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Abstract

We examine whether a simple agent�based model can generate asset price bubbles and
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(1993, 1997) and examine the outcomes that obtain when populations of zero�intelligence (ZI)
budget constrained, artiÞcial agents are placed in the various laboratory market environments
that have given rise to price bubbles. We have to put more structure on the behavior of the ZI-
agents in order to address features of the laboratory asset bubble environment. We show that our
model of �near�zero�intelligence� traders, operating in the same double auction environments
used in several different laboratory studies, generates asset price bubbles and crashes comparable
to those observed in laboratory experiments and can also match other, more subtle features of
the experimental data.
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1 Introduction

Smith, Suchanek and Williams (1988) devised a laboratory double auction market that gives rise

to asset price bubbles and crashes as evidenced by the behavior of inexperienced human subjects

who are placed in this environment. The Smith et al. (1988) Þnding of price bubbles and crashes

has been replicated by several other experimentalists and found to be robust to a number of

modiÞcations of the laboratory environment speciÞcally aimed at eliminating bubbles.1

A difficulty with these laboratory asset markets is that they do not map easily into existing

theories of price determination in markets with a single common�value good. Most of the laboratory

markets that give rise to bubbles have Þnite horizons and are set up in such a way that rational,

proÞt�maximizing agents would never choose to engage in any trade. By contrast, the theoretical

bubble literature demonstrates how bubbles can arise in inÞnite horizon environments despite

the fact that agents are (typically) homogeneous and have rational expectations.2 These rational

bubble theories are therefore of little use in understanding the laboratory asset bubble phenomenon.

Surprisingly, the experimentalists themselves have little to say as to why bubbles and crashes

regularly occur and appear to be puzzled by their own inability to eliminate asset bubbles in a

wide range of laboratory environments. As Smith et al. (2000) notes, these �controlled laboratory

markets price bubbles are something of an enigma.�

Our aim in this paper is to take a further step toward understanding the laboratory asset price

bubble and crash phenomenon, not by conducting additional experiments with paid human subjects,

but by placing a population of artiÞcial adaptive agents in the same laboratory environments that

have given rise to price bubbles and determining how the artiÞcial agents must behave so as to

generate the asset price bubbles and related features found in the experimental data.3 Theoretical

analysis of individual behavior in the double auction market mechanism has turned out to be quite

difficult due to the large multiplicity of equilibria that are possible in this environment (Friedman

1Smith et al.�s original (1988) bubble Þndings have been replicated by King et al. (1993), Smith et al. (2000)

and Lei et al. (2001), among others, using similar experimental designs. In addition, these authors and others, (e.g.

van Boening et al. (1993), Porter and Smith (1995), Fisher and Kelly (2000) and Noussair et al. (2001)), have also

examined departures from the original Smith et al. (1988) protocol with an eye toward eliminating or attenuating

asset price bubbles in experiments with inexperienced subjects.
2See, for example, Blanchard (1979), Tirole (1985), Diba and Grossman (1987), O�Connell and Zeldes (1988),

Froot and Obstfeld (1991) and the references contained therein.
3This agent�based computational (ACE) approach represents a new �bottom�up� (as opposed to �top�down)

methodology to understanding boundedly rational behavior in dynamic, stochastic environments with heterogeneous

agents. See Tesfatsion�s web site, http://www.econ.iastate.edu/tesfatsi/ace.htm for a thorough description of

the ACE methodology, as well as bibliographies of and pointers to ACE research papers.
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(1993)). Agent�based techniques provide an alternative means of gaining insight into the features

of these environments that may be responsible for generating asset price bubbles and crashes in

laboratory studies.4

At the same time, agent�based models are subject to a number of arbitrary modeling decisions.

We address this difficulty in two ways. First, we attempt to use the simplest model of agent

behavior. In particular, we follow Gode and Sunder�s (1993, 1997) approach of using �budget-

constrained zero�intelligence machine traders� as a means of focusing attention on the institutional

features, e.g. the rules of the laboratory market environment. As we show later in the paper, we

have to modify the basic zero�intelligence (ZI) approach in several respects in order to capture

features of the experimental data we seek to understand. However, the modiÞcations we make are,

again, the simplest possible; indeed we explore the marginal contribution of the two modiÞcations

we have to make to the ZI methodology and show how both are critical to our Þndings.

Second, we impose further discipline on our modeling exercise by requiring that our artiÞcial

agent simulations match several key features of the experimental data as reported in the various

laboratory studies that have given rise to bubbles. We then ask how the data from the simulations

match other, more subtle features of the data. We also explore the performance of our calibrated

baseline model in other experimental designs that have been proposed in an effort to eliminate

bubbles without recalibrating our model to better Þt data in these alternative environments. Our

main Þnding is that asset price bubbles of the type observed in certain laboratory markets can

be generated using a very simple agent�based model where trading is subject to the rules of the

laboratory market and where individual bids and asks are subject to budget constraints.

Unlike Gode and Sunder (1993, 1997), we are not interested in the effect of various market

procedures on allocative efficiency; instead our aim is to determine whether our calibrated agent-

based model can deliver, both qualitatively and quantitatively, results that are similar to those

found in a variety of different laboratory studies. Thus we examine the performance of our base-

line, calibrated model in alternative market environments that experimentalists have proposed and

examined in an effort to eliminate asset pricing bubbles. We Þnd that our model continues to track

experimental results well in these other environments even though it is not calibrated to match

any of the features of these other environments. Finally, we redo our calibration exercise for a

different version of the laboratory bubble environment proposed by Lei et al. (2001) where agents

are restricted to be either buyers or sellers. For this environment, we eliminate the weak foresight

aspect of our model, whereby the probability of being a buyer decreases over time. A calibration

4Researchers have only recently begun to use agent�based modeling techniques to understand and predict behavior

in experimental studies with real human subjects. See, e.g., Duffy (2004) for a survey of this literature.
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of this simpler model continues to perform well in tracking the features of the data observed in

the Lei et al. experiment. We conclude that agent�based modeling approaches provide one means

of assessing new experimental designs or market mechanisms designed to eliminate or reduce the

frequency of asset price bubbles.

2 Laboratory Market Price Bubbles

The original market environment of Smith et al. (1988) involved 9 or 12 inexperienced traders

who participated in T = 15 or 30 trading periods of a computerized market. Each subject began

the experimental session with an endowment of x units of cash and y units of the single asset. In

each trading period, subjects could submit both bid and ask prices for a unit of the asset (only

one unit could be traded at a time) subject to budget/endowment constraints. Bid or ask prices

that did not improve on pre�existing bid or ask prices were ranked relative to the current best bid

and ask prices and placed in an order book queue. Agents were free to buy or sell a unit at a time

at the current best bid or ask prices which were the only prices shown on each subjects� trading

screens. When a unit was sold, the inventory and cash balances of the two traders were adjusted

accordingly, and the transaction price was revealed to all traders. The next best bid and ask prices

from the queue became the new best available bid and ask prices on all traders� screens. Trading

was halted at the end of each 240 second trading period.

Following the completion of each trading period, subjects earned a dividend payment per unit

of the asset that they owned at the end of the period. The dividend amount was a random variable

consisting of a uniform draw from a distribution with support: {d1, d2, d3, d4} where 0 ≤ d1 < d2 <
d3 < d4, so the expected dividend payment was d̄ =

1
4

P4
i=1 di. After dividends were paid out,

provided the last trading period T had not been reached, another 240 second trading period would

commence.

At the beginning of each experimental session, i.e. before the start of trading period t = 1,

player i�s initial cash balance, xi, and endowment of the single asset, yi satisfy:

xi +D
T
1 y

i = c

where c is a constant that is the same for all i. Given that all traders have the same expected

value for their initial endowment at the start of the experiment, they should be indifferent between

not trading in any period, or trading at the fundamental market price in period t, which earns

them zero proÞts.5 Since players are told the session will last T periods, the fundamental expected

5If there are small costs to such trades, then the no trade outcome is unique.
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market price of the asset at the beginning of trading period t is:

D
T
t = d̄(T − t+ 1) +DTT+1,

and is decreasing as t→ T . Here, D
T
T+1 denotes the expected default (buy�out) value of the asset

after period T . If there are any trades, the traded prices should track the fundamental expected

market price, D
T
t over time and should steadily decrease by an increment of d̄ per trading period.

Following the start of the experiment, individual agents� cash endowments and inventories

become endogenous, reßecting individual trading decisions. Endowments were not reinitialized

at the start of each new trading period. Dividend earnings from the previous period become

available for making cash purchases in the following period. All trades are allowed provided that

the two parties to a trade have the necessary asset and cash endowments to complete the trade;

these endowment amounts are updated in real time in the laboratory session using computerized

software, and we follow the same practice in the artiÞcial agent simulations. At the end of T trading

periods, the standard practice was to pay out the period T dividend realization amounts per share

and then pay out the default (buy-out) value of the asset.

The basic Þnding reported by Smith et al. (1988) is that with inexperienced subjects, there is a

considerable volume of trade especially in the early periods of the market, and that the mean traded

price exhibits a �hump-shaped� pattern. Initially the mean traded price lies below the fundamental

price, but quickly soars above this fundamental price. Substantially higher than fundamental prices

are sustained for some number of trading periods near the middle of the session despite the declining

fundamental value of the asset. Such a sustained departure of prices from fundamentals is labeled

a �bubble� by the experimenters.6 Finally, sometime during the last few trading periods, a market

crash becomes a likely event, with the mean traded price falling precipitously to values close to

or even below the fundamental asset value. This hump-shaped path for mean traded prices is the

most well�known signature of the laboratory asset market bubble. However, there are other, more

subtle relationships between prices, bids and offers and trading volume that also characterize these

laboratory asset market bubbles. We will address these relationships later in the paper.

Asset bubbles in laboratory markets tend to disappear when agents have garnered experience

with the market environment as Smith et al. (1988) also demonstrate. Consequently, experimental

research on the source of laboratory asset price bubbles has naturally focused on the behavior of

inexperienced subjects.7 We emphasize at the outset that the model we set forth below is not
6Somewhat surprisingly, the experimenters have not adopted a precise deÞnition as to what constitutes a �bubble�

or a �crash.� Instead, there is a certain �call-them-as-they-see-them� approach to characterizing whether bubbles or

crashes have occurred. An exception is Noussair et al. (2001) as discussed later in the paper.
7These inexperienced subjects might be likened to the noise�traders found in the Þnance literature on asset price
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intended as a model of behavior by experienced market players; rather it is a model of play by

inexperienced market participants only. Furthermore, our use of �near zero�intelligent� traders

is not intended as a commentary on the rationality of the human subjects; rather it should be

interpreted as providing a lower bound on possible behavior in market game environments with

inexperienced players.8

In subsequent experimental research, Smith et al. (2000) and Lei et al. (2001) have come closest

to eliminating bubbles with inexperienced subjects, though they are not completely successful in

this effort. Smith et al. (2000) examine environments that differ in the frequency with which

dividends are paid out, while Lei et al. (2001) consider environments where traders are prevented

from making speculative trades and where another market for a non�asset, consumption good is

also in operation. Smith et al. (2000) Þnd that bubbles are most unlikely (but can still occur) when

the asset only pays a single random dividend following the last trading period, T , while Lei et al.

(2001) Þnd that bubbles are most unlikely (but can still occur) when traders are prevented from

speculating and another, non�asset market is in operation, so that subjects are less predisposed to

be actively engaged in the asset market. Lei et al. (2001) motivate their two market treatment

with the following statement:

�Because the data are difficult to reconcile with the theory, it is natural to conjecture

that aspects of the methodology of this type of asset market experiment are the sources

of the errors in decision making (p. 846).�

After Þnding that their various manipulations of the market environment do not always prevent

bubbles from occurring, they rule out one possible explanation:

�We do not interpret our data as suggesting that the conscious pursuit of capital gains

does not occur in experiments of this type (p. 857).�

Our focus in this paper is also on whether features of the design of this type of asset market

experiment are responsible for the seemingly anomalous price bubble Þndings. However, rather than

supposing that subjects are rational or even conscious proÞt maximizers, we follow the approach

of Gode and Sunder (1993, 1997) and assume just the opposite: that traders are unconscious,

volatility, see, e.g. DeLong et al. (1990). Populations with a mix of both inexperienced and experienced traders have

yet to be considered experimentally.
8Indeed, in a very stimulating paper, Brewer et al. (2002) show that in double auction, buyer-seller markets where

demand and supplies are continously refreshed, the behavior of inexperienced human subjects is quite different from

that of zero-intelligence traders.
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Players
Endowment
(Cash; Quantity)

Number of
Players

Class I ($2.25; 3) 3
Class II ($5.85; 2) 3
Class III ($9.45; 1) 3

Dividends d ∈ {$0, $0.04, $0.14, $0.20}a d = 0.12

Initial Value of a Share D
T
1
b = $3.60

Buy-out Value of a Share DTT+1 = $1.80
a Each dividend outcome occurs with probability 14 .

bEach period�s expected fundamental value is denoted by D
T
t for t = 1, ..., T + 1. These values were

calculated and displayed on the screen in each trading period in the human subject experiments.

Table 1: Smith et al. (1988) Experimental Design 2

irrational, near�zero intelligence agents who make random bids and offers subject to certain market

constraints. This approach allows us to disentangle the potential sources of asset price bubbles in

these laboratory environments by focusing attention on features of the experimental design rather

than the (possibly strategic) behavior of subjects. It also allows provides a model for considering

alternative experimental designs that might reduce or eliminate the incidence of price bubbles.

3 An Agent-Based Model

We begin with a description of artiÞcial agent behavior in our baseline asset market environment.

This environment corresponds to one of the experimental designs � Design #2 � examined in Smith

et al. (1988). In this environment there are N = 9 agents who participate in T = 15 trading

rounds. There is a single asset that pays a random dividend at the end of each period. The number

of agents, their initial endowments, and the details of the dividend process are given in Table 1.

In each trading period, agents can either be buyers or sellers, and so we refer to them as

�traders.� Each trader can submit buy (bid) or sell (ask) orders within each trading period.

Algorithmically, we choose a random sequence in which each of the 9 traders submits a single bid

or ask. A trading period t consists of a total of S such sequences, and S is chosen later in our

calibration so as to match the volume of trade. Let s = 1, 2, ..., S index the random sequences

within period t.

When it is trader i�s turn in sequence s of trading period t, we Þrst randomly determine whether

he will be a buyer or seller. The probability that agent i is a buyer is πt and the probability he

is a seller is 1 − πt. The initial probability of being a buyer, π0, is 0.5 and decreases over time.
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SpeciÞcally the probability of being a buyer in trading period t is given by

πt = max{0.5− ϕt, 0}

where ϕ ∈ £0, 0.5T ¢ is a parameter.9 This assumption endows the artiÞcial agents with a certain

foresight that there is a Þnite end to the market: since the fundamental value of the asset is

declining over time and agents will have to sell any unit they have at the end of the session at the

default value, their tendency to buy decreases over time. We refer to this as the �weak foresight�

assumption. Its primary role is to generate a reduction in transaction volume over time, consistent

with the experimental data. However, since it also means that asks will become more frequent than

bids, it can also lead to a reduction in transaction prices as well.

If trader i is a seller in sequence s and has a unit available for sale, then trader i submits an

ask price. If trader i is a buyer in sequence s and has sufficient cash balances, then trader i submits

a bid price. We refer to the these trading restrictions as �loose� budget constraints, because, by

contrast with Gode and Sunder�s budget-constrained ZI model, bid or asks in our environment

are not made contingent on the intrinsic, fundamental value of the asset. Gode and Sunder (1993)

adopt a stricter, binding, no loss constraint, wherein an agent buys (sells) an item only if his private

value (cost) is higher (lower) than his bid (ask). In our environment where individuals can be both

buyers and sellers, this type of constraint would force agents to buy or sell at the intrinsic value,

and consequently price bubbles would never be observed. Hence, our adoption of the loose budget

constraint convention.

A second departure from Gode and Sunder�s ZI approach, is our assumption that bid and

ask prices are not completely random, but depend in part on the mean transaction price from the

previous trading period, which we denote by pt−1. SpeciÞcally each trader�s bid or ask price is a Þxed

convex combination of the mean traded price from the previous period and a random price. This

assumption captures the behavioral notion that anchoring effects are important - here the relevant

anchor for bids and asks is the previous period�s mean traded price.10 This latter departure from

Gode and Sunder�s ZI approach leads us to qualify our agents as �near�zero intelligence� traders,

as our agents, by contrast with Gode and Sunder�s agents, can recall the mean transaction price

from the previous period.

9We choose the interval for ϕ as
£
0, 0.5

T

¢
to ensure πt ∈ (0, 0.5].

10Anchoring effects are said to be operant if players� numeric estimates are related to some previously considered

benchmark, often the initial numeric value. For instance, Genesove and Mayer (2001) report that the nominal price

an owner paid for his Boston�area condominium is a critical reference point in the determination of that owner�s

subsequent asking price. Here, we take the benchmark to be the previous period�s mean traded price.
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The random component in trader i�s ask or bid in sequence s of period t is denoted by uit,s and

consists of a random draw from the interval [²t, ²t], where

²t = 0,

²t = κD
T
t ,

and κ > 0 is a parameter. Notice that while ² is constant for all t, ²t will decrease over time since

D
T
t decreases as t→ T .

If trader i is a seller in sequence s of period t his ask price is given by:

ait,s = (1− α)uit,s + αpt−1

where α ∈ (0, 1) is a constant parameter that is the same for all traders that captures the weight
given to the anchor, pt−1. We assume that p0 = 0, as traders in period t = 1 have no prior history

upon which to base their pricing decisions. Seller i can submit an ask as long as he has a positive

share holding at sequence s of period t, i.e. yit,s > 0. Otherwise seller i does not submit an ask in

sequence s of period t.

Similarly, if trader i is a buyer in sequence s of period t, his bid price is given by:

bit,s = min
©
(1− α)uit,s + αpt−1, xit,s

ª
.

Trader i can submit a bid as long as he has a positive cash holdings at sequence s of period t, i.e.

if xit,s > 0; otherwise no bid is submitted.

An issue that immediately arises is the choice of the appropriate upper bound, κ to place on

bid or ask prices. The intrinsic, fundamental value of each share in each trading period, D
T
t , was

displayed on computer screens in the human subject experiments and so can be presumed to have

been public knowledge. Given our rule for bids and asks, prices should converge to κD
T
t
2 , so one

could argue that κ = 2 is an obvious choice. However, this choice would force agents to eventually

buy and sell at the intrinsic value. Hence, the parameter κ was chosen to be greater than 2; the

exact choice was determined on the basis of calibration to certain measures of the experimental

data as discussed in section 3.1. While such an upper bound may seem arbitrary, we note that

Gode and Sunder (1993, 1997) have to impose an analogous and similarly arbitrary upper bound on

the ask range of sellers in the double auction environments they examine where agents are always

either buyers or sellers. Our upper bound on the bid/ask range amounts to a straightforward

generalization of Gode and Sunder�s approach to the �trader� environment, where agents are free

to be both buyers and sellers.
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There are several things to note about our rules for bids and asks. Since traders can be both

buyers and sellers, we have assumed they have a common belief about the range over which prices

may lie, namely
h
0,κD

T
t

i
. The only source of agent heterogeneity is the random component to

bids and asks which is necessary to generate trades; without it, given our anchoring assumption,

buyers and sellers would all submit the same prices and everyone would be just indifferent between

trading or not trading. Notice further that agents� pricing decisions are non�strategic. In particular,

the speculative, or �greater fool� explanation for price bubbles � that agents buy at high prices

because they believe that they can sell to another agent (greater fool) at even higher prices � is

not operative here, as all players have a common view of the range of possible prices and they do

not act strategically in any way. What is important is that previous period mean traded prices

act as an anchor for current period price determination. If the initial price anchor, p0 = 0, and

α > 0 as we assume, then prices will necessarily increase over the Þrst few trading periods. Indeed,

if the probability of being a buyer or seller were Þxed at 0.5 (i.e. if ϕ = 0), then we would Þnd

limt→T pt → κD
T
t
2 for sufficiently large T , so prices will be greater than zero for all t. However,

since the fundamental value, D
T
t , decreases over time, mean traded prices can fall as well, due to

the shrinking upper bound on the random component of bids and asks.

This explanation for why prices Þrst rise and then fall holds regardless of the value of ϕ. As

we show in section 4.2, we need ϕ > 0 primarily to reduce trading volume, consistent with the

experimental results. With ϕ = 0, we would continue to get a hump�shaped path for mean traded

prices but we would not get any decrease in transaction volume. Still, it would be incorrect to say

that ϕ has no effect on traded prices. With ϕ > 0, there is a gradually increasing excess supply of

units towards the end of the market which contributes to the reduction in mean transaction prices.

Figure 1 shows the mean transaction price from the experimental data of Smith et al. (1988) for

Design #2 (labeled �Actual Price�) along with several mean transaction price paths from simula-

tions of our agent�based model. The mean price path from simulations of our optimally calibrated

baseline model is labeled �Sim Price � Optimal Fit.� The details of the optimization procedure

we employed are discussed below. The path of mean transaction prices from our simulated model

exhibits the same hump�shaped path as found in the experimental data.

In Figure 1, we contrast the path of prices from the �optimal Þt� version of our model with

that from two different variations on our model. The Þrst, labeled �Sim Price for Phi = 0,� is a

simulation of our model where ϕ is set to zero and all other parameters are kept at their optimal

values. Consistent with our earlier discussion, in the absence of any weak foresight (i.e. when

ϕ = 0), the mean traded price path is indeed converging to κD
T
t
2 , which is also plotted in Figure

1. When ϕ > 0, there are fewer buyers and more sellers as the asset market proceeds. This excess
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supply causes a further decrease in traded prices.

The second variation on our baseline model is aimed at delivering a larger fall-off or �crash� in

mean traded prices. For this variation of the model, the probability of being a buyer in period t is

now:

πt = max{0.5− ϕtγ , 0}

where γ > 1 is an additional behavioral parameter. The interpretation of this modiÞcation is that

there is a polynomially increasing desire by agents to sell units of the asset as the known, Þnite

horizon approaches. We discovered that many values of γ > 1 yield a higher percentage of crashes

than in the baseline γ = 1 model, though these alternative models yield only a slightly better Þt to

the experimental data. In Figure 1, we present the mean traded price path from a simulation with

γ = 7, where other model parameters optimally Þt for this level of γ - the price path labeled �Sim

Price - Polynomial Weak Foresight - Optimal Fit.� We chose γ = 7 because it created the best Þt

(in terms of our sum of squared deviations (SS) objective function discussed in section 3.1) among

γ values in the set {1, 3, 5, 7, 9}. However, the improvement in terms of Þt to the experimental data
of the γ > 1 version of our model was minimal. In the interest of keeping the number of behavioral

parameters to a minimum, we have chosen to consider the simpler, γ = 1 baseline model in the

remainder of the paper.

As in the laboratory studies and in actual markets, we use standard bid and ask improvement

rules which require that buyers improve on (i.e. raise) the current best bid price and sellers improve

on (i.e. lower) the current best ask price. If a bid price is submitted that is greater than or equal

to the current best ask price, the convention adopted here is the same one used in the laboratory

experiments: the unit is sold at the current best ask price. Similarly, if an ask price is submitted

that is less than or equal to the current best bid price, the unit is sold at that current best bid price,

again in line with the experimental practice. Once a unit is traded, we follow one of two conventions

for updating the best bid and ask prices. In the Þrst, �continuous order book� convention, the one

used by Smith et al. (1988, 2000), the next best bid or ask price in the electronic order book

becomes the current best available bid or ask price. In the second �cleared order book� convention,

the one used by Lei et al. (2001) and Noussair et al. (2001), the order book is completely cleared

following each trade, so the Þrst new bids and asks submitted following a trade become the current

best available. For the baseline simulations, we use the continuous order book convention since

this is the one used by Smith et al. (1988). However, we Þnd that our results are not sensitive

to the type of order book convention.11 Following the end of each trading period, the order book

11For both conventions, we use the following rule: If a player has an outstanding limit order to buy (or sell) and

it is his turn again in the trading period to submit an order, we permit this player only to submit a bid (or ask).
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is completely cleared, a convention that is adopted in all of the laboratory studies. Dividends are

then paid out, and each agent�s cash balances, xi, are adjusted accordingly.

Of course, during trading period t, any trades that agents make happen immediately and result

in an immediate (real�time) adjustment to their cash balances, xit,s and asset endowments, y
i
t,s.

Such trades may also affect the bid ranges over which traders can submit bids, or whether they

may submit asks (e.g. if they have no units left to sell). SpeciÞcally, an agent who has bought a

unit has reduced cash holdings and is therefore prevented from submitting bids that would exceed

current available cash holdings. In addition, an agent who has sold a unit, has one less unit to sell;

if the unit most recently sold was that agent�s last unit, then that agent cannot submit any further

asks. These restrictions simply reßect the enforcement of budget constraints and are consistent

with the rules of the laboratory studies.

We note that a trading period t ends after S random sequences have played out. We then

calculate the mean traded price for the period, pt. The mean traded price in period t of session

(or simulation run) k, pkt , is constructed as follows. Let vol
k
t denote the volume of transactions

measured as the number of shares traded in period t of session k. DeÞne pb−a,kt as the mean

bid�ask spread price in period t of session k and deÞne pkth as the sale price of hth unit in period

t of session k. The mean transaction price at the end of period t of session k is deÞned by:

pkt =


1
volkt

volktP
h=1

pkth if volkt > 0

pb−a,kt if volkt = 0

The mean transaction price, pkt , is the quantity we use to measure the market price of a share.

3.1 Model Calibration

We used a simulated method of moments estimation procedure to calibrate the parameters of our

model ϕ, κ, S and α. SpeciÞcally, we adopted the following two step method of moments procedure

to optimally determine these parameter values.

1. In Step 1, we performed a univariate optimization over κ in the interval [0.5, 8] for given ϕ,

S, and α, so as to minimize the weighted sum of squared deviations of the simulated mean

transaction price path from the actual mean price path in the experimental data plus the

weighted sum of the squared deviations of the simulated mean transaction volume path from

Therefore a player cannot have an ask and a bid in the order book simultaneously (and cannot buy from himself). In

the continuous order book convention, we permit a player to have only one outstanding limit order at any moment.

He can make a better bid or ask but then his older bid or ask is erased from the book.
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the actual mean volume path in the experimental data (denoted with an E superscript). In

particular, we sought to minimize the sum of squared deviations function deÞned by

SS(κ,α,ϕ, S) =
TX
t=1

Ã
pt(κ,α,ϕ, S)− pEt

D
T
1

!2
+

TX
t=1

Ã
volt(κ,α,ϕ, S)− volEt

TSU

!2
,

where TSU denotes the total stock of units endowed to all agents in an experimental

market, (TSU =
P
i y
i). This function gives equal weight to Þtting the mean transaction

price and the mean trading volume that is reported in the experimental data. The mean

transaction price pt and the mean transaction volume volt in period t are deÞned by

pt =
1

K

KX
k=1

pkt and volt =
1

K

KX
k=1

vol
k
t ,

where K is the total number of simulated sessions.

The variables pEt and vol
E
t denote the corresponding mean transaction price and the mean

volume in trading period t in the experimental data (over all sessions). This procedure is

nested in a grid for ϕ ∈ {0, 1
180 ,

2
180 , ...,

5
180}, S ∈ {1, 2, ..., 10}, and α ∈ {0, 0.05, 0.1, ..., 1}.

2. In Step 2, we use the sets of vectors (κ,α,ϕ, S) found in Step 1 as our starting points for

a 3-dimensional optimization procedure. We search for optimal (κ∗,α∗,ϕ∗) values for each

integer S selected. We choose these initial points according to how small the sum of squares

function was for these vectors in Step 1. We use a simplex algorithm developed for MATLAB

to calculate the local optima around these starting points. Among all the locally optimal

values found, we pick the vector that implements the global minimum.

In the current problem, we are able to pin down the optimal values as:

κ∗ = 4.0846,α∗ = 0.8480,ϕ∗ = 0.01674, and S∗ = 5.

The basic purpose of Step 1 is to explore the surface of the probabilistic sum of squares function.

Although we use an unconstrained minimization algorithm in Step 2, we do not encounter any

locally optimal points outside the range of the parameters.

3.2 Statistics

In this section, we deÞne some statistics that we will use in exploring the simulation results. An

important signature of an asset price bubble is persistently high prices � prices in excess of what

13



would be predicted by market fundamentals. The price amplitude is a commonly used measure

of the existence of bubbles. It is deÞned as:

PAk = max
t∈{1,..,T}

{p
k
t −DTt
D
T
t

}− min
t∈{1,..,T}

{p
k
t −DTt
D
T
t

}

for session k. An alternative measure of a bubble is the absolute intrinsic value deviation

which is deÞned as

AIV Dk =
TX
t=1

volktX
h=1

¯̄̄
pkth −D

T
t

¯̄̄
TSU

for session k. Several authors also use an alternative measure to the absolute intrinsic value devi-

ation. This measure is called the intrinsic value deviation which is deÞned for session k as:

IV Dk=
TX
t=1

volktX
h=1

pkth −D
T
t

TSU
.

High transaction volume is another feature of bubbly asset markets. Following the literature,

we adopt a statistic known as the turnover rate which is deÞned as the percentage of the total

stock of units that is sold in the entire market as a measure of transaction volume.

We also report statistics on transaction and price dynamics using our simulated data. The

transaction dynamics are captured by the mean volume of trade in each trading period. The price

dynamics are reßected in the normalized mean price deviation. The normalized mean price

deviation in period t for session k is deÞned as

NPDkt =
pkt −DTt
D
T
1

.

We plot the average normalized mean price deviation and the average volume paths versus the

trading periods for our simulations.

While we report all of these statistics for our simulations, not all of these statistics are reported

in the various experimental studies.12

4 Simulation Findings

4.1 Baseline Model

As mentioned above, our baseline model is that of Smith et al. (1988), Design #2, as described

in Table 1. We have simulated our artiÞcial agent model with 9 traders in this environment for
12Different authors have used different bubble, price and volume statistics to present their results. Since we want to

compare our simulation results with existing experimental results, we calculate all statistics that have been reported

in the laboratory asset bubble literature for our simulated data.
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a total of K = 100 independent market sessions, each consisting of T = 15 periods, using the

optimal parameter vector we obtained from our simulated method of moments procedure. The

mean transaction price path from this simulation exercise (averaged over all 100 sessions) and for

the actual experimental data were presented earlier, in Figure 1. It should be no surprise that

the simulated mean price path tracks the actual mean price path rather well, as minimization of

the squared deviation between the simulated and the actual price path was one component of the

objective function for our simulated method of moments procedure.

In Figure 2 we present a plot of the normalized mean price deviation, NPD, and transaction

volume over time from our simulation and we also show the corresponding series from Smith et

al.�s (1988) experimental data. The normalized deviation for the simulated market starts out 69%
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Figure 2: Simulation and Experiment Results.

below the intrinsic value in period 1 and increases up to 36% of the intrinsic value before fall off a

little in the last few trading periods. Transaction volume starts out averaging 10.90 units in period
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1 and monotonically decreases to an average of 6.41 units by the Þnal period 15. These paths

compare favorably with the experimental data, although again, this should not be too surprising

as our calibration was chosen so as to minimize deviations from actual price and volume paths.

We next turn to a comparison of some statistics calculated using our simulated data with

comparable statistics calculated using Smith et al.�s (1988) experimental data, that we did not

attempt to explicitly match in our calibration exercise. Table 2 reports these statistics for both the

simulation data and Smith et al.�s (1988) experimental data (if available).

Statistics Simulations Experiments

turnover % 685% 703%

PA 1.35 1.38

AIV D 7.94 5.68

IV D 2.13 N/A

pT − pT−1 < 0 < 0

Table 2: Statistics in the simulations and the experiments.

In the simulated data, the turnover in shares and price amplitude (PA) statistics are a close

match to the corresponding statistics in the experimental data. The absolute intrinsic value devia-

tion (AIVD) calculated using the experimental data is less closely matched by the simulated data

statistic. We note, however, that the experimental AIVD statistic reported in Table 2 is for all

designs, not just Design 2, of Smith et al. (1988).13

Smith et al. report rising traded prices in all 3 sessions with inexperienced subjects reported

for Design 2. They further report that mean traded prices fall in two of the three sessions towards

the end of the market. We also observe a similar hump-shaped pattern in mean traded prices in

all of our simulated markets.

Other authors have reported the experimental Þnding that many transactions are recorded

at prices above the maximum fundamental value of a share or below the minimum fundamental

value of a share. They have pointed to this Þnding as a sign of irrational behavior on the part of

agents. Indeed our simulation results also capture this feature of the experimental data. As Table

3 reveals, 34.42% of the total turnover is realized at prices higher than the maximum value of the

asset (calculated using the highest possible dividend realization in every period) and 10.91% of the

total turnover is realized at prices lower than the minimum value of the asset (using the lowest

possible dividend realization in every period).

13We found the absolute intrinsic value deviation for the Smith et al. (1988) data reported in the Noussair et al.

(2001) study. We calculated the mean price amplitude for the three Smith et al. (1988) Design 2 sessions by ourselves

using the data reported in their paper.
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Turnover Composition Simulations

under minimum fundamental value 10.91%

between min. and max. fund. val. 54.67%

above maximum fundamental value 34.42%

These data are not reported by Smith et al. (1988) for the experiments.

Table 3: Turnover in the Simulation Data

A real test for a simulation model such as ours is whether it captures more detailed features

of the experimental data. Repeatedly in laboratory bubble experiments, authors have found that

there is a signiÞcantly positive relationship between changes in the mean traded price and the

difference in the number of bids and asks recorded in the previous period. We next look at this

relationship using our simulated data.

Denote the number of bids in session k, period t, by Bkt and the number of asks (or offers) in

session k, period t, by Okt . Consider the following regression model:

pkt − pkt−1 = a+ b(Bkt−1 −Okt−1) + εkt (1)

εkt
iidv N(0,σ2)

k = 1, ..., N sessions

t = 2, ..., T periods

In the fully rational setting with risk neutral players, the estimate of the coefficient a should be

equal to the negative of expected dividend payment, which is −0.12 in design #2 of Smith et al.
(1988), and the estimate of the coefficient b should be equal to zero.

We estimate equation 1 using our entire simulation data set (100 simulations each consisting of

14 periods for t =2,...,15). Coefficient estimates are given in Table 4. Using the simulated data,

the regression model cannot be rejected at the 1% level (F = 131.41, 1400 observations).

Regression Sessions ba t−stat p−value bb t−stat p−value
(one-sided)

Simulations Cumulative 0.19 16.21 <0.01 0.033 7.92 <0.01

#10 / growing price 0.2 5.4 < 0.05 − 0.01 − 2.1 < 0.05
Experiments #16 / bubble-crash 0.058 0.76 > 0.05 0.038 2.2 < 0.05

#18 / bubble-crash -1.6 -0.17 > 0.05 0.029 1.8 < 0.05

Table 4: Coefficient Estimates of the Simulation and Experiment Data

We observe that the estimate of bb is signiÞcantly positive. Furthermore, the artiÞcial agents
do not discount the price of the asset in a rational manner, i.e. the estimated coefficient ba is also
signiÞcantly positive, in contrast to the rational prediction that a = −0.12. Smith et al. (1988) run
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similar regressions separately for each session. These regression results are reproduced in Table 4

for comparison purposes. As this table reveals, consistent with our Þndings, Smith et al. Þnd a

signiÞcantly positive estimate for bb in 2 out of 3 sessions and a signiÞcantly positive estimate forba in 1 out of 3 sessions. Moreover, our estimates of bb and ba both lie within the range of estimates
reported by Smith et al. (1988). We conclude that experimental subject and simulated agent

behavior is not dissimilar. In particular, when bids exceed (fall below) offers, subsequent period

traded prices change in a predictable direction.

4.2 Comparative Statics

We performed some additional simulations using the Smith et al. (1988) Design 2, but with

extreme values of α or ϕ in place of the optimal choices for these parameter values. The purpose

of this exercise is to better comprehend the role played by these two key �behavioral� parameters

in the determination of agent behavior. In particular we consider how our model fares under

the alternative parameter vectors (κ∗,α = 0.95,ϕ∗, S∗), (κ∗,α = 0,ϕ∗, S∗), and (κ∗,α∗,ϕ = 0, S∗).

The results of these simulations are compared with the paths obtained using the optimal parameter

vector (κ∗,α∗,ϕ∗, S∗) = (4.0846, 0.8480, 0.01674, 5) for prices and volume in Figure 3. The left panel

of this Þgure plots the normalized mean price deviation path from the simulations while the right

panel plots the mean transaction volume path from the simulations. The optimal paths are shown

in the Þrst row, the laboratory data are shown in the last (Þfth) row, and the other three rows

present results from the various nonoptimal choices for α or ϕ.

Consider Þrst the two extreme values for α. Setting α = 0 (row 2 of Figure 3) eliminates

the anchoring effect, so there is no reference point for the simulated agents� bids and asks. The

simulated agent bids and asks are random numbers in
h
0,κ∗DTt

i
. Since ϕ∗ > 0, the mean price

does not remain constant at κ
∗DT

t
2 but falls below this value over time. Transaction volume declines

slightly over time as well for the same reason. At the other extreme, when α = 0.95 (row 3) there

is a heavy anchor at the previous period�s mean transaction price. Since the initial price, p0 = 0,

mean traded prices rise only very slowly above 0. The mean traded price eventually rises above

the fundamental value, but this rise does not coincide with the more rapid price rise that occurs

earlier in an experimental session. Furthermore, since the rise in prices takes longer, a fall-off

in prices is not observed within the same time-frame (15 periods) of the experimental markets.

Finally, consider the case where ϕ = 0, (row 4) so there is no foresight of the approaching Þnite

horizon. Consequently there are always, on average, equal numbers of buyers and sellers in this

environment. Prices increase higher than in the optimal case, up to κ∗DT
t

2 . Transaction volume
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Figure 3: Comparative Statics on α and ϕ in the Simulations.

exhibits no downward trend.

Summarizing these comparative static exercises, it seems that careful choices for our two main

�behavioral� parameters, α and ϕ, are important for our results. In particular, setting either

parameter equal to zero worsens the performance of our model in terms of replicating the important

features of the experimental data. In the following sections, we use our calibrated model to predict

behavior in other asset market experiments that have been designed in an effort to prevent bubbles

from occurring.
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4.3 Asset Markets without Dividend Payments after Each Period

A recent paper by Smith et al. (2000) comes closest to eliminating laboratory bubbles in envi-

ronments where agents can be both buyers or sellers. Their A1 design, involves a T = 15 period

market with no dividend payments. The only money paid to subjects for asset holdings is the

default value of the asset at the end of the market, following the end of period 15. Their hypothesis

is that dividend payments at the end of each trading period, as in Smith et al. (1988), focuses

traders� attention too myopically on the near term; by concentrating the dividend payoff into a

single end-of-market payment the hope was that agents would be more far-sighted (and homoge-

neous in their expectations) and, as a consequence, bubbles would become less likely. There is some

support for this hypothesis in their experimental data as we discuss below. Still, they report some

market sessions where price bubbles continue to arise.

The design speciÞcations of Smith et al.�s (2000) A1-1 to A1-6 sessions are given in Table 5.

Players
Endowment
(Cash;Quantity)

Number of
Players

Class I ($3.5; 4) 3
Class II ($9.9; 2) 3
Class III ($13.1; 1) 2
Class IV ($16.3; 0) 2

Dividends d = $0

Intrinsic Value of a Share D
T
1 = $2.4

Buy-out Value of a Share DTT+1 ∈ {$1.8, $2.4, $3}a D
T
T+1 = $2.4

a Buy-out value $1.8 will occur with p = 1
4 , $2.4 will occur with p =

1
2 , $3.0 will occur with p =

1
4 .

Table 5: Smith et al. (2000) Experimental Design A1 Sessions 1-6

In applying our near-zero-intelligence agent model to this environment, we do not re-calibrate

the model parameters to best Þt the traded price and volume paths in the experimental data.

Instead we use the parameter values for our model that were optimal for the Smith et al. (1988)

experiment. Our aim is to use our calibrated baseline model to predict behavior in the Smith et al.

(2000) experiment and then compare it with the actual data. This provides a more rigorous test of

our artiÞcial agent model than if we were to re-calibrate it to match features of the data reported

by Smith et al. (2000). Using the optimal parameters for the Smith et al. (1988) design, but the

experimental design given in Table 5 for Smith et al. (2000), we conducted a simulation exercise

similar to the one previously discussed: K = 100 independent market sessions, each consisting of

T=15 periods with 10 traders of the various classes given in Table 5.

In Table 6, we display some statistics from our simulation of the Smith et al. (2000) environment
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and compare these with the corresponding statistics from the experimental data. While our Þt is

Statistics Simulations Experiments

turnover % 741% 559%

PA 1.17 0.78

AIV D 6.29 N/A

IV D 2.42 3.96

pT − pT−1 < 0 < 0

Table 6: Simulation and Experiment Statistics.

not exact, we do observe comparable values for the turnover percentage, the price amplitude and

the intrinsic value deviations in both the simulated and the experimental data. Note in particular

that mean price amplitude as reported in Table 6 falls relative to the same measure reported for

our baseline simulation calibrated to match features of the data reported in Smith et al. (1988):

compare the mean price amplitude reported Table 2 with that in Table 6. A similar drop in price

amplitude is found in the Smith et al. (2000) experimental data relative to the Smith et al. (1988)

experimental data, (again, compare Tables 2 and 6) which supports the claim that price bubbles

are less likely in the Smith et al. (2000) environment.

Turnover Composition Simulations

under minimum fundamental value 13.16%

between min. and max. fund. val. 52.34%

above maximum fundamental value 34.50%

These statistics are not reported by Smith et al. (2000) for the experimental data.

Table 7: Turnover in the Simulation Data.

In Table 7 we decompose the turnover in units. We see that 34.50% of all turnover in units

is realized at prices higher than the maximum fundamental value while 13.16% of all turnover is

realized at prices lower than the minimum fundamental value of the asset in the simulation. This

Þnding simply reßects the irrationality of our simulated agents.

The paths of transaction prices (normalized deviation of prices from intrinsic value) and volume

in the simulations are given in Figure 4. In this model, the anchoring effect causes the mean

transaction price deviation to start low and to get higher as trading proceeds. The wide bidding

window causes the mean transaction price to rise over the fundamental value. As the bidding

window stays constant, the fall in traded prices at the end of the asset market is caused by the

positive value of the weak foresight parameter ϕ∗.

We re-estimate regression equation (1) using the data generated under this design. With ra-

tional, risk neutral bidders, we should observe a = 0, corresponding to the dividend payment per
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Figure 4: Normalized Intrinsic Value Deviation and Volume Paths in the Smith et al. (2000) Design

and Simulations. Normalized Intrinsic Value Deviation at period t for session k is deÞned as
Pvolkt
h=1

pkth−D
T
t

TSU .We

are using this measure instead of the Mean Price Deviation, as this was the statistic reported by Smith et al. (2000).

We note that Smith et al. (2001) do not report transaction volume for any of their experimental sessions.
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period in this environment as well as b = 0. The coefficient estimates are given in Table 8. Using

the simulation data, we cannot reject the model at the 1% level (F = 125.41, 1400 observations).

We observe a signiÞcantly positive coefficient estimate for b using the simulation data. Smith et

Regression Sessions ba t−stat p−value bb t−stat p−value
Simulations Cumulative 0.21 26.41 < 0.01 0.032 11.20 < 0.01

#1 N/A N/A N/A -0.005 N/A N/A
#2 N/A N/A N/A 0.016 N/A N/A

Experimentsa b #3 N/A N/A N/A -0.001 N/A N/A
#4 N/A N/A N/A 0.078 N/A N/A
#5 N/A N/A N/A 0.008 N/A N/A
#6 N/A N/A N/A 0.003 N/A N/A

a Smith et al. (2000) do not report estimates of �a and do not report t-ratios or p-values for their estimates of �b.
b Sessions 7 and 8 of Smith et al. (2000) are not reported in this table as their dividend and endowment

structures were quite different. However, the price dynamics of Sessions 7 and 8 are incorporated in the Design

A1 price plot presented in Figure 4, because this Þgure was the only one available showing price dynamics.

Table 8: Coefficient Estimates of the Simulation and Experiment Data.

al. (2000) report coefficient estimates for b separately for each session, and these are reproduced

in Table 8 for comparison purposes. Most of their coefficient estimates for b are positive (4 out of

6); they do not report p−values for these coefficients. As Table 8 reveals, our estimate for b lies
within the range of estimates reported by Smith et al. (2001). We conclude that our model yields

the same relationship between price changes and bid�offer volume found in the experimental data.

4.4 Asset Markets with a Constant Fundamental Value

Noussair et al. (2001) report on a laboratory asset market experiment similar to the Smith et al.

(1988) design, but where the fundamental value of the asset remains constant over all T trading

periods. Their main Þnding is that in half (4 out of 8) of their experimental sessions price bubbles

arise, but in the other half, bubbles are not observed. Therefore, having a constant fundamental

value as opposed to a decreasing fundamental value does not eliminate bubbles, though it might

reduce their frequency. They have random dividend payments in each period, but their dividend

payments have a constant expected value of zero. The design speciÞcations (for the Purdue sessions)

are given in Table 9:14 In this environment, there are usually 10 players each with 10 units of the

asset and a $12.5 cash endowment. The dividends are drawn from the set {− $0.03, −$0.02, $0.005,
14In the other sessions run at the University of Grenoble, the same design was used with a slight difference in the

money endowment and the payoff conversion rate into cash. We report Þndings from all of their results, not just the

Purdue sessions.
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Players
Endowment
(Cash;Quantity)

Number of
Players

Class I ($12.5; 10) 10

Dividends d ∈ {−$0.03,−$0.02, $0.005, $0.045}a d = $0

Intrinsic Value of a Share D
T
1 = $0.45

Buy-out Value of a Share DTT+1 = $0.45
a Each dividend outcome will occur with probability 14 .

Table 9: Noussair et al. (2001) Purdue Design.

$0.045} with equal probability so that the expected payment is zero (and therefore constant). The
buy-out value of a unit of the asset is $0.45.

Applying our model to this environment, we did not re-calibrate the model parameters. Instead,

we again used the optimal parameter vector we found for the Smith et al. (1988) experiment. We

conducted K = 100 independent market sessions each involving T = 15 periods and 10 traders.

Our aim was to assess the performance of our calibrated baseline model to a different experimental

environment by comparing statistics from the simulated data with those reported by Noussair et

al. (2001) for the experimental data. Table 10 reports these statistics for both the simulations and

for Noussair et al.�s (2001) experimental data.

Statistics Simulations Experiments

turnover % 142% 419%

PA 1.07 0.52

AIV D 0.19 0.63

IV D 0.015 N/A

pT − pT−1 < 0 < 0

Table 10: Simulation and Experiment Statistics.

We see that the rate of turnover of shares in the simulated data is much lower than in the

experimental data. The amplitude of bubbles in the simulation are around twice the amplitude

of bubbles in the experiment. As Table 11 reveals, we observe that a small percentage of the

Turnover Composition Simulations

under minimum fundamental value 0.02%

between min. and max. fund. val. 81.98%

above maximum fundamental value 18.00%

These data are not reported by Noussair et al. (2001) for the experiments.

Table 11: Turnover in the Simulation Data.

transactions in the simulated data, about 18.00%, are realized at prices higher than the maximum
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value of the asset. Similarly, almost none of the transactions are realized at prices lower than the

minimum fundamental value.

Noussair et al. (2001) are the only authors studying asset price bubbles in the laboratory who

provide an operational deÞnition of a bubble. They say that a bubble occurs if one of the following

two conditions is met:

�(a) The median transaction price in Þve consecutive periods is at least 50 units of

experimental currency (about 13.9%) greater than the fundamental value. (b) The

average price is at least two standard deviations (of transaction prices) greater than the

fundamental value for Þve consecutive periods.�(Noussair et al. (2001), p. 94).

Using this deÞnition, Noussair et al. Þnd, as noted above, that price bubbles obtain in 4 out

of 8 sessions. Of these 4 bubbly sessions, Noussair et al. report that just 2 experienced a price

crash. However, in all bubbly sessions, prices decrease towards the end of each experimental asset

market. Adopting the same criterion, we Þnd a much higher percentage of bubbles in our simulation

exercise: 95 of our 100 simulated markets met either criterion a or b.

Figure 5 shows the normalized mean price deviation and transaction volume paths for the

Noussair et al. (2001) environment. This Þgure plots the mean experimental price and volume

data only for the Noussair et al. (2001) sessions where bubbles obtained. Though the Þt of the

simulated data to the experimental data is not so impressive, the fact remains that even with our

generic calibration, we observe bubbles in the simulation data for the Noussair et al. (2001) design.

In this laboratory environment, as in the others, the anchoring effect causes transaction prices

to start low and to rise as trading proceeds. The prices rise over the expected fundamental value

due to there being a wide bid range. The bid range stays constant in the Noussair et al. (2001)

environment since the fundamental value is constant. The prices only start to fall because of the

weak foresight of the simulated agents who submit less and less buy orders and more and more sell

orders as the market proceeds.

We have again estimated regression equation (1) for this design. In the rational case with risk

neutral bidders we should Þnd that a = 0 corresponding to the dividend payment per period and

that b = 0. The coefficient estimates are given in Table 12 for the simulation and the experimental

data respectively. We observe signiÞcantly positive estimates for both a and b using the simulation

data. Again, using the simulation data, we cannot reject the model at the 1% level (F = 140.32,

1400 observations). Noussair et al. (2001) Þnd that ba and bb are signiÞcantly different from zero in

only three sessions, and their values are positive in those three sessions.

25



0 5 10 15
0

5

10

15

20

25

30

35

Periods

Sh
ar

es

Transaction Volume - Noussair et al. (2001)

Simulated Path              
Actual Sessions with Bubbles

0 5 10 15
-1

-0.5

0

0.5

1

Periods

R
at

io
 to

 In
iti

al
 F

un
d.

 V
al

ue
Norm. Mean Price Deviation - Noussair et al. (2001)

Simulated Path              
Actual Sessions with Bubbles

Figure 5: Normalized Mean Price Deviation and Volume Paths in the Noussair et al. (2001) Design

(with Bubbles) and Simulations

Regression Sessions ba t−stat p−value bb t−stat p−value
Simulations Cumulative 0.046 26.40 < 0.01 0.0030 11.85 < 0.01

G#1/ no bubble 0.0018 0.44 > 0.05 0.00040 0.35 > 0.05
G#2/ no bubble 0.015 2.26 < 0.05 0.0013 2.68 < 0.05
G#3/ bubble-crash 0.013 1.29 > 0.05 0.0018 2.05 < 0.05

Experiments G#4/ no bubble 0.022 1.43 > 0.05 0.0011 0.77 > 0.05
G#5/ bubble-crash 0.0039 0.059 > 0.05 -0.00013 -0.17 > 0.05
P#1/ bubble 0.0078 0.48 > 0.05 -0.00023 -0.17 > 0.05
P#2/ no bubble 0.0014 2.36 < 0.05 -0.00025 -1.13 > 0.05
P#3/ bubble 0.0080 2.35 < 0.05 0.00075 2.61 < 0.05

Table 12: Coefficient Estimates of the Simulation and Experiment Data.
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4.5 Discussion

The bubbles observed in the simulations of the Noussair et al. (2001) and Smith et al. (2000) designs

have smaller price amplitude, smaller absolute intrinsic value deviation than in the simulations

based on the Smith et al. (1988) design � compare Tables 6 and 10 with Table 2. The experimental

bubbles were indeed smaller in the other two designs as compared with the experimental bubbles

reported in Smith et al. (1988). Hence, our simulations capture this feature of the experiments

quite well.

On the other hand, our simulations are far from perfect at tracking the price and volume paths

in the Smith et al. (2000) and Noussair et al. (2001) designs using the parameters calibrated for

the Smith et al. (1988) design. Setting aside the obvious explanation � that we use a calibration

that is not optimized for these different experimental designs � an alternative explanation might

be that the market environment of Smith et al. (2000) and, especially, that of Noussair et al.

(2001) are considerably simpler for subjects to comprehend than the original Smith et al. (1988)

environment. In these simpler environments, subjects may come to understand the fundamental

value of the asset more clearly, and may take a more rational approach to submitting bids or asks.

If this were the case, our model of near�zero�intelligence traders might be less appropriate as a

model of human subject behavior, even among relatively inexperienced subjects.

Still, while the simulation model, calibrated to Þt the Smith et al. (1988) data does not predict

the data from other experimental designs so well, our main Þnding, that price bubbles and crashes

persist in these other environments is consistent with the experimental Þndings. Using our model,

one would be led to the same conclusion that Noussair et al. make: �the bubble phenomenon is

a characteristic of a more general class of environments, not only the commonly studied declining

fundamental value case,� (Noussair et al. p. 97). This consistency gives us some conÞdence in the

predictive power of our model which we explore further in the following sections.

4.6 Asset Markets with an IndeÞnite Horizon

One difficulty with the laboratory asset price bubble designs discussed above is their use of a known,

Þnite horizon for the asset market. If the asset is known to be worth zero after a certain date or

to have some Þxed cash-out value, it seems likely that prices will fall to these values as the Þnite

horizon looms, as subject eventually apply backward induction. Of course in real asset markets,

the horizon over which assets may generate dividends and capital gains is indeÞnite, and so it

would seem to be of some interest to examine whether asset price bubbles and crashes can arise in

such indeÞnite horizon environments. Camerer and Weigelt (1993) present results from a double
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auction market where the asset that subjects traded was stochastically lived. They were interested

in whether prices converged to the fundamental competitive equilibrium price, equal to the present

discounted value of dividends. They found that with either inexperienced subjects, convergence to

equilibrium was �slow and unreliable,� primarily because traders are more uncertain of what prices

will be in future periods, a problem that does not arise in repetitions of the static double auction

environment. Camerer and Weigelt (1993) report that in some sessions prices slowly converged

to the fundamental value while in other sessions there was no tendency towards convergence at

all, with prices remaining either persistently above or persistently below the fundamental value for

sustained periods of time.

We implement an indeÞnite horizon asset market in the same way that Camerer and Weigelt

do: we specify a constant probability that the market (or asset) will continue (or live) from one

trading period to the next. However we depart from Camerer and Weigelt in how we model the

stochastic dividend process. In Camerer and Weigelt�s paper, the dividend an agent receives from

holding a unit of the asset at the end of each period depends on the agent�s type for that period

(high, medium or low dividend recipient). Heterogeneity of types is what promotes trade in their

model. Since we already have agent heterogeneity in the form of the random components to bids

and asks, we suppose instead that the dividend process is the same for all traders, which is more

in line with the prior literature on bubbles in laboratory asset markets.

SpeciÞcally, we build on the design of Noussair et al. (2001), since the fundamental value of the

asset in the indeÞnite horizon environment will also be constant. Table 13 gives our experimental

design for the indeÞnite horizon environment. We suppose there are 10 traders in each session and

each one of them is endowed with 10 units of the asset and $12.50 in cash. A market consists of an

indeÞnite number of trading periods. When a market ends, each remaining unit of the asset has a

buy�out value of 0. There are also dividend payments after each trading period having expected

value d = $0.03. The distribution of possible dividend values reported in Table 13 was obtained by

simply adding $.03 to the dividend values in the Noussair et al. (2001) design (c.f. Table 9). At

the end of each trading period t the market continues with another trading period with probability

pc = 0.9 (Camerer and Weigelt chose pc = .85), which can also be interpreted as a discount factor.

Thus, the number of trading periods T remaining in a market session at the start of period t

becomes a random variable with Et[T ] =
1

1−pc = 10. It follows that the fundamental value of a

share at the start of any trading period is d
1−pc =

0.03
0.1 = 0.3.

We do not use the weak foresight parameter in this experimental design, i.e. we set ϕ = 0.

The weak foresight parameter exogenously decreases the probability of being a buyer after each

period. In the current design, after each completed trading period, there remain, on average, 10
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Players
Endowment
(Cash;Quantity)

Number of
Players

Class I ($12.5; 10) 10

Dividends d ∈ {$0, $0.01, $0.35, $0.075}a d = $0.03

Intrinsic Value of a Share D
E(T )
1 = $0.30

Buy-out Value of a Share D
E(T )
E(T )+1 = $0

a Each dividend outcome will occur with probability 14 .

Table 13: IndeÞnite Horizon Design with Continuation Probability pc = 0.95.

more trading periods to be played. Hence, there is no need for the weak foresight parameter. Aside

from this change, the parameters are the ones we found to be optimal for the Smith et al. (1988)

design, (κ∗ = 4.0846,α∗ = 0.8480, and S∗ = 5).

Table 14 gives the simulation statistics over 100 sessions. The mean number of trading periods

for each session (market) in the 100 session sample was 11.12, with a standard deviation of 9.84

periods. The sample maximum number of trading periods in any single market was 48 and the

minimum number was 1 trading period. We observe both high turnover and price amplitude in

these simulation results which are signatures of bubbly asset markets. As seen in Figure 6, the

Statistics Simulations

turnover % 122%

PA 1.34

AIV D 0.21

IV D 0.12

pT − pT−1 ≈ 0
Table 14: Simulation Statistics with InÞnite Horizon.

price level increases steadily to almost one and a half times the fundamental value within the Þrst

8 periods of a session. Here, the parameter κ is still set at 4.0846, but ϕ = 0, so in Figure 6 the

normalized price deviation should converge to (κ/2)− 1 ≈ 1.04. Since the number of observations
with more than 25 trading periods was few, we show data for the Þrst 25 periods only. However,

a careful inspection of the data after period 25 shows that indeed the normalized price deviation

ßuctuates around 1.04 as predicted by the model. The interesting prediction of this simulation is

that although we have a bubble, the bubble never bursts. The transaction price does not decrease

from period T − 1 to T in general. This is due to the fact that, after each trading period that has
been reached, one can expect 10 more periods in the session. Hence, the fundamental value of the

asset is constant. This leads to a constant bid interval. Since there is no weak foresight in the

indeÞnite horizon model, prices do not change, i.e. the environment is stationary.
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Figure 6: Normalized Mean Price Deviation and Volume Paths in the IndeÞnite Horizon Design

Simulations.

Turnover Composition Simulations

under minimum fundamental value 0.00%

between min. and max. fund. val. 100.00%

above maximum fundamental value 0.00%

Table 15: Turnover in the Simulation Data.
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As seen in Table 15, all of the activity is observed at prices between the maximum and minimum

fundamental value. At any period, the maximum value of the asset is determined as the maximum

income an individual holding the asset would earn if he held the asset for the expected duration of

the session: maxD
E(T )
t = max{$0,$0.01,$0.35,$0.075}

1−pc =$0.75. Similarly, the minimum value of the asset

is determined as minD
E(T )
t = min{$0,$0.01,$0.35,$0.075}

1−pc =$0.

Next, we estimate the regression equation (1) relating the change in traded prices to the differ-

ence between buy and sell offers in the previous period, equation. We Þnd that ba is both positive
and signiÞcant, but bb is negative and not statistically signiÞcant. (See Table 16). This time using
the simulated data, we can reject the model at 10% level (F = 1.54, 1012 observations from 100

sessions). It should be noted that this result is obtained in the absence of the weak foresight pa-

rameter in the model. With risk neutral rational bidders, we should observe a = 0 corresponding

Regression Sessions ba t−stat p−value bb t−stat p−value
Simulations Cumulative 0.030 29.96 < 0.01 -0.00026 -1.24 > 0.1

Table 16: Coefficient Estimates of the Simulation Data.

to the change in the dividend payment per period and b = 0.

These Þndings are not inconsistent with those reported by Camerer and Weigelt (1993), even

though there are some differences between their approach and our own as noted above. In particular,

they report sessions where prices remained well above the fundamental equilibrium price with no

tendency toward convergence (c.f. our Þndings with Figures 2, 3, 13 and 14 of the Camerer-Weigelt

paper). While we have not tested the indeÞnite horizon market design we examine here with human

subjects, we think it would be of interest to do so. If our prediction is correct, we should see a

sustained departure of asset prices above their fundamental value and no crashes, at least among

inexperienced subjects.

4.7 Asset Markets Without Opportunities for Speculation

In an important paper, Lei et al. (2001) show that speculative motives are not needed to generate

bubbles in experimental asset markets. They consider a design where players are ex-ante classiÞed

as either buyers or sellers. A buyer can only buy shares and a seller can only sell shares. Players

remain in the same role for the duration of a session. By preventing buyers from acting also as

sellers, speculative explanations for bubbles (e.g. the greater fool hypothesis) are effectively shut

down. Despite shutting down the possibility of speculation, Lei et al. (2001) report that asset price

bubbles arise in their experimental sessions. This result refutes the conjecture that speculative

behavior is the source of the laboratory asset price bubble phenomena. In this section we apply our
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model to the Lei et al. (2001) environment. As noted earlier, our asset price bubble explanation

does not rely on any speculative behavior. Instead it relies on the anchoring and weak foresight

assumptions.

In the Lei et al. environment, sellers are endowed with shares and buyers are endowed with

money. Since buyers and sellers are Þxed throughout a session, we do not use a decreasing proba-

bility for being a buyer (weak foresight assumption), or for that matter, any probabilistic device for

determining who is a buyer or a seller. In this sense, the Lei et al. model is quite different from the

laboratory environments we have previously considered. Aside from this one change, however, our

model is the same as before. In particular, loose budget constraints remain in place and buyers and

sellers continue to use the mean traded price of the previous period as an anchor for their current

bids and asks, which continue to also have a random component. There continues to be a common

upper bound to the bid ask range equal to κ times the fundamental value of the asset. Therefore,

the loose budget constraint parameter κ, the anchoring weight parameter α, and the number of

trading sequences in a period S are the only model parameters that need to be calibrated for this

design.

The number of periods in a market is set at T = 12, as in Lei et al. (2001). The initial

endowments, dividend payments and the number of players are given in Table 17.15 As this envi-

Players
Endowment
(Cash;Quantity)

Number of
Players

Buyers ($24; 0) 4
Sellers ($0; 20) 4

Dividends d ∈ {$0.0667, $0.133}a d = 0.10

Intrinsic Value of a Share D
T
1 = $1.20

Buy-out Value of a Share DTT+1 = $0
a Each dividend outcome will occur with probability 12 .

Table 17: Lei et al. (2001) Experimental No-Speculation Design.

ronment differs considerably from the ones we have previously examined, we chose to re-calibrate

our simulation model using a similar optimization algorithm to the one provided for the designs

with speculation. We used the same two�step simulated method of moments procedure described

in section 3.1, modiÞed for the fact that we no longer search over values of the weak foresight

parameter, ϕ. The optimal parameters were as follows: the number of trading sequences S∗ = 3,

15Lei et al. (2001) use the cleared order book convention in their experiments. In the simulations we report here

we also use this convention. We note that the particular order book convention used does not affect the simulation

results extensively.
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the loose budget constraint parameter κ∗ = 3.5123, and the anchoring parameter α∗ = 0.6.

We ran K = 100 independent market sessions of our model with the calibration as described

in the last section. Table 18 reports the statistics both for the simulations and for the actual

experimental data.

Statistics Simulations Experiments

turnover % 92% 82%

PA 3.63 3.48

AIV D 0.49 N/A

IV D 0.40 N/A

pT − pT−1 < 0 < 0

Table 18: Simulation and Experiment Statistics.

We observe that asset turnover is lower relative to other designs, as it also is in the experimental

data. We further note that values for the price amplitude, the absolute intrinsic value deviation

and the intrinsic value deviation in the simulated data are a very close match to the experimental

data.

In Figure 7 we plot the normalized mean price deviation and transaction volume from the

simulated data and for the actual Lei et al. (2001) experimental data. The normalized mean-price

deviation is about -30% of initial fundamental value in period 1 and it increases up to less than

60% in period 5 before falling back to just 28% in last period. This provides strong evidence of a

bubble-crash pattern in this design. Indeed, Lei et al. (2001) claim that there is a bubble�crash

pattern in two of their three No-Speculation treatments.

In the simulations, transaction volume starts high at 6.5 units in the Þrst period, and stays

fairly steady for the Þrst 9 periods, before falling off and ending up below 5 in period 12. We

observe in Table 19 that 79.20% of the total turnover is traded at prices higher than the maximum

value of the asset. On the other hand, only 5.38% of the total turnover are traded at prices lower

than the minimum value of asset. In the actual experimental data fewer units are traded at prices

higher than the maximum value and more units are traded at prices lower than the minimum value

- see Table 19. Still, our simulation Þndings are broadly consistent with the laboratory Þndings:

some agents are trading irrationally.

Turnover Composition Simulations Experiments

under minimum fundamental value 5.38% 16.67%

between min. and max. fund. val. 15.42% 44.44%

above maximum fundamental value 79.20% 38.89%

Table 19: Turnover in the Simulation and Experiment Data.
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Figure 7: Average Mean Price and Volume Paths in the Simulation Data
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In our agent-based model, the anchoring effect causes traded prices to start low and to become

higher as trading proceeds. However, at some point, buyers start running out of money, since they

no longer have the option of re�selling units and replenishing their cash balances with capital gains

as in the trader market environment. Consequently, transaction prices fall, as sellers compete to

transact with fewer buyers. Transaction volume falls a little as well, especially towards the end of

the market and the market experiences a �crash�. Notice that this explanation for the bubble-crash

phenomenon does not rely on any foresight of the Þnite horizon.

We again estimate regression equation (1) using simulated data for this design. With rational,

risk neutral bidders we should observe a = −0.1 corresponding to the change in the expected
dividend payment per period and b = 0. The coefficient estimates are given in Table 20 for the

simulation and experimental data, respectively. We Þnd that ba is signiÞcantly negative and bb is
positive, though not signiÞcantly different from zero. Lei et al. report that for the experimental

data ba is signiÞcantly negative and bb is signiÞcantly positive.16 We can reject the model in the

simulation data at 10% level with F =0.83 (with 1100 observations obtained from 100 sessions

and 11 periods for t =2,...,12). These results suggest once again that our model does a fair job of

characterizing the major features of laboratory asset bubble phenomenon, and is also capable of

capturing some of the more subtle features of the data.

Regression Sessions ba t−stat p−value bb t−stat p−value
Simulations Cumulative − 0.036 −5.65 < 0.01 0.0008 0.22 > 0.05

Experiments Cumulative -0.2147 -9.6293 < 0.05 0.002 11.80 <0.05

Table 20: Coefficient Estimates of the Simulation and Experiment Data

5 Conclusion

We have developed a simple, agent-based behavioral model with the aim of understanding the

phenomenon of asset price bubbles and crashes among inexperienced subjects as reported in a

number of laboratory studies beginning with Smith et al. (1988). We turned to agent�based

modeling because standard theoretical models impose assumptions that are either unsatisÞed or

are too restrictive for the double auction environment of the laboratory studies. Indeed, rational

asset pricing models would predict that agents placed in the laboratory environments would not

engage in any trade whatsoever.

16We note that Lei et al. (2001) use the median transaction price in their estimates and statistics.
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Our simple agent-based behavioral model builds on the idea of using budget constrained, zero�

intelligence traders as pioneered by Gode and Sunder (1993, 1997). The ZI approach is not intended

as a commentary on the rationality of human subjects. Rather, this approach effectively lays bare

the importance of institutions, e.g. trading rules, procedures, and other features of the market

environment relative to human decision-making skills in the determination of observed market

outcomes. We have had to modify the Gode and Sunder ZI methodology in several ways to address

the laboratory price bubble phenomenon but the resulting model continues to focus attention on the

role played by the features of the laboratory asset market, in particular, whether there is a Þnite

or inÞnite horizon, whether the fundamental value of the asset is decreasing over time and the

frequency/timing of dividend payments. We have also addressed the �greater fool� hypothesis that

asset price bubbles arise from speculative behavior on the part of players who buy at high prices in

hopes of selling at even higher prices. Our anchoring explanation for price increases in the initial

periods of a market session does not rely on any kind of speculative motive; it is purely backward

looking. Accordingly, we are able to obtain price bubbles in buyer�seller markets, such as the one

considered by Lei et al. (2001) where speculation motives are explicitly precluded. Our behavioral

model, utilizing both anchoring and weak foresight, is the Þrst, and to our knowledge, the only

model that has been offered to explain the robust Þnding of laboratory asset price bubbles that

has fascinated so many experimental economists. Our model not only generates price bubbles and

crashes that are qualitatively similar to those found in the experimental data, but in many instances

we are close to obtaining the right magnitudes in price changes, volume and other statistics as well.

Our model can also replicate other, more subtle Þndings from the experimental studies such as the

regression estimated relationship between changes in traded prices and differences in the volume of

bids relative to offers. A testable implication of our model is that both anchoring effects and Þnite

horizons matter; eliminating the ability of traders to condition on past transaction prices (e.g. by

severely restricting the information they receive) and replacing the Þnite horizon with an indeÞnite

horizon might work to eliminate bubbles and crashes with inexperienced subjects. Of course, we

emphasize that our model cannot explain why bubbles and crashes cease to obtain as players gather

experience; to explain that we would have to add further structure to the model, e.g. that agents

are concerned with the payoff consequences of their actions. As we mentioned at the beginning of

the paper, our model seeks only to address the behavior of inexperienced players, which has also

been the primary focus of the experimental literature on bubbles since Smith et al.�s (1988) paper.

We leave the modeling of how experience affects trading behavior in laboratory asset markets to

future research.
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