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Abstract

A simple transform of a standard uniform variate is given for sim-
ulation of the maximum attained by a Wiener process with drift, con-
ditioned upon the level attained by the process over an arbitrary time
interval. The transform arises directly from inversion of the joint dis-
tribution function of the maximum and the final Wiener process level.

1 Introduction

Generating random observations that possess a certain probability distribu-
tion is often accomplished by inverting the cumulative probability function.
In the simplest cases, unit uniform pseudo-random numbers are functionally
transformed to numbers that are exactly distributed according to a proba-
bility law being studied. Perhaps the best known example of this strategy
is the Box and Muller method for generating pseudo-random normally dis-
tributed numbers, found in [2].

This note presents a simple transformation, which maps a uniformly
distributed random number to a number which is exactly distributed as the
maxima (or minima) of paths of a Wiener process with arbitrary diffusion
and drift, conditioned on a specified level of the process at the end of a
time interval. The transform entails one simple expression, taking as its
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arguments a unit uniform pseudo-random number, and the ending level of
the path.

While the problem of constructing Brownian paths with a given extreme
has been treated in [1], there appears to be no advancement of simple meth-
ods to simulate Gaussian maxima with respect to paths conditioned on the
ending process level. This note offers such a method, and, by extension, a
alternative, direct, method for unconditional simulation of extremes as well.

A direct method offers several advantages over alternative techniques,
such as suggested in [4]. Direct transformation is more parsimonious, be-
cause the alternatives implicitly rely on asymptotic convergence to continu-
ous time distributions. Also, samples generated by transformation will not
be subject to numerical problems, such as those observed in [3]. Further,
the ”conditional” aspect of this transform facilitates its use in applications
that require control of final outcomes. An example of effective application
of the conditional feature of the transformation is in the Monte Carlo design
for studies of complicated financial trading or hedging procedures. These
studies are often concerned with distributions of outcomes under alternative
future speculative market scenarios. Use of this method to provide properly
distributed values for the extreme level with respect to the condition of the
final level, coupled with the method in [1] to construct dually-conditioned
Browinian paths, could facilitate applications which require control of both
path functionals.

2 Methodology

The joint probability of the maximum and the terminal level of a Wiener
process with drift is presented in [5]1. Let T denote an elapsed time from
inception of the process. Let Y denote the maximum over that interval, and
xT denote the level attained by a Wiener process at T . If the Wiener process
has drift c and diffusion σ2, then the probability law of the maximum and
final level, say, F (xT , Y ;T, c, σ) is:

dF (xT , Y ;T, c, σ) =
2(2Y − xT )√

(2π σ4T 3)
exp

(
−(2Y − xt)2

2σ2T
+
c xT

σ2
− c2 T

2 σ2

)
dY dxT (1)

1The joint probability of the maximum, terminal level, and the time of the maximum
is provided in that article; here, only the marginal distribution of the first two is required.
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The process’ finite dimensional probability distribution is of course the
normal distribution, say, G(xT ;T, c, σ):

dG(xT ;T, c, σ) =
1√

(2π σ2T )
exp

(
−(xt − cT )2

2σ2T

)
dxT (2)

Let C(Y |ξ) denote the probability law of Y conditioned on xT = ξ. It
is elementary to obtain the density, dC, as the ratio of the joint marginal
density (1) and the conditioning variate’s density (2). After simplification,
this density is:

dC(Y | ξ;T, σ) =
2 (2Y − ξ)

σ2T
exp

(
−2Y

(Y − ξ)
σ2T

)
dY (3)

The conditional density is independent of the drift parameter, c. Accord-
ingly, the inversion of the cumulative distribution function of the conditioned
maximum will be independent of the process’ drift. Moreover, the form is
that of a simple exponential, and so has an elementary analytic integral.
Let Q(M | ξ) denote the (complementary) cumulative probability, i.e.:

Q(M | ξ) ≡ Pr(Y ≥M |xT = ξ)

=
∫ ∞

M

2 (2ψ − ξ)
σ2T

exp
(
−2ψ

(ψ − ξ)
σ2T

)
dψ

= exp
(
−2 M

(M − ξ)
σ2T

)
(4)

This probability function is trivially invertible. Let UM denote the neg-
ative of the log of Q(M,xT ), whence:

UM = − ln (Q(M | ξ)) = 2 M
(M − ξ)
σ2T

.

Since M must not be less than ξ, then:

M =
1
2
ξ +

1
2

(
ξ2 + 2UM σ2T

)1/2
, M > ξ, 0 < UM < 1. (5)

If UM is simulated by generating a uniform pseudo-random number, say,
u, then (5) will produce another pseudo-random number, say, ψ, distributed
as the maximum conditioned on the final level attained by the Wiener pro-
cess, as in (3).
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3 Comments

The ”one-line” simulation engine provided by (5) could find application in,
for example, a problem of the following type. Say that some sequential pro-
cedure were modelled with underlying causation following a Wiener process,
but the procedure were itself too complicated for its results to admit a closed
form solution for either its stochastic differential equation or for its finite-
dimensional distributions. Further, say it were known that a certain level of
the underlying process, regardless of when that level were attained, would
result in ”ruin”, but, in the alternative, the process would run to a hori-
zon date. In a Monte Carlo study of the procedure’s results, especially one
which employed Brownian Bridge conditioning, application of (5) as part of
the method would provide two advantages. First, if the result exceeded the
”ruin level”, that trial does not need a Monte Carlo to be generated. Sec-
ond, recording the frequency and conditioning of the ”hits” would provide
a direct assessment of the probability of ruin, conditioned on final process
levels.

Sequences of exactly distributed unconditional Wiener maxima can be
attained with only a small increase in cost. Such application requires a pair
of random numbers (u, x). The random number u is taken as before, and x
is generated as a normal variate with mean c T and variance σ2 T . Then the
resultant random numbers will be distributed as the maxima of all Wiener
paths over (0, T ) having those parameters.

The transform can also be used directly to generate Wiener process min-
ima. The minimum level attained by a Wiener path over an interval, con-
ditioned upon xT , is distributed as the maximum, conditioned upon the
negative of xT .

Finally, it should be noted that this method cannot be employed to sim-
ulate a ”range” for Wiener paths, i.e, the difference between the maximum
and minimum levels. The reason for this is a well known, and intuitively
obvious, result: the maximum and minimum levels of a Wiener path are not
independent. It does not seem likely that a method to generate simulated
ranges can be attained from the inversion of a distribution function, since
the distribution of the Wiener range functional is known only in terms of
convergent infinite series.
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