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ABSTRACT 
 

The aim of this paper is to develop and apply Neural Network (NN) models in order to forecast 
regional employment patterns in Germany. NNs are statistical tools based on learning algorithms with a 
distribution over a large amount of quantitative data. NNs are increasingly deployed in the social 
sciences as a useful technique for interpolating data when a clear specification of the functional 
relationship between dependent and independent variables is not available. 

In addition to traditional NN models, a further set of NN models will be developed in this paper, 
incorporating Genetic Algorithm (GA) techniques in order to detect the networks’ structure. GAs are 
computer-aided optimization tools that imitate natural biological evolution in order to find the solution 
that best fits the given case. 

Our experiments employ a data set consisting of a panel of 439 districts distributed over the former 
West and East Germany,. The West and East data sets have different time horizons, as employment 
information by district is available from 1987 and 1993 for West and East Germany, respectively. 
Separate West and East models are tested, before carrying out a unified experiment on the full data set 
for Germany. The above models are then evaluated by means of several statistical indicators, in order 
to test their ability to provide out-of-sample forecasts. A comparison between traditional and GA-
enhanced models is ultimately proposed. 

 The results show that the West and East NN models perform with different degrees of precision, 
because of the different data sets’ time horizons.  
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1. Introduction 
 
Variables such as employment and unemployment are always used as indicators of the performance of 
labor markets, both at local and national level. However, such data is usually available with a certain 
lag and is therefore only able to give information about the past development of labor markets. 
Therefore, in order to take decisions on the allocation of public expenditures among regions, 
policymakers are always in need of reliable regional labor market forecasts. 

Among the regional labor market data needed by policymakers, employment is certainly one of the 
most important. 

Several different methods to compute such forecasts have been proposed in the literature. One of 
the main issues concerns the choice between models imposing linear behavior and models allowing for 
nonlinear behavior of the relevant variables over time. 

Some authors (see, e.g., Swanson and White, 1997b, 1997a; Stock and Watson, 1998) compare 
linear (mainly regression analysis) and nonlinear (neural networks, genetic algorithms, fuzzy logic) 
methods to make forecasts of variables such as employment, industrial production or corporate profits. 
They come to various conclusions. Stock and Watson (1998) conclude that, in the main, the nonlinear 
methods adopted in their analysis perform worse than linear methods. On the other hand, Swanson and 
White (1997a, p. 459) suggest that it could be possible to improve macroeconomic forecasts “using 
flexible specification econometric models’, whose specification ‘is allowed to vary over time, as new 
information becomes available”. 

In this paper we aim to compute regional forecasts of employment in Germany using artificial 
neural network (NN) models.1 We follow a kind of auto-regressive approach, in which future 
developments of employment are the result of past developments. However, our data are somewhat 
different than the time-series approaches proposed by the above-mentioned literature, since these data 
consist of a panel characterized by a high number of cross sections and a small number of time periods. 
We therefore try to exploit the panel nature of the data by estimating all regions in the same NN model. 

Because of the asynchronic nature of business cycles among regions, conventional models may 
become very complicated, and may therefore impose many constraints that could limit the scope of the 
analysis. Artificial NNs are more suitable for our purpose of computing regional employment forecasts 
because of their flexibility and the absence of strong underlying modeling hypotheses. 

The paper is organized as follows. Section 2 will illustrate the methods adopted in our empirical 
analysis, in particular: a) the NN technique; and b) the NNs embedding genetic algorithms (GA) 
procedures. Next, Section 3 will describe the empirical application, which aims to estimate – by means 
of the NN and the NNGA approaches – employment variations in West and East Germany. The paper 
ends with some concluding remarks and suggestions for future research. 
 
2. Neural Network Models for the Estimation of Employment Variations 
 
2.1. Neural Networks Models: a Brief Introduction 
 
Neural Networks (NNs) are calculation algorithms, which resemble the functioning of the human brain. 
The main characteristic of NNs is their ability to find optimal solutions when the relationships between 
the variables are not fully known. This is particularly useful if only a limited knowledge of the 
phenomenon examined is available. Despite their no-modeling hypothesis, NNs are often compared 
with conventional statistical tools as generalized linear models or regressions (see, among others, 
Cheng and Titterington, 1994; Swanson and White, 1997b, 1997a; Baker and Richards, 1999). NNs 
                                                 
1 For a brief historical presentation of NNs, see Ripley (1993). 
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have also been shown to be equivalent, in the case of binary choice, to a logit model (Schintler and 
Olurotimi, 1998). 

In the human brain, calculation is distributed over a high number of simple units working in parallel 
and strictly related to each other. In artificial NNs, these units (or neurons) are distributed in layers and 
are internally connected through “weights”. Layers can be comprised of units, referring to the input or 
output variables or to the NN hidden units. In feedforward NNs, every unit from each layer is 
connected – and transfers information – to every unit of the next layer. Since connections between units 
are in only one direction and there are no cycles, the input units are only connected to the first hidden 
layer’s neurons, while the output units are only connected to the neurons belonging to the last hidden 
layer. In the case of a single hidden layer, this is the only intermediate level between input and output 
units, while, when a hidden layer is not deployed in the NN, input and output units are directly linked. 
Fischer (2001b, p. 23) defines the generic processing unit ui, belonging to { }kuu ,...,1=u , as: 

 
( ) ( )( )uu iiii fu ℑ==ϕ ,          (1) 

 
where the function iϕ  can be decomposed into two separate functions: iℑ  is the activation function, 
and fi is the integrator function. The activation function computes the unit’s output and is usually 
constant over the same NN.2 The integrator function is used for aggregating the units entering the 
processing units, thus providing a single input, by combining the inputs through the use of the weights 
vector wi. The function commonly used for this task is a weighed sum: 
 

∑=
j

jiji uwf )(u ,           (2) 

 
where uj is the jth unit connected to unit ui, and wij is the connection weight associated to the two units 
(Fischer, 2001a). 

The “learning process” of an NN is guaranteed by the recursive modification of the above weights, 
through which the NN can identify significant rules in data occurrence (see, for example, Rumelhart 
and McClelland, 1986). In order to find the optimal configuration of the network weights, a learning 
algorithm is required, which involves several computations. The Back-Propagation Algorithm (BPA) is 
frequently used for this scope of computation. The BPA requires the analyst to provide input examples 
and their correct – and known – outputs. These data allow the network to map out their underlying 
behaviour and replicate it. The actual learning process is given by the comparison of the output 
generated from the current weight configuration3 with the correct output. The obtained error4 is then 
propagated backwards through the network, adjusting the NN weights. This process is repeated for 
each sample record and the complete cycle is carried out as many times as requested by the operator or 
until the error reaches a pre-defined low value. It should be noted that the algorithm “will never exactly 
learn the ideal function, but rather it will asymptotically approach the ideal function” (McCollum, 

                                                 
2 Sigmoid or logistic functions are commonly used for activation. In our case study, a sigmoid activation function was used. 
3 The starting set of weights is usually randomly defined, so that a large error is generated at first (Cooper, 1999). On the 
other hand, Ripley (1993, p. 50) points out that the initial values “should be chosen close to the optimal values, so as to seek 
the correct values are used”. Since we do not know where the optimal value is, the initial random definition is our best 
guess. 
4 The error term is often computed as the mean of the single units’ squared errors. In our case study, the error is given by the 
following: ( )( )jYjDjYjYjE −−= 1 , 

where the error term Ej is a function of the actual output Yj and the difference between desired and actual output Dj. 
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1998). A shortcoming of the BPA is that the algorithm is only expected to reach a stationary error, 
which can indeed be a non-global minimum (Ripley, 1993).5 Also, because of the difficulties in 
reaching the desired error level, we chose to stop the learning process when the NN performance 
started to deteriorate, in order to avoid overtraining. 

A further aspect of the NN models deals with the network complexity.6 It is necessary to seek a 
balance between network simplicity and complexity. In fact, an overly simple NN is not able to learn 
complex relationships between the variables, and therefore smoothes out the underlying data structure 
generating a large bias (Fischer, 2001a). Alternatively, an NN that has a too complex structure would 
lead to generalization problems, created by data overfitting, by causing unreliable forecasts and high 
variance. In order to avoid overfitting, many techniques have been proposed, which are primarily based 
on the partial elimination of inputs and weights (pruning methods), or on an early stopping of the 
learning process once the performance indices start deteriorating (early stopping techniques). In our 
case study, the latter method was chosen for its simplicity. 

Next Section 2.2 will illustrate the implementation of a computer-aided algorithm, namely, the 
Genetic Algorithm, within the NN structure choice process. Subsequently, Section 2.3 will illustrate the 
data set available, while Section 3 will describe the empirical analysis, which aims to estimate the 
variations in employment in West and East Germany. 

 
2.2. The Implementation of Genetic Algorithms in Neural Networks 
 
Genetic Algorithms (GAs) belong to the class of Evolutionary Algorithms (EAs). These are 
optimization tools that nowadays have a wide following in the scientific literature (see, e.g., Fischer 
and Leung, 1998; Reggiani et al., 2000, 2001). Their aim is to mimic natural biological evolution 
dynamics. In the social sciences, this is reflected in computational models, which outline the design and 
structure of evolutionary processes. 

The implementation of an additional algorithm in NNs responds to the need for an optimization of 
the choice process regarding the network structure and parameters. The final objective is to obtain 
better generalization properties from the NN, as well as to reduce the time/work needed in the fine-
tuning of the network. In this framework, GAs were used, being one of the most commonly employed 
classes of EAs. Referring to the “survival of the fittest” Darwinian law (Holland, 1975), GAs are 
stochastically-based search methods, which aim to tackle an optimization problem expressed as follows 
(Fischer and Leung, 1998; Nag and Mitra, 2002): 

 
( ){ }Ω∈ssfmax ,           (3) 

 
where f  is called the fitness function,7 and s  is an individual (candidate solution) belonging to the 
population { }d1,0=Ω , made of d-dimensional binary vectors called strings.8 These strings correspond, 
in GAs, to nature’s genotype, which contains the genetic information of an individual (referred to as the 
structure). In our model, a genotype includes three types of information: input columns; network 
configuration; and network parameters. These are the three strings that uniquely define an NN 

                                                 
5 In his work, Ripley (1993) reports positive opinions expressed by Fahlmann (1992) on the occurrence of local minima. 
Fahlmann reportedly stresses that, although NNs do fall within local minima, these are often the ones the analyst wants. He 
also points out how, in some cases, local minima are blamed for problems that are instead generated by a different cause. 
6 For a discussion of the model selection problem see, e.g., Fischer (2000). 
7 In our case study, the fitness function is an objective function to be minimized on the training set. Fisher and Leung (1998) 
show how an objective function can be recoded into a fitness function. 
8 For details of the encoding process, see Fischer and Leung (1998). 
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configuration. More in detail, the network configuration is represented by five features: the first one 
refers to the total number of layers, while the remaining four features specify the number of neurons in 
each hidden neuron (by imposing the value zero for each hidden neuron that is not employed in the 
model). The network parameters are learning rate; momentum; and input noise. For more details on 
network parameters, see Cooper (1999). 

Figure 1 shows the steps of a standard GA (Fischer and Leung, 1998; Riechmann, 2001). The 
elaboration of new NN configurations starts from an initial – randomly chosen – array of individuals 
(population).9 In this case, individuals are the NN structures that are candidate solutions to the given 
problem. These structures are first evaluated by means of the fitness function. Subsequently, an 
intermediate population is generated though the selection operator. The probability Pr of the kth 
individual ks  being duplicated – i.e. being able to “reproduce” itself – is given by the value of its 
fitness function divided by the overall population fitness (Fischer and Leung, 1998): 
 

Pr ( ks  is selected) = ( ) ( )∑
=

P

k
kk

1

ff ss ,         (4) 

 
In the next step, the selected individuals undergo the recombination/crossover operator, which 

crossbreeds two individuals, randomly chosen from the population (Riechmann, 2001). The procedure 
resembles the functioning of sexual reproduction and the “offspring” generated replaces the “parent” 
individuals (network configuration and network parameters) in the population, even when its fitness is 
worse than that of the parents. In our experiments, all the population individuals are crossbred, 
although only their last two features are modified, leaving the input columns list unchanged. The 
following step is represented by the mutation operator. This operator is applied with a uniform 
probability distribution, and operates by switching a bit in the strings to its opposite value, i.e. from 0 to 
1 (Fischer and Leung, 1998). The mutation share in our experiments is set to 10%. As in the previous 
step, the new generated individuals substitute the old ones in the population. At this point, the fitness 
function of the individuals belonging to the new generation is evaluated and the complete process 
restarts from the selection phase until the stopping condition is met. In our experiments, we used – as 
the fitness criterion – the RMS Error on the training set. As a consequence, ten generations were 
generated before the stopping condition was met. After this process, the best-fitting NN configuration 
of the last generation was adopted in our NN application (see Section 3).10 

The definition of an optimal NN configuration can, however, be a long process, which also depends 
on the setting of the genetic parameters and on the problem complexity. The advantages of the GA are 
in its automatic functioning, which relieves the analyst from the lengthy process of manual choice of 
the network parameters and configuration. Nevertheless, GAs do also have shortcomings. The main 
limitation of GAs concerns their search space. In particular, in the framework of their use in NNs, 
difficulties emerge when encoding/decoding “the original search space Σ  into some GA-space Ω ” 
(Fischer and Leung, 1998, p. 447), and when finding a global minimum. In order to solve this last 
problem, it is suggested that the BP algorithm should be used for the global search, and then use the 
GA for isolating the minimum (Shapiro, 2002). This particular method will not be employed in our 
case study. 

 

                                                 
9 For our experiments, three individuals form a population, which is iterated through the algorithm for ten generations. 
Future research will aim at increasing both the population size and the number of generations. 
10 In other literature examples, the best-fitting configuration is selected, from all those generated, during the given number 
of generations (see, e.g., Fischer and Leung, 1998). 
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t := 0 
Creation of First Population 0m  
Evaluation of 0m  
while Stopping Condition not Met 

t := t + 1 
Selection from 1−tm  and Reproduction into tm  
Recombination on tm  
Mutation on tm  

 
 
 
 
 

Evaluation of tm  
End 

Figure 1 – Structure of a standard GA. 
Source: Riechmann (2001). 

 
2.3. The Data Set Available 

 
The data available for our experiments concern district units in West Germany and East Germany. The 
data on West Germany cover 15 years (1987 to 2001), while the data on East Germany are only 
available for 9 years (from 1993 to 2001). The number of districts is 326 for West Germany and 113 
for East Germany, amounting to a total of 439 districts. 

The data sets have been provided by the German Institute for Employment Research (Institut für 
Arbeitsmarkt und Berufsforschung – IAB), and include information on the number of full-time workers 
employed every year on 30 June. The above data are also classified according to 9 economic sectors.11 
In addition to these variables, average regional daily wages earned by full-time workers are also 
available. Furthermore, in an effort to identify labor market patterns in similar regions, the “type of 
economic region” variable was adopted. This variable, which is an index ranging from 1 to 9, follows 
the classification adopted by BfLR/BBR (Bundesforschungsanstalt für Raumordnung und Landeskunde 
/ Bundesanstalt für Bauwesen und Raumordnung, Bonn). In fact, our West and East German districts 
may be grouped into the following 9 economic regions (Bellmann and Blien, 2001): 
 

1. Central cities in regions with urban agglomerations. 
2. Highly-urbanized districts in regions with urban agglomerations. 
3. Urbanized districts in regions with urban agglomerations. 
4. Rural districts in regions with urban agglomerations. 
5. Central cities in regions with tendencies towards agglomeration. 
6. Highly-urbanized districts in regions with tendencies towards agglomeration. 
7. Rural districts in regions with tendencies towards agglomeration. 
8. Urbanized districts in regions with rural features. 
9. Rural districts in regions with rural features. 
 
The data set illustrated above will be the basis for our forecasting experiments described below. 

                                                 
11 The 9 economic sectors are the following: 1) primary sector; 2) industry goods; 3) consumer goods; 4) food 
manufacturing; 5) construction; 6) distributive services; 7) financial services; 8) household services; 9) services for society. 
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3. Empirical Analysis: Forecasting Regional Employment in West and East Germany 
 
3.1. Forecasting Employment by Means of Neural Networks 
 
This section will illustrate the series of NN models that we developed for our forecasting purposes. 

The main inputs of our models are the growth rates of the number of workers regionally employed 
in the 9 economic sectors. To exploit the panel structure of our data and – more specifically – the 
correlation across observations of the same region over time, in our models we introduced what we 
indicate as the  “time” variable. This variable was identified in two different ways in the models. First, 
a time variable that can be interpreted as a ‘time fixed effect’ in panel models (Longhi et al., 2002b). 
Alternatively, the time factor was also introduced as an array of dummy variables. On the basis of these 
considerations, 9 NN models in total have been adopted, which are the following. Model A employs 
time by means of dummy variables, while Model B employs a fixed effects time variable. In addition to 
the introduction of the time variable, further variables were employed in the NN models, in order to 
enrich their level of information. As a consequence, 7 additional NN models emerged (see Tables A.1 
and A.2 in Annex A). Model C has the same inputs as Model A, plus a qualitative variable able to 
distinguish among the districts. As in the case of the time fixed effects variable, this can be seen as the 
correspondent of cross-sectional fixed effects in a panel model (Longhi et al., 2002a). Model D and 
Model E have the same inputs as Model A, plus the variable ‘type of economic region’. The main 
difference between the two models is that the new variable was introduced as a qualitative variable in 
Model D, and as a dummy in Model E. Also, Model B was enhanced with the qualitative variable ‘type 
of economic region’, thereby obtaining Model BD. Finally, information about daily wages was 
introduced as a new input variable: a) in Model A, obtaining Model AW; b) in Model D, obtaining 
Model DW; and c) in Model B, obtaining Model BW. The characteristics of the various models are 
summarized in Annex A. All the models adopted use, as input variables, the growth rate of the sectoral 
employment. 

As a second step, all the above models were estimated employing GAs as a method for 
automatically choosing the structure of the NNs (see Annex A for details on the NN architectures 
chosen for each model). The GA-enhanced models (NNGA) are therefore identified by the GA suffix. 
The structure of the NN models, in terms of number of layers and weights, was chosen by means of 
comparing of the results obtained from different settings of the networks on ex-post forecasts made on 
a test set. In the case of the NNs employing GA, only the number of training epochs has been ‘freely’ 
chosen, since we always accepted the structure automatically proposed by the genetic algorithm. Since, 
for each year, the NNs were trained on the basis of the 2 years-lagged employment variations, the data 
used in our NN models started from 1991 (1989-1991) for West Germany and from 1997 (1995-1997) 
for East Germany.12 The data set available for West Germany is six years longer and allows for larger 
training and testing periods. 
 
Table 1 – Data utilization for validating the network configuration 
Models Training Validating 
West Germany 1991-1998 1999-2000 
East Germany 1997-1999 2000 

 

                                                 
12 Our models employ the employment variation between years (t-2; t) in order to forecast the variation for the period (t; 
t+2). Consequently, if the data start from 1987, the first forecasted interval is 1989-1991. We refer to this forecast as a 
forecast for 1991. 
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The first test phase (referred to as the validation phase), which is summarized by Table 1, 
concerned the validation of an array of network configurations (see, e.g., Fischer, 1998). For both types 
of NN models, traditional and GA-enhanced, we employed data until the year 2000. NN models related 
to the case study of West Germany were trained from 1991 to 1998, while NN models for East 
Germany were trained from 1997 until 1999. For validating the models, a 2-year test set was used in 
the case of West Germany (1999-2000), while a 1-year test set was chosen for East Germany (2000). 
The use of a 2-year test set in the choice of the NN structure is justified by the fact that the performance 
of the NNs is not uniform for different test sets. The use of statistical indicators calculated on a 2-year 
basis should lead to choices that are less influenced by shocks that could have affected a particular 
year. However, experiments on East Germany had to be carried out on a 1-year test period, since, 
because of the limited length of the period covered by the data, only few years would have been 
available for the learning process of the NN.13 For every NN model, five structures were experimented 
in the initial stage. First, a two-layer structure was tried, followed by three models employing three 
layers and containing 5, 10 and 15 neurons respectively in one hidden layer. Finally, a four-layer model 
was attempted, using 5 neurons for each of the two hidden layers.14 The models trained as described 
above were subsequently evaluated by means of several statistical indicators.15 The best-performing 
settings were then chosen for further development of the NNs. 

 
Table 2 – Data utilization for the test phase 
Models Training Testing 
West Germany 1991-2000 2001 
East Germany 1997-2000 2001 

 
In the subsequent test phase, the evaluation of the chosen structures was provided by ex-post tests 

carried out on the year 2001 – for which actual data were available. Table 2 summarizes which data 
were used at this stage. In this phase, the weights were reset and the models were retrained from their 
respective initial year until the year 2000. The objective of this procedure was to obtain ex-post 
forecasts for the year 2001 that could be compared with the actual data, in order to evaluate the models’ 
generalization properties.16 

The next sections will explain and discuss the empirical findings from our experiments. These 
finding were obtained by both traditional NNs and NNs utilizing GAs. We will try to verify whether, in 
our case, GAs can provide us with better precision in forecasting employment variations, through a 
                                                 
13 For the development of NN models comprising both West and East Germany – which are not reported at this stage of the 
work – we used the same number of years as for East Germany, its data set length being the common denominator in terms 
of data availability. The full set of data could indeed have been used, by providing – in the training phase – a major set of 
information on the districts belonging to the former West Germany. This possibility will be tested in further developments 
of this work. 
14 Future experiments will address various behaviors for the intermediate structures (e.g., 4 or 7 neurons). However, in the 
future we will focus on two- and three-layer NN configurations, as empirical evidence has proved that an NN with one 
hidden layer can approximate nearly every type of function (Cheng and Titterington, 1994; Kuan and White, 1994). 
15 The models are compared using the following statistical indicators: 
- Mean Absolute Error:  MAE = 1/N * [Σi |yi - yi

f | ] 
- Mean Square Error:  MSE = 1/N * [Σi (yi - yi

f )2 ] 
- Mean Absolute Percentage Error: MAPE = 1/N * [Σi |yi - yi

f | *100/ yi], 
where yi is the observed value (target); yi

f is the forecast of the model adopted (NN); and N is the number of 
observations/examples. The common interpretation of these indicators is that the estimation is better, the closer the value is 
to zero. The MAPE indicator was not used in the testing phase of the NN models, but only for ex-post forecasts evaluation. 
16 For the final step – and ultimate aim of the experiments – of making forecasts at district level for the year 2003, all of the 
available data were employed, training the NNs until the year 2001. The results for this part of the experiment are not 
reported here, since no real data for 2003 are available at the moment for comparison. 
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selection process of the NN structure that is not based on human selection. First, the results obtained 
for the former West Germany will be shown and examined (Section 3.2), followed by those found for 
East Germany (Section 3.3). Section 3.4 will conclude the illustration of our empirical experiments, by 
focusing attention on the performance differences between NN and NNGA models. 
 
3.2. Estimation of West German Employment 
 
As indicated in the previous section, 18 different models were developed and tested for each data set. 
The first step was the choice of the NN structure (in terms of number of layers and hidden neurons). 
The models were compared with respect to several configurations, using the years from 1991 to 1998 
as the training period, and the years 1999 and 2000 (growth rates for 1997-1999 and 1998-2000) as a 
validation period (see Table 1). The indicators computed on the basis of the years 1999 and 2000 were 
calculated on the basis of the percentage employment variations and, for the NN structures 
subsequently chosen, provided the results shown in Annex B (Table B.1). Further details on the NN 
models structure that were finally chosen can be found in Annex A (Table A.1). The models were then 
retrained until the year 2000, while the year 2001 acted as a test set (see Table 2). The statistical 
indicators emerging from these experiments are presented in Table 3. These results will be the basis for 
the choice of a reduced array of NN models to be adopted for the employment forecasts regarding the 
year 2003. 

 
Table 3 – Statistical performances of the ex-post forecasts for the year 2001; the case of West Germany 

 Model 
A 

Model 
B 

Model 
C 

Model 
D 

Model 
E 

Model 
AW 

Model 
DW 

Model 
BD 

Model 
BW 

RW Nat. 

MSE 21702742 8326739 20259245 25233824 19857019 12909349 8806876 8057188 7851692 22748959
MAE 1753.51 1587.58 1636.79 1783.79 1603.13 1367.95 1424.77 1568.83 1612.12 2124.82

MAPE 2.0619 2.6599 1.8809 2.0101 1.8979 1.9433 2.1272 2.5651 2.7247 2.6999
 Model 

AGA 
Model 
BGA 

Model 
CGA 

Model 
DGA 

Model 
EGA 

Model 
AWGA 

Model 
DWGA 

Model 
BDGA 

Model 
BWGA 

RW G.R. 

MSE 13961510 8780426 29658114 26081503 16547757 17224990 16213865 8670100 9100656 158622682
MAE 1381.53 1726.75 2174.53 1919.93 1457.64 1501.44 1496.21 1767.46 1744.25 1599.18

MAPE 1.8004 2.9324 2.4809 2.1700 1.8681 1.8339 1.8531 2.9006 2.9419 2.1124
Note: The abbreviations are explained in Footnote 15. 
 

It is clear from Table 3 that no model wins over the others for all the statistical indicators. However, 
Model AW has the best MAE value and one of the lowest MAPE. Model AGA also has a good value 
for MAE and the lowest MAPE. Furthermore, we can see that low values of MSE are never combined 
with good performance on the other indicators. Also, the ratio between the worst and best values of 
MSE is much wider than it is for MAE and MAPE.17 This might be due to the fact that MSE is based 
on squared errors. One more significant fact is that the models enhanced by means of GAs provide 
good results. In fact, they show some of the best values for the statistical indicators. 

At aggregate level, the models seem to suggest an increase in the number of employees from 1999 
to 2001. The models forecast an average employment increase of 2.52%, while the real growth rate 
recorded was about 2.87%. The average aggregate occupational level obtained by the models therefore 
approximates the real growth rate with an error as small as 0.34%. Although this figure does not refer 
to the district level variance, it might be considered to be a widely acceptable error margin. Models 

                                                 
17 Ratios calculated between the worst and best values of each of the indicators provided the following results: MSE = 3.50; 
MAE = 1.44; MAPE = 1.62. 
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AW and AGA also seem to provide accurate aggregate forecasts, as they show errors of 0.08% and 
0.87%, respectively. In addition, models employing time as fixed effects (the “B” models) tend to offer 
analogous results, slightly higher than the average performance, around a 1.5% error rate. A graphical 
representation of the aggregate forecasts is given in Annex C (Figure C.1). 

In addition, we considered as a main performance indicator – given the variability of the values of 
the statistical indicators shown in Table 3 – the error of the average of the 9 NN models, as well as the 
error of the average of the further 9 NNGA models (Granger and Newbold, 1986). Their graphical 
representation, by district, is mapped in Figures D.1 and D.2, respectively (in Annex D). Concerning 
the forecasts for the year 2003, we trained all the models till the year 2001. In the first stage of our 
analysis, we considered, as a ‘synthesis’ model, the growth rates of these Average NN models. Maps of 
Germany showing the degree of the estimated employment variations for 2003 can be found in Annex 
D (Figures D.3 and D.4). 

As an alternative method for predicting and for comparison purposes, we also adopted the Random 
Walk (RW) technique. RW models were chosen for their easy and fast implementation and because 
they do not require specific software. However, a shortcoming of RW models is the fact that they do 
not exploit the potential of other variables possibly correlated to the one to be estimated. In our work, 
we utilized two types of random walk (RW) models, which are defined as follows: 

 
a) Random Walk Nat.: this model hypothesizes that the regional number of employees for year 

t+n is equal to the number recorded in year t. Since, in our case, forecasts are made for year 
t+2, the forecast for 2001 is therefore represented by the recorded number for 1999 and has 
growth rates equal to zero. 

b) Random Walk G.R.: this model assigns to period (t; t+n) the same district growth rates 
recorded for the period (t-n; t). For example, the regional/district growth rates of employment 
between 1999 and 2001 will be equal to those recorded between 1997 and 1999. 

 
Both types of random walk models were calculated on yearly total amounts of employees, 

separately for each district. We observe that the Random Walk G.R. model has better values in MSE 
and MAE than Random Walk Nat., but shows higher MAPE values. At aggregate level, the Random 
Walk G.R. model seems to better estimate the employment variation, while Random Walk Nat. has the 
highest error (see Figures C.1 and C.2 in Annex C). 

 
3.3. Estimation of East German Employment 

 
The data set for East German employment contains information on the number of employees for 113 
districts. Data are available for the period between 1993 and 2001. The data set is therefore smaller 
than that for West Germany – which comprises 326 districts from 1987 to 2001 – and 6 years shorter. 
Consequently, only 5 years could be used for training, validating, and testing the models (see Table 1). 

The NN models were selected, structure wise, by training the models from the year 1997 to the year 
1999, and tested on the year 2000 (growth rate for 1998-2000) (see again Table 1). Table B.2 in Annex 
B shows the results obtained in this phase of the process for the chosen configurations, while Annex A 
(Table A.2) provides the details on the structure and parameters of each NN. The above-mentioned 
models were subsequently trained until the year 2000, employing the year 2001 as a test period (see 
Table 2). 

Table 4, which contains the results of the ex-post forecasts for the year 2001, does not show a 
strong homogeneity in the models’ results. Once more, as for West Germany, the models based on time 
as a qualitative variable (Models B, BW and BD) have most of the lowest values for the MSE indicator, 
but do not show satisfying values for estimators based on absolute error. Still, as was the case for West 
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Germany, the best MSE values are never found together with by the best MAE and MAPE values. 
These phenomena seem to suggest that our models do not enable the consistent performance of MSE 
and the remaining indicators.18 

 
Table 4 - Statistical performances of the ex-post forecasts for the year 2001; the case of East Germany 

 Model 
A 

Model 
B 

Model 
C 

Model 
D 

Model 
E 

Model 
AW 

Model 
DW 

Model 
BD 

Model 
BW 

RW 
Nat. 

MSE 13855323 10504722 36849400 10057159 18214516 50357944 17719380 9627065 8076538 9055105
MAE 1938.55 2007.30 1980.93 2268.41 1961.44 1825.19 1726.13 2026.60 1981.71 2558.70

MAPE 4.7083 5.1026 4.1479 5.9226 4.5186 2.9360 3.7931 5.1698 5.1244 7.0492
 Model 

AGA 
Model 
BGA 

Model 
CGA 

Model 
DGA 

Model 
EGA 

Model 
AWGA 

Model 
DWGA 

Model 
BDGA 

Model 
BWGA 

RW G.R.

MSE 8848823 13189747 43609565 11878101 8520633 9007534 9630108 12362021 11950440 10024545
MAE 2074.04 1978.65 1914.06 2000.42 2073.56 2199.91 1950.69 1935.92 1996.29 2257.91

MAPE 5.4320 4.8676 3.6817 4.9793 5.3941 5.8310 4.9871 4.7495 4.9881 6.1832
Note: The abbreviations are explained in Footnote 15. 

 
Aggregated forecasts show all the models indicating a decrease in occupational levels between 

1999 and 2001. Once again, the models, and in particular the B-models, seem to cluster around a 
numeric zone, where the average aggregated performance of the models can also be found. This result 
estimates losses in employment of about 2.85%, while the actual data show decreases around 4.91% of 
the total labor forces. The percentage difference between the two aggregate figures is thus in the order 
of 2.16% (see Figure C.2 in Annex C for a graphical representation of the aggregate results). 

The results from the above experiments can now be compared with those calculated for the two 
random walk models, as introduced in Section 3.2. While the MSE indicator has values that are lower 
than the average performance19 of the NNs, worse values were found for MAE and MAPE. On the 
other hand, at aggregate level, the RW models overestimated employment for 2001. 

As in the case of West Germany, with reference to the forecasts for the year 2003, we then trained 
all the models till the year 2001. In this first stage, we considered the growth rates for both the average 
of the NN models and the average of the NNGA models. Figures D.3 and D.4 in Annex D show how 
the estimated growth rates (for the year 2003) are distributed for each district on the map of Germany. 
A general remark here concerns the evidence – for both the averaged NN and NNGA models – of 
positive growth rates for West Germany and negative growth rates for East Germany, for the year 
2003. This first result seems to confirm the forecasting trends emerging from other studies (see, e.g., 
Bade, 2003). 

 
3.4. Concluding Remarks: NN Models vs. NNGA Models 

 
We now summarize the performances of the NNs with a particular focus on the application of GAs in 
the NN choice process. All the models developed so far were also carried out in their GA-enhanced 
version. Therefore, in any phase of our experiments, we have 9 traditional NN models and 9 similar 
NNGA models – with different layers and/or parameter settings. 

Through a quick comparison of the registered performance of NN and NNGA models, we observed 
that: 

                                                 
18 The same questions arose early in Section 3.2, while examining the results for West Germany’s ex-post forecasts. 
19 Calculating an average of the growth rates proposed by all of the NNs, we obtain the following values for the statistical 
indicators: MSE: 14166882; MAE: 1942.24; MAPE: 4.6862. 
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a) GA-enhanced models seem to perform ambiguously with reference to the NNs. NNGA models 
show, for our statistical indicators, an average error level on the ex-post forecasts for 2001 that 
is 16% bigger than for traditional NN models. These results are, however, not crystal-clear. For 
West and East Germany models, on average, 9% and 3% differences, respectively, were found 
between NN and NNGA models. We also made an attempt to identify the statistical indicators 
for which NNGA models’ performance is worse. This would help us to understand what type of 
error is induced by the GA structure selection. Unfortunately, the results are not clear. NNGA 
models show 16% higher errors in MSE for West Germany, while, in the case of East Germany, 
they perform better than NN models for the same indicator. Clearer results were obtained for 
the MAE and MAPE indicators. For all the data sets, NNGA models show higher error levels, 
ranging from 3% to 21% additional error. These tendencies are also visible at an aggregate level 
(see Figures C.1 and C.2 in Annex C). On the other hand, in spite of average higher errors, 
NNGA models can still provide some good results for our statistical indicators. Also, NNGA 
models seem to be slightly better than traditional NN models for the MAPE indicator when we 
compare the error levels of both the average NN and the average NNGA model (see Sections 
3.2 and 3.3, as well as Annex D). 

b) NN models organized on a two-layer basis20 seem to show significant differences if compared 
with four-layer models. While two-layered models seem to minimize the MAPE indicator, the 
more complex models provide good results for the squared error indicator (MSE). This aspect is 
particularly evident for the NN models related to West Germany, while the situation is more 
ambiguous for East Germany. 

Trying to explain the above differences between traditional NN models and those that use GA-
chosen settings is indeed the most difficult part. A first aspect to be considered is that the software 
commonly available for NN applications is not suited for panel data use, but is designed to work on 
time series data.21 Nevertheless, we can make some hypotheses on the basis of our results. 

The stochastic nature22 of the NN structures that embed GA might play a role in determining a 
higher variance in the networks’ performance. The NNGA models seem to develop more 
heterogeneous structures than the ‘traditional’ NNs, which were chosen through a fixed procedure (see 
Section 3.1). Although the settings chosen by the GA models are supposed to be the best-performing 
(among the ones developed during its running time), a longer running time for the GA might be 
desirable, in order to have a wider set of alternatives examined by the software. A setback to this 
procedure is that computing time significantly increases, especially for wider data sets. 
 
4. Conclusions 
 
The aim of this paper was to make forecasts – at the time n+2 – on the number of people employed in 
the 339 districts in Germany. For this purpose, several models – based on NN and GA techniques – 
have been developed. In particular, the districts were divided into West German and East German 
district data sets. Separate NN models were subsequently developed for the two zones. The NNs were 
developed in configurations chosen either manually or by means of GA supervision. 

 The results of ex-post forecasts on the year 2001, obtained by the NN and NNGA models, were 
evaluated by means of several statistical indicators. In addition, we compared the results of NN and 
                                                 
20 Models for which the chosen architecture is based on a two-layer structure are: Models BGA, BDGA and BWGA for 
West Germany; Model BDGA for East Germany; Model BDGA for Germany. The four-layer models are: Models B, BW, 
AGA, EGA, AWGA, DWGA for West Germany; Models B, AW, DW and AGA for East Germany; Models B, AW, DW 
and AGA for Germany. 
21 The software used for our NN models is Neuralyst, version 1.4. 
22 Every operator in the GA, as described in Section 2.2, involves probability distributions. 
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NNGA models with the results of RW models, either hypothesizing stable employment (null 
variations) or replicating the same employment trends as in the previous 2-year period. 

 Our results lead to the following considerations: 
a) The models’ performances show different degrees of homogeneity with respect to the West and 

East data sets. While the NN and NNGA models built for West Germany show more or less 
homogeneous results, this is not the case for East Germany.23 From a preliminary observation of 
Tables 3 and 4, the models utilizing the variable ‘time fixed effect’ seem to behave differently 
from the remaining models. In fact, while these NN models often show – for both West and 
East Germany – the best values for the MSE indicator, they never generate such acceptable 
values for the MAE and MAPE statistical indicators. This dichotomy could be due to the 
different nature of the MSE and MAE/MAPE indicators.24 

b) Through all our experiments, we searched for an NN model that could be considered as the 
most consistent and reliable. We identified it in Model AW. This is a model employing time as 
a dummy variable, and wage information as an additional variable. Model AW consistently 
shows, through each data set, that values for the MAE and MAPE indicators are among the best 
results. Only the MSE values did not follow this tendency over our experiments, and presented 
high error rates. In fact, we previously saw that MSE behaves in an opposite way to 
MAE/MAPE in most of our experiments. However, given the high number of NN models 
involved (we adopted 18 models in total), more reflection is necessary in this context. In 
addition to the choice of an NN model, we considered the use of pooled forecasts, as defined in 
Granger and Newbold (1986). These combined forecasts would provide the average 
performance of the analyzed NNs or of the chosen sub-set of them.25 The emerging forecasting 
values are mapped in Annex D. 

c) The Random Walk models described above show different levels of precision if compared with 
the NN models. While, for West Germany, RW models perform worse than NNs, they tend to 
have similar performances for East Germany.26 This difference might be due to the different 
time span of the data sets. 

d) As we outlined in Section 3.3, the enhancement of GA in NN models did not seem to improve 
the networks’ performance in a significant way. In some cases, NNGA models do perform well 
(we refer, in particular, to the West Germany models), while, in several other cases, they show a 
higher error level (see again Section 3.3). 

In conclusion, our aim was to experiment and test NN and NNGA models that could provide 
reliable forecasts for German employment at a district level. In doing so, we experienced different 
levels of result reliability, depending on different data sets and socioeconomic background. 
Consequently, by means of our NN models, we offered ‘bands’ of forecast values instead of ‘unique’ 
values. It has to be remarked that our empirical analysis has been based only on two main variables 
(employment and wages), thus it cannot be comprehensive with regard to the many variables that come 
into play when employment and social conditions are at stake. 

                                                 
23 The variance of the MAPE indicator (which is directly comparable between the data sets since it is based on relative 
errors) is equal to 0.18 for West Germany, while it is 0.57 for East Germany. 
24 Minimization of absolute error could in fact not coincide with minimization of squared error. We privilege percentage 
(absolute) error, consequently choosing MAPE over MSE and MAE. 
25 It has to be noted that the work from Granger and Newbold (1986) originally refers to time series data. 
26 It is interesting to underline that, for East Germany, the RW models show MSE values quite similar to the models using 
the ‘time fixed effects’ variable. For Germany as a whole, the RW G.R. model shows MAE and MAPE values better than 
those of the NN models, which strengthens our hypothesis that the West and East data sets bring, if employed in the same 
model, a lack of clarity, compared with previous empirical evidence. RW models did in fact perform worse on average than 
our NN models in the course of the experiments on the West and East data sets. 
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Further directions for research are therefore concerned with addressing the need for a longer data 
span enriched with more variables (e.g. unemployment) and, ultimately, the possibility of a 
multicriteria analysis that could, if it were based on several appropriate criteria, objectively evaluate the 
models in terms of the basis of the final user’s information needs. 
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Annex A – Details of Model Experiments 
 
The NN models used in the present paper were computed using the network parameters shown in the table 
below. In addition, the following parameters were used: training tolerance: 0.1; testing tolerance: 0.3. The 
genetic algorithm’s parameters are as follows: inclusion rate: 1; population size: 3; population mode: immigrate; 
crossovers: 1; mutation rate: 0.1; fitness criteria: training error. 
 
Table A.1 – Parameter values of the NN models adopted; the case of West Germany 

 Inputs IU HU Epochs LR M IN 
Model A Employment (GR), time (dummies) 22 10 900 0.9 1 0 
Model B Employment (GR), time (qualitative) 10 5(1stL), 

5(2ndL) 
650 0.9 1 0 

Model C Employment (GR), time (dummies), 
district (fixed effects) 

23 5 600 0.9 1 0 

Model D Employment (GR), time (dummies), 
district (qualitative) 

23 10 600 0.9 1 0 

Model E Employment (GR), time (dummies), 
district (dummies) 

31 10 200 0.9 1 0 

Model 
AW 

Employment (GR), time (dummies), 
wage (GR) 

23 5 750 0.9 1 0 

Model 
DW 

Employment (GR), time (dummies), 
district (fixed effects), wage (GR) 

24 15 900 0.9 1 0 

Model BD Employment (GR), time (qualitative), 
district (fixed effects) 

11 10 300 0.9 1 0 

Model 
BW 

Employment (GR), time (qualitative), 
wage (GR) 

11 5(1stL), 
5(2ndL) 

1600 0.9 1 0 

Model 
AGA 

Employment (GR), time (dummies) 22 24(1stL), 
5(2ndL) 

250 0.8279 0.2252 0.0071 

Model 
BGA 

Employment (GR), time (qualitative) 10 0 400 0.9013 0.3330 0.0118 

Model 
CGA 

Employment (GR), time (dummies), 
district (fixed effects) 

23 29 350 0.9492 0.1246 0.0101 

Model 
DGA 

Employment (GR), time (dummies), 
district (qualitative) 

23 27 600 0.9575 0.5977 0.0175 

Model 
EGA 

Employment (GR), time (dummies), 
district (dummies) 

31 24(1stL), 
8(2ndL) 

200 0.6892 0.0515 0.0198 

Model 
AWGA 

Employment (GR), time (dummies), 
wage (GR) 

23 29(1stL), 
9(2ndL) 

350 0.6002 0.4409 0.0028 

Model 
DWGA 

Employment (GR), time (dummies), 
district (GR), wage (GR) 

24 24(1stL), 
10(2ndL) 

300 0.8294 0.1348 0.0076 

Model 
BDGA 

Employment (GR), time (qualitative), 
district (GR) 

11 0 500 0.7982 0.2698 0.0164 

Model 
BWGA 

Employment (GR), time (qualitative), 
wage (GR) 

11 0 1800 0.8416 0.2774 0.0187 

IU = Input Units; HU = Hidden Units; LR = Learning Rate; M = Momentum; IN = Input Noise; 
GR = Growth Rates; 1stL = First Hidden Layer; 2ndL = Second Hidden Layer 
All models have only 1 Output Unit; the Activation Function is always a Sigmoid. 
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Table A.2 – Parameter values of the NN models adopted; the case of East Germany 
 Inputs IU HU Epochs LR M IN 

Model A Employment (GR), time (dummies) 16 10 100 0.9 1 0 
Model B Employment (GR), time (qualitative) 10 5(1stL), 

5(2ndL) 
900 0.9 1 0 

Model C Employment (GR), time (dummies), 
district (fixed effects) 

17 10 300 0.9 1 0 

Model D Employment (GR), time (dummies), 
district (qualitative) 

17 5 300 0.9 1 0 

Model E Employment (GR), time (dummies), 
district (dummies) 

25 15 300 0.9 1 0 

Model 
AW 

Employment (GR), time (dummies), 
wage (GR) 

17 5(1stL), 
5(2ndL) 

200 0.9 1 0 

Model 
DW 

Employment (GR), time (dummies), 
district (fixed effects), wage (GR) 

18 5(1stL), 
5(2ndL) 

200 0.9 1 0 

Model BD Employment (GR), time (qualitative), 
district (fixed effects) 

11 15 1100 0.9 1 0 

Model BW Employment (GR), time (qualitative), 
wage (GR) 

11 5 1000 0.9 1 0 

Model 
AGA 

Employment (GR), time (dummies) 16 26(1stL), 
8(2ndL) 

300 0.5685 0.799 0.0022 

Model 
BGA 

Employment (GR), time (qualitative) 10 19 1700 0.6878 0.3651 0.0230 

Model 
CGA 

Employment (GR), time (dummies), 
district (fixed effects) 

17 14 200 0.6385 0.0994 0.0019 

Model 
DGA 

Employment (GR), time (dummies), 
district (qualitative) 

17 16 200 0.9573 0.1433 0.0129 

Model 
EGA 

Employment (GR), time (dummies), 
district (dummies) 

25 16 100 0.9443 0.0666 0.0061 

Model 
AWGA 

Employment (GR), time (dummies), 
wage (GR) 

17 8 200 0.5705 0.0272 0.0170 

Model 
DWGA 

Employment (GR), time (dummies), 
district (GR), wage (GR) 

18 6 100 0.8544 0.0764 0.0034 

Model 
BDGA 

Employment (GR), time (qualitative), 
district (GR) 

11 29 1000 0.7201 0.4295 0.0196 

Model 
BWGA 

Employment (GR), time (qualitative), 
wage (GR) 

11 13 200 0.6973 0.4033 0.0004 

IU = Input Units; HU = Hidden Units; LR = Learning Rate; M = Momentum; IN = Input Noise; 
GR = Growth Rates; 1stL = First Hidden Layer; 2ndL = Second Hidden Layer 
All models have only 1 Output Unit; the Activation Function is always a Sigmoid. 
 



 18

Annex B – Statistical Performances from the Validation Phase that Identifies the NN 
Structures 
 
Table B.1 – Identification of the NN structures; the case of West Germany 

 Model 
A 

Model 
B 

Model 
C 

Model 
D 

Model 
E 

Model 
AW 

Model 
DW 

Model 
BD 

Model 
BW 

MSE 8.7872 19.8530 10.2190 7.1454 14.8275 9.3283 8.2178 19.5390 19.2870 
MAE 2.1383 3.7784 2.3971 1.9263 3.0673 2.2227 2.1865 3.7460 3.7372 

 Model 
AGA 

Model 
BGA 

Model 
CGA 

Model 
DGA 

Model 
EGA 

Model 
AWGA 

Model 
DWGA 

Model 
BDGA 

Model 
BWGA 

MSE 9.9385 18.6356 28.8005 19.2710 12.8172 13.1477 12.8878 19.8720 21.1513 
MAE 2.3783 3.6342 4.7588 3.6788 2.7682 2.8180 2.7912 3.7903 3.8918 

Note: For an explanation of the abbreviations, see Footnote 15. 
 

Table B.2 - Identification of the NN structures; the case of East Germany 
 Model 

A 
Model 

B 
Model 

C 
Model 

D 
Model 

E 
Model 

AW 
Model 

DW 
Model 

BD 
Model 

BW 
MSE 18.9200 43.4300 19.6600 19.6022 19.3368 18.6839 18.9898 41.4465 52.1626 
MAE 3.3300 5.4736 3.4900 3.3665 3.4456 3.3549 3.3208 5.3772 6.1449 

 Model 
AGA 

Model 
BGA 

Model 
CGA 

Model 
DGA 

Model 
EGA 

Model 
AWGA 

Model 
DWGA 

Model 
BDGA 

Model 
BWGA 

MSE 23.2200 42.2797 20.6900 19.6679 22.4591 23.5909 20.4065 41.4455 62.0669 
MAE 3.6800 5.3565 3.6400 3.4030 3.6707 3.7573 3.4287 5.3938 6.8123 

Note: For an explanation of the abbreviations, see Footnote 15. 
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Annex C – Aggregate Ex-Post Forecasts for the Year 2001 
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Figure C.1 – West Germany’s ex-post forecasts for the year 2001  
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Figure C.2 – East Germany’s ex-post forecasts for the year 2001 
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Annex D – Maps of Error Levels (Year 2001) and Estimated Growth Rates (Year 2003) in 
Germany 
 

Figure D.1 – Map of error levels – in both West and East Germany – for the average of the nine NN adopted 
models (ex-post forecasts for the year 2001) 
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Figure D.2 – Map of error levels – in both West and East Germany – for the average of the nine NNGA adopted 
models (ex-post forecasts for the year 2001) 
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Figure D.3 – Map of estimated growth rates – in both West and East Germany – for the average of the nine NN 
adopted models (forecasts for the year 2003) 
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Figure D.4 – Map of estimated growth rates – in both West and East Germany – for the average of the nine 
NNGA adopted models (forecasts for the year 2003) 
 


