsic non-linear structure of the

moral hazard problem.

The program exhibited above states that the principal maximizes her expected utility sub-

ject to the following constraints:

1. Participation Constraint (1) : the agent must be willing to participate in the contract,

i.e. must obtain expected utility higher than her reservation level of U:

2. Incentive Compatibility Constraints (2): the agent must optimally undertake the

recommended action z; as opposed to any other possible action level ẑ belonging to the set of

feasible actions Z:

3. Mother Nature Constraints (3): the relationship between conditional and uncondi-

tional probabilities, �(c; q; z) must satisfy the probability laws (Bayes rule).

4. Adding-up and non-negativity of the probabilities (4): the �
0
s are interpreted as

probabilities, hence they are required to be non-negative and must add up to one.
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In addition, in order to have a well-de�ned linear program, there must be a �nite number

of variables and �nite number of constraints, i.e. there can be only a �nite number of �0s in

the above program. An easy way to ensure this is to assume that the three variables, c; q and z

take values on discrete grids, C = (c1; c2:::cl); Q = (q1; q2; :::qm) and Z = (z1; z2; :::zn): Clearly

then the total number of variables to solve for is lmn; and there are 1 participation constraint,

n(n�1) incentive compatibility constraints (ICCs), nm mother nature (technology) constraints

and 1 adding up constraint.

Example

To clarify the above, take for example the case of two e�ort levels, two consumption levels

and two output levels (l = m = n = 2). Let �ijk be a shorthand for �(ci; qj; zk): The objective

function then takes the following form:

max
�

(�111 + �112)w(q1 � c1) + (�121 + �122)w(q2 � c1) +

+(�211 + �212)w(q1 � c2) + (�221 + �222)w(q2 � c2)

The participation constraint involves summation over all possible recommendations of (c; z; q)

and thus it is only one and can be written for our example as:

(�111 + �121)u(c1; z1) + (�112 + �122)u(c1; z2)+

+(�211 + �221)u(c2; z1) + (�212 + �222)u(c2; z2) � U (PC)

The incentive compatibility constraints are n(n � 1) = 2(1) = 2; since for each e�ort level

z; there is only one alternative level ẑ :

(�111 + �121)u(c1; z1) + (�211 + �221)u(c2; z1) � (ICC1)

�

p(q1jz2)

p(q1jz1)
[�111u(c1; z2) + �211u(c2; z2)] +

p(q2jz2)

p(q2jz1)
[�121u(c1; z2) + �221u(c2; z2)]

and

(�112 + �122)u(c1; z2) + (�212 + �222)u(c2; z2) � (ICC2)

�

p(q1jz1)

p(q1jz2)
[�112u(c1; z1) + �212u(c2; z1)] +

p(q2jz1)

p(q2jz2)
[�122u(c1; z1) + �222u(c2; z1)]

There is a mother nature constraint for each output-e�ort combination (z; q), i.e. their total

number is mn = 2(2) = 4 :

�111 + �211 � p(q1jz1)[�111 + �121 + �211 + �221] (MNC)

�112 + �212 � p(q1jz2)[�112 + �122 + �212 + �222]

�121 + �221 � p(q2jz1)[�111 + �121 + �211 + �221]

�122 + �222 � p(q2jz2)[�112 + �122 + �212 + �222]

Notice that on the left hand side the summation is only with respect to the possible values

for c; holding those for z and q as given, whereas in the right hand side only the value for

z is held �xed. The adding up constraint is trivial and thus omitted from the example. I
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will be coming back repeatedly to this simple example in the discussion below to facilitate the

understanding of the programming algorithm. For clarity of the presentation the sections of

the text in which this is done will be marked with [Example] in the beginning.

It is easy to see that the dimension of the problem increases very fast in the grid sizes.

Certainly the discreteness of the grids represents an abstraction from reality, and invariably

introduces some error if continuous variables are modeled this way, but for big enough number

of points the results become less sensitive to further increases in the grid dimensions. The

common trade-o� in numerical methods between accuracy of the results and time consumption

is present here as well.

3 Coding the Moral Hazard Problem in Matlab

Let's take another look at the moral hazard problem exhibited above. It seems pretty com-

prehensible to the human (economist's) eye but actually it requires quite a bit of work to be

put in a form such that it can be solved by a computer. This section describes in detail the

steps through which the problem is coded in Matlab. In fact, the main thing that needs to

be done is to represent the above problem in a format, which can be given as an input to the

Matlab linear programming solver linprog from the Optimization Toolbox of versions 5.3 and

above2. Depending on the particular structure of the problem at hand, the function linprog

implements a large scale or medium scale optimization methods. The large scale algorithm is

a primal-dual interior-point active set method, a variant of Mehrotra's predictor-corrector al-

gorithm (see Mehrotra, 1992 and Zhang, 1995). The medium scale algorithm uses a projection

active set method.

Once we have transformed the above problem into a format suitable for linprog, we obtain

as output the vector of probabilities ��(c; q; z) which solves the above optimization problem.

Typically this vector consists of many zeros and only a few positive entries. In the end of the

section I discuss how to extract the relevant non-zero probabilities, which then can be used to

compute the consumption, output and action levels of the optimal contract.

Let's proceed by describing the steps of the coding process in detail. All Matlab code is

given in italics. The reader can cut and paste the supplied code into a text �le, save it with an

extension .m (the extension for Matlab program �les) and then run it in Matlab to see how it

works.

3.1 Step 1: Parametrization and Initialization

In general computers work with numbers and not Latin, or even Greek letters, so in order to

turn the above program into Matlab code, we need to choose values for the three grids and give

speci�c functional forms to the utility functions, u and w; and the production function; p(qjz):

These functional forms will almost certainly contain some parameters, so values for them must

be assigned as well.

Let's assume for example that the principal is risk neutral, i.e. w(q � c) = q � c and the

agent is risk averse: u(c; z) =
c
1�

1� 
+�

(1� z)1�Æ

1� Æ
with ; Æ > 0. In addition, assume that there

2The previous versions of Matlab used the function lp for solving linear programming problems, which was

much slower and much less reliable in terms of the accuracy of the results.
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are only two possible output levels ql and qh, such that qh > ql > 0:

For simplicity, let's use linear (equally-spaced) grids for all three variables having the form

[xmin; ::xmax]; for x = c; q or z3: In this way we would need to choose 3 numbers for each grid

- its �rst and last element and the total number of elements. These give us nine additional

parameters to assign values to. Let us also assume that p(q = qhjz) = z
�
; 0 < � < 1: In order

for this function to generate valid probabilities, we need to set Z � [0; 1]:

Finally, we are ready to begin programming in Matlab. We have to start with de�ning all

the variables mentioned above and assigning values to them. Below I exhibit the actual Matlab

code which performs the described operation, together with comments. Commenting in Matlab

is done by putting the percentage sign in front of the text one wishes to have as comment

(e.g. %This is a comment!). If the reader �nds the provided explanations insuÆcient (s)he

is encouraged to refer to the built-in Matlab help feature by simply typing at the command

prompt: help fname, where fname stands for the name of the function or operator in Matlab

on which help is needed.

Since Matlab uses only Latin letters, notice that in the code below I use Latin letters corre-

sponding to the Greek ones denoting the various parameters in the model. I have commented

almost every line of the program explaining what it does.

%SAMPLE MATLAB CODE FOR MORAL HAZARD PROBLEMS (part I)

clear all %clears the memory from all variables

%1. Assign values to the parameters

g=.5; %gamma

k=1; %kappa

d=.5; %delta

a=.7; %alpha

U=1; %reservation utility

%2. De�ne the grids

%Consumption Grid

nc=20; %number of points in the consumption grid

cmin=10^-8; %lowest possible consumption level (can't be 0 for the chosen function)

cmax=3; %highest possible consumption level

c=linspace(cmin,cmax,nc); %creates the actual grid for consumption as 20

%equally spaced values between cmin and cmax

%Action level

nz=10; %number of grid points

zmin=10^-8; %minimum e�ort level

zmax=1-10^-8; %maximum e�ort level

z=linspace(zmin,zmax,nz); %creating the grid

%Output

nq=2; %number of grid points

ql=1; %low output level

qh=3; %high output level

3Often, especially in dynamic settings, it is better to use log-spaced grids in order to ensure that more grid

points are available at regions with high curvature of the objective function and thus improve the accuracy of

the results.
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q=[ql,qh]; %two possible output values by assumption, in order to

%simplify the computation of probabilities

Notice the use of the function linspace(arg1,arg2,arg3), which creates a vector of arg3

equally-spaced numbers on the interval [arg1,arg2]:

[Example]

In the context of our example we have: c = (c1; c2); z = (z1; z2) and q = (ql; qh); where

z1 is zmin; z2 is zmax and respectively for c: Notice that there are only 23 =8 total possible

combinations of values, which (c; q; z) might take in this case, i.e. the optimal contract is

a convex combination of these 8 cases with weights given by the corresponding probabilities

�(c; q; z):

With the above code, we have de�ned and initialized all the needed variables corresponding

to the elements of the model. The utility and probability functions are de�ned in the next step.

3.2 Step 2: Constructing the Matrices of Constraints and the Ob-

jective Function

As I already mentioned before, the linear program above needs to be transformed into a struc-

ture, which can be given as input to the Matlab linear program solver routine. The actual

function we will be using is linprog. The following is an excerpt of what would come on your

screen after typing help linprog4:

LINPROG Linear programming.

X=LINPROG(f,A,b) solves the linear programming problem:

min
x

f '*x subject to: A*x <= b

X=LINPROG(f,A,b,Aeq,beq) solves the problem above while additionally

satisfying the equality constraints Aeq*x = beq.

X=LINPROG(f,A,b,Aeq,beq,LB,UB) de�nes a set of lower and upper

bounds on the design variables, X, so that the solution is in

the range LB<=X<=UB. Use empty matrices for LB and UB

if no bounds exist. Set LB(i) = -Inf if X(i) is unbounded below;

set UB(i) = Inf if X(i) is unbounded above.

Let's try to map the above notation into our speci�c framework. First, it is clear that the

unknown variable,X; is the vector �(c; q; z) in our problem; i.e. we will be looking for a vector of

�
0
s; which maximizes the objective function of the principal subject to the constraints exhibited

above. Next, we'll need to de�ne all the matrices (vectors) with which linprog works, i.e. the

vector of objective function coeÆcients f; the matrix of coeÆcients on the �0s in the inequality

constraints, A; the vector b of intercepts in the inequality constraints; the corresponding ma-

trix Aeq and vector beq for the equality constraints, and the lower and upper bounds on the

unknowns LB and UB: Notice also that the function performs minimization, i.e. we will need

to invert the sign of our objective function later in order to be able to use linprog:

Looking back at the moral hazard program with lotteries, we see that there are two types of

equality constraints: the adding up and the mother nature constraints. We will need to combine

4Notice that this is not part of the code for solving the moral hazard program.
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the coeÆcients on the �
0
s present in all of these constraints into a single matrix Aeq: There

are also two types of inequality constraints: the participation and the incentive compatibility

constraints. They also have to be transformed into a single matrix which I call A:

We are now ready to begin the construction of the input matrices required by the function

linprog. First, we need to say how we are going to keep track of the nc � nz � nq probabilities

�(c; q; z) in order to know how to assign the corresponding coeÆcients from the constraints

to them. Without loss of generality, let's order the �
0
s numerically, from low to high grid

values, sorting �rst on z; then on q and, �nally on c; i.e. if X = (x1; x2; :::xlmn) is the vector of

probabilities we will have: x1 = �(c1; q1; z1); x2 = �(c2; q1; z1);...xl+1 = �(c1; q2; z1); :::xlm+1 =

�(c1; q1; z2); etc. Second, it turns out to be very helpful to construct an auxiliary vector, P

consisting of the conditional probabilities p(qjz) corresponding to all the triples (c; q; z) in the

order described above. This is what is done next:

%SAMPLE MATLAB CODE FOR MORAL HAZARD PROBLEMS (part 2)

P(1:2:nz*nq-1)=1-z.^a; %the conditional probabilities corresponding to ql

P(2:2:nz*nq)=z.^a; %the conditional probabilities corresponding to qh

The above code creates a vector P , the odd elements of which (i.e. P1; P3:::Pnz�nq�1) are set

equal to 1� z
� for the corresponding e�ort level z, while the even elements (P2; P4:::Pnz�nq) are

set to z�. Notice the use of the dot operator .^which performs exponentiation of the e�ort grid

vector z element by element.

[Example]

In order to make the understanding of the supplied Matlab code as easy as possible, I

continue to use the example with two values for each of the consumption, e�ort and output

levels to illustrate how the matrices and vectors created by the code look like. Notice �rst that,

in terms of the notation used above, the ordering of the 8 �0s is as follows:

�111; �211; �121; �221; �112; �212; �122; �222 (5)

In the context of the example the above code creates the following vector

P � (p(qljz1); p(qhjz1); p(qljz2); p(qhjz2) = (1� z
�

1 ; z
�

1 ; 1� z
�

2 ; z
�

2 )

The �rst line of the code assigns its �rst and third element, and the second line - the second

and fourth.

We can now start creating the input matrices required by linprog. Let's begin with the easy

ones:

1. Lower and upper bounds

Since the �0s are probabilities we need to set 0 and 1 as the bounds between which linprog

will search for a solution. In Matlab this is:

%SAMPLE MATLAB CODE FOR MORAL HAZARD PROBLEMS (part 3)

UB=ones(nz*nq*nc,1); %the vector of upper bounds

LB=zeros(nz*nq*nc,1); %lower bounds

The Matlab function ones(arg1,arg2) creates an arg1-by-arg2-dimensional matrix with all

elements set to 1. Similarly the function zeros(arg1,arg2) creates an arg1-by-arg2-dimensional
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matrix of zeros. Thus the above code creates two vectors: the nz*nq*nc-by-1 upper bounds

vector UB with all elements equal to 1 and the nz*nq*nc-by-1 lower bounds vector LB consisting

of zeros. Note that linprog requires that the vector of unknowns X be a column vector and

that is why we need column vectors for the bounds as well.

[Example]

In our example the vectors created above are given by: UB = (1; 1; 1; 1; 1; 1; 1; 1)T and

LB = (0; 0; 0; 0; 0; 0; 0; 0)T : Notice that this takes care of the non-negativity constraints imposed

on the probabilities �(c; q; z) in our problem.

2. Objective Function

Next, we need to construct the vector of coeÆcients of the objective function, f: There are

many possible ways to do this, but the most eÆcient one in terms of computational speed is to

use the Matlab function kron, which computes the Kronecker product of two matrices. Let's

see how it works by typing help kron:5

KRON Kronecker tensor product.

KRON(X,Y) is the Kronecker tensor product of X and Y.

The result is a large matrix formed by taking all possible

products between the elements of X and those of Y. For

example, if X is 2 by 3, then KRON(X,Y) is

[ X(1,1)*Y X(1,2)*Y X(1,3)*Y

X(2,1)*Y X(2,2)*Y X(2,3)*Y ]

If either X or Y is sparse, only nonzero elements are multiplied

in the computation, and the result is sparse.

Perhaps it is not obvious why this function should help in the construction of our matrices

but hopefully this will become more clear below. Since this is the main function I am going to

use below, let me try to explain how it works by an example. Let's take an n1 �m1 matrix X

and an n2 �m2 matrix Y, for example:

X =

�
x11 x12 x13

x21 x22 x23

�
and Y =

�
y11 y12

y21 y22

�

Using the de�nition above their Kronecker product is the 4-by-6 matrix Z given by:

Z =

2
664
x11

�
y11 y12

y21 y22

�
x12

�
y11 y12

y21 y22

�
x13

�
y11 y12

y21 y22

�

x21

�
y11 y12

y21 y22

�
x22

�
y11 y12

y21 y22

�
x23

�
y11 y12

y21 y22

�
3
775 =

=

2
664
x11y11 x11y12 x12y11 x12y12 x13y11 x13y12

x11y21 x11y22 x12y21 x12y22 x12y21 x12y22

x21y11 x21y21 x22y11 x22y12 x23y11 x23y12

x21y21 x21y22 x22y21 x22y22 x23y21 x23y22

3
775

5See the previous footnote.
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Thus what kron does is take each element of X and multiply it by Y and stack the resulting

n1m1 matrices into an n1n2�m1m2 dimensional matrix. Notice also that it is not a symmetric

operator, i.e. kron(X; Y ) 6= kron(Y;X): I strongly encourage the reader to do some more

experimenting with kron, trying di�erent examples to get a feeling of how the function works

as this is essential to what follows.

Let's return to the construction of the vector of objective function coeÆcients, f :

%SAMPLE MATLAB CODE FOR MORAL HAZARD PROBLEMS (part 4)

f = -kron(ones(1, nz), kron(q, ones(1, nc))) + kron(ones(1, nq*nz), c);

We can see how powerful kron is indeed: in only one line we constructed the 1�nz �nc�nq

vector of the coeÆcients on the �
0
s in the objective function. The �rst part of the above

expression gives the values of q corresponding to all possible (c; q; z) triples in the assumed

order. The second does the same for the values of c: The use of kron together with ones

provides a short, fast and easy way to construct matrices consisting of repeated grid values or

any combinations thereof, such as the ones appearing in the coeÆcients of the objective and

the constraints. Of course, in principle the same thing could be done by using loops but this

would take considerably more time to compute, which is scarce especially for high-dimensional

linear programs. Finally, f has the opposite sign compared to the original coeÆcients in the

program because linprog performs minimization.

[Example]

Let's illustrate what is done above in our simple example setup. Start with the second

expression in the sum, kron(ones(1, nq*nz), c). Following the same logic as above, this

command creates the vector F1 = (c1; c2; c1; c2; c1; c2; c1; c2; c1; c2) by concatenating four times

the c vector. Thus, F1 is the vector of consumption values for the respective (c; q; z) tu-

ples ordered as described above. Similarly, the command kron(q, ones(1, nc)) creates the

vector F2 = (q1; q1; q2; q2) and kron(ones(1, nz), kron(q, ones(1, nc))) - F3 = (F2; F2) =

(q1; q1; q2; q2; q1; q1; q2; q2); i.e. the vector of output levels corresponding to the assumed or-

dering of the (c; q; z) tuples. Given this, f = �F3 + F1 gives the vector of values for the

principal's utility levels c � q for the 8 possible (c; q; z) combinations that the contract may

prescribe.

3. Adding-up Constraint

The probabilities need to sum up to 1. This is one of the equality constraints in our problem

and it is coded as follows:

%SAMPLE MATLAB CODE FOR MORAL HAZARD PROBLEMS (part 5)

Aeq1=ones(1, nz*nq*nc); %the coeÆcients are ones on each �

beq1=1; %the sum of probabilities needs to be 1.

In the above code Aeq1 is the vector of coeÆcient on the �0s in the expression
P
c;q;z

�(c; q; z),

which are clearly all ones, while beq1 is the intercept, which also equals to 1 in this case. This

is perhaps the easiest constraint and the only thing to be careful about here is keeping track of

the dimensions of the vectors involved.
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[Example]

In the setup of our example, the code above creates the vector Aeq1 = (1; 1; 1; 1; 1; 1; 1; 1)

and the scalar beq1 = 1, which are part of the matrices Aeq and beq governing the coeÆcients

on the equality constraints in the linear program.

4. Mother Nature Constraints

Here we put to use the matrix P , which we constructed above:

%SAMPLE MATLAB CODE FOR MORAL HAZARD PROBLEMS (part 6)

Aeq2 = kron(eye(nz*nq), ones(1,nc)) - kron(kron(eye(nz), ones(nq,1)).*...

(P'*ones(1,nz)), ones(1,nq*nc));

beq2 = zeros(nz*nq, 1);

The �rst kron operator corresponds to the left hand side of (3), summing over the relevant

values for consumption for given q and z: The second one is the right hand side. The Matlab

function eye(arg1) creates an arg1�arg1 identity matrix. Notice the ingenuous use of this

function, together with kron, which helps create the matrix of coeÆcients of all nm mother

nature (equality) constraints, Aeq2 in just one line of code. The vector of intercepts, beq2

contains zeros since we have put all the terms in (3) on the left hand side in order to satisfy

the prescribed input requirements of linprog. Let's use our example framework to see how the

above works. Compare also the results with the analytical expressions derived previously.

[Example]

Let's start with the �rst term, kron(eye(nz*nq), ones(1,nc)). Using the de�nition of the

kron operator and our previous example, we see that it creates the 4-by-8 matrix

M1 =

2
664

1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1

3
775

which is exactly the matrix of coeÆcients on the �0s in the left hand side of (MNC) above.

The second term creates the right hand side of (MNC). First it uses the command kron(eye(nz),

ones(nq,1)) to create the matrix

M2 =

2
664

1 0

1 0

0 1

0 1

3
775

which is multiplied element by element (note the .* operator) by the matrix M3 created by

P'*ones(1,nz), which is given by (remember what P was equal to) to obtain:

M4 �M2: �M3 =

2
664

1 0

1 0

0 1

0 1

3
775 : �

2
664

1� z
�

1 1� z
�

1

z
�

1 z
�

1

1� z
�

2 1� z
�

2

z
�

2 z
�

2

3
775 =

2
664

1� z
�

1 0

z
�

1 0

0 1� z
�

2

0 z
�

2

3
775

where .* denotes element by element matrix multiplication. Second, M4 is used to create

the matrix M5 of the RHS coeÆcients in (MNC) through
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kron(kron(eye(nz), ones(nq,1)).*(P'*ones(1,nz)), ones(1,nq*nc)), which is equivalent in our

case to kron(M4; ones(1; 4)) and results in

M5 =

2
664
1-z�1 1-z�1 1-z�1 1-z�1 0 0 0 0

z�1 z�1 z�1 z�1 0 0 0 0

0 0 0 0 1-z�2 1-z�2 1-z�2 1-z�2
0 0 0 0 z�2 z�2 z�2 z�2

3
775

Finally, putting all the pieces together, we see that the code constructs the matrix Aeq2 �

M1�M5 (not exhibited here), which corresponds to putting the right hand side terms in (MNC)

with opposite signs in the left hand side. The intercept vector is given by beq2 = (0; 0; 0; 0)T

and with this we are done with the equality constraints.

Notice that the coeÆcient matrices we need consists of repeated patterns of some numbers

and the function kron; combined with ones and eye is very eÆcient in creating such patterns.

Alternatively, one could use loops, which however leads to longer and much slower programs.

The strength of the Matlab programming language is in performing matrix operations very

quickly and we see how we can use this to our best advantage.

5. Participation Constraint

This is the �rst inequality constraint in our problem. Looking back at the help for linprog

we see that it has to be put into the form Ax � b; i.e. we will need to rearrange the terms in

(PC). The code is:

%SAMPLE MATLAB CODE FOR MORAL HAZARD PROBLEMS (part 7)

A1 = -(1-g)^-1*kron(ones(1, nq*nz),c).^(1-g) - k/(1-d)*...

(kron(1-z, ones(1,nc*nq))).^(1-d);

b1 = -U;

Again, the �rst term in A1 takes care of the consumption part of the utility function and

the second one of the action level. The di�erent ordering of the terms within the kron operator

is due to the fact that c and z are of di�erent ranks in the ordering of the �0s described above.

Also notice the use of the dot operator, since each of the elements of the vectors c and z needs

to be raised to a certain power.

[Example]

The vector A1 consists of the utility levels achieved by the agent at each of the 8 possibilities

for (c; q; z): It is constructed in two steps. First, kron(1-z, ones(1,nc*nq)) creates the vector

C1 � (1 � z1; 1 � z1; 1 � z1; 1 � z1; 1 � z2; 1 � z1; 1 � z1; 1 � z1); of the e�ort levels in the 8

possible cases, each element of which is then raised to power 1 � Æ (notice the .^operator),

and multiplied by ��=(1 � Æ): Second, kron(ones(1, nq*nz),c) creates the consumption levels

vector C2 � (c1; c2; c1; c2; c1; c2; c1; c2; c1; c2); familiar to us from the part where I discussed the

objective function. Each element of the latter vector is raised to power 1 �  and multiplied

by �1=(1� ): The vector A1 is just the sum of the above two expressions and takes the form

A1 = (u(c1; z1); u(c2; z1); u(c1; z1); u(c2; z1); u(c1; z2); u(c2; z2); u(c1; z2); u(c2; z2)): The scalar b1

equals �U; i.e. the reservation utility level taken with the appropriate sign.
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6. Incentive Compatibility Constraints

This is perhaps the hardest part of the problem in terms of programming. The reason is

that there are constraints not only for each possible action level, z but also for each alternative

level, ẑ: In order to code this part we have to use loops on the action levels and construct

the constraints one by one for each possible pair (z; ẑ): Details about each part of the actual

program code are given as comments.

%SAMPLE MATLAB CODE FOR MORAL HAZARD PROBLEMS (part 8)

for iz=1: nz %loop on the recommended action level, z

zh = [1:iz-1 iz+1:nz]; %vector of all possible alternative action levels, ẑ

for jz=1:nz-1 %loop on the alternative action level, ẑ

%Constructing the constraints one by one

A2((nz-1)*(iz-1)+jz, :) = kron([zeros(1, iz-1), 1, zeros(1, nz-iz)],...

kron(ones(1,nq), A1(nc*nq*(iz-1)+1:nc*nq*(iz-1)+nc))) ...

+ kron([zeros(1, iz-1), 1, zeros(1,nz-iz)], ones(1, nq*nc)).*...

(kron(ones(1, nz), kron([P(2*zh(jz)-1)/P(2*iz-1), P(2*zh(jz))/P(2*iz)] ...

,-A1(nc*nq*(zh(jz)-1)+1: nc*nq*(zh(jz)-1)+nc))));

end

end

b2=zeros(nz*(nz-1), 1);

Notice two things in the above code. First, we use the already constructed vector of agent's

utilities at a point (c; q; z) (the vector A1), from where we take the values for u(c; z) which

appear in the ICCs. We see that choosing the right order in which one de�nes the constraint

matrices really can help and thus one has to be careful about it. Second, note that the above

code is written in a way optimized for the case m = 2: If one wants to consider more output

levels, apart from obviously changing the value of nq, one needs to modify the part containing

the likelihood ratio, .[P(2*zh(jz)-1)/P(2*iz-1), P(2*zh(jz))/P(2*iz)] using a loop on the output

levels. Note that here there are two ratios, whereas in general they have to be m and the

indexation within the P vector needs to be changed accordingly. The construction of the A2

matrix looks quite cumbersome on a �rst sight, but hopefully our usual example will be helpful

in understanding how it works.

[Example]

We already know from above that for nz = 2, there will be two incentive compatibility

constraints. The �rst value the outer loop counter takes is iz = 1, corresponding to (ICC1).

Then we have zh=[1:0 2:2], which means that in this case zh = 2. It is a scalar since there

is only one alternative e�ort level to be taken. The next line sets jz = 1: The expression

(nz-1)*(iz-1)+jz gives the index of the current ICC in the A2 matrix, and equals 1 in this case.

Now we move to the actual construction of the vector of coeÆcients on the �0s in the current

constraint. As before we start by the inner kron operators �rst. We take A1(nc*nq*(iz-

1)+1:nc*nq*(iz-1)+nc), which is A1(1:2) in this case, i.e. the 1st and 2nd elements of the

utility vector, which are exactly the u(c1; z1) and u(c2; z1); which appear in the LHS of (ICC1).

Next, the operator kron(ones(1,nq), A1(nc*nq*(iz-1)+1:nc*nq*(iz-1)+nc)) creates the vector

I1 = [u(c1; z1); u(c2; z1); u(c1; z1); u(c2; z1)]: The other part of the code in the outer kron :

[zeros(1, iz-1), 1, zeros(1, nz-iz)] is used to create an indicator vector containing one at the
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index of the current e�ort level z and zero(s) at all alternative action levels ; i.e. in our case it

equals I2 � (1; 0). Finally, the outer kron creates the vector

I3 = [u(c1; z1); 0; u(c2; z1); 0; u(c1; z1); 0; u(c2; z1); 0];

which consists of the needed coeÆcients in the LHS of the �rst ICC (see (ICC1) and (5)). Creat-

ing the vector of coeÆcients for the RHS is very similar, with the exception that a multiplication

by the relevant likelihood ratios is needed. Once again start by 'deciphering' A1(nc*nq*(zh(jz)-

1)+1: nc*nq*(zh(jz)-1)+nc)), which gives just A1(5:6) in our example, i.e. the values u(c1; z2)

and u(c2; z2) used in the RHS of ICC1. Next, [P(2*zh(jz)-1)/P(2*iz-1), P(2*zh(jz))/P(2*iz)]

creates the two likelihood ratios (one per output level) given by P (3)=P (1) and P (4)=P (2);

i.e. exactly the fractions r1 �
p(qljz2)

p(qljz1)
and r2 �

p(qhjz2)

p(qhjz1)
appearing in ICC1. The inner kron

operator then creates the vector

I4 � [�r1u(c1; z2);�r1u(c2; z1);�r2u(c1; z2);�r2u(c2; z2)];

which using kron(ones(1, nz),I4) is transformed into I5 � [I4; I4]; i.e. a horizontal concatenation

of the I4 vector. The negative signs appear because we have to put all terms on the left hand side

of the inequality. Again, we use the indicator vector I2 in kron([zeros(1, iz-1), 1, zeros(1,nz-iz)],

ones(1, nq*nc)) to create the vector I6 � [1; 1; 1; 1; 0; 0; 0; 0]; which is, as a �nal step, multiplied

element by element with I5 to yield the vector of coeÆcients of the RHS of ICC1

I7 � [�r1u(c1; z2);�r1u(c2; z1);�r2u(c1; z2);�r2u(c2; z2); 0; 0; 0; 0]

Finally, by adding I3 and I7, the construction of the �rst row of A2 is completed. The second

ICC is created in exactly the same way at the next loop iteration (iz = 2): The intercept vector

is b2 = [0; 0]T by the same logic as for the participation constraints.

With this �nal type of constraints we are �nally done with creating the ingredients we need

to start the actual optimization, which is what is done in the next step.

3.3 Step 3: Actual Linear Programming

In this step we �rst need to put together the pieces of the matrices of constraint coeÆcients

and feed them into linprog. I also discuss shortly how one can customize the working of linprog

using the command optimset. Let's start by constructing the matrices required by linprog:

%SAMPLE MATLAB CODE FOR MORAL HAZARD PROBLEMS (part 9)

Aeq=[Aeq1; Aeq2]; %matrix of coeÆcients on the equality constraints

beq=[beq1; beq2]; %intercepts

A=[A1; A2]; %matrix of coeÆcients on the inequality constraints

b=[b1; b2]; %intercepts

The above code just performs the vertical concatenation of the matrices created above in

order to put them into form suitable for linprog. Now we are �nally in position to obtain the

solution to our moral hazard problem using linprog. The resulting unconditional probabilities

will be stored in the vector X and the value of the objective function at the optimum is returned

in vobj :
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%SAMPLE MATLAB CODE FOR MORAL HAZARD PROBLEMS (part 10a)

[X, vobj] = linprog(f, A, b, Aeq, beq, LB, UB);

It is quite simple now! Depending on the dimensions on the grids, one waits 5-10 seconds

and the program returns the answer. The really hard part was constructing the input matrices.

It is also possible to customize the working of linprog by setting di�erent error tolerances,

display properties, or the type of optimization algorithm used. This is achieved by the Matlab

command optimset (type help optimset on the command prompt for a complete description).

For example one can write6:

%SAMPLE MATLAB CODE FOR MORAL HAZARD PROBLEMS (part 10b)

options = optimset('Display','o�','TolFun', 10^-9,'MaxIter',150,'TolX', 10^-8);

[X, vobj] = linprog(f, A, b, Aeq, beq, LB, UB,[],options);

which makes Matlab not to display the interim output of linprog on the screen, sets the

error tolerance for the function value to 10^-9, the maximal number of iterations to 150 and the

error tolerance of the variables vector to 10^-8. The optimset command should precede linprog

in the code in order to have e�ect. Note also the need to put an empty matrix, [] in the linprog

inputs, since we've skipped the initial guess input (see help linprog).

3.4 Step 4: Recovering the Optimal Contract

What linprog gives us as its output is the vector of probabilities, which constitute a lottery over

all possible (c; q; z) combinations. Usually this vector contains a lot of zeros and also, in most

cases, we are not interested in the probabilities per se, but instead in the optimal values for

the consumption, action and output levels implied by them. The purpose of this section is to

describe how one can obtain those using the output of linprog, x:

The easiest way to do it is to start by creating three vectors of length lmn; consisting

respectively of the values for consumption, output and action level for all possible c; z; q: This

is done as usual with the help of kron.

%SAMPLE MATLAB CODE FOR MORAL HAZARD PROBLEMS (part 11)

cc = kron(ones(1, nq*nz), c);

qq = kron(ones(1, nz), kron(q, ones(1, nc)));

zz = kron(z,ones(1, nc*nq));

[Example]

In our example, using the de�nition of kron; we will have:

cc = [c1; c2; c1; c2; c1; c2; c1; c2]

qq = [q1; q1; q2; q2; q1; q1; q2; q2]

zz = [z1; z1; z1; z1; z2; z2; z2; z2]

which are exactly the consumption, output and action levels corresponding to the ordered

8 cases.

6Note that this piece of code is an alternative to part 10a above and one should not use both in the same

program.

15



Now, for each element of X (i.e. each (c; q; z)); we can recover directly the values for

consumption, output and action level corresponding to it. Let's however save the computer

some work by picking only the non-zero values from the vector of probabilities X:

%SAMPLE MATLAB CODE FOR MORAL HAZARD PROBLEMS (part 12)

xp=�nd(X >10^-4); %gives the indices of all elements of X > 10^-4

Note that one must not write X > 0 above. The reason is that there is numerical error

inherent in the computation and in practice all X will turn out to be positive, eventhough

they are not at the true solution. One should always remember that the computer gives only

approximate answers, not the true ones. The operator find(arg 1 > arg 2 ) gives as an output

a vector containing the indices of the elements of the vector arg 1, which are bigger than some

number arg 2: For example if arg 1 = [3; 1; 2; 4; 5] then find(arg 1 > 2 ) yields the vector [1; 4; 5]:

Finally, we are ready to compute the optimal contract implied by the lottery putting prob-

ability on a given triple (c; q; z); i.e. the recommended action and the consumption the agent

will get for a given output level. The following code exhibits the contract in a compact form,

getting rid of all near zero probability events:

%SAMPLE MATLAB CODE FOR MORAL HAZARD PROBLEMS (part 13)

disp(' z q c prob')

disp('|||||||||||||||||||')

disp([zz(xp)', qq(xp)', cc(xp)', X(xp)]);

The operator disp(string) prints on the screen the contents of the text in string: Thus, the

above code prints out four columns in which one can see respectively the recommended action

level, output and consumption together with the probability which the lottery assigns to them.

In some cases, it is possible to obtain positive probabilities on two consumption levels for the

same values of z and q in a strictly concave problem, for which we know that a single c is

optimal in theory. This is a so-called 'grid lottery' and has no economic interpretation in the

case of continuous consumption and action, but reects the fact that the optimal consumption

level is just not present in the grid7. Clearly the error introduced by grid lotteries diminishes

as one increases the grid dimensions by adding points near the optimal solution.

3.5 Solving for the First Best Contract

In the end, it is worth mentioning that the above program can also be used to compute the

�rst best (full information) principal-agent contract. In order to do so all that needs to be

changed is to replace A with A1 and b with b1 in the linprog command line, which is equivalent

to ignoring the incentive compatibility constraints. I encourage the reader to run the code

and check that s(he) obtains a di�erent contract after making this replacement, and also that

this contract is such that gives higher utility to the principal and (barring grid lotteries) gives

constant consumption to the agent as predicted by the theory.

7For more on grid lotteries see the discussion in Prescott (1999).
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4 An Alternative Speci�cation of the Moral Hazard Prob-

lem With Lotteries

In this section I consider a slightly modi�ed version of the 'standard' moral hazard problem

described above. Instead of having a principal who maximizes her utility subject to incentive

compatibility and participation by the agent, we now have a social planner who maximizes a

welfare function subject to a resource (zero-pro�t) constraint. Using the same notation as in

the previous section, the problem looks as follows:

max
�(c;q;z)

X
c;q;z

�(c; q; z)u(c; z) (6)

s.t. X
c

�(c; q; z) = p(qjz)
X
c;q

�(c; q; z) for all q; z (7)

X
c;q;z

�(c; q; z)(c� q) = W (8)

X
c;q

�(c; q; z)u(c; z) =
X
c;q

�(c; q; z)
p(qjz0)

p(qjz)
u(c; z0) for all z; z0 (9)

The above linear program can be interpreted as a social planner's problem of maximizing the

expected utility of the agent. The planner recommends an action level, z and gives consumption

c to the agent. We see that the only di�erence from before, except for the objective function, is

the absence of the participation constraint, which is replaced by (7) - a zero-pro�t constraint,

stating that the agent's wealth, W plus the expected produced output q must be enough to

cover for the expected consumption granted, c:

It is clear that the method described above can be used to solve this problem. In fact,

only two slight modi�cations to our previous code are needed. First, we need to change the

expression for f to reect the di�erent objective function. Note, however, that this does not

amount to doing anything new, since we already have the needed vector of coeÆcients in the

matrix A1 from before. Thus we only need to write:

f = -(1-g)^-1*kron(ones(1,nq*nz), c).^(1-g) - k/(1-d)*...

(kron(1-z, ones(1,nc*nq))).^(1-d);

Second, we also need to replace the participation constraint with the zero-pro�t one, i.e. a

new A1 is needed. Looking at (7) however, we see that, once again, nothing new needs to be

done - the vector of coeÆcients we need is nothing but the former f vector, i.e. in a sense the

two problems are dual to each other. Also, now this is an equality constraint, so we'll call it

Aeq3 instead of A1 and then put it together with the other equality constraints, leaving only

A2 as the matrix of inequality constraints coeÆcients.

Aeq3 = -kron(ones(1, nz), kron(q, ones(1, nc))) + kron(ones(1, nq*nz),c);

beq3 = W;

Modifying accordingly the matrices A, b, Aeq and beq we have already written the code for

solving this type of moral hazard problems as well.
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5 Conclusive Remarks

Above I have described in detail how one can solve moral hazard problems with lotteries nu-

merically using Matlab. The method I presented has been optimized for computational speed,

and that is why some fragments of the supplied code might look quite cryptic at �rst sight. I

recommend that readers study the provided examples carefully and also try some examples of

their own within the framework of the above programs in order to understand how they really

work. Re-writing all the code without using the 'mysterious' kron operator, but instead more

standard programming techniques as loops and perhaps the function repmat would be a good

exercise for readers who experience troubles understanding how the above works. The resulting

loss in speed will not be crucial for low-dimensional problems, however the actual code will be

much longer, increasing the probability of coding errors and, subsequently, the debugging time.

The linear programming method is only one of the several available for solving moral hazard

problems, and in fact it is suitable only if we allow for lotteries. Another possible approach is

to disregard lotteries and solve the general moral hazard non-linear optimization problem using

the �rst-order approach (when it is valid) and Matlab minimization routines as fminsearch

(using the penalty function method) or fmincon (using quadratic programming algorithms).
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