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Abstract

This paper presents a procedure for clustering analysis that combines Kohone’s Self-
organizing Feature Map (SOFM) and statistical schemes. The idea is to cluster the data
in two stages: run SOFM and then minimize the segmentation dispersion. The
advantages of proposed procedure will be illustrated through a synthetic experiment
and a real macroeconomic problem. The procedure is then used to explore the
relationship between private indebtedness and some macroeconomic variables
commonly used to measure macroeconomic performance. The experiences of thirty-
nine countries in the early nineties are analyzed. The procedure outperformed others
clustering techniques in the job of identifying consistent groups of countries from the
economic and statistical viewpoints. It found out similarities in different countries
concerning their respective levels of private indebtedness when added to well-accepted
parameters to measure macroeconomic performance.

Keywords: Vector quantization, Clustering, Self-Organizing Feature Map,
Macroeconomic Performance, Private Indebtedness.

1. INTRODUCTION

Vector quantization (VQ) has been extensively explored from theoretical as well as applied
exercises , in particular to approach clustering problems. [3] and [8] are classical reviews and,
more recently, [1] is an excellent overview of the broad family of learning algorithms based on
Stochastic Gradient Descent. Some largely used algorithms may be considered in a VQ
framework, among those, the family of the K-means [4] and Kohonen’s Self-organizing Feature
Map (SOFM) [6], [7].

The goal of this paper is to propose a procedure for clustering analysis that combines
SOFM and statistical schemes. One of the main targets of segmentation procedures is to obtain
well-defined and compact groups. Although some statistical clustering schemes [4] are sensitive to
initial conditions, they have been successfully applied to some clustering (or segmentation)
problems. SOFM [5], [6], [7] produces selective tuned units to create a topographic map of the n-
dimension input patterns on a lower dimension grid and to approximate the input patterns’
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probability density function. However, in general, the prototypes produced by SOFM do not
coincide with clusters’ centers. Therefore, to bring each SOFM’s prototype to the center of its
associated cluster tend to reduce the overall segmentation dispersion.

The proposed procedure clusters the data in two stages: run SOFM and then minimize the
segmentation dispersion. The method used to reduce the segmentation dispersion starting from
SOFM’s clusters determines a variation of the procedure. Two methods are used: the K-means
algorithm [5] and Global Dispersion Minimization (GDM), a heuristic proposed ahead. Therefore,
two variations of the procedure are been proposed: SOFM-plus-K-means and SOFM-plus-GDM.

The advantages of proposed procedure will be illustrated through a bidimensional
controlled-numerical experiment and a real macroeconomic problem.

The new procedure will be applied to analyze the relationship between private indebtedness
and some macroeconomic variables commonly used to measure macroeconomic performance.
Segmentation seems to be a proper tool to approach this problem because it is intrinsically
multivariate and the countries’ details and idiosyncrasies would render global analysis less
appealing.

The motivation for this analysis is that the wide variety of macroeconomic performances of
different countries turned out to defy usual classifications based on the evaluation of fiscal deficits
and government debt. Besides the difficulties associated with comparing different measures of
fiscal variables, direct causality between fiscal deficits and overall macroeconomic performance is
uncertain. Simple indicators of the building-up of macroeconomic difficulties that may arise as a
result of excessive accumulation of debt by the private sector are also difficult to define, because
of both the dispersion of private indebtedness and its apparent lack of direct association with usual
measures of macroeconomic performance (e.g. economic growth, per capita income, external
deficit and inflation). But as an indicator of financial fragility of the firms and households, which
may precipitate sudden falls of capital investment outlays or consumption expenditures, it has been
used as an additional variable in the medium run classification of the macroeconomic performance
of countries. In the Asian crises of the second half of the nineties, the high levels of private debt
side by side with relatively low fiscal deficits were part of the picture and this may be seen as one
major flaws in the analysis of the Washington-based multilateral institutions (IMF and IBRD)
which led to a general underestimation of the risks of defaults. Recovery following that financial
turmoil has given rise to an new interest in international comparisons regarding private debt.

The procedure is used to do an exploratory investigation on the size of private debt because
high values of this variable may be associated with several phenomena, both structural, such as the
efficiency of the financial system, and cyclical such as experiences of growth spurts, short-lived or
not. In some instances, therefore, the depth of private indebtedness may be seen as a favorable
characteristic of the economy such as an environment of high confidence and structural
improvement, as is the case when institutional improvements make loans more attractive. In other
instances, high debt may be a sign of financial fragility, as firms or households’ balance sheets
may prove to be excessively sensitive to changes in macroeconomic environment, as has been the
case when sudden stops in external finance requires drastic changes in the macroeconomic policy
stance.

The paper is organized as follows: in Section 2 we present the segmentation tools used;
Section 3 is dedicated to a controlled-numerical experiment which helps to understand the outcome
of the procedures and helps to interpret the results for the international private-debt segmentation
analysis which is presented in Section 4, followed by concluding remarks.
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2. THE NEW CLUSTERING PROCEDURE

One of the most common strategies applied to solve segmentation problems is to enforce a
cost function based on the minimization of the clusters’ dispersions. It is in general useful to
associate to each group a prototype located at its center. The SOFM’s prototypes converge to a set
of weight vectors that do not, in general, satisfy this property [5]. To be sure, the minimization of
the clusters’ dispersions is not one of the explicit objectives of this algorithm. However, SOFM
exhibits two quite useful properties when dealing with clustering problems [7]. First, it has the
capability to approximate the input patterns’ probability density function: the denser is the
probability region, the greater is the number of neurons positioned to take care of it. Secondly, the
mapping preserves the topology of input patterns, in same sense.

The idea of the proposed procedure is to cluster the data in two stages. First run SOFM to
provide a preliminary clustering of the data, taking advantage of the SOFM’s properties. And
subsequently minimize the segmentation dispersion. Since the goal is just to get a selected initial
approximation, a fine-tuning of the SOFM convergence is not pursued. Two methods are used to
reduce dispersion: the K-means algorithm [5] and Global Dispersion Minimization, GDM, a
heuristic procedure which is proposed in sub-section 2.2. Thus, two variations of the procedure are
been proposed: SOFM-plus-K-means and SOFM-plus-GDM.

2.1. A BRIEF DESCRIPTION OF SOFM

The main goal of SOFM [6], [7] is to gather input patterns in grid-distributed units, the so-
called Kohonen’s map. Each unit, or neuron, is associated to a prototype. The prototypes
accomplish communication between this output grid, C,  and the input patterns space, X. Two
metrics are required: one for the input space, d, and another for the grid, d*, thus, defining two
metric spaces: (X, d) and (C, d*).

The SOFM algorithm may be divided into four basic stages: (i) Computation of the
distances between a randomly chosen input pattern and the prototypes; (ii) Choice of the closest
prototype to the given input pattern (the winner neuron or prototype); (iii) Activation and
approximation of the winner prototype and its neighborhood to the input pattern; (iv) Gradual
decrease of the size of the affected neighborhood.

A neighborhood V on the grid, centered at neuron j, with radius r, may be defined as:

V = V(R) = {Cj such that d*(Cj, Ci) ≤ r}

The set of neurons V(r = n) is said to be the n-th neighborhood. Although different metrics
may generate different neighborhoods, there is strong experimental evidence that the final map is
not affected by the choice of the metric d*, [6], [7].

The approximation of the prototypes to the presented input pattern is controlled by a
neighborhood function, ℑ. It is a smoothing kernel defined over the grid which depends on the
distance between the prototypes. It has to fulfill some requirements in order for the algorithm to
converge [7].

( )( )jij,ij,i C,C*dℑ=ℑ
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Indeed, the neighborhood function centered at the winner neuron is the one which defines
the approximation policy. The winner neuron’s prototype is updated with a unity factor, while
those of each neighbor are updated with decreasing factors proportional to their distance from the
winner, measured by d*.

An important parameter of the neighborhood function is the radius r. It establishes to what
distance from the winner neuron updating is performed. The radius r decreases with the algorithm
iterations, reducing the size of the neighborhood affected by the chosen input pattern. The
neighborhood function, at iteration t, centered at a winning neuron w, can be written as:

( ) ( ) ( )( )tr;C,C*dt jwi,wj,w ℑ=ℑ

Let us gather the prototypes in a matrix U, by placing the prototype associated to neuron j
in column j. The training procedure can now be described by the following four basic steps:

S1. Randomly choose an input pattern Xk, such that X(t) = Xk

S2. Find the winner neuron w such that:

( ) ( )( )tU,tXd minarg,w j
j

= , j = 1,2, ... J;

S3. Update the prototype matrix U by:

( ) ( ) ( ) ( ) ( )[ ]tUXtttUtU wkj,wjj −ℑγ+=+ 1 , j = 1,2, ... J;

where γ(t) is the learning rate in t;
S4. Stop the algorithm when no significant changes in the prototypes can be detected.

The M input patterns are allocated in the J neurons according to the following competitive
rule:

( ) ( )






 =∈== ik

i
kjj U,Xd minarg,j:XXUCC ,  j = 1,2, ... J; (1)

If M >> J, the SOFM is performing clustering analysis. In this case, each neuron is a cluster
(or group or segment) and its prototype can be seen as a representative of the input patterns
allocated in it.

Under certain assumptions, the SOFM Mean-Risk Functional can be written as [5]:

( )∑∫ ∑
= =









ℑ=

J

i
)U(C

J

j
jkji

i

dX)X(pU ,Xd.)U(R
1 1

It is showed [5] that, under some conditions, the sequence ( ) ( )( )tURtR =  goes to a local

minimum R* with probability 1 and, if the limit of the sequence ( )tU  exists, each prototype
satisfies the following condition:
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where ( ) ( )
( )∫≡µ

*UCj
j

dXXXp*U  is the mean pattern of cluster j and ( ) ( )
( )∫≡

*UCj
j

dXXp*Up   is

the associated probability. Both are generated by U* according to (1).
Equation (2) establishes the interdependence relationship among the prototypes caused by

the neighborhood function: the lower is the number of input patterns in the cluster and the more on
the grid center it is, the greater is the attraction of other clusters’ prototypes on its prototype. The
attraction forces may bring a prototype away from center of its cluster. Thus, the cluster dispersion
may end up being higher because of the allocation of input patterns far way from its center. And
finally, the segmentation dispersion may be negatively impacted.

Two statistical schemes are then used to bring the prototypes to the center of their cluster
and, consequently, to reduce the segmentation dispersion: the K-means algorithm [5] and Global
Dispersion Minimization, GDM, a heuristic proposed ahead.

Fixed the number of clusters J, the k-means algorithm can be briefly described in four
steps:

S1: Choose arbitrary J cluster representatives;
S2: Produce clusters by allocating each input pattern to a group according to (1), where U

is the matrix containing the clusters representatives;
S3: Update each cluster representative as the mean of the input patterns allocated in the

associated cluster produced in S2.
S4: Keep running S2 and S3 until no change in the cluster representatives occurs.

2.2 A HEURISTIC TO REDUCE DISPERSION

Before presenting the heuristic, it is necessary to formally define cluster dispersion and
segmentation dispersion. The dispersion of the cluster Cj is defined as the square root of the trace
of the covariance matrix computed over the input patterns belonging to Cj:

( )jj trD Σ= (3)

Let mj be the number of input patterns allocated in the cluster Cj. The segmentation
dispersion, D, is as the average of each cluster’s dispersion weighted by the proportion of number
of elements in each group. A stronger weight is ascribed to denser groups.

∑
=









=

J

j
j

j
D

M

m
D

1

(4)

The heuristic is composed by Local and Global loops. The Local loop has the objective of
finding the “best” position estimator for one group in accordance to the segmentation dispersion.
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In this loop some prototype candidates are generated, while the position estimators for all the other
groups are kept clamped. The Global loop comprises one run of the Local loop for each of the
clusters. In Global iterations, the prototype candidates identified as the best for each of the groups
are installed to consolidate the process. The algorithm comprises the following steps:

S1: Produce clusters using as initial prototype candidates the SOFM’s prototypes, by
allocating each input pattern to a group according to (1);

S2: Choose one of these groups;
S3: Calculate a position estimator (e.g. mean, median), and set this as a new prototype

candidate;
S4: Reallocate all the input patterns, by using (1);
S5: Calculate the dispersion for the chosen group. Store this result to check stability in Step

7.
S6: Calculate the segmentation dispersion. Store this result for future comparison (Step 8).
S7: If Local Stabilization was not reached, return to Step 3. Local Stabilization means that

the dispersion calculated in Step 5 is the same for two consecutive iterations.
S8: Choose the prototype candidate corresponding to the smallest segmentation dispersion

calculated in Step 6.
S9: Return to Step 2 without changing any of the prototype candidates. Restart this step

until all of the groups have been visited.
S10: Choose new prototype candidates for all groups using the segmentation dispersion

minimization criterion (Step 6) until Global Stabilization is reached. Global
Stabilization means that, for two consecutive global runs, there has been no change to
any of the prototype candidates calculated in Step 7.

Note that the Local loop phase can be processed in parallel mode since the order in which
the groups are chosen does not affect the final result. The use of combinations of more than one
position estimator (median, mean, trimmed mean, etc.) can be directly implemented in the Local
loop. The possibility of employing position estimators other than the mean may be useful to
capture the specific characteristics of some clusters. For example, the center of a cluster with fat-
tails distribution (compared to Gaussians) may be more efficiently estimated by a trimmed mean
than by the standard mean.

Although this algorithm and the K-means retain some similarities, Step 8 constitutes a
major difference: the prototype substitution is conditional and associated with a reduction of
segmentation dispersion.

3. A CONTROLLED NUMERICAL EXPERIMENT

In this section we present numerical simulations with synthetic data. The main purpose is to
show, in a controlled mode, the potential of two variations of the procedure, SOFM-plus-GDM and
SOFM-plus-K-means, versus the pure application of SOFM or K-means. The clusters generated by
SOFM that initialized the procedure are the same.

A numerical experiment was designed by generating 6 synthetic clusters - a total of 4075
points. Each cluster has its points generated through a uniform distribution inside a polygon. The
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size and the densities vary from one polygon to another. A graphic representation of these artificial
clusters can be found in Figure 1.

The results of these experiments can be found in the Figures 2-5. In these Figures, the solid
lines are decision boundaries between the clusters (divisions, in fact) generated by each of the
three methods. The metric used was the Euclidean distance. The SOFM associated with GDM
(Figure 2) recognizes all six groups. The SOFM-plus-K-means procedure (Figure 3) was unable to
distinguish between two groups and perceived one segment as two different groups. The SOFM
algorithm (Figure 4) performed quite poorly. The dispersions were 0.0476, 0.0702 and 0.0894,
respectively. Consequently, the SOFM-plus-K-means achieved a 21% gain compared with SOFM
in terms of dispersion; and the SOFM-plus-GDM, a 47% gain.

The K-means algorithm was run independently one hundred times for this data. Fifty percent of the
total segmentations presented dispersion below SOFM-plus-K-means. In comparison with the
SOFM associated with GDM procedure, 9% generated exactly the same segmentation and 91%
provided a worse performance.
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Note that both procedures, the SOFM-plus-GDM and SOFM-plus-K-means, performed better than
either K-means or SOFM alone. This result seems to indicate the potential of combining, in
sequence, preliminary approximation of the data probability density function provided by SOFM
with minimization of segmentation dispersion.

4. CLUSTERING ANALYSIS OF INTERNATIONAL PRIVATE-DEBTS

This section uses the clustering devices described in the previous ones to analyze how
private debt, measured as a ratio of GDP, may be related to overall macroeconomic performance.
The macroeconomic performance is measured by the following variables: Inflation Rate, Current
Account Surplus as a percentage of GDP, Per Capita Income and Economic Growth Rate.1 The
variables were expressed in standardized annual means for 1991 to 1995. Each input pattern is a
vector containing the above 5 variables of a country.

Two aspects are relevant when we probe into the relationship between the performance
variables and private debt. First, this problem is intrinsically multivariate, so its visualization is
non-trivial. Second, the countries’ details and idiosyncrasies such as specific characteristics of the
financial sector, nature of private debt, existence of public guarantees and so forth would render
global analysis less appealing, should the diversity of each one of the countries be scrutinized in
isolation.

Thus, segmentation seems to be a proper procedure in a search for readily available
indicators that might add information to a pre-defined set of macroeconomic measures. In the
present case, a successful segmentation means grouping countries that exhibit common economic
characteristics that make sense in the context of macroeconomic experience. Note that the goal is
neither to generate a function to forecast values for the private debts as a percentage of GDP based
upon four variables, nor to decompose the multivariate variance into components.

Thirty-nine countries were selected from a total of 160 available in the IFS. The criterion to
select the countries was based on their relevance in the world scenario and the quality of the data.
The chosen countries are: Argentina, Australia, Austria, Belgium, Bolivia, Canada, Chile, China,

                                                
1 Source: International Financial Statistics database, IMF- March 1997.
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Colombia, Denmark, Egypt, Finland, France, Germany, Greece, Holland, Hungary, India,
Indonesia, Israel, Italy, Japan, Malaysia, Morocco, Mexico, Norway, Paraguay, Peru, Portugal,
Singapore, South Korea, Spain, Switzerland, Thailand, Turkey, UK, Uruguay, US, and Venezuela.
Brazil does not appear in the list because of its huge inflation rate during this period.2

The distribution of countries by continent is as follows (in parentheses we show the number
of available countries in the IFS): Asia, 9 (38); Europe, 16 (53); North America, 2 (2); Latin
America, 9 (17); Africa, 2 (53); Middle East 1 (17). Eighteen (out of 39) are developed countries.

The descriptive statistics of the five variables are shown in Tables below. Table 1 presents
the individual statistics, and Table 2 the correlation coefficients between the selected variables in
the sample.

TABLE 1
Variables Individual Descriptive Statistics (without standardization)

Debt/ Inflation Per capita Growth CAS/
Statistic

GDP (%) Rate (%) Income (US$) Rate (%) GDP (%)

Mean 64.9 9.4 11,005 2.7 -1.0
Median 53.9 4.3 7,067 2.1 -1.2
Standard deviation 43.3 12.6 9,977 2.4 3.9
Kurtosis 195 7.81 -1.22 0.60 3.03
Skewness 122 2.66 0.50 0.99 1.00
Range 197.8 60.7 32,194 10.5 21.7
Minimum 10.9 0.7 384 -0.4 -9.0
Maximum 208.7 61.4 32,578 10.1 12.7

TABLE 2
Correlation Coefficients

Debt/ Inflation Per capita Growth CAS/
Variables

GDP Rate Income Rate GDP

Debt/GDP 1
Inflation Rate -0.51 1
Per capitaIncome 0.57 -0.51 1
Growth Rate 0.04 0.04 -0.41 1
CAS/GDP 0.34 -0.16 0.51 -0.04 1
Multivariate correlation
Coeficient *

0.46 0.36 0.66 0.33 0.32

  * R2 from equation in which a variable is explained by the others.

                                                
2 In fact, this Section is part of a research project on private debts covering data since 1981. The East European
country data for early the Eighties were not available in the IFS, so they do not appear in this work. Brazil does not
appear because of its huge inflation rate during this period.
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As can be seen in Table 2, there are no highly correlated variable pairs. The strongest
positive correlation is between Debt/GDP and Per Capita Income (0.57) and the strongest negative
correlation is between  Debt/GDP and Inflation Rate (-0.51). Economic Growth is  correlated in
the sample only with Per Capita Income. Except for Per Capita Income, all R2 are small. We have,
therefore, no reason to exclude any variable due to linear dependence with other variables.

The methodology described in the previous section is now applied to investigate whether
private debt may be meaningfully added to the macroeconomic performance variables as part of a
criterion to segment the countries. Considering the number of countries in focus, preliminary data
analysis shows that four groups are sufficient to represent the data structure.

The organization of the groups (S1 to S4) corresponds to the one-dimensional distances: S1
is closer (or more similar) to S2 than to S3. The SOFM segmentation provided the following
result:

S1: China, Colombia, Egypt, Peru, Turkey, Uruguay, and Venezuela;
S2: Argentina, Bolivia, Chile, Greece, Hungary, India, Indonesia, Israel, Malaysia,

Morocco, Mexico, Paraguay, Thailand;
S3: Australia, Canada, Italy, Korea, Portugal and Spain;
S4: Austria, Belgium, Denmark, Finland, France, Germany, Holland, Japan, Norway, US,

UK, Singapore, and Switzerland.

TABLE 3
Number and means of SOFM segmentation groups

Groups # of
countries

Debt/
GDP

Inflation
Rate

Per capita
Income

Growth
Rate

CAS/
GDP

S1 4 -1.08 2.56 -0.87 0.01 -0.17

S2 17 -0.33 0.00 -0.81 0.48 -0.51

S3 11 0.35 -0.54 0.74 -0.56 -0.12

S4 7 0.87 -0.61 1.29 -0.30 1.52

All the variables discriminated S1+S2 from S3+S4, except Current Account as a
Percentage of GDP. The first two groups present the lowest Debt/GDP ratio and Per Capita
Income, and the highest economic growth Rate. The most pronounced division line is the Per
Capita Income: in S1+S2, the only country with above average Per Capita Income was Israel. In
S3+S4, only Portugal and Korea have below average Per Capita Income. It seems that S1+S2 and
S3+S4 show a good division between developed and underdeveloped countries. Inflation is the
main factor separating S1 from S2 and Per Capita Income is the best discrimination variable for S3
and S4.

The following result was obtained from SOFM-plus-K-means procedure:

C1: Peru, Turkey, Uruguay, and Venezuela;
C2: Argentina, Bolivia, Chile, China, Colombia, Egypt, Greece, Hungary, India, Indonesia,

Israel, Korea, Malaysia, Morocco, Mexico, Paraguay, and Thailand;
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C3: Australia, Austria, Canada, Denmark, Finland, France, Germany, Italy, Portugal,
Spain, US and UK;

C4: Belgium, Holland, Japan, Norway, Singapore and Switzerland.

TABLE 4
Number and means of SOFM-plus-K-means segmentation groups

Groups # of
countries

Debt/
GDP

Inflation
Rate

Per capita
Income

Growth
Rate

CAS/
GDP

C1 4 -1.08 2.56 -0.87 0.01 -0.17

C2 17 -0.33 0.00 -0.81 0.48 -0.51

C3 12 0.35 -0.55 0.81 -0.54 -0.04

C4 6 1.12 -0.61 1.26 -0.28 1.64

In general, this second segmentation preserves the differences between the first and the last
two groups in a very similar to those observed in the former grouping. The only country that
moved from S3+S4 to C1+C2 was Korea. This movement increases the discrimination capacities
of the Per Capita Income and Economic growth Rate. The C1 Inflation characterization is very
bold: indeed, it represents the highest inflation in the period. However, Groups S3 and S4 were
strongly modified such that the discriminating variable for C3 and C4 is now Current Account
Surplus as a percentage of GDP: all six counties have the highest values of the sample (not
considering Egypt).

Finally, the only difference between the SOFM-plus-K-means clusters and SOFM-plus-
GDM clusters (G1 to G4) appeared in relation to Denmark, which moved from C3 to G4. This can
be understood as a consequence of its high Current Account surplus as a percentage of GDP.

The increased fragility of Korea in the early nineties and the strengthening of Denmark,
were both captured by the SOFM-plus-GDM while the application of SOFM-plus-K-means
captured the differences between Korea and OECD countries. None of the procedures were able to
distinguish Singapore from the OECD countries, suggesting that private indebtedness was not a
fundamental characteristic of the Singapore economy, perhaps due to its role as a financial center.

In terms of total dispersion, both procedures improved the SOFM segmentation quality.
SOFM-plus-K-means and SOFM-plus-GDM produced an improvement of 9.3 % and 10%,
respectively.

It is important to note that one has to consider not only the improvement of about 10% in
the dispersion measure but also the economic meaning of the changes in classification which
resulted from the proposed procedures. Randomly initialized K-means was tried ten times
independently. No run was able to produce a reasonable segmentation from the economic and
statistical viewpoints.

Since the best segmentation results were generated by SOFM-plus-GDM, we restricted the
final analysis to these groups. Tables 5 and 6 show, respectively, the means and the standardized
means of the variables in each segment.
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TABLE 5
Number and means of SOFM-plus-GDM segmentation groups

Groups # of
countries

Debt/
GDP

Inflation
Rate

Per capita
Income

Growth
Rate

CAS/
GDP

G1 4 -1.08 2.56 -0.87 0.01 -0.17

G2 17 -0.33 0.00 -0.81 0.48 -0.51

G3 11 0.35 -0.54 0.74 -0.56 -0.12

G4 7 0.87 -0.61 1.29 -0.30 1.52

TABLE 6
Number and means of SOFM-plus-GDM segmentation groups (without standardization)

Groups #  of
countries

Debt/
GDP (%)

Inflation
Rate (%)

Per capita
Income (US$)

Growth
Rate (%)

CAS/
GDP (%)

G1 4 18.1 41.7  2,325 2.7 -1.7

G2 17 50.6 9.4  2,924 3.9 -3.0

G3 11 80.1 2.6  18,388 1.4 -1.5

G4 7 102.6 1.7  23,875 2.0 4.9

The presence of the consistent groups from the economic and statistical viewpoints
indicates the existence of similarities in terms of countries’ experiences with private debts and
usual macroeconomic indicators in the early nineties have been identified by all the applied
statistical tools, and some interesting differences have been captured by the segmentation devices.
Furthermore, the presence of a regional component can be noticed in the groups. It is interesting to
observe that this information was not supplied.

Table 2 indicates the level of linear association between Debt/GDP and the other four
variables. There is association between Debt/GDP and Inflation Rate (negative) and Debt/GDP and
Per Capita Income (positive). The linear association involving Debt/GDP and CAS/GDP is not
clear. However, by comparing the groups’ means, one may conclude that the focus of two big
groups, G1+G2 and G3+G4, enables the identification of a relationship between Debt/GDP and
Economic growth Rate. It is worth noting that, in this case, the correlation coefficient did not
provide any indication. Based on the groups’ means, one can observe that the countries for which
the Debt/GDP variable are greater (smaller) than their group means, have an Economic growth
Rate above (below) the sample mean.

5. FINAL REMARKS

In this paper, we proposed a procedure for clustering analysis that clusters the data in two
stages: run SOFM and then minimize the segmentation dispersion. The method used determines a
variation of the procedure. Two methods were used to reduce the segmentation dispersion starting
from SOFM’s clusters: the K-means algorithm and Global Dispersion Minimization (GDM), a
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heuristic proposed in the paper. Therefore, two variations of the procedure were tested: SOFM-
plus-K-means and SOFM-plus-GDM.

After describing the nature of the procedure, we illustrated its performance by means of a
bidimensional controlled-experiment. It was found that in the controlled experiment, the
segmentation generated by the procedures outperformed both K-means and SOFM in isolation.
The SOFM-plus-GDM performed better than SOFM-plus-K-means.

The segmentation techniques were then applied to the identification of similarities in
different countries in the early nineties, concerning their respective levels of private indebtedness
when added to well-accepted parameters to measure macroeconomic performance. Both proposed
procedures were able to allocate the 39 countries in four statistically and economically consistent
groups, outperforming SOFM and K-means in isolation. SOFM-plus-GDM provided a slightly
better segmentation than SOFM-plus-K-means.

The results suggest that the debt to private sector as a percentage of GDP variable can be
useful as an additional macroeconomic performance measure, when we examine the fragility of the
different economies to changes in the international financial environment, even if we disregard
important considerations such as the quality of private debt, the source of finance and so on. The
segmentation which resulted from the exercise exhibited enough sensitivity to capture the
differences in private indebtedness indicators, and suggests that a possible grouping of countries
according to sovereign risk, may be obtained from the use of this method to enhance the usual set
of performance variables.

Research in progress by the authors suggest the results described in this paper provide
powerful instruments to classify macroeconomic risk, independent of the observed fiscal and
monetary variables which occupy a prominent role in the check list of risk graders.  This may be
illustrated by Table 7. There, we present the number of defaults of private international debt
between 1996 and 2000 for the different groups defined by SOFM plus GDM procedure. Consider,
for example, G2 cluster of countries. Even if we exclude the USA, (for the obvious reason that  the
number of defaults in the US economy would unduly overstress our point), the group concentrates
75% of the observed defaults of private external debt, in spite of the fact that macroeconomic data
per se seem quite reasonable in the context of the whole sample. It has the second smallest
debt/GDP ratio (50.6%),  inflation close to the sample mean (9.4%) the higher average rate of
growth (3.9%) and the highest current account deficit ( 3% of GDP). The group includes several of
the countries that occupied the center stage of the international turbulence in the second half of the
nineties.
.

TABLE 7
Number of private debt defaults during 1996-2000 (without US defaults)

per SOFM-plus-GDM segmentation groups

Groups
# of

countries
# of

defaults
# of defaults
per country

G1 4 0 0

G2 17 113 7
G3 11 29 3
G4 7 9 1

   Source: Moody’s
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