
Genetic Action Trees

A New Concept for Social and Economic Simulation

Thomas Pitza, Thorsten Chmuraa

a Laboratory of Experimental Economics, Adenauerallee 24-42, 53113 Bonn, Germany

Abstract
Multi-Agent Based Simulation is a branch of Distributed Artificial Intelligence that builds the base for
computer simulations which connect the micro and macro level of social and economic scenarios. This
paper presents a new method of modelling the formation and change of patterns of action in social
systems with the help of Multi-Agent Simulations. The approach is based on two scientific concepts:
Genetic Algorithms [Goldberg 1989, Holland 1975] and the theory of Action Trees [Goldman 1971].
Genetic Algorithms were developed following the biological mechanisms of evolution. Action Trees are
used in analytic philosophy for the structural description of actions. The theory of Action Trees makes
use of the observation of linguistic analysis that through the preposition by a semi-order is induced on a
set of actions. Through the application of Genetic Algorithms on the attributes of the actions of an Action
Tree an intuitively simple algorithm can be developed with which one can describe the learning
behaviour of agents and the changes in action spaces.
Using the extremely simplified economic action space, in this paper called “SMALLWORLD”, it is
shown with the aid of this method how simulated agents react to the qualities and changes of their
environment. Thus, one manages to endogenously evoke intuitively comprehensible changes in the
agents‘ actions. This way, one can observe in these simulations that the agents move from a barter to a
monetary economy because of the higher effectiveness or that they change their behaviour towards
actions of fraud.

1. Introduction

Computer simulations open up a new way of analysing complex social and economic
systems. The simulation stands out against the classical differentiation of deductive and
inductive methods in economic theory because in simulations, explicit conditions are
formulated in a formal language as it is done in deductive procedures. However,
simulation results are not interpreted through proofs but through the inductive
evaluation of the data [Axelrod 1971]. Like an experiment, the modularity of a
computer programme allows that data are achieved under controlled conditions and
precisely presuppositions.

An example of social simulations which has become classical in recent times is the
finite cellular automat which was developed by v. Neumann and Ulam [v. Neumann
1966]. At first, it was used for an attempt to model the biological process of self-
reproduction (Conway’s game of life [Gardner 1970, 1971]). Another field of
application of the cellular automat is the analysis of complex technical and physical
processes.

In computer models of social sciences, cellular automats are often implemented in order
to demonstrate social interdependencies such as segregation effects in populations
[Schelling 1969, 1971]. Such emergent phenomena evolve through the fact that through
their individual actions, agents generate circumstances which were not intended by
them. Other examples for that are the origin of traffic jams [Nagel, Schreckenberg
1992] and the collapse of finance markets. Such paradoxical relationships between the
individual actions on the micro level and the collective effects on the macro level
describe a fundamental class of problems in social sciences which can very well be
modelled through computer simulations.

Applications of computer simulations in economic sciences can often be found in the
context of game theory. An important example is the theory of reinforcement learning
developed by the biologist Harley, which was intensely analysed by [Roth, Erev 1995;
Erev, Roth 1998]. Recent learning models such as Experience Weighted Attraction by
Camerer also belong in this field [Camerer 1998]. In simple game situations,
experimental data could well be prognosed with the aid of such learning algorithms
[Roth, Erev 1995; Selten, Pitz, Chmura 2003].

However, in the approaches of game theoretically motivated learning algorithms, many
characteristics of social agents are not taken into account. Thus, many intentional
attitudes (beliefs, desires, intentions), the alterations of preferences or the social context
of agents is only rudimentarily represented. Communication, adaptive abilities or a
representation of the agents’ knowledge are nearly completely missing. Apart from that,
agents with heterogeneous behaviour patterns depending on the specific situation are
important for the adequate depiction of complex social systems. These cannot be
recorded by simple learning algorithms.
Due to this criticism, multi-agent systems have developed out of the field of distributed
artificial intelligence.

Software entities which differ from the usual learning algorithms in that way they
autonomously develop their own strategies for the coping with tasks are called agents.
Agents do not own a merely trivial control of their actions. They use and administer
knowledge, interact with other agents and possess the ability to cooperate and
communicate. Agents perceive their environment and react to changes in their
surroundings. They own adaptive abilities and learn from experience and they do not
only react to changes in their environment but take the initiative and affect their
environment through their actions.

Among the first and probably best analysed architectures of multi-agent systems are the
BDI systems (belief-desire-intention) whose development was started by Bratman
[Bratman 1980] in the middle of the 1980s. BDI systems are examples of top-down
models. This means that the agents’ intentional states, beliefs, desires and intentions,
are explicitly represented through the BDI structure. Epistemic, modal or temporal
logics are used for the manipulation of the BDI structure. Nevertheless, the
implementation of these systems is usually very laborious due to the complex logical
calculus.

A possible solution is offered by bottom-up modelling on the basis of neural networks
or, as in this paper, by Genetic Algorithms [J. H. HOLLAND 1975]. This means that the
entities relevant to the model, such as the characteristics of actions or intentional
attitudes, are implicitly represented by a codification like binary sequences. On the
basis of the codification, fundamental mathematical operations substitute the logical
calculi.

Although widely unnoticed by social and economic scientists, multi-agent systems have
primarily become established as solutions for problems in engineering and information
sciences, for instance in process management, traffic sciences and logistics, as well as
on the internet as a virtual service provider and in computer games [Weiss 1999]. Thus,
a new approach for the modelling of actions in multi-agent systems shall now be
exemplarily analysed in an economic context in this paper. In contrast to this, game

theory normally deals with the ontological structure of actions in a reductionism way.
Through strategies, actions are mainly represented as atomic mathematical entities in
economic models without any operational semantics. At best, characteristics of actions
manifest themselves in their evaluation through the abstract preference relations or
utility functions. We take the view that a linguistically motivated analysis of actions
offers a deeper insight in the formal structure of actions in order to model those
operational and procedural qualities of actions which are important for computer
simulations. The terminology of analytical philosophy, especially analytical theories of
action [J. L. Austin 1975, J. R. Searle 1971, Chisholm 1964, Davidson 1980], serves as
a basis of the concept formation.

Multi-Agent Based Simulation is a branch of Distributed Artificial Intelligence that
builds the base for computer simulations which connect the micro and macro level of
social and economic phenomena like cooperation, competition, markets and social
networks dynamics. The dynamics of social and economic systems manifest themselves
in the formation, change and disappearance of actions. For this reason, actions of many
diverse forms appear in the application of computer simulations on economic and social
processes. That creates the question how actions can be represented in computer
simulations. In this paper a general and uniform approach of modelling an as extensive
class of actions as possible is analysed. On the one hand, this concept is supposed to
take into consideration the diversity of actions, on the other to be operationally
manageable nevertheless for the modelling of simulation models such the multi agents
system.

Searching for an integral model of actions, one inevitably encounters the question
which qualities of actions separate these from different entities. This can be expressed
the most forcefully with the ontological question “What are actions?”. Due to the
heterogeneity and fundamental fuzziness of actions, one can give only incomplete
answers to this. Therefore, we will attempt to approximate the ontological question
through an epistemic and an evolutionary translation:

1. How can actions be described through a general model that is suitable for Multi-
Agent simulations?

2. How can the formation and disappearance of actions be described in this model
algorithmically?

We will now develop a suitable general data format and an algorithm for the generation
of modifications of actions and thus give a possible answer to the epistemic and
evolutionary question. Afterwards, we will explain the method with the help of an
economically motivated example. For this economic example a Multi-Agent Simulation
SMALLWORLD was implemented. In these situations one can observe how a set of
agents develops from a barter to a monetary economy or how they change their
behaviour towards actions of fraud. SMALLWORLD is, as the name suggests, a
strongly simplified model of an economic action space. Nevertheless, this simplification
is not fundamental in nature and can easily be rectified in a more complex but
methodically analogous model.

It was not the aim of this paper to compare quantitative results with empirical data.
Rather, the statistical evaluation of the simulations serves to prove endogenous
qualitative changes in the behaviour of the agents in the simulations. The main aim was

to exemplify the method of Genetic Action Trees with intuitively self-evident and
deliberaty almost trivial examples.

Of course, we do not claim that there is a bijection of our model to the ontological
structure of social processes. But as physical elementary particles do not solve
differential equations; their behaviour could be described by differential equations. In
this sense, the concept of Genetic Action Trees is understood as a pragmatic vehicle for
modelling the dynamic of social and economic systems.

2. The epistemic question

2.1 Action types

In order to find answers to the epistemic question concerning a uniform system of
describing actions, it is helpful to make use of some of the concepts used in analytical
theories of action. For a definition of these fundamental notions in theories of action, it
is worthwhile to examine the way in which actions are represented in common speech.
Descriptions of actions such as "Last week Peter drank 2 bottles of wine with his two
colleagues in his favourite pub." first of all suggest understanding actions as concrete
singular objects to which a context of limited expansion in space and time can be
attached. But if we consider actions to be singular entities in this way, we are
confronted with the problem of their repeatability and countability. It is therefore
advisable to take a further step of abstraction and to subsume similar concrete actions as
equivalence classes, so-called action types. Hence, the repetition of an action should be
understood as the carrying out of an equivalent but indeed numerically different action.
It is exactly the analysis of iterations of similar actions which plays an essential role in
computer simulations. A certain quantity of action types is called action space.

2.2 Action attributes

Just as the ontological question of the nature of actions cannot be solved generally,
likewise the question of the characterizability of the equivalence relation cannot finally
be answered but only in regard to the respective model. Instead of a formal definition of
the equivalence relation for action types, we use quasi-deictic denotations of action
types taken from common speech: action types can be denoted by using the infinitive
form of verbs “to walk, to buy, to produce, to kill” etc. and a set of free variables. The
free variables serve as a parameter for references of space and time as well as for the
actors and objects affected by the processes when the action is performed. Likewise, we
will treat quantitative and qualitative action attributes, such as “5 m/s” for “to walk”
and “maliciously” for “to kill” etc. as free variables. In the following, we will call these
free variables action attributes. Finally, we will understand certain preferences agents
might have with regard to actions, such as “with pleasure” for “to travel” and
“reluctantly” for “to drive a car”, as action attributes in our model.

Talking about actions, it is naturally impossible to specify all free variables through an
explicit allocation. Therefore, we will restrict ourselves in the notation to those
variables which are essential, i.e. relevant for the model. The number and sort of free
variables of an action type thus depends on the model. The more detailed the model, the
higher the number of parameters and the more differentiated the range of the variables.
The execution of an action belonging to an action type formally means the instantiation
of all free variables.

Notation

• If []()n1 i,...,iH is an action type with a list of free variables, let
[] []()n1n1 k,...,k:i,...,iH or in short ()n1 k,...,kH be the execution of an

action of type H with the allocation []nk,...,k1 of the free variables
[]ni,...,i1 . Due to better legibility, the square brackets [] are sometimes
left out.

• We use the meta-variable “_“ for a set of variables which is not
completely specified.

Example 1 (action types)

• [] []()Peter:ieatto ; Possible semantics: Peter is eating.
• [] []()wine,Peter:w,idrinkto ; Possible semantics: Peter is drinking some wine.
• [] []()book€,10,Paula,Peter:g,b,j,ifrombuyto ; Possible semantics: Peter buys

a book from Berta for 10 €.
• [] []()consumer,wine,Paula:Jk,i,offerto ; Possible semantics: Paula offers the

product wine to a set J of consumers.

2.3 Action Trees

On certain action spaces the preposition by induces a semi-order (<by) [Goldman 1971].

Example 2 (Unbranched Action Tree)

 <by

 <by

Figure 1: Unbranched Action Tree

Such action spaces can be arranged as a tree diagram using the most general action type
action(i,_) and a set of free variables “_“ (see Figure 1). Here the semantics of
action(i,_) be that “an agent i carries out any kind of action”. This action is specified
from the root to a leaf by the allocation of more and more of the free variables.

2.4. Binary decision-making actions – degree of intention

The degree of intention in SMALLWORLD
Decisions can be understood as special forms of action. We thus suggestively call them
decision-making actions. In an Action Tree, decision-making actions possess at least
two followers with regard to the <by-relation.

In the simulations of the model SMALLWORLD described in this paper, we restrict
ourselves to binary decisions, i.e. decisions with two alternatives (see Figure 2). H is a
binary decision-making action with the nodes H1 and H2 which can be carried out by

action([i, _]:[Peter, _])

to go([i, destination, _]:[Peter])

to go([i, destination, means of transport, _]:[Peter, Paris, train, _])

the agent in principle. In order to depict the agent’s preference regarding the two
alternatives, we use a degree of intention of H1. The degree of intention of H1 is
represented by a real number

1Hd [] { }21,0 ∪∈ . The selection algorithm at the node H
can be described as follows: One chooses a random number c from a finite subset

[]1,0C ⊆ . Then H1 is chosen exactly then if c <
1Hd is valid. Thus, changes in

behaviour result from a modification of the set C. With 0d
1H = (

1Hd =2), the node H1
(H2) can be eliminated in the model. The degree of intention

1Hd implicitly also
determines the intensity of the wish to carry out H2. The degree of intention describes
what the agent wants to do. We understand

1Hd as the action attribute belonging to the
decision-making action H.

 Example 3 (branched Action Tree)

 <by <by

Figure 2: Action Tree with binary decision-making action

In Figure 2, let
1Hd denote the degree of intention of the left node, i.e. the intensity of

the wish to carry out the left node of the tree.

2.5 The selection of an action type

The selection of an action type by an agent can be seen as the walk through the Action
Tree from the root to a leaf. In doing so, the agent chooses one of the two subsequent
nodes depending on the degree of intention, as described under 2.4. Occasionally, the
agents get instructions from other agents which they are forced to follow. For instance,
Peter can have order to go to Paris. The free variable “destination” is then already
allocated with “Paris”. In this case, Peter’s selection process starts at the node where
free variables appear for the first time. In the example of Figure 2, no decisions remain
to be taken by the agent in this case. In the following, we will restrict ourselves to
Action Trees with the following qualities:

1. The Action Tree let be completely defined with regard to the actual model, i.e.
each node exhaustively describes one action regarding to the given model. If a
leaf of an Action Tree is reached, all variables which are necessary for the
performance of the action are allocated.

2. Due to better legibility, we will only analyse Action Trees with two nodes at
maximum in this paper.

3. If an agent is unable to carry out any node, no action is conducted. The process
of selecting an action will be restarted later on. In the example of
SMALLWORLD, the Action Tree was determined in a way which always
allows the agent to choose an action.

H:=action([i,
1Hd , _]:[Peter, 0.2, _])

H1:=to go([i, destination, _]:[Peter, Rom, _]) H2:=to go([i, destination, _]:[Peter, Paris, _])

3. The evolutionary question – an algorithm for the modification of
action attributes

3.1. Genetic Action Trees

The dynamics of Action Trees can be described through the alteration of the allocation
of action attributes. In order to conduct these alterations as methodically coherently as
possible, one can represent allocations of action attributes as sets of binary series. In the
following, the allocation of an action attribute coded through the binary series will also
be called the gene of an action attribute. A set of genes is called a gene pool. The
alteration of the allocations results from the genetic algorithms operating on the gene
pool of the action attribute (see 3.5).

Definition 1 (Genetic Action Trees)
A Genetic Action Tree G(T) for a set of agents I has the following structure:

• T is an Action Tree.
• Ii ∈∀ . ∀ H []A T∈ . ∀ Aa ∈ let () { }n1,0a,iC ⊆ be the gene pool of an action

attribute a of the action type H and of the agent i.
• ∀ H T∈ of a decision-making action and the subsequent nodes H1 and H2, there

is a degree of intention [] { }21,0d ∪∈ and a potentially empty set of exogenous
conditions

1H∆ and
2H∆ , which have to be fulfilled for the specific agent i so

that H1 or H2 can be chosen by i.
• ∀ () ()a,iCa,ic ∈ let ()() IR∈a,icϕ be the fitness of ()a,ic .

After the execution of an action, the fitness of ()a,ic is modified with regard to
the results of the action.

• ∀ () ()a,iCa,ic ∈ let ()()a,icδ be the semantics of ()a,ic .
The semantics describes how the action has to be carried out in the computer
simulation depending on the gene.

In the next section, the meaning of the terms introduced just now shall be exemplified
on the basis of how they are used. First, we will describe the choice algorithm of the
actions through the agents.

3.2 The choice of the actions through the agents

1. After having been activated, each agent Ii ∈ checks if the list of instructions for

actions the agent might have received contains any elements. In SMALLWORLD,
all instructions for actions are carried out successively first in first out. If no
instructions for actions have been received by the agent i, i determines which
action has to be carried out by following a path []n1 H,...,H of an Action Tree
from the root 1H to a leaf nH . While doing so, all attributes of the action types
[]n1 H,...,H are successively randomly allocated with coded values () ()a,iCa,ic ∈
on the basis of an equal distribution. Let)d,i(H

1H⊗ be a decision-making action
and

1Hd [] { }21,0 ∪∈ the degree of intention for the left node. If the agent is
confronted with a decision-making action)d,i(H

1H⊗ , the subsequent nodes H1

and H2, for which
1H∆ or rather

2H∆ have been violated, are eliminated.
1H∆ and

2H∆ are exogenous conditions specific to the model which guarantee the
consistency and coherence regarding the agent i’s abilities in the agent’s
environment. One example of a condition in SMALLWORLD is for instance that
i is only able to buy a commodity if i owns enough money. Thus, the exogenous
conditions define which actions can be carried out by i.

2. If it is the case that two nodes remain for i at the node)d,i(H

1H⊗ , the agent is
confronted with tow alternative actions. We describe the semantics of the
decision-making algorithm:

Let { } { }nn 1,012,...,0: →−β , INn ∈ , be the natural bijection which assigns each

binary series [] { }n
n1 1,0x,...,x ∈ with () [] ∑

=

−=↔=
n

1i

1i
in1 2xkx,...,xkβ .

Let { } { }nn 1,012,...,0: →−δ be defined by ()
12

k
nk

−
=δ , for each { }12,...,0k n −∈ .

Let () { }n

1H 1,0d,iC ⊆ be the gene pool of the agent i with regard to the degree of
intention

1Hd . The left node is chosen exactly then if ()()
1Hd,icδ <

1Hd holds,
while ()

1Hd,ic is chosen randomly from the set ()
1Hd,iC .

3. It is conceivable that an agent receives instructions for actions from another agent.

That means precisely that action attributes are determined through another agent’s
instruction. The decision-making process then starts at a node tH , nt1 ≤< at
which free variables appear for the first time, if all the conditions H∆ of all
preceding nodes H have been fulfilled. If a condition is violated, the instruction
will not be carried out.

4. When the agent i has reached the root nH of the Action Tree, all attributes are

allocated with coded values. The action type is carried out in accordance with
theses allocations and each allocation () ()a,iCa,ic ∈ with which the action type
was carried out is judged through the change in its fitness value ()()a,icϕ due to
the results of the action.

The simulations in SMALLWORLD were conducted with 100 agents and 1000 periods.
In each period all agents are activated in a random sequence. In an active phase an agent
chooses exactly one action, as described above, and carries it out.

3.3 The evaluation of an agent’s action

After the agent’s run through an Action Tree, all attributes which are necessary for the
specification of an action within the context of the model are clearly defined. Each gene
has been assigned a concrete specification through the semantics δ which belongs to
the actual model. After the determination of the necessary parameters, the action can
now be carried out in the model according to the semantics δ . Actions change the
agent’s environment. Those changes are called the results of an action. The results of
actions form the basis of the evaluation of actions or more precisely the evaluation of

the genes of action attributes through the alteration of the fitness value ϕ . We will
describe this process in the case of SMALLWORLD in detail in chapter 4.

3.4 Changes in the characteristic of action attributes

Genetic algorithms are used for the simulation of changes in action spaces. In the
following, specific genetic algorithms will be discussed which have proved useful in the
case of the action spaces.

If a gene pool ()a,iC of an agent i and an action attribute a is changed, this can evoke
changes in the behaviour of agent i.

Let IJ ⊂ be a subset of agents and a an action attribute. Let () ()U

Ji
J a,iC:aC

∈

= be the

common gene pool of the agents Ji ∈ of a. If J contains more than one agent, the
intersubjective changes in behaviour can thus be simulated. For those application
examples in SMALLWORLD analysed in this paper, the gene pool ()aCI was used.
Here was valid: For all agents i and action attributes ()a,iC contained exactly one
element.

3.5 The Genetic Algorithms for attributes of the action types

The Genetic Algorithms consist of mutation, selection and cross over. In
SMALLWORLD, the Genetic Algorithms were used on the sets ()aCJ when the
actions belonging to the attribute a had been carried out 10 times.

Selection and mutation
Each gene () ()aCa,ic J∈ is changed with the probability ()()a,icpmut at mutn pairwise
different places which have been chosen randomly. If the gene ()a,ic of the agent i is
changed through mutation, the oringinal gene is substituted with its mutant. ()()a,icpmut
is here proportional to the fitness ()()a,icϕ . Thus, the substitution of a gene with its
mutant is the more likely the smaller the fitness of the gene is.

Cross Over:
On the sets ()aCJ a cross over was carried out on 5% of the elements of ()aCJ . A
cross over is presented as an example in the following figure. The cut S is determined
randomly on the basis of uniform distribution.
 S S

0 1 1 0 1 0 1 01 0 1 0 1 1 1 1

0 1 1 0 1 1 1 1 1 0 1 0 1 0 1 0

4. SMALLWORLD

We will now describe the application of this technique on a simplified economic Action
Tree called SMALLWORLD in an exemplary manner. In the model, we will restrict
ourselves to the analysis of a subset of the action attributes: to the degree of intention of
decision-making actions. While doing so, we will compare simulations having constant
fitness functions with simulations having non-constant fitness functions.

First, the course of the agent’s selection of an action will be described in detail. All
occurring action types and all action attributes relevant to the simulating model will be
listed. Furthermore, exogenous conditions for the execution of an action type and for
the evaluation of the results of an action will be presented.

An outline of the Action Tree can be found in Appendix 1, a detailed description of the
semantics of the nodes in Appendix 2.

4.1 The agents’ environment

4.1.1 Communication in SMALLWORLD

The agents in SMALLWORLD have the possibility to write, retrieve and delete
messages to other agents in a communication database. There are mainly two
different types of messages:

1. An agent can direct his message at the whole population. For instance, an
agent i in SMALLWORLD can offer a good k to the other agents. The
notation for that is mail(offer(i,k)).

2. It should be mentioned that in SMALLWORLD an agent i can give an

instruction for performing an action act an agent j. We use do(i, act(j)) as a
notation for that. The agent j adds this instruction to a list of instructions which
are worked through first in first out in SMALLWORLD.

4.1.2. Attributes of the agents and the environment in SMALLWORLD

There is a list of attributes for each agent. In SMALLWORLD, these are the cash
resources and the number of goods which are assigned to each agent. Apart form that,
certain values of attributes in the agents’ environment are used. In the examples dealt
with in this paper, the unit price of a good in SMALLWORLD will be given
exogenously, for instance.
 I denotes the set of agents who act in an economic context in SMALLWORLD. A set
of goods { }m,...,1G = exists in SMALLWORLD. At the beginning of the simulation,
each agent Ii ∈ owns a non-negative amount of money +∈ IRiS and a vector of goods

() m
im1ii V,...,V:V +∈= IR . Here, ikV denotes the quantity of a good k which the agent i has

at it’s disposal. To simplify the depiction of the action types, we will use in this paper
goods which are different in form but equally priced, i.e. for all Gk ∈ a uniform price

1:Pk = will be given exogenously for the duration of the simulation. If goods are
exchanged, it will be done one by one.

4.2. Selection of an action in SMALLWORLD

When an agent Ii ∈ is activated in the simulation model, the process of choosing an
action starts at the root [action(i,dconsume,_)] of the Action Tree in the simulations
described in this paper (see Appendix 1). The agent i can decide at this node weather to
carry out an action by consuming the goods the agent owns or by trying to get hold of
new goods. As described in section 3.1, he chooses one of the two subsequent nodes
consume(i,k) or get(i,k) in consideration of the degree of intention dconsume= 8

1 .
Beforehand, the consistency is checked for both of the subsequent nodes to find out if
they can be conducted (see Appendix 2). The action type consume(i,k) cannot be carried
out if 0Vik = applies for all goods. In this case, i does not own any good and has to
choose get(i,_). If 0Vik > is valid for at least one good and i chooses the action type
consume(i,_), then this means in SMALLWORLD that i chooses randomly form the set
of goods i owns one good k on the basis of uniform distribution and that i’s number of
pieces of the chosen good is reduced by one unit. If the agent i reaches the inner node
get(i,dcheat,_), i has to decide weather to take a good by cheating [get_cheat(i,_)] with
regard to the degree of intention dcheat or by not cheating [get_not_cheat(i,_)]. Two
different types of cases haven been analysed:

CASE I: Without actions of fraud, [with barter (s.b.)],

 dcheat = 0 is valid for the degree of intention, i.e. action of fraud are not possible.

CASE II: With actions of fraud, [without barter (s.b.)]

dcheat = 2
1 is valid for the degree of intention, i.e. actions of fraud are possible.

We will first exemplify CASE I:
The agent has to choose get_not_cheat(i,_). In this case, an agent i can get hold of a
good either by producing it [produce(i,k)] or by trading [trade(i,_)]. With the degree of
intention dproduce= 4

1 , i chooses produce(i,k). This means in SMALLWORLD that i
randomly chooses a good k on the basis of uniform distribution and that this possession
of this good k increases by one unit. The agent can only choose trade(i,_) if at least one
of the following two conditions is fulfilled: 1. The agent owns a sufficient amount of
money to buy a good (here 0Si >). 2. The agent owns a sufficient number of pieces of
at least one good to practise barter (here: { } ∅≠>∈ 0V.Gk ik). If none of these
conditions is fulfilled, the agent has to choose produce(i,k). When an agent i reaches the
node trade(i,daquire,_), i chooses one of the two nodes aquire(i,_) or dispose(i,_) with
regard to the degree of intention daquire = 2

1 . In order to acquire a good [aquire(i,_)], the
agent has to possess an amount of money sufficient for the purchase or a quantity of at
least one good which is sufficient for an exchange. In order to dispose of a good
[dispose(i,_)], i has to own at least one good.

If an agent i at the node trade(i,daquire,_) chooses the subsequent node aquire(i,dbuy,_),
the agent has again two alternatives: either to buy a good [buy(i,_)] or to acquire it via
an exchange [a_exchange(i,_)]. If the agent decides in favour of [buy(i,_)] at the node
aquire(i,dbuy,_) with regard to the necessary conditions and the degree of intention
dbuy= 2

1 , then the agent randomly chooses a good k form a set of goods he can buy on
the bases of uniform distribution. If an agent j ≠ i already offers the good k for sale, the
transaction is completed: i receives one unit of the good k and j one unit of money. If all

exogenous conditions of the subsequent nodes of aquire(i,dbuy,_) are fulfilled, then the
node buy(i,_) is chosen if δ(c(i,dbuy))< dbuy is valid. If the successful purchase shall be
rewarded, this can be done by increasing ϕ(c(i,dbuy)) by 1.

If no agent offers the good k for sale, i writes a request ()])k,i([search_bmail into the
communication database provided that that has not already been done.

If the agent decides in favour of exchange(i,_) at the node aquire(i,dbuy,_) with regard to
the necessary exogenous conditions, the agent randomly chooses from the set of goods
a good k(i,in) which the agent wants to acquire by exchanging it for a randomly chosen
good k(i,out) which has to be in the agent’s possession. If an agent j ≠ i already offers to
exchange the good k(i,out) for k(i,in), the transaction is completed: i receives one unit
of the good k(i,in) and j one unit of the good k(i,out). Ιf all exogenous conditions of the
subsequent nodes of acquire(i,dbuy,_) are fulfilled, then the node a_exchange(i,_) is
chosen if δ(c(i,dbuy)) ≥ dbuy applies. If the successful exchange shall be rewarded, this
can be done by increasing ϕ(c(i,dbuy)) by 1.

If no agent j ≠ i demands this good, then i writes the message

())out)k(i,in),k(i,,i(search_amail into the communication database.

If an agent i at the node trade(i,d,_) chooses the subsequent node dispose(i,dsell,_), the
agent has again two alternatives: either to sell a good [sell(i,_)] or to get hold of it via
an exchange [d_exchange(i,_)]. If the agent at the node dispose(i,c(i,dsell),_) decides in
favour of sell(i,_) with regard to the necessary conditions and the degree of intention
dsell= 2

1 , then the agent randomly chooses a good k from the set of goods he can sell on
the basis of uniform distribution. If an agent j already demands the good k, the
transaction is completed: i gives one unit of the good to j and j pays one unit of money
for it.

If no agent wants to buy the good k, i writes an offer into the communication database
provided that that has not already been done.

If the agent at the node dispose(i,dsell,_) decides in favour of d_exchange(i,_) with
regard to the necessary conditions, the agent randomly chooses a good k(i,out) form the
set of all goods which he wants to dispose of by exchanging it for a randomly chosen
good k(i,in). If an agent already wants to exchange the good k(i,out) for the good k(i,in),
the transaction is completed: i gives one unit of the good k(i,out), j one unit of the good
k(i,in).

If this is not the case, the agent writes the message ())in)k(i,out),k(i,,i(search_dmail
into the communication database.

The evaluation of the gene c(i,dsell) after the execution of the action type sell(i,_) or
d_exchange(i,_) can take place in accordance to the evaluation of the gene c(i,dbuy) after
the execution of the action type buy(i,_) or a_exchange(i,_).

We will now discuss CASE II:
If the agent at the node get(i,_) chooses the subsequent node get_not_cheat(i,_), the
selective process is continued as in CASE I. But in the simulations of CASE II the
possibility of barter was excluded, i.e. it applied dbuy = dsell = 2. If the agent chooses at

the node get(i,_) the subsequent node cheat(i,_), he has two alternatives in
SMALLWORLD: either to pretend to buy something [feign_buy(i,_)] or to pretend to
sell something [feign_sell(i,_)]. If the agent chooses feign_buy(i,k) with regard to the
degree of intention dfeign_buy = 2

1 , the agent randomly determines a good k. If an agent j
offers a good k for sale, i takes one unit of the good and j does not receive anything
from i. A case of fraud has taken place. If no agent offers k, i starts a search. The
relevant message is inserted into the communication database.
If i chooses the node feign_sell(i,k), i randomly chooses a good k. If an agent j wants to
buy the good k, i takes one unit of money and does not receive anything of k. A case of
fraud has taken place. If no agent wants to buy k, i starts to offer k. The relevant
message is inserted into the communication database. The “guilty conscience” of a
swindler can be represented by reducing the fitness of ϕ(c(i,dcheat)) by 1.

5. The results of the simulations

In the following, the results of the simulations will be described. On the basis of the
model described under 4, SMALLWORLD CASE I and CASE II were carried out with
constant as well as non-constant evaluation functions. For each case, N=1000
simulations with 100 agents and 1000 periods were conducted. For a definition of the
value N see Appendix 3.

CASE I: Barter – no actions of fraud

Subcase A

Constant evaluation functions:
The evaluation function was constant for the duration of the simulations, i.e. successful
trade was not rewarded. At the beginning of the simulations, sufficient resources
(money, goods) were made available to the agents so that the exogenous conditions of
the action types were always fulfilled. The action types buy(i,_), a_exchange(i,_),
sell(i,_), d_exchange(i,_) were chosen with almost the same frequency.

Subcase B

The effectiveness of monetary acting – non-constant evaluation functions:
The evaluation function was changed as described in section 4, i.e. successful trade was
rewarded. In comparison with Subcase A one can observe that the action types buy(i,_)
and sell(i,_) were chosen more often than a_exchange(i,_) and d_exchange(i,_).
Figure 3 shows the simulation results of Subcase A and B.

Figure 3: CASE I

The main reason for those results is that agents are more often able to complete a
transaction when they pay with money or receive money as means of payment. That
means that genes with δ(c(i,dbuy))< dbuy or rather δ(c(i,dsell))< dsell are rewarded more
often and thus able to assert themselves in the simulations. In Figure 4 the black lines
represent possible trading actions the dotted lines represent impossible trading actions.
This shows that the change from barter to a monetary economy is more successful for
the agents.

Figure 4: Barter and monetary economy.

CASE II: Actions of fraud

Subcase A

Constant evaluation functions:
The evaluation function was constant for the duration of the simulations, i.e. actions of
fraud were not punished. The agents chooses the type of action get_cheat(i,_) with the
same frequency as get_not_cheat(i,_).

Subcase B

The swindlers’ “Guilty conscience” – non-constant evaluation functions:
The evaluation function was changed as described in section 4, i.e. actions of fraud are
punished. Since the gene δ(c(i,dcheat)) is punished in the case of an action of fraud, the
agents now choose the action type get_not_cheat(i,_) considerably more often than the
action type get_cheat(i,_). Figure 4 shows the Simulation results of Subcase A and B.

 Figure 5: CASE II

6. Outlook

In this paper, a general concept of the modelling of action spaces has been presented.
The epistemic question “How can actions be described through a general model suitable
for computer simulations?” was answered by a concept used in analytic theories of
action, the Action Trees. For the evolutionary question “How can the emergence and
disappearance of actions be described through a uniform algorithm within this model?”,
it was made use of Genetic Algorithms. The synthesis of these two methods, the
Genetic Action Trees, was tested on the simple application SMALLWORLD. As a
result, we succeeded in endogenously evoking changes in the agents’ behaviour which
are intuitively comprehensible. For instance, one could observe in the simulations that
the agents changed from a barter to a monetary economy or that they changed their
behaviour towards actions of fraud. The method is very promising and can be expanded
and applied in many different ways.

In this work, the turning on of the evaluation functions is done manually in the end
through the manipulation of the source codes. One should mention in this context that
the evaluations of actions can as well be understood as actions. Thus, an ordering of
evaluative actions into an Action Tree is conceivable.

A. Appendix 1
A.1. SMALLWORLD ACTIONTREE [CASE I]

 action(i,d,_)

 consume(i,k) ⊗ get(i,d,_)

 get_ cheat(i,_) ⊗ get_not_cheat(i,d,_)

produce(i, k) ⊗ trade(i, _)

 aquire(i,d,k) dispose(i,d, k)

 ⊗ ⊗

buy(i,k) a_exchange(i,k) sell(i,k) d_exchange(i,k)

b_search(i,k) ⊗ pay(i,k,j) a_search(i,k,) ⊗ a_deliver(i,k,j,g) s_offer([i,k,j]) ⊗ s_deliver([i,k,j,g]) d_offer([i,k,j]) ⊗ d_deliver([i,k,j,g])

Variables:
i,j actor
k good
d degree of intention

a_ex buy d_ex sell

A.2. SMALLWORLD ACTIONTREE [CASE II]

action(i,d,_)

 consume(i,k) ⊗ get(i,d,_)

 get_ cheat(i,_) ⊗ get_not_cheat(i,d,_)

produce(i, k) ⊗ trade(i,d,_)

 ⊗

 aquire(i,d,k) dispose(i,d,k)

 ⊗

 get_cheat(i,d)

 ⊗
feign_buy(i,k) feign_sell(i,k)

f_search(i,k) ⊗ b_take_and_give nothing(i,k,j) f_offer(i,k,j) ⊗ s_take_and_give nothing(i,k,j)

Variables:
i,j actors
k good
d degree of intention

a_ex buy d_ex sell

Appendix 2 - Semantics of SMALLWORLD Action Types

We will first introduce some helpful technical terms.

• Let Mj r∈ mean that j is chosen randomly form a set M on the basis of

uniform distribution.
• If x is the current value of a variable before the execution of any kind of

action, xo denotes the value of this variable after the execution of the action
type.

Let m be a message as described under 4.1.1. We use the following abbreviations:

CBm∈ , (CBm∉) is (not) an element in of the communication database CB.
CBm w→ (CBm d→) m is inserted (deleted) in (from) CB.

The scheme for the specification of an action type H consists of the following aspects:

T: name of the action type, of the subsequent node and of all the free variables that

have been allocated up to this node
C: necessary exogenous conditions of the subsequent nodes H1 and H2
R: the results of actions: changes in the attributes of the agents and their

environment
A: modification of the fitness of the genes

action(i, dconsume,_)
T: action([i, dconsume, _]:[i, 8

1 ,_]) <by consume(i,k) ⊗ get(i,_)

consume(i,k)
T: consume(i,k)
C: C={ } ∅≠>∈ 0V:Gk ik
R: Ck r∈ , 1VV ikik −=o

get(i,p,_)
T: get([i,dcheat,_]:[i,_]) <by get_cheat(i,k) ⊗ get_not_cheat(i, k)

CASE I: dcheat = 0

get_not_cheat(i, dproduce,_)
T: get_not_cheat([i, dproduce,_]:[i, 4

1 ,_]) <by produce(i, k) ⊗ trade(i,_)

produce(i,k)
T: produce(i,k)
R: Gk r∈ , 1VV ikik +=o ,

trade(i, daquire)
T: trade([i, daquire,_]:[i, 2

1 ,_]) <by aquire(i,_) ⊗ dispose(i, _)
C: 0Si > ∨ { } ∅≠>∈ 0V.Gk ik

aquire(i,dbuy,_)
T: aquire([i, dbuy, _]) <by buy(i,_) ⊗ aquire_exchange(i, _)
CASE I: dbuy = 2

1

CASE II: dbuy = 2

dispose(i, dsell,_)
T: dispose([i, dsell, _]) <by sell(i,_) ⊗ dispose_exchange(i, _)
CASE I:: dsell= 2

1
CASE II: dsell = 2

buy(i,_)
T: buy([i,k]) <by search(i,_) ⊗ pay(i, _)
C: 0Si >
R: Gk r∈

a_exchange(i,_)
T: a_excange([i,k(i,in),k(i,out)]) <by search(i,_) ⊗ deliver(i,_)
C: E = { } ∅≠>∈ 0V:Gk ik
R: G)in,i(k r∈ , E)out,i(k r∈

sell(i,_)
T: sell([i,k]) <by offer(i,_) ⊗ deliver(i,_)
C: { } ∅≠>∈= 0V:GkS ik
R: Sk r∈

 d_excange(i, k(i,out),k(i,in),_)
T: d_excange([i,k(i,out),k(i,in)])<by offer(i,_) ⊗ deliver(i,_)
C: { } ∅≠>∈= 0V:GkE ik
R: E)out,i(k r∈ , G)in,i(k r∈

b_search(i,k)
T: b_search(i,k)
C: () CB)k,j(offer_smail.Ij ∈∈¬∃
R: IF () CB)k,i(search_bmail ∉ THEN () w)k,i(search_bmail → CB

pay(i,k)
T: pay(i,k)
C: ())k,j(offer_smail.Ij ∈∃
R: 1SS,1SS,1VV,1VV jjiijkjkikik +=−=−=+= oooo
 () d])k,j([offer_smail → CB
A: ()() ()() 1di,cdi,c buybuy += ϕϕo

a_search(i, k(i,out),k(i,in))
T: a_search(i, k(i,out),k(i,in),_)
C: ()))out,j(k),in,j(k,j(offer_dmail.Ij ∈¬∃ ∧

)out,i(k)in,j(k)out,j(k)in,i(k =∧=
R: IF ()∉)in)k(i,out),k(i,,i(search_amail CB

 THEN () w)in)k(i,out),k(i,,i(search_amail → CB

a_deliver(i, k(i,out),k(i,in))
T: a_deliver(i, k(i,out),k(i,in))
C: ()))out,j(k),in,j(k,j(offer_dmail.Ij ∈∃

∧)out,i(k)in,j(k)out,j(k)in,i(k =∧=
R: 1VV,1VV)out,j(jk)out,j(jk)out,i(ik)out,i(ik −=−= oo

1VV,1VV)in,i(jk)in,i(jk)in,i(ik)in,i(ik +=+= oo
() d))out,j(k),in,j(k,j(offer_dmail → CB

A: ()() ()() 1di,cdi,c buybuy += ϕϕo

s_offer(i,k)
T: s_offer(i,k)
C: ())k,j(search_bmail.Ij ∈¬∃
R: IF ()∉)k,i(offer_smail CB THEN () w)k,i(offer_smail → CB

s_deliver(i,k)
T: s_deliver(i,k)
C: ())k,j(search_bmail.Ij ∈∃
R: 1SS,1SS,1VV,1VV jjiijkjiki −=+=+=−= oooo
 () d)k,j(search_bmail → CB
A: ()() ()() 1di,cdi,c sellsell += ϕϕo

d_offer(i, k(i,out),k(i,in))
T: d_offer(i,k(out),k(in))
C: ()))out,j(k),in,j(k,j(offer_amail.Ij ∈¬∃ ∧

)out,i(k)in,j(k)out,j(k)in,i(k =∧=
R: IF ()∉))in,i(k),out,i(k,i(offer_dmail CB

THEN () w))in,i(k),out,i(k,i(offer_dmail → CB

d_deliver(i, k(i,out),k(i,in))
T: d_deliver(i, k(i,out),k(i,in))
C: ()))out,j(k),in,j(k,j(offer_amail.Ij ∈∃ ∧

)out,i(k)in,j(k)out,j(k)in,i(k =∧=
R: 1VV,1VV)out,j(jk)out,j(jk)out,i(ik)out,i(ik −=−= oo

1VV,1VV)in,i(jk)in,i(jk)in,i(ik)in,i(ik +=+= oo
 () d)])out,j(k),in,j(k,j([offer_amail → CB
A: ()() ()() 1pi,cpi,c sellsell += ϕϕo .

CASE II: dcheat = 2
1

get_cheat(i,p,_)
T: get_cheat([i,dfeign_buy),_]:[i, 2

1]) <by feign_buy(i, k) ⊗ feign_sell(i, k)

feign_buy(i,_)
T: buy(i,_) <by f_search(i,_) ⊗ b_take_and_give_nothing(i, _)

feign_sell(i,_)
T: sell([i,c(i,d),k]) <by f_offer(i,_) ⊗ s_take_and_give_nothing(i,k)

b_take_and_give_nothing(i,k)
T: b_take_and_give_nothing(i,k)
C: ()])k,j([offer_smail.Ij ∈∃
R: jkjkikikjkjkikik SS,SS,1VV,1VV ==−=+= oooo
A: ()() ()() 1di,cdi,c cheatcheat −= ϕϕo

s_take_and_give_nothing(i,k)
T: s_take_and_give_nothing(i,k)
C: ()])k,j([search_bmail.Ij ∈∃
R: jjiijkjiki SS,1SS,VV,VV =+=== oooo
A: ()() ()() 1di,cdi,c cheatcheat −= ϕϕo

Appendix 3 – Number of simulations
For the description of the development of the agents’ action spaces the relative
frequencies of actions executed per agent are determined from a set of simulations. We
use the following considerations for the determination of the number N of simulations
necessary for the assessment of the expectation value of relevant random variables: We
assume a Gaussian distribution with expectation value µ and the standard deviation σ.
In this case, we get the 1- α confidence interval for µ with unknown σ:

⎥
⎦

⎤
⎢
⎣

⎡
+−

−−−− n
stx;

n
stx

2
1;1nn

2
1;1nn αα .

Let nx be the mean over n samples, s an unbiased estimator of σ and
2

1;1n
t α

−−
 the

2
1 α

−

quartile of the t-distribution with n–1 degrees of freedom.
Following the two-step method by [Stein 1945], one can determine the number N of the
necessary simulations (samples) with the required exactness. Let d be the lengths of the
confidence interval. First, N0 simulations are conducted. The total number N can then be
determined as follows:

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
≥∈=

−−

2
N

d

st2
k:INkminN 2

1;10N α

.

Here,

∑
=

−
−

=
0

0

N

1i

2
Ni

0

2)xx(
1N

1s

is the estimation of the variance. The following values were used in this paper:
N0 = 50, α = 0.1, d = 5.

References

J. L. AUSTIN. How to Do Things with Words, Harvard, (1975)

R. AXELROD. The Complexity of Cooperation, Princeton University Press, Chichester, (1997)

M. E. BRATMAN. Intentions, Plans and Reason, Harward University Press, (1987)

R. CHISHOLM. The Descriptive Element in the Concept of Action, Journal of Philosophy, p. 613-
624, (1964)

C. CAMERER, H. TECK-HUA. Experience Weighted Attraction Learning in Normal-Form
Games, Econometrica, (1998).

D. DAVIDSON. Essays on Action and Events, Oxford University Press, (1980)

I. EREV, A. E. ROTH. Predicting How People Play Games: Reinforcement Learning in
Experimental Games with Unique, Mixed Strategy Equilibria, American Economic Review,
88(4), p. 848-81, (1998).

M. GARDNER. The fantastic combinations of John Conway's new solitaire game life, Scientific
American, 120-123, October, (1970)

M. GARDNER. On cellular automata, self-reproduction, the Garden of Eden and the game life,
Scientific American, 224(2), 112-117, February, (1971)

D. E. GOLDBERG. Genetic algorithms in search, optimization, and machine leaning, Addison-
Wesley, Reading, (1989).

A. GOLDMAN. The individuation of action, The journal of Philosophy, 68:761 – 774, (1971).

C. B. HARLEY. Learning in Evolutionary Stable Strategy, J. Theoret. Biol. 89, 611-633, (1981).

J. H. HOLLAND. Adaptation in natural and artificial systems, University of Michigan Press,
Ann. Arbor, (1975), reprinted by Cambridge: MIT Press. (1992)

J. F. LASLIER, R. TOPOL, B. WALLISER. A behavioral learning process in games, Games and
Economic Behavior 37, 340-366, (2001)

K. NAGEL, M. SCHRECKENBERG. A cellular automaton model for freeway traffic. J. Physique I
2, 2221–2229, (1992).

J. V. NEUMANN. The Theory of self-reproducing automata,
in Burks, A. W., (Ed), University of Illinois, Urbana, (1966)

A. ROTH, I. EREV. Learning in Extensive Games: Experimental
Data and Simple Dynamic Models in the Intermediate Term, Games
and Economic Behavior, 8, 164-212, (1995).

J. R. SEARLE. The philosophy of language, London: Oxford University, (1971)

T. C. SCHELLING. Models of segregation, American Economic Review 59, 488 – 493, (1969)

T. C. SCHELLING. Dynamic models of segregation, Journal of Mathematical Sociology 1, 143-
186, (1971)

R. SELTEN, T. PITZ, T. CHMURA, M. SCHRECKENBERG AND J. WAHLE.
Experiments on Route Choice Behaviour, H. Emmerich, B. Nestler, (Ed.), Lecture Notes in
Computers Science 32, Schreckenberg, Interface and Transport Dynamics, (Springer,
Heidelberg), (2003)

C. STEIN. A two sample test for a linear hypothesis whose power is independent of the variance,
Annals of Mathematical Statistics 43, 243-258, (1945)

G. WEISS. Multi-Agent Systems, MIT-Press, (1999)

