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Abstract

Many internet auction sites implement ascending-bid, second-price auctions. Empirically, last-

minute or “late” bidding is frequently observed in “hard-close” but not in “soft-close” versions of

these auctions. In this paper, we introduce an independent private-value repeated internet auction

model to explain this observed difference in bidding behavior. We use finite automata to model the

repeated auction strategies. We report results from simulations involving populations of artificial

bidders who update their strategies via a genetic algorithm. We show that our model can deliver

late or early bidding behavior, depending on the auction closing rule in accordance with the empirical

evidence. As an interesting result, we observe that hard-close auctions raise less revenue than soft-

close auctions. We also investigate interesting properties of the evolving strategies and arrive at some

conclusions regarding both auction designs from a market design point of view.
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1 Introduction

Since the advent of the world wide web, an increasing number of goods are being traded using on—line,

“internet auctions”.1 The most popular internet auction sites are those run by eBay, Amazon, and Yahoo!

While these sites implement several different auction formats, the most common and widely used format

is an ascending-bid, second-price format that is a hybrid of the ascending-bid English auction and the

second-price sealed bid auction. However, this hybrid format is strategically different from the sealed-bid

second-price auctions and ascending-bid English auctions.2 Indeed, the advent of the internet auction has

led to a new theoretical and empirical literature devoted to exploring this new auction format.3

There are two popular ascending-bid, second-price formats used by internet auction sites. The first of

these, a “hard-close” auction, closes at the end of a fixed preset time period, typically one or two weeks.

The high bidder wins the object by paying the second highest bid plus some small increment.4 The second

type, a “soft-close” auction, closes at the end of a fixed duration if and only if no bidder submits a “late”

bid within a certain interval of time near the closing time (e.g., last 10 minutes). Otherwise, the auction is

extended for a fixed and known additional period of time (e.g., 10 more minutes), starting from the time

of submission of the last bid.5

An interesting phenomenon, known to participants in hard-close internet auction sites and empirically

documented by Roth and Ockenfels (2002) is that of “last—minute” or “late” bidding, which practitioners

call “sniping.” Specifically, more bids are submitted close to, or just at the end of a hard-close auction

than are submitted near the scheduled end of soft-close auctions. Further, the number of bids per bidder

is higher in hard-close than in soft-close auctions. Ockenfels and Roth (2002) present a model that can

rationalize late bidding as an equilibrium strategy in hard-close auctions under both private-value and

common-value auctions.6 However, late-bidding is just one equilibrium possibility; all bidders bidding

early remains another.

In modelling late-bidding as an equilibrium phenomenon, Ockenfels and Roth rely on the assumption

that there is some probability that bids submitted in the final period of the hard-close auction will fail

to be properly transmitted to the auction software, due either to internet congestion or to human-related

factors such as high monitoring costs. Bidders in hard-close auctions who adopt a mutual, late-biding

1For instance, eBay Inc. reports steady growth in its annual gross merchandise volume — the total value of all successfully

closed listings on eBay’s trading platforms (primarily auction listings) — from $95 million in 1997 to $34.2 billion in 2004.
2See Vickrey (1961) for second-price auctions and English auctions. See Milgrom and Weber (1982) and McAfee and

McMillan (1987) for symmetric auctions.
3See Bajari and Hortaçsu (2004) for a survey of the economics literature on the subject.
4This format was originally implemented by eBay.
5This auction format was originally implemented by Amazon. It has a “going-going-gone...” feature as in English auctions.
6The type of item sold determines whether the auction is a common-value or a private-value auction. Antique coin auctions

are examples of common-value auctions and computer part auctions are examples of private-value auctions. In this paper,

we focus on private-value auctions only.

1



strategy may therefore occasionally win items at low prices. That is, the end-of-auction congestion creates

a potentially large ex-ante surplus for them, and the potential to capture this surplus is what rationalizes

their late bidding strategy.7

In this paper, we develop a simple model of internet auction behavior with the aim of understanding

the evolution of bidding behavior in hard- and soft- close auctions with various numbers of bidders. Our

model involves a single seller offering an item for which bidders have independent, private-values. The

bidders are the only active players. The bidders play their strategies against each other repeatedly in

either hard-close or soft-close multi-period (dynamic) auctions. They have a “selective” message space

concerning the history of previous auctions: specifically, they care only about the timing of rival bids in

the most recently completed auction. Bidder strategies specify the amount and timing of a bidder’s bids

within a dynamic auction and these strategies may or may not condition on the history of rival bids in

the most recently completed auction. While our model of bidding behavior is quite simple, it is flexible

enough to allow early or late bidding as well as history contingent or unconditional bidding behavior.

As there are multiple bidding strategies that can comprise equilibria in repeated auctions (e.g. all bid

early or all bid late as shown by Ockenfels and Roth (2002)), we adopt an agent-based computational

approach, with the aim of finding optimal bidding strategies for a given, repeated-auction environment.

Specifically we analyze the evolution of bidding behavior by n bidders under hard- and soft- close auctions

using a “genetic algorithm” (Holland, 1975), which is a versatile search and optimization tool for large

strategy spaces. Genetic algorithms optimize on the efficient boundary between exploiting strategies that

have worked well in the past and exploring new strategies (Goldberg, 1989). Alternatively, one can think

of a genetic algorithm as a model of social learning (Dawid, 1999) or as a macroeconomy with heterogenous

agents (Arifovic, 2000). In a genetic algorithm, the better strategies (as measured by payoffs) of the current

generation of players are copied and/or modified and then transmitted for use by future generations.

We report the results of several simulation exercises using artificial bidders who use strategies updated

by a genetic algorithm. The format of the strategies and the method by which these strategies evolve is

the same in both the hard- and soft-close auctions. Nevertheless, in all of our simulations we consistently

find that hard-close auctions lead to much more frequent use of late bidding strategies than do soft-close

auctions, even as we vary certain parameters, e.g., the number of bidders is varied from 2 to 5. Further,

7Ockenfels and Roth (2002) also claim that late bidding can be caused by the presence of naive incremental bidders. As

evidence of this, they show evidence of multiple submission of bids by the same bidder. On the other hand, Bajari and

Hortaçsu (2003) explain multiplicity of bids by on-going updating related to the common-value aspect of many items begin

auctioned. Empirically, Hasker, Gonzalez and Sickles (2004) show that the type of late bidding equilibrium introduced by

Ockenfels and Roth (2002) and a type of early bidding equilibrium (a variant of the equilibria introduced by Avery (1998)

for English auctions) are not actually played by bidders. A recent experimental paper by Ariely, Ockenfels and Roth (2005)

confirms that hard-close auctions are prone to late bidding while soft-close auctions are not. In an interesting study, Borle,

Boatwright and Kadane (2005) classifies e-Bay auctions on a scale from private-value to common-values using data that

explains whether there was late and multiple bidding in a given auction. There are other empirical papers which explain

various aspects of internet auctions. An incomplete list includes Lucking-Reiley (1999, 2000), Melnik and Alm (2001).
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we find that sellers are relatively worse off in hard-close auctions than in soft-close auctions in that their

average revenue in hard-close auctions is lower. Not surprisingly, the reverse finding holds for buyers who do

better (receive, on average, a larger surplus) in hard-close auctions than in soft-close auctions. We perform

some sensitivity analysis and show how some of our findings may be dependent on the choice of model

parameters such as those governing the distribution of private valuations or the number of bidders. By way

of an explanation for our findings, we present evidence of a greater variety of bidding strategies in hard-

close versus soft-close auctions; in particular, the use of history contingent bidding strategies is much more

common in hard-close auctions than in soft-close auctions. Finally, we inspect the evolution of adaptive

bidding strategies in the presence of naive incremental bidding agents. The existence of such incremental

bidders is consistent with behavior observed empirically, both in the field and in an experiment by Ariely,

Ockenfels and Roth (2005). The addition of incremental bidders serves only to widen the difference we

observe in the frequency of late bidding behavior between hard-close (where it remains high) and soft-close

auctions (where it is infrequent) relative to the difference we found in simulations without these incremental

bidders. We conclude that agent-based computational economics can be used as a tool for market designers

interested in predicting outcomes under various auction formats.

2 Internet Auction Rules

In this section, we explain the general rules of the hard- and soft-close internet auction that we formally

introduce in the next section as an auction model. We start with hard-close auctions. A hard-close auction

is a dynamic auction. Each seller can post a single item for sale for a certain fixed amount of time on the

internet auction website. Prior to the end of the auction (the hard-close), any bidder can submit a bid at

any time. At any moment during the auction, the “current bid” or price of the object for sale is defined

to be the second highest bid submitted thus far (if any) plus a small increment. Setting a reserve price is

also an option. Any new bid lower than the current bid is considered an invalid bid.

A valid internet auction bid of some amount b in excess of the “current bid” or price is called a “proxy

bid”. It is more properly viewed as a proxy biding rule that automatically increments the high bidders’s

bid as new bids come in to challenge that bid (plus a small increment), enabling a high bidder to retain his

high bid position, so long as the new bid amount necessary for the high bidder to retain high bid status

does not exceed the maximum amount bid, b (and the owner of the old high bid is a different bidder than

the owner of b). Otherwise, a bidder who has bid b is outbid and a new high bidder takes his place (with

the same proxy bidding rule working for that bidder). When the predetermined time of the auction runs

out, the current high bidder wins the auction at the current bid price.

The rules of soft-close auctions are similar, but with one important difference. Every valid proxy bid

submitted within t minutes of the scheduled end of the auction causes that auction to be extended t more

minutes starting from this last bid. The auction is concluded t minutes after the last valid proxy bid
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is submitted. If a new valid proxy bid is is submitted during this time, the auction is extended t more

minutes, and so on. When the auction is finally concluded, the high bidder wins the object at the current

bid price.

In the next section, we will extensively discuss the formal model we use and how it relates to the

real-time implementation of bids in these auctions.

3 The Internet Auction Model

In order to tractably analyze bidding behavior in internet auctions consistent with the description given

above, we consider a highly simplified model of an internet auction but one that captures all of the essential

features of these auctions. In particular, suppose the internet auction involves a single seller, who is offering

an indivisible object without any reserve price. Let N = {1, 2, ..., n} be the set of bidders, each of whom

is risk neutral in money. We will sometimes refer to the bidders as “agents,” or “strategies,” since in

our analysis bidders are the only active players. Each agent has a valuation for the object; this valuation

serves as the agent’s “type”. Each agent’s valuation is an independently and identically distributed draw

from a discrete probability density function g, that is the same for all agents. Agents’ valuations are all

drawn at the beginning of each internet auction and remain fixed for the duration of that auction. Each

bidder knows his own type and the probability density function g used to determine other agents’ types.

The density g is the discrete uniform density, which has nV equally distant mass points in the interval

[m− ε

2
,m+ ε

2
], where m, ε ∈ R++ are such that m >

ε

2
. Specifically:

g(v) =

{
1

nV

if v = m−
ε

2
+

kε

nV−1
for some k ∈ {0,1, ..., nV − 1},

0 otherwise.

The internet auction is a “standard auction” in which the high bidder wins the object by paying a fee

to the seller. No other bidder pays a fee to the seller and the seller subsidizes no bidders.

We model the internet auction as a dynamic Bayesian game in which there are T consecutive bidding

periods, indexed by t = 1, 2, ..., T . The discrete choice for bidding periods is necessary for our agent-based

model and is also consistent with the design of complementary experimental studies (discussed later in

the paper). In each period t, each bidder can submit “at most” one bid over the internet to a software

program. A bid submitted in one of the first T − 1 bidding periods is always registered by the software

program correctly. However, a bid that is submitted in the final period T is correctly registered by the

software program with some fixed probability ρ ≤ 1. The latter assumption captures congestion effects or

bidder timing mistakes in the scheduled end period of an auction.

The dynamic internet auction rules are as follows. When there are no bids submitted, the smallest

admissible bid is equal to some fixed and known increment ∆ > 0. When the first admissible bid not

smaller than ∆ arrives, the second bid is set to ∆. The owner of this first admissible bid becomes the “high

bidder.”
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Consider any bidding period. Let bid b∗ be the current high bid, bid b2 be the current second bid, and

bidder i
∗ be the current high bidder. Bidders only observe the second bid b2 and the identity of the high

bidder i
∗. All bidders simultaneously submit their bids in this bidding period. However, the arrival order

of these bids to the computer program (internet website) is not simultaneous. The arrival order of bids

is determined by a randomly drawn permutation of all n bidders. Each permutation is equally likely to

occur.

Suppose bid b is the first correctly registered bid in period t and bidder i be the owner of bid b. Three

cases are possible:

1. b > b
∗: In this case, we compare the identities of bidder i and the high bidder i

∗. There are two

possibilities:

(a) Bidder i is different from bidder i
∗. In this case,

i. bid b becomes the new high bid,

ii. bid b
∗ becomes the new second bid, and

iii. bidder i becomes the new high bidder.

(b) Bidder i is the same agent as bidder i
∗

. In this case, bid b becomes the new high bid. The

second bid and the identity of the high bidder do not change.

2. b
∗ ≥ b ≥ b2 + ∆ : Bid b becomes the new second bid. The high bid and the identity of the high

bidder do not change.

3. b2+∆ > b : The high bid, the second bid, and the identity of the high bidder do not change. In this

case, bid b is regarded as an invalid bid; it does not get counted in statistics reporting on submitted

bids.

Here cases 1 and 2 reflect the proxy feature of the submitted bids. In case (1a), an implicit bidding war

among proxy bids b and b
∗ determines the new high bidder as the owner of b at the price b

∗ +∆. In case

(1b), the new bid b only reflects an update of the high bidder regarding his older bid without affecting the

second bid (current “price”). In case (2), the proxy-bid b∗ responds to the proxy-bid b by posting a new

bid that is incrementally higher than b.

After bid b, the second arriving bid is processed in a similar fashion using the updated information

concerning the high bid, the second bid, and the high bidder. Other bids are processed in a similar manner.

We consider two ending procedures for the internet auction. In a “hard-close auction,” the auction

closes after the last bid of period T is processed. The high bidder at the end of period T wins the object

by paying the “price.” The price is equal to the second bid plus increment ∆ if that is not greater than

the high bid. Otherwise, the price is equal to the high bid.
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In a “soft-close auction,” the auction closes after period T if and only if a valid bid does not register

in period T . Otherwise, the auction is extended one more period where the agents simultaneously submit

their bids. The auction closes if and only if a valid bid does not register in the extension period. Otherwise,

the auction is extended one more period. After one of the extension periods, the auction ends if and only

if no new valid bid registers. The rules for bid registration in any extension period t > T are the same as

for period T. Hence, a submitted bid may fail to register with probability 1 − ρ. The high bidder at the

end of the soft-close auction wins the object by paying the current bid price. Note that, by design, a finite

end is guaranteed to the soft-close auction by the finite number of agent types; one agent will have the

highest valuation, and bidding cannot exceed this value.

An internet auction strategy σi for bidder i is a list of bids at each period t ∈ {1, 2, ....} for every type

of bidder i and for every possible history of: (i) bidder i’s bids in periods 1, ..., t − 1,, (ii) the identity of

the high bidders in every period 1, ..., t− 1, and (iii) the second bids in every period 1, ..., t− 1.

3.1 Repeated Auctions and Modelling Repeated Game Strategies

Each agent plays a block of R consecutive dynamic, internet auctions. Each auction in a block is also

referred to as a “round” or “stage game”. The type (valuation) of each agent is redetermined via another

draw from g at the beginning of each round. The utility of agent i is the discounted summation of stage

game utilities. Let δ ∈ (0,1] be the discount factor. After each auction, bidders can observe the “bid

history” of the previous auction. A bid history is a list which shows the bids of each agent at each period

of the auction. Let r ∈ {1, 2, ..., R} index rounds of the repeated auctions. A “history” hr is defined as

a list of bid histories in rounds 1, ..., r − 1. History h1 is the empty set. A repeated game strategy si of

bidder i is a list of stage game strategies σi |hr′ for each possible history h
r
′ for each round r

′ ∈ {1,2, 3, ...}.

This strategy representation is obviously quite complicated. For modelling purposes, it will therefore

be useful to limit the space of admissible strategies. We make three main assumptions on the admissible

strategy space:

1. A stage game strategy for agent i depends only on the previous bids of agent i and his type. Further,

we permit just four possible bids for each bidder in a bidding period. The bid of bidder i with type

vi in any period t can be either: vi,
2

3
vi,

1

3
vi or 0. Bidding 0 means that bidder i does not submit a

bid in that period.8

2. In extension periods of a soft-close auction t > T , we permit just two possible bids: vi or 0. Further,

bidder i’s bid is restricted to be the same in every extension period.

8We do not allow bids greater than the bidder’s private value simply because bidding above one’s private value is always

dominated by a bid equal to the private value. The argument for this result is the same as Vickrey’s (1961) argument for

second price auctions with independent private values.
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3. In the repeated auction game, history h
r
is “subjective” and “selective” for each bidder. Specifically,

each bidder i’s history, hi

r
is characterized by the timing of the last round (r − 1) bids of his rivals,

and only two possible histories are permitted. History h
i

r
=late denotes the state where, in round

r − 1, a rival bid arrived in period t ≥ T . History h
i

r
=early denotes the state were, in round r − 1,

no rival bid arrived in any period t ≥ T .

This simplified model captures the essential features and rules of internet auctions, but some of our

simplifications have important consequences. Assumption (1), for instance, eliminates incremental bidding

in response to rival bids by other bidders. While seemingly restrictive, this assumption nevertheless leads to

different bidding behavior in hard and soft-close auctions consistent with the empirical evidence. However,

as such incremental bidding is thought to play a role in bidding behavior, later in the paper we will

exogenously introduce (pre-programmed) naive incremental bidders who submit only incrementally higher

bids and we will investigate the evolution of adaptive bidding strategies in the presence of these naive

bidders. Assumption (2) is just a simplification that eliminates cumbersome bidding strategies in the

extension periods.9 Assumption (3) eliminates the price dimension from the history of previous auctions

and focuses on the timing issues that are the focus of our analysis. An analysis of more complicated internet

bidding strategies that relax some or all of these assumptions may lead to greater insights than can be

provided using our model. Nevertheless, as we show below, our model suffices to generate differences in

bidding behavior between the two auction formats that is consistent with the empirical evidence.

In the next subsection, we illustrate the admissible strategies in great detail.

3.2 Finite Automata as Repeated Game Strategies

The repeated auction strategy of each bidder i, si, is approximated by a “finite automata” representation

(Moore, 1956).10 An “automaton” is a string of integers that describe a stage game strategy and the next

move of the bidder for each history of the game.

In our implementation, there are just two histories, “early” and “late,” upon which bidders can condition

their bidding strategy. To allow for history-contingent, “repeated game” strategies, we therefore allow two

automata for each strategy, one for each possible history.11 Each automaton consists of two parts: (i)

the “stage game” (internet auction) strategy and (ii) two indexes. These two indexes determine which
9This assumption is not unrealistic as our simulations reveal that in both the hard- and soft-close formats, nearly all

bidders learn to bid their full private values.
10Finite automata are frequently used in representing repeated game strategies theoretically, computationally and exper-

imentally. See Abreu and Rubinstein (1988) for the theory of Nash equilibria with finite automata in repeated games. See

Miller (1996) for an application with genetic algorithms in repeated prisonners’ dilemma. See Engle-Warnick and Slonim

(2005) for an application to inference of human strategies from experimental data.
11This is the minimal number of automata necessary for implementation of repeated game strategies. Nevertheless, we

believe that our implementation is sufficiently general to characterize a wide range of possible bidding strategies in repeated

internet auctions.
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automaton will be used after the current stage game strategy in each possible history. A representation of

the two auotomata that comprise the strategy of bidder i, si, is given below.

s
i
=

⎛
⎜⎜⎝

1st automaton︷ ︸︸ ︷
σi

1︸︷︷︸
1st stage-auction strategy

,

[
Li

1
, Ei

1︸ ︷︷ ︸
]

index of next automaton

;

2nd automaton︷ ︸︸ ︷
σi

2︸︷︷︸
2nd stage-auction strategy

,

[
Li

2
, Ei

2︸ ︷︷ ︸
]

index of next automaton

⎞
⎟⎟⎠

Consider automaton j ∈ {1, 2} A stage game strategy σi

j is a list of 3 integers for a hard-close auction

or 4 integers for a soft-close auction. (The particular ending-rule of the auction is assumed to be known in

advance). The automaton σ
i
j that is part of bidder i’s strategy in a hard-close auction is illustrated below:

Stage game strategy of a hard-close auction:

σ
i
j =

⎛
⎜⎜⎝

period numbers
︷ ︸︸ ︷

σ
i

j1
︸︷︷︸

when to bid vi

, σ
i
j2

︸︷︷︸

when to bid 2

3
vi

, σ
i
j3

︸︷︷︸

when to bid
1

3
vi

⎞
⎟⎟⎠

Integer σi

jk for every k ∈ {1, 2,3} is a period number, that is σi
jk ∈ {0, 1, 2, ..., T}. The first number in the

string, σi
j1, is the period when bidder i will bid his entire value. The second number, σi

j2, is the period

when bidder i will bid two thirds of his value. The third number, σi
j3, is the period when bidder i will bid

one third of his value. Period 0 means that bidder i will not bid that particular fraction in any period of

the auction. Period 1 means the bidder will bid that particular fraction in period 1, etc.12

The automaton σ
i

j that is part of bidder i’s strategy in a soft-close auction is illustrated below:

Stage game strategy of a soft-close auction:

σ
i
j =

⎛
⎜⎜⎝

period numbers︷ ︸︸ ︷
σ

i

j1︸︷︷︸
when to bid vi

, σ
i
j2︸︷︷︸

when to bid 2

3
vi

, σ
i
j3

︸︷︷︸

when to bid
1

3
vi

, σ
i

j4︸︷︷︸
whether to bid vi in an extension period

⎞
⎟⎟⎠

Integer σi

jk for every k ∈ {1,2, 3} is a period number, that is σi

jk ∈ {0, 1, 2, ..., T}. The first three integers

have identical roles to their roles in a hard-close stage auction strategy. The fourth integer, σi
j4, is binary,

i.e., it lies in {0, 1}. When σi
j4 = 1, bidder i will bid his entire value in every extension period. When

σi
j4 = 0, bidder i will not bid anything in any extension period.

12If a bidder’s strategy calls for bidding a larger value, e.g., the full value vi, in some period t and a smaller value (e.g.,

1/3(vi)) in some later period, t + k, the smaller, later bid is not submitted. Even if we did not restrict the possibility of

declining bids by the same bidder, the bid improvement rule of the internet auction insures that any bid smaller than the

current bid plus some increment never registers as a valid bid. Hence our restriction simply amounts to reducing the number

of invalid bids submitted.
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The next two integers, Li

j and Ei
j in either the hard— or soft-close automaton are indexes in {1, 2}, as

illustrated below: ⎡
⎢⎣

index of the next stage-auction strategy︷ ︸︸ ︷
Li

j︸︷︷︸
when state is late

, Ei
j︸︷︷︸

when state is early

⎤
⎥⎦

These indicate which automaton will be selected for the next auction (stage game). When the subjective

history is late, automaton Li
j will be selected next. In this case, bidder i will play stage game strategy

σi

Li

j

. When the subjective history is early, bidder i will select automaton E i
j and play stage game strategy

σi

Ei
j

. In the very first round of the repeated internet auction, we assume that bidder i always selects the

first automaton in his strategy si. Following the first round, the transitions between the two automata are

dictated by the subjective history and transition index values of the automata.

To help clarify the finite automata representation of bidder strategies, we give an example below:

Example 1: Let T = 8. Consider the following soft-close auction strategy for bidder i, si:

si = ((0,2,3,1) , [1, 2] ; (8,4,5,0) , [2, 1])

Let vi be bidder i’s value. The first stage game strategy tells bidder i to bid 2

3
vi in period 2 (as indicated

by 2 in the 2nd digit) and vi in every extension period (as indicated by the 1 in the 4th digit). Notice

that the strategy also tells the bidder to bid 1

3
vi in period 3 (the 3 in the 3rd digit). However, this part of

the strategy is superseded by the part stipulating a bid of 2

3
vi in period 2, and so we can ignore the lower

bid stipulated for period 3. If a rival submits a bid in period 8 or in an extension period then the history

is late; in that case, the first stage game strategy call for bidder i to repeat use of this first stage game

strategy in the next auction (as indicated by the 1 in the 5th digit). Otherwise, if no rival submits a bid

in period 8 or an extension period, the history is early, and the second stage game strategy is used in the

next auction (as indicated by the 2 in the 6th digit).

The second stage game strategy, which starts at the 7th digit, tells bidder i to bid 2

3
vi in period 4

(as indicated by the 8th digit) and to bid vi in period 8 (as indicated by the 7th digit). If the auction is

extended, no bid will be submitted (as indicated by the 10th digit). If a rival bid arrives in or later than

period 8, then the history is “late” and this same strategy will be played again (as indicated by by the 11th

digit), otherwise the history is “early” and the first stage game strategy will be played next (as indicated

by the 12th digit).

The example strategy presented above can also be characterized using an alternative finite-state repre-

sentation known as a Moore machine, as illustrated below:
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In the next section, we provide some theoretical analysis of the internet auction game.

4 Theoretical Analysis

Before proceeding to a simulation analysis of bidding behavior in the internet auction it will be useful to

establish a theoretical result regarding the timing of bidding behavior in a single play of the internet auction.

In particular, we can show that, regardless of whether the internet auction has a hard- or soft- close, it

is a weakly dominant strategy for bidders to bid their full valuation (fraction 1 in our implementation) in

one of the first T − 1 periods of the dynamic auction (single-stage game) when the bidding increment is

zero. For simplicity, we consider the case with just 2 bidders, though the proof is readily extended to the

more general case with more than 2 bidders.

Theorem: Regardless of the ending rule of the internet auction, any strategy that involves bidding fraction

1 (the bidder’s full valuation) before period T weakly ex-post (and strictly ex-ante) dominates any other

strategy that does not involve bidding fraction 1 early (in one of the first T − 1 periods) in an internet

auction with 2 bidders and with increment ∆ = 0.13

The dominance of early bidding of valuations by two bidders in a single play of the internet auction

game is analogous to the dominance of the “defect” strategy in a single play of a two-person prisoner’s

dilemma game. We know that infinitely repeated prisoner dilemma games admit many more equilibria than

the “always defect” equilibrium of the non-repeated game, and the same is true of the repeated internet

auction game. In particular, in the hard-close format, if there is only some probability ρ < 1 that a bid

registers in the final period, there can be gains to a strategy of late bidding in repeated internet auction

13See Appendix A for the proof.
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games; delaying bids until the end of the auction serves to dampen the final price and raise the expected

surplus of bidders adhering to such a collusive strategy. Of course, it is not obvious which repeated game

strategy will be selected in practice, and hence we turn to a simulation analysis. In the next section, we

explain how we analyze strategic bidding in a repeated internet auction.

5 Simulations with Artificial Adaptive Agents

5.1 Some motivation

We adopt an adaptive approach in our analysis. Since adaptation requires repetition, we allow our artificial

adaptive agents to gain experience by playing a repeated-game version of the dynamic internet auction.

These artificial agents initially use randomly generated strategies. They adaptively learn to experiment and

make use of better strategies over time in a trial-and-error learning process. Specifically, we use a model of

adaptation known as “genetic algorithm.” The genetic algorithm is a population-based, stochastic directed

search algorithm based on principles of natural selection and genetics. These algorithms have powerful

search capabilities and have been shown to optimize on the trade-off between exploring new strategies

and exploiting strategies that have performed well in the past. (Holland, 1975). Economic applications

of genetic algorithms are discussed and surveyed in Dawid (1999) and Arifovic (2000). The economic

application most closely related to this one is Andreoni and Miller’s (1995) use of genetic algorithms to

find bidding strategies in a variety of different auction formats. Andreoni and Miller did not consider

dynamic auctions with the bidding rules of internet auctions as such auction formats were only invented

after their paper was published. Still, our approach has much of the flavor of their study: the optimal

bidding strategies in repeated auction formats are difficult to characterize analytically and so a numerical

search is a reasonable and promising alternative. That is, an algorithm that has been shown to find

optimal solutions in highly complex environments –the genetic algorithm– would seem to be an excellent

candidate for characterizing bidding strategies in repeated dynamic internet auctions.

5.2 Algorithmic details

We suppose there is a population of strategies (finite automata) of the type described above. The size of

this population is fixed at N . The automata in this population are initially generated randomly subject

to constraints on integer values, e.g. digits indicating the periods in which various amounts are bid must

lie between 0 and T , the number of periods in an auction. Over time, this population of N strategies

evolves via the genetic operations of the genetic algorithm as described below. This evolution step occurs

only after the N strategies of the population have gained experience playing repeated internet auctions.

Specifically, the genetic operators of the genetic algorithm are called on after a fixed number of blocks (a

“tournament”) has been played.
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Each block proceeds as follows. First, a set of n finite automata (bidders) are randomly chosen from the

N-member population of finite automata. Our simulations were conducted separately for groups of n =

2, 3,4 or 5 bidders. Second, these n bidders play against one another for R consecutive dynamic, internet

auctions, each lasting T periods or possibly longer in the case of soft-close auctions. Our simulations

are conducted separately for hard- and soft-close auction formats. At the start of each dynamic auction,

each strategy draws a random valuation from the pdf g, and plays its strategy against the other n bidders

(strategies). The bidder’s (strategy’s) payoff from an auction is the difference between the bidder’s valuation

and the price paid for the item, if the bidder (strategy) won the auction; otherwise the payoff is zero. At

the end of these R auctions, each strategy is assigned a fitness score. The fitness of each strategy is its

average payoff from all R auctions played in the block. Further blocks of auctions are then played in the

same manner, always by first drawing n strategies at random and then having these same strategies play

one another in R internet auctions.

After a fixed number of blocks has been played (300 in our simulations), average fitness levels are

calculated for each strategy, taking into account the number of blocks that strategy participated in and

using the average payoff that strategy earned in each block. These fitness scores are used to select strategies

for reproduction in the next population, or “generation” of N strategies. These reproduced strategies may

also undergo some recombination and mutations before becoming the strategies that make up the next

generation of strategies as described below. Generation G+ 1 is called the “offspring” of generation G for

every G ≥ 1.

The genetic algorithm has three basic operators that are used to update the strategies in the population

of N strategies.

1. Selection: Some number M < N of the best strategies of the current generation, as determined by

fitness levels, are reproduced (copied intact), to be included among the set of N “offspring” strategies

that comprise the next generation of N strategies. The remaining N −M next generation, offspring

strategies are obtained using the crossover operation described next.

2. Crossover: Parts of the better strategies of the current generation are recombined to form the re-

maining members of the next generation of strategies. There are various crossover operators used in

the literature. We adopt the “linear crossover” operator, described in the following steps.

(a) Two parent strategies are selected randomly in proportion to their relative fitness. These two

parent strategies are strings of real integers of length L; L = 12 in a soft-close auction strategy,

and L = 10 in a hard-close auction strategy.

(b) An arbitrary crossover point � ∈ {1, ..., L − 1} is randomly determined for this pair of parent

strategies.

(c) The first � < L integers of the first parent strategy and the last L − � integers of the second

parent strategy are combined to form the first new offspring strategy. Similarly, the first � < L
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integers of the second parent strategy and the last L− � integers of the first parent strategy are

combined to form the second new offspring strategy.

(d) The crossover operation is repeated until there are N new offspring strategies for the next

generation, the M strategies obtained via selection and the N − M strategies obtained via

crossover or recombination.

3. Mutation: The mutation operation applies to all of the N offspring strategies created via selection

and crossover. Specifically, each integer of each offspring strategy is randomly changed to another

admissible integer value with a small fixed probability.

We apply these operations repeatedly to each generation following the end of each tournament, using

average fitness levels over all auctions played so as to create the next generation of strategies. We run each

simulation for a number of generations. Further, we run a number of simulations for the same treatment

(number of bidders n; hard- or soft- close auction format) with different random seed values to obtain

Monte Carlo estimates of different statistics. A pseudo-code description of our algorithm, including our

specific parametric choices, is given below:

For i = 1 to 20 (the total number of simulations)

1. Randomly generate N = 30 (size of a generation) strategies for the initial strategy pool.

2. For G = 1 to 4000 (total number of generations)

(a) Conduct a tournament consisting of 300 repeated game blocks (internet auctions).

i. For each of these repeated game blocks, randomly match n bidders (strategies) from the

strategy pool consisting of N = 30 strategies.

(b) The fitness of each strategy is the average of the payoffs that strategy earns in all the auctions

it is selected to participate in during the tournament.

(c) For k = 1 to 6, select the highest fitness strategy not selected yet as an offspring to be included

in the next generation of strategies.

(d) For k = 7 to 30, cross strategies over to generate additional new offspring.

i. Choose two “parent” strategies using a “biased-random-wheel” selection: The “propensity”

of a strategy is defined as the fitness of that strategy minus three fourths of the smallest

fitness in the generation. The probability of choosing a strategy as a parent is its propensity

over the sum of the propensities of all strategies in the generation.

ii. Cross the two parents over linearly to generate two offspring strategies.
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(e) Mutate each digit in the offspring strategies with probability 0.01.

i. Use a non-uniform unimodal probability distribution for mutation around the value of the

digit.

(f) Form the new strategy pool using the offspring strategies.

As noted above, we conduct benchmark simulations with either n = 2, 3, 4 and 5 bidders, and under

either a hard– or soft–close format.14 In these simulations, we set the expected value of the probability

density function g used to draw valuations, at m = 106, and the spread of the support interval, ε = 40.

We choose the number of mass points in the interval [106 − 20, 106 + 20] as nV = 6.15 In the sensitivity

analysis reported on in Appendix B, we consider other mean values. We set the number of bidding periods

in a stage auction at T = 8. We consider R = 20 repeated auctions in each of the 300 tournament blocks

run among the strategies of a single generation. We set the discount factor δ = 1. We set ρ = 0.9 as the

probability of bid registration in each period t ≥ 8. Finally, we set the bid increment, ∆ = 1. We also

conduct supporting simulations with different model parameters. In these sensitivity analyses, described

in Appendix B, we change one parameter at a time, and then compare new Monte Carlo estimates with

the original ones.

In the next subsection, we introduce a method for classifying strategies that aids in our presentation

of the simulation findings. We use this method to give summary statistics on the evolving strategies.

5.3 Classification of strategies

We introduce a simple, strategy classification method for use in interpreting the evolving strategies in our

simulation exercises. Each category in this classification is called a “phenotype.”16 The phenotype of a

repeated game strategy (or bidder) is determined according to the following two criteria: (i) the period in

which the bidder makes his final bid (any fraction of his valuation) for each strategy and (ii) the strategy

he plays following each history. For the first criterion, we only take into account bidding in the normal

duration of the game, i.e. within the first T periods. A stage game strategy is of type “E” if the bidder

completes his bidding in one of the first T - 1 periods, and is of type “L” otherwise, i.e., the strategy

calls for a bid (of any fraction) to be placed in period T . (The classification of “Early” or “Late” ignores

strategic behavior in extension periods of soft-close auctions). The phenotype of a repeated game strategy

is a characterization of the bidding behavior of each strategy (automata) and its transition indexes between

strategies.

14The genetic algorithm parameters were chosen in accordance with parameters suggested by computer scientists who use

genetic algorithms for complex numerical search tasks (e.g., see Goldberg, 1989).
15The mean value m = 10

6 is a pedagogical value only; it could represent any number of units of money, e.g., cents.
16This term is inspired by a similar term for classifying genes in biological evolution.
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We can perhaps best describe the idea of a phenotype via some examples. Phenotype “E 2 1 L 1 1”

characterizes a strategy where, in the initial, first strategy (automaton) the bidder’s final bid (any fraction

of his value) is made early, in some period before period T ; hence the “E” in the first position. His second

strategy (automaton) involves placing a bid (of any fraction) in the final period Tand is therefore labeled

as “L” in position 4. Positions 2–3 and 5–6 in the phenotype indicate strategy transition behavior

conditional on whether the realized history by the bidders’ rival bidders was late or early (as in the

characterization of strategies). If all rival bids also arrive early, so that the history is E, the integer 1

in position 3 of this phenotype indicates a return to the first strategy of early bidding. If any rival bid

arrives late so that the history is L, the integer 2 in position 2 indicates that this bidder will move to the

late bidding strategy 2 for one auction and will then always switch back to the early bidding strategy 1,

regardless of the history of play in the auction where he uses the late bidding strategy; hence the integers 1

in positions 5 and 6. Phenotype “E 2 1 L 2 1” characterizes a strategy where the bidder initially bids early

and later imitates the timing of his rivals’ final bids in the first T periods. This phenotype characterizes

“tit-for-tat” strategies. Phenotype “L 1 2 E 1 2” characterizes strategies where bidding is initially late

but moves to imitation of the timing of rivals’ final bids. This is another kind of tit-for-tat strategy.

We note that there are just 22 such phenotypes that are possible. This number is less than 26 because

certain unconditional strategies reduce the set of phenotypes necessary to characterize strategies. For

instance, phenotype “E 1 1 L 2 1” is more compactly characterized simply as “E” denoting unconditional

early bidding; the strategy starts off bidding early (strategy 1) and never moves away from this strategy

(it ignores the history of rival bids). Similarly, phenotype “L” denotes unconditional late bidding. The

classification of strategies into phenotypes is illustrated in the following examples.

Example 2: The phenotype of the soft-close strategy in Example 1,

((0,2,3,1), [1, 2]; (8,4,5,0), [2, 1])

is “E 1 2 L 2 1.”

Example 3: The following strategies have phenotype “L” (unconditional late bidding):

hard-close auction strategy ((8,6,1), [1, 1]; (2,4,5), [1, 2])

soft-close auction strategy ((0,8,2,0), [2, 1]; (8,1,2,0), [1, 1])

hard-close auction strategy ((8,1,5), [1, 2]; (8,0,0), [2, 1])

Example 4: The following strategies have phenotype “E” (unconditional early bidding):

soft-close auction strategy ((0,7,1,1), [1, 1]; (8,4,5,1), [1, 2])

hard-close auction strategy ((0,4,2), [2, 1]; (5,8,2), [1, 2])

soft-close auction strategy ((7,6,5,1), [2, 2]; (5,8,7,0), [1, 1])
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Example 5: The following strategy is a grim-trigger strategy in a hard-close auction with phenotype “L

1 2 E 2 2”:

((8,6,1), [1, 2]; (2,8,0), [2, 2])

Example 6: The following is a tit-for-tat strategy in a soft-close auction with phenotype

“L 1 2 E 1 2”:

((0,8,4,1), [1, 2]; (2,8,5,0), [1, 2])

In the next section, we use this phenotype classification scheme to characterize the main findings from our

benchmark simulations.

6 Results

In this section and the next we summarize the main findings from our simulation exercises as a number of

different results.

Result 1: The percentage of bidders submitting late bids (bids in period T ) is significantly greater in

hard-close auctions than in soft-close auctions.

Support for Result 1 is found in Table 1, where we observe that the fraction of bidders submitting

a late bid is always greater in hard-close auctions than in soft-close auctions with the same number of

bidders, n=2,3,4, or 5.17 For example, in hard-close auctions with just 2 bidders, 62.3 percent of bidders

are late bidders, while in soft-close auctions with 2 bidders only 2 percent of bidders are late bidders.18,19

Similar differences in the frequency of late bidding are observed in comparisons of hard- and soft-close

auctions involving 3, 4 and 5 bidders.20 Figure 1a shows the frequency of bidders submitting late bids over

time in hard-close auctions and Figure 1b shows the comparable frequency of late bidding over time in the

soft-close auctions.

17For the frequency of bidders attempting a late bid, we could divide these percentages roughly by ρ = 0.9, the probability

of registering a successful bid in period T .
18These percentages and the ones reported later in the paper are obtained by taking averages over the last 100 generations

of all 20 simulations run for each treatment.
19Recall that we consider late bids only in the “first late” period, i.e., period T of soft-close auctions.
20The reported differences in Table 1 (and further differences in bidding behavior reported below) between the two auction

formats are always significant at the 5 percent level using a two-sample t-test with 38 degrees of freedom. In these tests, we

use the average frequencies from each of the 20 simulation runs of the hard- and soft-close auction formats as independent

observations.
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HARD-CLOSE Number of Bidders

Statistics n=2 n=3 n=4 n=5

Number of early bids per bidder 1.910 (0.0252) 1.907 (0.0296) 2.089 (0.0524) 1.889 (0.0435)

Fraction submitting late bid 0.623 (0.0182) 0.461 (0.0387) 0.326 (0.0392) 0.123 (0.0254)

Revenue of the seller / mean value 0.954 (0.00140) 0.995 (0.000493) 0.9995 (0.0000983) 0.99998 (0.000007)

Payoff of bidders / mean value 0.0229 (0.00699) 0.00174 (0.000164) 0.000130 (0.0000248) 0.000005 (0.000001)

Freq. of early bidding automata 0.0893 (0.0113) 0.429 (0.0525) 0.557 (0.0682) 0.716 (0.0871)

Freq. of late bidding automata 0.0270 (0.0042) 0.157 (0.0194) 0.104 (0.0145) 0.103 (0.0134)

Freq. of cond. bidding automata 0.884 (0.1074) 0.414 (0.0508) 0.339 (0.0417) 0.182 (0.0224)

SOFT-CLOSE Number of Bidders

Statistics n=2 n=3 n=4 n=5

Number of early bids per bidder 1.66198 (0.0344) 1.842 (0.0481) 1.819 (0.0400) 1.711 (0.0440)

Fraction submitting a late bid 0.01991 (0.0084) 0.140 (0.0290) 0.0438 (0.0144) 0.0355 (0.0113)

Revenue of the seller / mean value 0.995 (0.00215) 0.999 (0.000175) 0.99998 (0.0000131) 1.000001 (0.000003)

Payoff of bidders / mean value 0.00226 (0.00108) 0.00256 (0.0000585) 0.000007 (0.000003) 0.000002 (0.0000007)

Freq. of early bidding automata 0.972 (0.1181) 0.8054 (0.0979) 0.887 (0.108) 0.868 (0.106)

Freq. of late bidding automata 0.00857 (0.0019) 0.0164 (0.0028) 0.0234 (0.0034) 0.0254 (0.0035)

Freq. of cond. bidding automata 0.0194 (0.0031) 0.178 (0.0219) 0.0894 (0.0115) 0.106 (0.0131)

Table 1: Benchmark Simulation Results (Averages and Standard Deviation of Averages over the Last 100

Generations)
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Figure 1: The average percentage of bidders successfully submitting a late bid in hard-close and soft-close

auctions with 2,3,4 and 5 bidders.
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Figure 2: The average number of valid early bids per bidder in hard-close and soft-close auctions for

n=2,3,4, and 5 bidders.

Result 2: The frequency of late-bidding decreases as the number of bidders increases in hard-close auc-

tions. However, late bidding remains more prominent in hard-close auctions than in soft-close auctions

with the same number of bidders.

Support for this finding is found in Figure 1a and in Table 1. Note that in all cases, the number of bids

per bidder is significantly larger than one. Multiple bidding is prominent in all auctions. The evolution of

early bids per bidders are given in Figure 2.

Result 3: The average revenue of sellers is significantly higher in soft-close auctions than in hard-close

auctions for each number of bidders, and the average revenue of bidders is significantly lower in soft-close

auctions as compared with hard-close auctions for each number of bidders.

Support for this finding is again found in Table 1. Results 1-3 suggest that the evolving strategies in

the hard-close auctions should be different from the ones in other hard-close auctions.

We next consider whether there are differences in the amounts that bidders are bidding in hard- and

soft-close auctions.

Result 4: Bidders always learn to bid their full value as their final bid in both soft-close and hard-close

auctions for all numbers of bidders, i.e., bid—shaving is not observed. More precisely, the percentage of
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evolving automata that bid full value by period T is very close to 100 percent; it is never exactly 100

percent due to ongoing mutation.

Result 4 suggests that bidders are behaving rationally regardless of the auction closing rule in the sense

that they bid their full valuation by the last period of the auction, consistent with theoretical predictions

for second-price auction formats.

We now explore whether there are differences in the frequencies of phenotypes observed in hard and

soft-close auctions. Table 1 reports some cumulative, aggregate frequencies with which early, late and

conditional bidding automata are observed across hard or soft-close auctions with n = 2, 3 4 or 5 bidders.21

Table 2 provides some further disaggregation — specifically the average frequencies of various “phenotypes”

that exceed a small threshold, 1

30
(i.e., 1 in every generation). The main finding from our analysis of these

phenotypes is:

Result 5: Evolving strategies are more diverse in hard-close auctions than in soft-close auctions. Further,

when n is small (e.g., n = 2) there is a large fraction of “conditional” phenotypes in hard-close auctions.

Support for Result 5 is found in Tables 1-2 and Figure 3. Recall that the strategies with conditional

phenotypes tell the bidder to bid early or late depending on the history of rival bids in the previous

auction. We observe that more conditional phenotypes are observed in hard-close auctions than in soft-

close auctions. On the other hand, the frequency of unconditional early-bid phenotypes increases as the

number of bidders increases in hard-close auctions. Still, this frequency is always less in hard-close auctions

than in soft-close auctions for 2, 3, 4 and 5 bidders.

In soft-close auctions, more than 80 percent of all evolving strategies are characterized as “E” (uncon-

ditional early bidding) phenotypes (see Table 2). In hard-close auctions, the frequency of “E” phenotype

ranges from 9 to 72 percent depending on the number of bidders (see again Table 2). In the two-bidder

hard-close auctions, the phenotype “L 1 2 E 2 1” is observed with a frequency of 57 percent, higher than

any other phenotype. Strategies in this phenotype tell the bidder to bid late as long as the rival bidders

also bid late. Otherwise, an early final bid is placed. If the rival only submits early bids, this strategy

switches back to late bidding. Otherwise, the early bidding automaton is played again. The other most

common phenotype in two bidder hard-close auctions is “E 1 2 L 2 1” with a frequency of 28 percent.

This phenotype is almost identical to the earlier one except for the initial strategy which involves early

bidding. In hard-close auctions with 3 or more bidders, we observe the “E” phenotype in very high fre-

quencies ranging from 43 to 72 percent. The second most common phenotype is “L” with significantly

lower frequencies ranging from 10 to 16 percent. There are other commonly observed phenotypes such as

“L 1 2 E 1 1”, “L 2 1 E 1 2” and “E 1 2 L 2 1”. With 3 or more bidders, it appears to be more difficult

to coordinate on late bidding in hard-close auctions.
21This average is found by taking the average over last 100 generations in 20 simulations for each treatment.
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Figure 3: The average frequency of observing “unconditional early-bidding” and “conditional bidding”

phenotypes of automata in hard-close and soft-close auctions with 2,3,4 and 5 bidders.

HARD-CLOSE Number of Bidders

Phenotypes n=2 n=3 n=4 n=5

E 0.0893 0.428967 0.556583 0.7163

E 1 2 L 2 1 0.5727 0.0881 0.068667 0.01565

E 2 2 L 2 2 0.000267 0.064717 0.014217 0.003133

L 0.026967 0.157233 0.10435 0.102533

L 1 2 E 1 1 0.007067 0.046483 0.09425 0.003733

L 1 2 E 1 2 0.0009 0.040333 0.037317 0.02185

L 1 2 E 2 1 0.275317 0.047517 0.022467 0.004383

remaining: 0.027483 0.12665 0.10215 0.132417

SOFT-CLOSE Number of Bidders

Phenotypes n=2 n=3 n=4 n=5

E 0.972017 0.8054 0.887133 0.8684

L 1 2 E 1 1 0.000183 0.047117 0.00085 0.002917

L 1 2 E 2 2 0.0004 0.034017 0.000817 0.007083

Remaining: 0.0274 0.113467 0.1112 0.1216

Table 2: Frequency of surviving automata phenotypes in benchmark simulations (Averages over the last

100 generations surpassing a frequency of 1/30)
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7 Simulations With Adaptive Agents and Naive Incremental

Bidders

Roth and Ockenfels’ (2002) empirical findings suggest that there is a significant amount of “inexperienced”

naive bidders participating in internet auctions. These are often first—time bidders. A typical first-time

bidder behavior uses a naive “incremental bidding stage-game strategy.” Following this strategy, a bidder

increases the current price by bidding incrementally higher than the current second bid whenever he is

not the current high bidder in the auction — in effect bidding until he discovers the current high bid, and

bidding the necessary increment above that bid so as to achieve high bidder status. This incremental

bidding strategy proceeds so long as the current price is lower than the bidder’s value. Such a strategy is a

dominant strategy in an English auction. However, it is not dominant in hard-close, second-price internet

auctions.

In this subsection, we introduce one naive bidder to each internet auction. These bidders should be

viewed as “one—time bidders” and, indeed, they are replaced by a different naive bidder in each auction.

These naive bidders use a simple incremental bidding strategy: they only bid whenever they are not the

current high bidder, and they only bid the lowest fraction of their value, 1

3
,

2

3
, or 1, that is greater than

or equal to the current price (second highest bid plus the increment ∆). We re-run all of our benchmark

simulations by replacing one of the n bidders with a naive bidder. Figure 4, which is comparable to Figure

1, shows the frequency over time with which n−1 adaptive bidders submit late bids in hard- and soft- close

auctions when there is 1 naive incremental bidder present. Notice that, by comparison with our earlier

baseline simulations without naive bidders (as shown in Figure 1) in these new simulation results with

naive bidders, the frequency of late bidding is significantly greater in hard-close auctions and significantly

lower in soft-close auctions. Indeed, in hard-close auctions with 1-3 adaptive bidders (we exclude the naive

bidder), this percentage reaches and stays above 70 percent.

Ariely, Ockenfels and Roth (2005) report on a laboratory experiment with human subjects who play

either hard- or soft- close auctions. In their experimental design, there are just 2 bidders in each auction

and both play 18 auction games repeatedly. They model hard- and soft- close auctions differently than

we do, but in their hard-close auctions, they do adopt a ρ value less than or equal to 1 as we do. They

report that experimental subjects engage in significant late bidding in hard-close auctions and generally

learn to bid early in soft-close auctions. One of the striking findings of the Ariely et al. study is that in

hard-close auctions, the percentage of late bidding is higher when ρ = 1 than when ρ < 1. This finding is

at odds with the tacit cooperation hypothesis that Ockenfels and Roth (2002) use to justify late-bidding

as an equilibrium strategy in hard-close auctions which requires that ρ < 1. Consequently, Ariely et al.

pursue the hypothesis that late-bidding is a best response to the presence of naive incremental bidders.

We note that in our earlier setup without naive bidders we can replicate Ariely et al.’s finding that late

bidding increases as ρ is varied from a value less than 1 to being equal to 1. Indeed, we conducted such
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Figure 4: Simulation results with a naive incremental bidder. The percentage of “adaptive” bidders placing

a successful late bid in hard- and soft-close auctions with 2,3,4, and 5 bidders. To find the percentage of

all bidders placing a successful late bid, multiply the above numbers roughly by n−1

n
, since naive bidders

rarely place a late bid in the late stages of the evolution.
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Figure 5: Simulations with 1 naive and 1 adaptive bidder. The frequency of the adaptive bidder submitting

a successful late bid.

an exercise as part of our sensitivity analysis as reported on in Appendix B; this sensitivity analysis was

limited to the 2-bidder case and involved changing only 1 parameter at a time from our baseline simulation

values (as reported in Table 1). Table 3 in Appendix B reveals that in 2-bidder hard close auctions, the

fraction of late bids is 33.5 percent when ρ = .8 and increases to 60.1 percent when ρ = 1.

To perform a similar comparison with naive incremental bidders, we modify our simulation setup

somewhat so that it is more closely aligned with that of Ariely, Ockenfels and Roth (2005). Specifically, we

run simulations with 1 adaptive and 1 naive bidder where the adaptive bidder updates his strategies after

each internet auction game as in Ariely et al.’s laboratory study. That is, for comparison purposes, we set

R = 1. We also consider two values for ρ — 0.8 and 1, the values adopted by Ariely et al. (2005). The

simulation findings from this exercise are reported in Figure 5. The frequency with which adaptive bidders

submit successful late bids is given in Figure 5a. Like Ariely et al., we observe a higher frequency of late

bidding by adaptive bidders in hard-close auctions when ρ = 1 (nearly 100 percent) than when ρ = 0.8

(nearly 80 percent). By contrast, in soft-close auctions the frequencies of late bidding in the presence of

a naive bidder are substantially lower, at around just 20 percent. Also, bidders submit significantly more

early bids per bidder (including the naive bidder) in the soft-close auctions as compared with hard-close

auctions (see Figure 5b).
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8 Conclusions and Implications for Market Design

Our results show that late bidding is an evolutionarily sustainable phenomenon in hard-close auctions and

is far less common or sustainable in soft-close auctions. Our findings are in accordance with empirical

evidence of late bidding in hard-close auctions as reported on by Roth and Ockenfels (2002) using field

data and by Ariely, Ockenfels and Roth (2005) using experimental data. This external, empirical validation

of our agent-based model findings gives us some degree of confidence that our model might serve as an aid

in understanding other aspects of internet auctions.

Indeed, our simulation findings suggest that hard-close auctions raise lower revenue for sellers than

soft-close auctions, and that bidders fare better in terms of their payoff in hard-close rather than soft-close

auctions. This result bears additional emphasis from a market design perspective.22 Since internet auction

web-sites view themselves as clearinghouses or intermediaries for the market transactions, their interests

are not clearly aligned with sellers or buyers. However, information on which auction format favors sellers

or buyers is of obvious use to these individuals, as they may be able to choose the auction format they

participate in. Therefore, it may be natural to see both formats surviving side by side, as is currently the

case.23 The points raised by our study set the stage for further investigation on the evolution of different

market designs for internet auctions.

It should be noted that in our baseline simulations all bidders are “adaptive” learners, and eventually

they learn to use “good” strategies, i.e., ones that have them bid their full valuations by the final period,

T . With the addition of “naive” non-learning, incremental bidders (often observed in internet auctions),

we find an even greater contrast in the frequency of late bidding by the adaptive bidders between the two

auction formats. This finding is not so surprising; the presence of naive incremental bidders encourages

the more sophisticated (but adaptive!) bidders to delay their bidding so as to increase their likelihood

of achieving a higher surplus. In a soft-close auction, there are no gains to such a delay because any

advantages to last-minute bidding (collusion or avoidance of incremental bidders) is removed.

Bidding in internet auctions is a particularly interesting topic for economists working on market design.

Agent-based computational economics can be used as an important tool in testing alternative designs of

market clearinghouses. As we show in this study, these techniques can successfully generate many of the

empirical phenomena observed in real internet auctions and can therefore be used as a tool for effectively

deciding which auction formats to adopt in applications or participate in as buyers or seller.

22It would be interesting to verify this prediction using field data from internet auctions, though this would require

investigating auctions involving the same good under two different closing rules, and controlling for other factors including

the number and demography of bidders, etc.
23Yahoo! auctions allow the seller to choose whether to have a hard- or soft-close to the auction.
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Appendix A: Proof of the Theorem

Proof of the Theorem: We prove the Theorem separately for hard-close and for soft-close auctions. Let

the set of bidders be N = {1, 2} and the increment be ∆ = 0. We will show that a strategy which involves

bidding fraction 1 before period T weakly ex-post dominates any other strategy which does not involve

bidding fraction 1 early in a stage auction. This will imply that the prior strategy ex-ante dominates any

other strategy.

1. First, we consider a stage hard-close auction. Let σ1 be a stage game strategy of bidder 1 with the

highest fraction α ∈
{
0, 1

3
, 2
3

}
submitted in one of the first T −1 periods and fraction α′

∈

{
0,

1

3
,

2

3
, 1
}

such that α′ ≥ α submitted in period T . Note that α′
= α means that bidder 1 does not submit

a late bid in period T . Let σ2 be a strategy of bidder 2 with the highest fraction β ∈
{
0,

1

3
,

2

3
, 1
}

submitted in one of the first T − 1 periods and fraction β′
∈

{
0,

1

3
,

2

3
, 1
}
such that β′ ≥ β submitted

in period T. Let σ = (σ1, σ2). Also consider a strategy of bidder 1 such that he bids fraction 1 in one

of the first T − 1 periods. Let σ′1 be this strategy. Let σ′ = (σ′1, σ2) .

After the stage game under σ, av1 will be the highest bid of bidder 1 for some a ∈ {α,α′}. Under

σ′, v1 will be the highest bid of bidder 1. In both cases, it is equally likely that bidder 2 will have

the highest bid, bv2, for each b ∈ {β,β ′}. We will consider 5 cases:

(a) v1 ≥ av1 > bv2 : Bidder 1 wins the auction under both σ and σ′ with the ex-post payoff

v1 − bv2 −∆ = v1 − bv2 > 0.

(b) v1 = av1 = bv2 : Bidder 1 may or may not win the auction under both σ and σ′. His payoff is 0

whether he wins or not.

(c) v1 > av1 = bv2 : Bidder 1 may or may not win the auction under σ depending on the arrival

time of his bid. If he wins, his payoff is v1− bv2 > 0. Otherwise, his payoff is 0. Bidder 1 always

wins under σ′ with payoff v1 − bv2 −∆ = v1 − bv2 > 0.

(d) v1 > bv2 > av1 : Bidder 1 does not win under σ′. His payoff is 0 in this case. He wins under σ′

with payoff v1 − bv2 −∆ = v1 − bv2 > 0.

(e) bv2 ≥ v1 > av1 : Bidder 1 does not win under σ. He may win or lose under σ′. His payoff is 0

under both strategies.

We showed that for every highest bid submitted by bidder 2, it is a weakly best response for bidder

1 to use σ′1 over σ1.

2. Next, we consider a stage soft-close strategy. Let σ1, σ2 and σ′1 be defined as above for the first T

periods of the soft-close auction. In the extension periods, strategies σ1 and σ2 can involve bidding

fraction 1 or 0 only. Let σ = (σ1, σ2) and σ′ = (σ′1, σ2). Two cases are possible:
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(a) Under σ both agents do not bid in the extension periods, so the auction reduces to a hard-close

auction. By the proof in part 1, σ′1 weakly ex-post dominates σ1.

(b) Under σ bidder 1 or bidder 2 bids in the extension periods: After the stage game under σ, av1

will be the highest bid of bidder 1 for some a ∈ {α,α′, 1}. Under σ′, v1 will be the highest bid

of bidder 1. Under both cases, bidder 2 will have the highest bid bv2 for some b ∈ {β,β ′, 1}.

Cases (a) to (e) outlined in the first part of the proof still hold. However, the events are not

equally likely to occur under σ and σ
′. If we can show that bidder 1’s registered highest bid is

more likely to be higher under σ′ and bidder 2’s registered highest bid is more likely to be lower

under σ′, then the proof will be complete.

Bidder 1’s highest fraction can be α,α′ or 1 under σ. His highest bid is fraction 1 under σ′.

Therefore, the probability distribution of bidder 1’s highest bid under σ′ weakly first-order

stochastically dominates the distribution of bidder 1’s highest bid under σ.

Bidder 2’s highest can be fraction β, β′ or 1 under both σ and σ′. His behavior can be observed

under three cases:

i. Bidder 2 does not bid in period T under σ2: then his highest bid will be fraction β or 1

under σ, since bidder 1 can cause an extension of bidding and bidder 2 can bid in that

extension period. On the other hand, there will be no extension period under σ′. Hence,

bidder 2’s highest bid will be a fraction β under σ′.

ii. Bidder 2 bids in period T but he does not bid in the extension periods: then his highest

registered bid will be fraction β or fraction β′ with the same probability under σ and σ′.

iii. Bidder 2 bids in period T and in the extension periods: then the probability of having an

extension period under σ is no smaller than the same probability under σ′ since, bidder

1 may be bidding in period T under σ. Bidder 2’s fraction 1 registers with no smaller

probability under σ than under σ′ in the extension periods. On the other hand, bidder 2’s

highest bid will be fraction β with no larger probability under σ than under σ′. This is true,

because more extension periods under σ provide more opportunities for bidder 2 to increase

his bid over fraction β.

Cases (i) to (iii) imply that the probability distribution of bidder 2’s highest bid under σ weakly

first-order stochastically dominates the same distribution under σ′. Recall that the cumulative

distribution of bidder 1’s highest bid under σ′ weakly first-order stochastically dominates the

same distribution under σ. Hence, strategy σ′1 weakly ex-post dominates σ1.
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HARD-CLOSE with 2 bidders Varying Parameters in the Benchmark Simulations, Ceteris Paribus

Statistics ε = 20 ε = 4000 m = 1000 m = 109 ρ = 0.8 ρ = 1 R = 1 R = 40

number of early bids per bidder 1.9602 1.8830 1.9150 1.9854 1.8669 1.9322 1.7946 2.0210

fraction of bidders submitting a late bid 0.6188 0.6409 0.6068 0.6196 0.3355 0.6015 0.0459 0.6804

avr. revenue of seller / mean value 0.9535 0.9507 0.9448 0.9545 0.9429 0.9995 0.9950 0.9488

avr. payoff of bidders / mean value 0.0233 0.0247 0.0287 0.0228 0.0285 0.0003 0.0025 0.0256

freq. of early bidding automata 0.1110 0.0757 0.1237 0.1073 0.3812 0.2689 0.8896 0.0167

freq. of late bidding automata 0.0124 0.0192 0.0132 0.0505 0.0429 0.3711 0.0224 0.0057

freq. of cond. bidding automata 0.8766 0.9051 0.8632 0.8423 0.5760 0.3600 0.0880 0.9777

SOFT-CLOSE with 2 bidders Varying Parameters in the Benchmark Simulations, Ceteris Paribus

Statistics ε = 20 ε = 4000 m = 1000 m = 10
9 ρ = 0.8 ρ = 1 R = 1 R = 40

number of early bids per bidder 1.7842 1.4563 1.8564 1.7946 1.6401 1.8988 1.7347 1.6857

fraction of bidders submitting a late bid 0.0635 0.1708 0.0413 0.0800 0.1278 0.5335 0.0084 0.1414

avr. revenue of seller / mean value 0.9930 0.8053 0.9858 0.9941 0.9696 0.9996 0.9987 0.9812

avr. payoff of bidders / mean value 0.0035 0.0968 0.0086 0.0029 0.0151 0.0002 0.0007 0.0093

freq. of early bidding automata 0.9046 0.7328 0.9246 0.8713 0.7516 0.2876 0.9254 0.7917

freq. of late bidding automata 0.0181 0.0607 0.0187 0.0367 0.0305 0.2556 0.0028 0.0281

freq. of cond. bidding automata 0.0773 0.2065 0.0567 0.0920 0.2178 0.4568 0.0719 0.1802

Table 3: Sensitivity Analysis (Averages in the Last 100 Generations)

Appendix B: Sensitivity Analyses

We change one model parameter at a time in the comparative static exercises in auctions with 2 bidders

only. In Table 3, the results of these exercises are reported. Specifically, we change 1) the spread of the

value distribution from ε = 40 to 20 and then to 4000, 2) the mean of the value distribution from m = 10
6

to 1000 and then to 109, 3) the probability of last minute registration from ρ = 0.9 to 0.8 and then to

1, and finally, 4) the number of auction stages in a repeated game block from R = 20 to 1 and then to

40. The main findings from our sensitivity analysis may be summarized as follows (see Table 3 below for

details).

• The probability of late bid registration should be less than 1 in order to observe more prominent

early bidding in soft-close auctions. Otherwise, we observe a 50 percent frequency of late bidding

even in soft-close auctions since the expected payoffs are the same for bidding in any period.

• An increase in the number of stages R in a repeated-auction block has a positive effect on late

bidding in hard-close auctions. As R increases, the late bidding frequency increases in the hard-close

auctions. There is no late bidding when R = 1.
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