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Abstract

A merging function synthesizes a vedor of numbers (representing measurements, scores or quantitative
opinions) into a single number (representing a cnsensus or colledive measurement, score or quantitative
opinion). Assuming that al the involved numbers are drawn from a discrete set, it is shown that projedion
functions are the only merging functions stisfying threeproperties stisfied by the aithmetic mean (defined
for red numbers). Another projedion result is obtained under aternative assumptions when merging
functions are assumed to transform matrices of numbers from a discrete set to a vedor of numbers from the
discrete set.
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1. Introduction

A general formal problem considered in many disciplines consists of associating a unique
number with an ordered set of numbers, so that the number integrates, summarizes,
synthesizes, represents, aggregates or merges the numbers from the ordered set. The
procedures accomplishing this task are cdled “merging functions’” in Aczél and Roberts
(1989.

The achetypa merging functions are probably those generating some form of mean value:
the aithmetic mean, the weighted arithmetic mean, the geometric mean, the weighted
geometric mean... Condtions under which merging functions of this ort arise can be
foundin Aczé (1966, pp. 23440, Aczél and Saay (1983) and Aczél and Roberts (1989,
pp. 236241).

There ae nonethelesscases in which it is not passble to resort to mean values. This may
occur when the merging function hes to seled its output from a discrete set, because, for
instance, the numbers to be aggregated are measured in terms of an indivisible unit (Euro
Cents or persons) or are used as a deviceto name objeds or options (in which case merging
function are procedures to select the objeds or options).

This paper is motivated by the problem of aggregating measurements, scores, data or
quantitative opinions when the inpus and ouput of merging functions belongto a discrete
set. The two main results (Propasitions 2.4 and 3.6 make evident the difficulties of
obtaining a reasonable merging procedure that satisfies certain plausible requirements. in
both cases, uncer the interpretation that individuals provide the data to be merged, the only
admissble type of merging procedure mnsists of seleding one of the individuals and let the
aggregation be determined by that individual. In ather words, the merging functions must
be projedion functions. In the socia choice literature, this kind o result is interpreted as a
dictatoria result, since the mlledive measurement, score or opinion always coincides with
the measurement, score or opinion d agiven individual.

The results are obtained in two dfferent but related settings. In the first one (Sedion 2),
merging functions as defined above ae mnsidered and it is $own that only projedion
functions satisfy three goparently plausible condtions. First, agreement: merging the same
score must yield that score & output. Second, monatonicity: if no score is lowered then the
score generated by the merging function daes not decrease. And third, a property of



independence: if, starting from certain scores, a catain change in the scores does naot alter
the summarizing score then, no matter from which scores one starts, the dfed of thase
changes on the summarizing scoreisnull.

The second setting (Section 3 deds with the case in which the n individuals do nd report a
single measurement, score or quantitative opinion bu a vedor of such values, ead value
being a measurement, score or quantitative opinion referred to a different objed from a
given set of m objeds. If the merging procedures in Sedion 2 aed with the transformation
of 1 x n vedors into nunbers, the merging procedures in Sedion 3 deal simultaneously
with m such transformations, so that they map an m x n vector into an m x 1 vector (the
entries in the output vedor representing the lledive score dtributed to the m objeds). It
is shown that only projedion functions stisfy the following three ondtions.

First, an allocation condtion acarding to which all the individual score vectors as well as
the mlledive score vector must distribute atotal score ¢ among al the objeds. This
condtion makes gnse, for example, when scores are propartions or when the underlying
problem is just one of allocaing a certain amourt among the objects (which can then be
viewed as tasks). Second, a decentralization condtion establishing that the agygregation
takes placeobjed by objed: to compute the score of an olject the only information that is
relevant is given by the scores individuals ascribe to the objed. And third, a bound
condtion stating that the @lledive score of an olject canna be greaer than the maximum
score that someindividual assgnsto the objed.

On the one hand, Propasition 2.4 appears to aert us to the danger of presuming the
existence of satisfadory aggregation procedures withou properly spedfying the domain
over which the aggregation takes place. In Econamics, for instance, variables (like
production a prices) typically range over a @ntinuum, though the mnceptually correa
choiceseemsto be that they shoud range over a discrete set. In this respect, Propasition 2.4
may suggest that aggregation problems in that context could creae more inconveniences
than expeded. On the other hand, the message of Propasition 3.6 @rhaps lies in stressng
the difficulties of trying to reduce one type of aggregation problems to smpler aggregation
problems when some wnnedion exists between the parts of the main aggregation problem.
This reading conrects Propasition 3.6to ore of the referenceresults in social choicetheory,
Arrow’s (1963, p. 97 theorem.



2. Merging measur ements of a single obj ect

Let N={1, ... , n} be afinite subset of the set of natural numbers, withn=> 2,and D a
subset of the set Z of integers having at least three members and being closed in the
following sense: for all x 0Z, y O Z2\{x} andzO 2\{x, y}, if xOD,y O D\{x} andx<z<y
then z 0 D. A merging functionisamapping f : D" - D.

The general interpretation is: (i) that there is ssme underlying object having a measurable
property; (i) that D defines the set of posgble values of the measurements; (iii) that n
measures (&4, ... , &,) O D" have been oltained; and (iv) that f represents a procedure to
obtain a representative measure f(&4, ... , &,). In more spedfic contexts, members of N may
designate individuals, members of D quantitative opinions abou some issue (for instance
utili ty values associated with some lledive decision) and f yield a “socia” opinion a a
“consensus’ value.

For x 0 D andy [0 D\{x}, the expresson“x coversy” means“y < x and there is no integer z
suchthaty<z<x'.Fori ONand& = (&4, ... , &) O DN, &; designates the ith comporent of
& Fori ON,xOD,yOD\Y{x} and& O DM (i) (¥, y) denotes the member & of D" such
that & = x and, for al j O N\{i}, & =y, and (i) (¥, &) denotes the member ¢ of D" such
that ¢; = x and, for all j O NY{i}, ¢j = §;. The am of this ®dionis to charaderize the set of
merging functions satisfying the three ondtions gated next.

Al. Foral xOD,f(x, ... ,X) =x

A1l is the agreement assumption in Aczél and Roberts (1989, p.218. The interpretation
acording to which merging functions are rules to integrate measurementsinto ore
representative measurement makes A1l a plausible requirement: if all the measurements are
equal to acertain value x, which is the best summarizing measurement but x itself?

A2.Fordl a, B, yODn,if f(a) =f(B) and,for al i O N, y; = a; then f(y) = f(B).

A2 isamonaonicity property: if f yields the same value for two measurement profil es then,
every change that does nat deaease any value in ane of the profiles, canna induwce f to
yield a value small er than the value that corresponds to the other profile. This establishes a
requirement of non-negative resporse: increasing the values to be merged canna reducethe
resulting merged value.



A3.Fordl a, B,y, 6 0D if f(a) = f(B) and,for al i ON, y; — & = a; — Bj then f(y) = f(d).

A3 can be viewed as a @ndtion trying to reduce the mmplexity of the merging function.
The motivation is as follows. Suppase that f yields the same value under two dfferent
measurement profiles a and 3. Thisfad can be interpreted in the sense that f neutrali zes (or
considers irrelevant) the changes in passng from a to 3. By A3, if this happened oncethen
it happens always: by applying the same @solute changes to any yin order to oktain a new
profile , the dfeds on the resulting merged value are innocuous, so that () = f(y).

A3 beas sme resemblance to the independence type wndtions in social choice theory,
such as the @mndtion d independence of irrelevant aternatives in Arrow’s (1963, p. 9)
theorem. According to this sort of assumptions, the aggregation d severa items is caried
out by combining the aggregation d parts of those items. Independence then refers to the
fad that the aggregation d one of the parts does not depend onthe aggregation d the other
parts. In this ense, A3 makes the dfect onf of a change in the measurements independent
of the initial measurements: if given a measurement profile a, f(a) itself is the result of
increasing x units one of the measurements whil e decreasing y units another measurement,
with the rest of measurements held constant, then the same danges leave the value of f
unatered nomatter theinitia profile a considered.

A3isarguably not an urcontroversia requirement. It is nonethelessworth ndicing that the
arithmetic mean satisfies A3, as well as A1 and A2. In this resped, the main result in this
sedion provides an answer to the question o what type of merging functions is consistent
with A1, A2 and A3 on dscrete and closed damains.

Lemma 2.1 states that the value of a merging function satisfying A1 and A2 at profile a is
bounckd abowve by the maximum of the valuesin a and bourded below by the minimum of
these values.

Lemma2.l. If f: D" - D satisfiesAl and A2 then, for all a O D", min{ay, ... , ap} <f(a)
<max{dyq, ... ,0n}

Proof. Let a 00 D", x := max{dy, ... , 0n} andy:=min{ay, ..., dy}. If f(a) = z> x then, by
A2, f(x, ... ,X) =z, wheress, by A1, f(x, ... , X) = x: contradiction. If f(a) <y then, by A1,
f(y, ... ,y) =yand,given this, by A2, f(a) = y: contradictionm



Lemma 2.2 shows that, for merging functions satisfying A1, A2 and A3, thereis a situation
in which f disregards all but one of the measurements. In particular, by interpreting N as a
set of individuals, Lemma 2.2 holds that f attributes some individual i the power to impose
some assessment X when the rest of individuals declare as assessment the smallest value
larger than x.

Lemma 2.2. If f: D" — D satisfies A1, A2 and A3 then therearei O N, x O D and y [
D\{x} such that y covers x and f(xi, y=) = x.

Proof. Suppose not: for al i O N, x 0 D and y O D\{x}, if y covers x then f(xi, y) # x. By
Lemma2.1,

forali ON,xODandyD\x}, if y coversx then f(xi, y) = y. (1)

Choosei O N, x 0 D andy O D\{x} such that y covers x. By (1), f(xi, y7) =y. By A1, f(x,
y) = f(yi, y-i). Consequently, by A3,

forall KON, o O DMand 3 0 DN, if By covers oy
and, for al j O N\{Kk}, Bj = a; then f(a) = f(B). (2

Taking f(xi, y) = f(yi, y~) as the base of an induction argument, choose G [0 N withi 00 G
and assume that f(xG, y=C) = f(yi, y). Let j O N\G. By (2), f(xGUi}, y=(CH{i}) = f(yG, y=6).
Since, by A1, f(yG, y6) =y it follows that, for al non-empty G [0 N and j 00 N\G, f(XG, y=6)
= y implies f(xGU{i}, y-(GI{i})) = y. Accordingly, by starting with f(xi, y7) = y and
successively adding members of N to {i}, there is some k O N such that f(x, yK) =y, which
contradicts (1).m

Lemma 2.3 establishes that, for merging functions satisfying A1, A2 and A3, the power
attributed to the individual in Lemma 2.2 in the specific case there defined cannot be shared
with other individuals.

Lemma2.3. Letf: D" - D satisfy Al, A2 and A3. If therearei O N, x 0 D and y [0 D\{ x}
such that y covers x and f(xi, y=) = x then, for al j O N\Y{i}, f(x, y) = .

Proof. Suppose therearei OO N, j O NYi}, x O D and y 00 D{x} such that y covers x and
f(xi, y) = x = (¥, yi). Case 1. some z [0 D coversy. By A1, f(x, yi) = x yields f(x, y) =



f(x, x7). By A3, for al a 0 D" and B O D", if B; = a;j and, for al k O N\{j}, Bk covers ay
then f(a) = f(B). Given this, it follows from f(xi, y=i) = x = f(xi, x7) that f(ylii}, z-{ii}) = f(x,
x7), where z covers y. By Al, f(ytii}, z{ii}) = x < min{y, z}, contradicting Lemma 2.1.
Case2: noz I D coversy. Sincef(xi, y) = x = f(x, yi), by Al and A3, f(vi, x1) = v = f(,
x7), where x covers v. Given that y covers x, case 1 applies, so that f(vi, x7') = vimplies f(u,
x7) # v. Hence by A3, f(xi, y1) = ximplies f(x, y1) # x: contradictions

Proposition 2.4. Merging functionf : D" - D satisfies A1, A2 and A3 if, and orly if, there
existsi O N such that, for al & O Dn, f(€) = §;.

Proof. “0” By Lemmas 2.2 and 2.3,thereisi [0 N such that, for al j O N\{i}, if y covers x
then f(x, y-i) = y. Therefore, by A3,

foral j ON\i}, £ 0 DnandzOD, if & coverszthen f(z, &) = f(€). (3)

To show that, for dl a O D", f(a) = a; let x = a;. Define J = {j O N\{i}: a; > x} andK = {k
ON\i}: ax < x}. Choosefirstany j 00 Jandlet (xq, ... , %) be the sequence of members of
D such that x; = X, X, = aj and x; is covered by x4, for t 0 {1, ... ,r — 1}. By AL, f(x, ...,
X) = x and, by successve gplication d (3), x = f((x))i, x7) = f((xo)i, x7I) = ... = f((x)i, x7).
Applying the same reasoning to the rest of members of J, it foll ows that f(3) = x, where, for
al j0J, Bj=ajand,foral j 0N\, B =x. Procealing in asimilar vein with the members
of K, chocse k O K and et (yy, ... ,Ys) bethe sequence of members of D such that y; = X, ys
= ok and y; covers i1, for t 00 {1, ... , s— 1}. Given f(3) = x, by successve gplicaion o
(3), x = f((y)*, B = f((y2)*, B = ... = f((y9d* B-w). Applying the same reasoning to the
rest of members of K, it follows that f(a) =x. “00 " If, for somei O N and al & 00 DN, f(§) =
& thenit iseasy to verify that f satisfies A1, A2 and A3.m

By Propasition 2.4,the only merging functions stisfying A1, A2 and A3 are projedion
functions. In the socia choice literature, such functions are cdled “dictatorial”, as one of
the individuals completely determines the outcome of the merging procedure. In terms of
measurements, imposing A1, A2 and A3 ona merging function f amourts to simplifying
extraordinarily the way f operates: the synthesizing value is always one given entry of the
measurement profile.

Remark 2.5. No condtionin the set {Al, A2, A3} isredundant in Propasition 2.4.First,
the nondictatoria f : D" - D such that, for somex O D and al a 0 DN, f(a) = x satisfies



A2 and A3 bu nat Al. Seond,with D ={1, 2, 3}, the nondictatorial f: D x D - D such
that f(1, D) =1(2, 3 =1(3, 2 =1,1(2,2) =f(1,3) =f(3, ) =2andf(3,3) =f(1, 2 =1(2, 1) =
3 satisfiesAl and A3 bu not A2. Andthird, the nondictatorial f : D" — D such that, for all
o 0D fla) =max{ay, ... 0, satisfiesAland A2 bu not A3.

Remark 2.6. As the prodfs of Lemmas 2.3 and 2.4make evident, Propasition 2.4 hads if
A3isreplaced by the weaker condtion A3'.

A3 If f(a) =f(B) and N ={i O N: a; =} O {i O N: a; covers Bj} then f(d) = f(y) provided
{iON: & =v} ={i ON: a;j =B} and {i O N: & coversy;} ={i ON: a;j covers 3j}.

Remark 2.7. Propasition 2.4 hodsif A3isreplaced by A3", sinceA3" implies A3

A3". If f(a) =f(B) and,for all i O N, & - Vi < a; — Bj then f(3) < f(y).

3. Merging interdependent measur ements of several objects

In some cases, the aggregate measurement of the property of some object may depend on
the measurements of other objects. As an ill ustration, consider the situation in which n
individuals report utili ty values associated with a set of m puldic projeds and a procedure F
must determine the mlledive value of each projed on the basis of the reported uility
vaues. In this case, the input of F consists of an m x n matrix of entries &/; representing the
utility individual i ascribes to projed j, whereas the output is a vector whose m entries
represent the alledive value atributed to each projed. For this problem, the procedure
could just decentrali ze the aggregation by resorting to m merging functions fq, ... , fy, SO
that f; takesrow j of the matrix and yields the jth entry of the vector of colledive values.

In could noretheless be that the m merging functions are subjed to some form of
interdependence. For example, suppacse that, instead of dedaring utili ty values, individuals
reved how they prefer a given amourt ¢ of money to be dlocated among the m projeds.
Thus, the olumns of the matrix as well as the output vedor must all add upto c. In
consequence, the merging functions f; canna be freely chosen. In general, a stuation like
this would arise when measurements are expressed as propartions and the aggregate values
must also be propations. The am of this sdion is to determine the extent to which such
problems can be hand ed by several merging functions ading simultaneously.



LeeN={1, ...,n} andM ={1, ... , m} befinite subsets of the set of natura number, with
n = 2 and m= 3. For some natura number c, define D = {0, 1, ... ,c}. Members of D™n
can be viewed as matrices, so that, for k O M and i O N, & is the kth row, & is the ith
column and &iy is the value simultaneoudly in the kth row and the ith column. With E = {&
ODm™n: forali ON, &+ ...+ &, =c}, amerging* functionisamapping F : E . DM
satisfying BO. For k 0 M, merging* function F induces m functions Fi : E — D such that,
for al & OE, Fi(€) isthekth valuein mtuple F(£).

BO. For al & O E, the sum of thevaluesin F(€) isc; that is, F1(§) + ... + F(§) = cC.

The interpretation is as foll ows: (i) members of M designate the objeds assgned score; (ii)
n is the number of scores associated with each ojed (ead member of N could be viewed
as an individual reporting the scores he asciates with each olject); (iii) D collects the
possble scores, which range from 0 to a maximum score of c; (iv) ead multidimensional
score &i is such that the sum of the scores of al the m objects must add upto ¢; and (v) f
represents a procedure to oltain a representative score Fi (&) for each ojea k 0 M.

To clarify the notation, let c = 100,m =4 and n = 3. Let & be the member of E in which the
first score profileis (50, 5, 20, 2} so 50isthefirst score of the first objed, 5the first score
of the second obect, and so on.That is, &1 = (50, 5, 20, 8) and this constitutes the first
column of the matrix &. If € is quch that €2 = (30, 15, 20, 8) and &3 = (0, 100, 0, Pthen &;
= (50, 30, Qisthe first row of the matrix & and determines the set of scores that the first
objed receives. Similarly, &, = (5, 15, 100, {3 = (20, 20, § and &4 = (25, 35, ( define the
scores that receve, respedively, obeds 2, 3 and 4. Finaly, that &3, = 100 expresss the
fad that objed 2 receives sore 100in the third scoring profile. This ®dion is concerned
with the following question: what merging* functions F are mnsistent, in the sense of B1,
with the use of merging functions?

B1. For every k [0 M thereisamerging functionfy : D" — D such that Fi(§) = fi(&k).

By B1, merging* function F defines a separable procedure by means of which, for each
objea k 00 M, amerging function f, determines the score of that objed taking into accourt
only the scores of that object. To a certain extent, B1 expresses the am of reducing
merging* functions to merging functions.

B2.Forall kOMand& O E, F(&) < max{ &Ly, ... , &}



B2 can be interpreted as a sort of “capadty constraint”: the summarizing score of an olject
canna be larger than the maximum of the scores the objed receves. The main result in this
sedion asserts that merging* functions stisfying B1 and B2 must be projection functions
and, accordingly, the summarizing profile of scores aways coincides with a fixed column
of scores. If members of N represent individuals and, rence & defines how individua i
ascribes sores to the different objects, the main result states that the summarizing profile
of scores aways coincides with the score profile of agiven individual.

By B1, amerging* function F is decomposed into m merging functions fy. Lemma 3.1 rext
asertsthat, if B2 isassumed in additionto B1, the merging functions stisfy the agreement
property Al from Sedion 2.

Lemma 3.1. If merging* functionF : E - D satisfies B1 and B2 then, for al k 0 M and x
aD, fulX ... ,X) =X

Proof. Choose k 0 M, g O M\{k} andx [0 D. Consider the member & of E such that &, = (X,
woaX), &g=(Cc—X%, ...,c—x)and,foral pOdM\{Kk, q}, &= (0, ... ,0). By B2, Fy(§) <c -
x and, for al p O M\{k, g}, Fy(&) = 0. Therefore, since F1(€) + ... + F(§) = ¢, Fi(§) = x.
But, by B2, F(§) < x and, consequently, Fi(§) = x. Thus, by B1, fy () = x.m

Fori ON,xOD,yOD\Y{x} andG O N: (i) asin Sedion 2,(x, y-) abbreviates the n-tuple
(22, ... Zo) such that, foral j ON, z =xifj=iandz =yifj # i, and (X, y-C) abbreviates
the n-tuple (z, ... ,z,) suchthat, foral j N, z=xifj DGandz =yif j ON\G.

Lemma 3.2 is a result similar to Lemma 2.2 interpreting N as a set of individuals, if
merging* function F satisfies B1 and B2 then there are some objed k [0 M and individual i
O N such that, when al but i associate the lowest score 0 to the objed and i asociates the

seaondlowest score 1, the oll ective score mincideswithi’s sore.

Lemma 3.2. If merging* functionF : E - D satisfies B1 and B2 then there arei 0 N and k
O M such that f (1, 07) = 1.

Proof. Suppase nat: for al i ONandk O M, f(1i, 07) # 1. By B2,

foral i ONandk O M, fi(1i, 0) = 0. (4)
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Chocosei O N. Let & [0 E besuchthat & =& = (11, 07), & = ((c - 2), c) and, for all p O
M\{1, 2, 3}, &, = (O, ... , 0). Given B1, by B2, fy(§p) = O for al p O M\{1, 2, 3}. By (4),
f1(&1) = f2(€,) = 0. Consequently, f3(&3) = c. Let ¢ O E differ from & only in that {4 = (O, ...
0) and ¢, = (21, 0. As f3(&3) = c, it follows from B1 that f3(¢3) = c. By BO, f5({») = 0.
Thus, given (4) and B2, fo(xi, 0-) = 0 for al x J {0, 1, 2}. Now, the am isto show that,

for al x 0 D, fo(x, 0) = 0. (5)

To that end, choose x [0 D\{ 0, 1, 2}and, arguing inductively, suppacse that, for all y [0 {0, 1,
..., X—=1}, fo(yl, 01) = 0. It has to be shown that f5(xi, 0-) = 0. With ¢ O E differing from &
only in that ¢, = ((x — 1)i, 07) and ¢3 = ((c — X)i, c), it follows from B2 that, for al p O
M\{1, 2, 3}, fy(dp) = 0. By (4), f1(¢1) = 0. By the indwction hypathesis, fo(¢o) = 0. As a
result, by BO, f3(¢3) = c. Let n O E differ from ¢ only in that n, = (0, ... 0) and n, = (i,
07). Since f3(¢3) = ¢, by B1, f3(n3) = c. By BO, fo(n2) = 0 and (5) is proved. Taking f,(c,
071) = 0 as the base of anather induction argument, choose G [0 N containing i and assume
that fo(cG, 0-G) = 0. It will be shown that, for all j O N\G, fo(cGtHi}, 0-(GH{i})) = 0. To this
end,letj O N\G and p O E differ from & only in that p; = (¢, 0-6), p, = (0GHHi}, c~(GHiD)
and pz = (d, 07). By B2, for adl p O M\{1, 2, 3},fy(Hp) = 0. By the induction hypothesis,
fi(uy) = 0. By (5) and B1, f3(ug) = 0. By BO, fo(U2) = ¢, which is what has to be proved. In
view of this, there must be k O N\{i} such that f,(ck, 0%) = ¢, contradicting (5).m

Lemma 3.3 extends the result in Lemma 3.2to any score that i could report.

Lemma 3.3. If merging* functionF : E - D satisfies B1 and B2, and therearei 0O N, x
D and k O M such that f(xi, 071) = x then, for al k O M, fi(xi, 07) = x.

Proof. Assume fi(x, 07) = x. Let g 0 M\{k}. To prove that fy(x, 07') = x, choose p O M\{k,
o} andlet & O E be such that & = (x, 07), & = ((c — x)', ¢) and, for all s M\{k, p}, &=
0, ..., 0.ByB2,fy&s) =0, for al s MYk, p}. Sincef(xi, 07) = x, fx(€x) = x and, by BO,
fo(€p) = ¢ — x. Given thisand ¢ 0 E that differs from & only in that {; = (0', 07) and {q = (X,
07), it follows that fy({p) = ¢ —x and, for al s0OM\{p, q}, fs({s) = 0. Thus, fy(x, 07) = x.m

Lemma 3.4 extends the result in Lemma 3.3to all the objeds.

Lemma 3.4. If merging* functionF : E - D satisfies B1 and B2 then
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thereisi O N such that, for all k 0 M and x O D, fi(xi, 07) = x. (6)

Proof. By B2, for al i O Nandk O M, f(0, 07) =0. By Lemma 3.2, there aei O N and k
O M such that fi (11, 07) = 1. Choose x 0 D\{0, 1} and, arguing inductively, suppcse that,
foral yOo{o0, 1, ... ,x— 1}, fi(yi, 07) =y. To prove that fi(xi, 07) = x, choose q O M\{ k}
andp O MYk, q}. Let § O E satisfy: for al sOMYk, p,a}, &= (0, ..., Q; & = (11, 07); &
=((x - 1)}, 07); and &, = ((c — x), ™). By B2, f(&) = 0, for al s O M\{k, p, g}. By the
induction hypothesis, fi(€x) = x — 1. By the induction hypathesis and Lemma 3.3, fy(€p) = 1.
Thus, by BO, f4(§q) = ¢ — x. Given this and { O E that differs from & only in that ¢, = (X,
07) and {, = (0', 07'), it follows that f4({y) = ¢ — x and, for al s 0 M\{q, K}, f{(Cs) = 0. By
BO, fi(xi, 07) = x. Consequently, there aei 0 N and k O M such that, for all x O D, fi(x,
07) =x. Thisand Lemma 3.3imply (6).=

By Lemma 3.5,individual i in (6) can also impaose the null score: for each oject, whenever
i ascribes <ore 0 to that objed, the wlledive scoreisaso 0.

Lemma 3.5. If merging* function F : E - D satisfies B1, B2 and (6) then, for al & O E
andk O M, &, =0impliesfy(&, =0.

Proof. Let i be the member of N from (6). Suppase & O E and k 0 M are such that &i, = 0.
With g O M\{k} and p O M\{k, g}, consider the ¢ O E satisfying: for al s 0 M\{k, p, a}, (s
=(0, ..., 0;{g=(c, 07); {p={lk=0; and,for al j O N\i}, d, = c - & and L = &. By
(6), f4(Cq) = c. By BO, thisimpliesfi(Z,) = 0 andthis, by B1, fi(§x) = O.m

Proposition 3.6. If merging* functionF : E - D satisfies B1 and B2 then F is dictatorial in
the sense that there existsi [ N such that, for all &€ O E, F(§) = &.

Proof. By Lemma 3.4, (6) hdlds. Let & [0 E and k O M. It must be shown that fi(€y) = €.
Choose g O M\{k}, p O MYk, g} andZ O E such that: {x = &; for dl s M\{k, q, p}, {s=
(0, 07); Lq = ((c - &W', 071); ip = 0; and, for al j O NYi}, Up = ¢ - &k By B2, f({g) =0,
for al s 0 MYk, g, p}. By (6), fg(§g) = ¢ — &'k. By Lemma 3.5,f,(&p) = 0. Therefore, by BO,
f(€i) = El.m

Propasition 3.6is a result analogous to Propasition 2.4in that the merging* function is a

projedion function. In the present case, the vedor of colledive scores always coincides
with ore and the same vedor of individual scores. In this resped, if members of N are
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regarded as experts providing their opinion as to how resources must be dl ocated or efforts
distributed, B1 and B2 amourt to dsregarding al but one of the experts.

Remark 3.7. No condtion in the set {BO, B1, B2} is redundant in Propasition 3.6.First,
the nondictatorial F : E —» D such that, for al kDM and & O E, Fi(§) = max{ &L, ... , &N}
satisfies B1 and B2 bu not BO. Second, the non-dictatorial F : E — D such that, for somei
ON, somej O NYi}, some OE with {i # ¢i,and al & O E{{}, F(€) =& and F({) =
satisfies BO and B2 bu not B1. And third, when ¢/m O D, the nondictatorial F: E - D
such that, for al & 0 Eandk O M, Fi(§) = c/msatisfies BO and B1 bu not B2.
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