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ABSTRACT : This paper aims to understand some of the mechanisms which dominate the phenomenon 

of knowledge diffusion in the process that is called ‘interactive learning’. We examine how knowledge 

spreads in a network in which agents interact by word of mouth. We define a social network structured 

as a graph consisting of agents (vertices) and connections (edges) and situated on a wrapped grid 

forming a torus. The target of this simulation is to test whether knowledge diffuses homogeneously or 

whether it follows some biased path, and its relation with the network architecture. We also investigate 

the impact of a modelled ICT platform on the knowledge diffusion process. 
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1. BACKGROUND 

Modern economy has been described as knowledge-based, or a learning 

economy, due to the central role that knowledge and learning play for economic 

development (OECD1996). Nonetheless, the processes of learning and knowledge 

diffusion are still largely undiscovered and require substantial theoretical and 

empirical efforts to be properly understood.  

From the premise that learning is a complex and interactive process which can 

take place at all times (we learn at school, we learn at work, we learn reading a book, 

we learn watching TV, we learn talking with people, we learn while using ICT) we 

operate a logical simplification to understand this phenomenon. Following the 

theoretical structure defined in previous work (Morone, 2001; Morone and Taylor, 

2001), we divide learning into two categories: formal learning and informal learning. 

We define formal learning as the kind of learning that occurs in certain environments 

which are meant for learning such as schools, workplaces, and training groups. On the 

other hand we call informal those learning processes that occur ‘spontaneously’, 

simply by interacting with peers. Following the more traditional approach, we could 

define the knowledge acquired by formal learning as a standard economic good (for 

which I’m paying a price; i.e. tuition fees, foregone earnings); and the knowledge 

acquired by informal learning as an unconventional public good. Some authors have 

defined the latter kind of knowledge as a club good (Cornes and Sandler, 1996; 

Breschi and Lissoni 2003) which is non rival and non excludible only for restricted 

groups of people (i.e. the members of the club). 

 Formal learning has been extensively investigated both theoretically and 

empirically (Becker, 1964; Mincer, 1974; Psacharopoulos, 1994). Whereas, the 

second process has only recently captured the attention. Studies of innovation 
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diffusion (Clark, 1984 and Rogers, 1995) are often viewed as good examples of 

informal learning processes because they tend to occur through interaction within 

geographical and other informal networks involving social externalities. Several 

researchers have investigated the patterns through which different agents adopt new 

technologies by means of theoretical as well as simulation models. (Ellison and 

Fundenberg, 1993, 1995; Bala and Goyal, 1995, 1998). Another common way of 

modelling the mechanisms of social learning and technology diffusion makes use of 

evolutionary game theory (Chwe, 2000; Ellison, 1993, 2000; Anderlini and Ianni 

1996; Berninghaus and Schwalbe, 1996; Goyal, 1996; Akerlof,1997; Watts, 2001). 

Along with the speed of new technologies’ diffusion, several researchers have 

focused on the impact of peers’ behaviour upon individual decisions in areas such as 

propensity to crime, use of drugs, school dropout and school attainments (Brock and 

Durlauf, 1995; Benabou, 1993; Durlauf, 1996; Gleaser, Sacerdote and Scheinkman, 

1996).1 What all the studies considered so far have in common is the fact that learning 

from neighbours occurs and that under certain conditions it leads to the desirable 

stable equilibrium. However, none of these studies go beyond a binary definition of 

learning.  

Jovanovic and Rob (1989) proposed for the first time a model in which 

incremental improvements in knowledge were defined as a complex process of 

assembling deferent ideas by means of information exchange by heterogeneous 

agents. The new insight brought by the authors is that knowledge was defined as 

something more complex than a binary variable and, therefore, growth of knowledge 

could be defined as an interactive process tightly linked to its diffusion. 

                                                                 
1 For a more detailed review see Morone and Taylor, 2004. 
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Cowan and Jonard (1999) made a subsequent attempt to study the effects of 

incremental innovations and their diffusions over a network of heterogeneous agents. 

Knowledge in their model is considered as a vector of values and is exchanged via a 

simple process of barter exchange. Depending on the network structure, the authors 

found that there is a trade-off between the speed of knowledge diffusion and the 

variance of knowledge. In other words, there is a spectrum of states of the world 

varying from a situation of high knowledge inequality and fast knowledge diffusion 

(i.e. small-world), to the opposed situation, more equal in terms of knowledge 

variance but less efficient in terms of knowledge diffusion.  

Along the lines of these works, Morone and Taylor (2001) defined a model in 

which agents exchanged knowledge exclusively by means of face-to-face interactions. 

The network structure was endogenous to the model and could vary over time. The 

authors showed how small-world networks emerged and coexisted with both a very 

unequal and a very equal diffusion of knowledge, different outcome depending upon 

the initial conditions. 

The objective of this paper is to shed some light on informal learning by means 

of an agent-based simulation model in which we investigate the knowledge diffusion 

dynamics amongst agents interacting through a process of face-to-face knowledge 

exchange. Departing from previous works on knowledge diffusion we aim to develop 

a model which takes into consideration the complexity of the process of knowledge 

acquisition. In doing so we define a complex cognitive structure for each agent 

(cognitive map) which regulates the processes through which knowledge diffuses. 

The paper is organised as follows: section 2 presents our model of knowledge 

diffusion and section 3 discusses how learning is defined in a framework of complex 

cognition. Section 4 explains how network properties of the model are calculated. 
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Section 5 presents the results of a simulation exercise based on the model. Section 6 

reviews the findings of an investigation applying this model to a case study based 

upon the data and geography of the Greater Santiago region in Chile, and finally, 

section 7 concludes the paper. 

 

2. THE MODEL SPECIFICATIONS  

We assume a population of N agents and a global environment consisting of a grid 

of cells. Each agent is initially assigned a random position in the grid, and interacts 

with her/his closest neighbours. Not all the cells of the grid are occupied by agents, 

and those occupied contain only one agent. We specify a wrapped grid (i.e. a torus) so 

that there are no edge effects - where we might have different behaviour due to the 

boundaries of the grid (peripheral agents have smaller neighbourhoods: hence fewer 

neighbours and fewer opportunities to interact). 

The local environment of the agent is called the local-network of the agent and 

it is defined as the region on the grid that includes those cells adjacent in the four 

cardinal directions and within the agent’s visible range (i.e. von Neumann 

neighbourhood structure). We also define a cyber-network  as the ideal network 

connecting all those agents which have access to ICT. The cyber-network  generates a 

second system which has no geographical dimension but connects all agents who have 

access to it. The two networks have different configurations: the local-network  is 

defined as a regular system in which each agent represents a node and each 

connection represents an edge, while the cyber-network  is structured with a central 

agent (star agent), external to the simulation, who works as a server and connects all 

other agents to one another. Each agent has an initial list of acquaintances including 

members of the local-network and (if the agent has access to ICT) the cyber-network .  
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Each connection has an associated strength, ( )1,05.0∈τ , which is a measure of 

the strength of the relationship from the agent to her/his acquaintance. Note that this 

model is not constrained to have symmetry of relationships between agents: in 

general, more prestigious agents (with higher levels of knowledge) will be the object 

of strong relationships from more peripheral agents (with lower levels of knowledge), 

which may be unreciprocated or reciprocated only weakly. At the beginning of the 

simulation, all strength values are set equal to 1. 

The unit of time we define in our model is called the cycle . In each cycle, all 

individuals are sorted into a random order, and then each is permitted to interact with 

one acquaintance. Each interaction is aimed at diffusing knowledge. Each agent is 

endowed with a cognitive map (CM), which contains information on the level and the 

kind of knowledge possessed by her/him. The structure of the CM  is that of a tree, 

where each node corresponds to a bit of potential knowledge and each edge 

corresponds to acquired knowledge. We will return to the CM in the next section. 

In our simulation vertices correspond to agents and edges are agents’ 

connections. Formally, we have G (I, Γ), where I = {1,…, N} is the set of agents, and 

Γ = {Γ(i), i ∈I} gives the list of agents to which each agent is connected. This can 

also be written Γ(x) = {(y∈I \ {x} | d(x, y) ≤ ν) ∪∪  (y∈ω)}, where  d(x, y) is the length 

of the shortest path from agent x to agent y (i.e. the path which requires the shortest 

number of intermediate links to connect agent x to agent y), ν (visibility) as already 

mentioned, is the number of cells in each direction which are considered to be within 

the agent’s spectrum, and ω defines the cyber-network , which by definition 

encompasses all those agents endowed with ICT facilities. Intuitively, Γx (we will use 

this notation rather than Γ(x) from now on) defines the neighbourhood of the agent 

(vertex) x.  
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Initial acquaintances in the local-network  are the immediate neighbours (i.e. those 

within the visible spectrum). Subsequently, an agent can learn of the existence of 

other agents through interactions with her/his acquaintances (i.e. she/he can be 

introduced to the acquaintances of her/his acquaintances). If the acquaintance selected 

for interaction is connected to other individuals of which the agent is not aware, then a 

new connection is made from the agent to the acquaintance of her/his acquaintance. If 

there is more than one unknown acquaintance, than the contacting agent will choose 

the one with highest strength (this would tend to avoid the situation where the agent is 

introduced to an acquaintance that is not considered to be a good choice). The new 

acquaintance will be added to the acquaintances list of the agent who initiated the 

interaction and the strength value will be equal to that the new acquaintance had with 

the original acquaintance. Moreover, agents can stop interacting with some of their 

acquaintances if the connection does not tend to result in gain interactions and is 

therefore no longer useful. Therefore the number of acquaintances changes over time, 

but does not necessarily increase over time. In this way we introduce a dynamic 

element into the network structure.  

Having defined Γx as the set of initial acquaintances of agent x (or first generation 

connections), we define ϕx,t as the set of acquaintances of the acquaintances at time t 

(or next generation connections), and the individual txtm ,ϕ∈  who is added at each t. 

We also define tx,ϑ  as the set of acquaintances dropped at time t (or next generation 

connections) and the individual txtn ,ϑ∈  who is dropped at each t. Now we can define 

the total set of acquaintances for individual x at time t=T as:  

( ) TxTxxTx ,,, \ϑϕ∪Γ=Φ     (1) 
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We also define a rule governing how an agent chooses an acquaintance to 

interact with. In doing so, we make the assumption that an agent prefers interacting 

with acquaintances with whom she/he has strong relations. Agent y will be selected 

for interaction with agent x with probability given by:2 

( )
∑ Φ∈

=
i

x
i

x
yx yp
τ

τ
,     (2) 

In other words, the probability that x selects y for interaction can be understood 

as the relative strength of all the potential interactions. The selection mechanism is not 

based on the assumption that each agent has, at any moment of time, full information 

about other agents’ knowledge levels. Rather, we introduce a mechanism whereby an 

agent adapts strength of relations depending upon previous experience of interaction. 

Each cycle, the strength of the relationship between each agent and her/his 

acquaintances τi, (where i = {1, . . . , Φ}), is adjusted (we drop for simplicity the 

index of the agent and use it only when strictly necessary) as follows: 

βεττ −= −1,, titi      (3) 








==
==

==

n.interactiofor  selectednot  isagent an  if05.0  and1
place; not takes does learning if    0  and0.6

place;  takeslearning if0 and1.5

βε
βε

βε

where  

As already mentioned, τi is bounded between 0.05 and 1. Whenever the τi 

attached to any acquaintance reaches the lower threshold of 0.05, the acquaintance is 

dropped from the acquaintances list. However, acquaintances that are members of the 

local-network  are never dropped due to the fact that they are geographical neighbours 

with whom we keep meeting unless we move to different neighbourhood (an option 

which is not considered in our simulation model). 

                                                                 
2 In this way we assume that agents are constrained by ‘bounded rationality’ in the sense that they 
respond to utility signals without this meaning that they maximize utility (Katz, 2001). 
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In this way the agent will develop preferences for selecting for an interaction 

with acquaintances with which it has previously experienced positive learning 

interactions. In other words, the agent builds internal models of preference 

represented by the strength values τi. The strengthening of relationships serves to 

make interactions between the same agents more likely in subsequent periods. 

 

3. COGNITIVE MAPS AND COMPLEX COGNITION 

We will now discuss how learning takes place. One of the main limitations of 

simulation models that aim to formalise our understandings of knowledge diffusion 

processes (Cowan and Jonard, 1999; Morone and Taylor, 2001) is the oversimplifying 

assumption that knowledge is accumulated as a stockpile (i.e. a vector of cardinal 

numbers indicating the level of knowledge). The roots of this problem are to be found 

in the distinction between economics of information and economics of knowledge. As 

pointed out by Ancori et al. (2000) the economics of knowledge differs from the 

economics of information in the sense that knowledge is no longer assimilated to the 

accumulation of information in a stockpile. The distinction between these two 

concepts has been repeatedly ignored by a certain branch of the economic literature 

(economics of information), which does not consider the cognitive structure that 

agents use to elaborate knowledge.  

Following this distinction, Ancori et al. (2000) develop an appreciative model in 

which the process of knowledge accumulation is disentangled into four major stages: 

identification of crude knowledge, learning how to use knowledge, learning how to 

transmit knowledge, and learning how to manage knowledge. The theoretical 

background of this model is the debate over the difference between tacit and codified 

knowledge. Three general observations are at the basis of the model: first, knowledge 



 9

is closely dependent on the cognitive abilities of actors who hold it; second, 

knowledge cannot be considered separately from the communication process through 

which it is exchanged; and finally, knowledge demands knowledge in order to be 

acquired and exchanged.  

For our purposes it is of a great interest to understand how people can exchange 

knowledge and how it is acquired once we dismiss the stockpile hypothesis. 

According to Ancori et al. new knowledge is acquired “by a backward process 

through which the new knowledge is confronted and articulated with previous 

experience. […] the appropriation of crude knowledge – i.e. its integration in one’s 

cognitive context – is not the result of a transmission, but rather the result of a re-

engineering process” (Ancori et al., 2000: 267). What the recipient agent is basically 

doing is de-codifying the knowledge received in order to be able to position it in 

her/his own cognitive map.  

Particularly useful is the following example: “when the receiver knowing ‘blue’ 

and ‘green’ received the message ‘red’, the result in his/her cognitive context is not to 

replace ‘blue’, ‘green’ by  ‘blue’, ‘green’, ‘red’, but to replace ‘blue’, ‘green’, ‘blue 

and green’ by ‘blue’, ‘green’, ‘red’, ‘blue and green’, ‘blue and red’, ‘green and red’, 

and ‘blue, green and red’” (Ancori et al., 2000: 267). This example leads to the idea 

that cognition follows combinatory rules and not additive rules.  

The theoretical framework created by Ancori et al., in spite of its strictly 

appreciative nature, is of a great interest for the development of our model, 

establishing the theoretical guidelines to characterise and construct the cognitive map 

that we will use in our simulation. We can think of the cognitive map as a tree in 

which each vertex (node) represents a piece of crude knowledge and each edge (link) 

represents knowledge that we have already mastered and learned how to use.  
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Figure 1.   COGNITIVE MAP 

 

 

In the graphical representation above we present a possible cognitive map which 

shows only mastered knowledge in the active part of this map (the coloured nodes), 

while all the other possible nodes which would complete the tree represent knowledge 

that at present is not in our cognitive map but could be activated through individual as 

well as interactive learning.  

As assumed by Ancori et al., knowledge demands knowledge in order to be 

acquired; hence, in order to activate a new node it would have to be directly 

connected to active (coloured) nodes. Moving from left to right in the cognitive map 

we move from less to more specialised knowledge, where each subsequent column 

corresponds to a higher level of knowledge. This observation justifies the assumption 

that new nodes can only be activated (i.e. new knowledge can be acquired) if they are 

directly connected to active nodes.   

Each agent is initially endowed with a cognitive map determined by a random 

process. The number drawn at random from the uniform distribution corresponds to 

the ‘column depth’ up to which nodes are activated in the initial CM of that agent. Up 
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to and including the first four columns, all nodes are fully activated. However, if the 

initial endowment exceeds the first four columns, then subsequent columns will not 

be fully activated, but will be activated according to the rule for endowment of 

specialised knowledge. We define specialisation as knowledge accumulation only in 

certain areas of the cognitive map. Agents will be specialised in one of two areas: the 

scientific area and the technical area.  

The agent’s interaction/exchange of knowledge can now be formalised as 

follows: each time an agent receives a message she/he will activate a new node, but 

only if this new knowledge can be pegged to pre-existing knowledge. The reason is 

that every new piece of knowledge has to be integrated with existing knowledge in 

order to be used. From this analysis it follows that agents with a similar kind of 

knowledge (i.e. agents with similar patterns in the cognitive map) are more likely to 

have fruitful interactions. This fact is theoretically supported by the literature on 

‘epistemic communities’ or ‘communities of practice’.3 Using this new approach will 

improve the simulation model, overcoming some of the limits of previous models.  

To sum up, the main differences between a model which uses a ‘knowledge 

vector’ and a model which uses a ‘knowledge structure’ is that in the former cognition 

follows additive rules while in the latter cognition follows combinatory rules. 

Moreover, in the ‘knowledge vector’ model, knowledge accumulation does not 

depend upon the structure of previously accumulated knowledge, as it does with the 

‘knowledge structure’ model. Formally, we have: ),( ΝXCM where X is the set of the 

whole possible knowledge available (i.e. the set of vertices), and N identifies the piece 

of knowledge activated (i.e. edges of the graph). 

                                                                 
3 See, for instance, Wenger (1998). 
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We will now explain how the process of knowledge diffusion takes place. An 

agent, whom we shall call A, contacts an acquaintance, B, in accordance with 

equation (2). Once the contact has been established the algorithm compares the two 

cognitive maps subtracting the cognitive map of A from that of B. This can produce 

one of two possible results:4 

CM A (X, N) \  CMB (X, N) 







∅≠

∅=
     (4) 

If the difference between the two sets is a non-empty set there is possibility for 

interaction; if not, agent A will have no interest in interacting with agent B as there is 

no possible gain. 

 

Figure 2.   Comparing two Cognitive Maps 

 

 

We present an example that will clarify the issue. The two graphs below represent 

the cognitive maps of agent A and an acquaintance, agent B. Now, let us assume that 

agent A contacts agent B. If we calculate the distance between the two maps we get 

( ) ( ) ∅≠ΝΝ ,\, XCMXCM BA (this can be clearly observed in figure 3 below). 

                                                                 
4 We define the cognitive map only as a function of X and N because at this stage we are not interested 

Agent A Agent B 
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Figure 3.   Knowledge interaction and the occurrence of learning  

       BA CMCM \                                                     Learning region 

 

The left-hand picture of figure 3 illustrates the difference between the two CMs. 

Once we have identified this difference, we need to identify the possible learning 

region where knowledge can be gained (i.e. additional nodes can be activated). To do 

so we recall the requirement that new knowledge has to be pegged to already existing 

knowledge, and thus we can cross out several of the coloured nodes in the first 

diagram. We conclude that the only knowledge that agent A can learn from agent B is 

that connected to activated nodes. 

Defining the nodes of the learning region as Ω , then the actual learning can be 

expressed as pΩ, where p represents the percentage of nodes of the learning region 

that will be activated as a consequence of the interaction. In other words, the agent 

that has started the interaction will activate (learn) p percent of the nodes, selected 

randomly (rounding always to the highest integer in the case of decimal numbers) 

from the learning region.5 Since the number of nodes increases exponentially, it 

                                                                                                                                                                                          
in the depth of knowledge. 
5 In the simulation model p is set equal to 0.1. 

Ð

Ð

Ð

Ð
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implies that the higher is the level of knowledge of the interacting agents, the higher 

will be the learning opportunity. This mechanism reflects the idea that the ‘absorptive 

capacity’6 of each agent is a positive function of her/his level of education. 

A final note has to be made on the ‘incentive’ mechanisms that generate 

knowledge flows. The model is structured as a ‘gift economy’ in which agents give 

away information for free. This model then might better replicate behaviours which 

take place in particular environments such as research groups or university 

communities within which knowledge flows are generated not by direct payments but 

by a tacitly agreed reciprocity.  

 

4.    NETWORK CALCULATIONS  

As discussed earlier one of the targets of this work is to investigate the nexus 

between network architecture and knowledge diffusion dynamics. In order to address 

this question we will study the network properties of the model. More precisely, we 

will calculate the average path length and cliquishness of our network in different 

stages of the simulation: 

 

( ) ( )∑∑
= ≠ −

=
N

x yx N
yxd

N
t

1
;

1
,1

L          (5) 

and the average: 

( ) ( )
( )∑ ∑

=

Φ

= −ΦΦ
=

N

x zy
xx

zyX

N
t

1 1,
,

2/1||||
,1

C         (6) 

where X (y, z) = 1 if y and z are connected at time t (no matter whether the connection 

is a first generation or next generation connection), and X (y, z) = 0 otherwise.  

                                                                 
6 We refer explicitly to the work of Cohen and Levinthal (1989) on returns from R&D. The concept of 
individual absorptive capacity has already been developed in Morone (2001). 
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We shall compare our dynamic network with a random one at different stages 

throughout the simulation to show whether or not the small worlds architecture is 

emerging in our system. Since the number of connections in our network is changing 

over time (due to the mechanism by which agents make acquaintances of their 

acquaintances), in order to make an appropriate comparison we need to construct the 

random network with an equivalent number of connections. For calculating the 

average path length and cliquishness of a random network, we shall use the same 

approximation as Watts and Strogatz (1998) that ( ) nNt lnln≅randomL  and 

( ) Nnt ≅randomC , where n is the average number of connections of each agent and N is 

the total number of agents. The criteria for identifying the network as small worlds are 

that ( ) ( )tt randomLL ≅  and ( ) ( )tt randomCC >> .  

If, when comparisons are made with the random network, we find that the 

Watts-Strogatz (Watts and Strogatz, 1998) criteria are observed, this will be evidence 

to suggest that a small worlds network structure is emergent from our model.  

 

5. SIMULATION RESULTS AND INTERPRETATIONS 

We run several batches of simulations and we examined both learning behaviours 

and network properties. We performed simulation experiments with a population of 

100 agents allocated over a wrapped grid of dimension 20 by 20 cells. Hence, the grid 

had an approximate overall density of one agent per 4 cells. Each agent has a visibility 

parameter that we tuned to study changes in learning behaviours as well as network 

structure. We started with ν = 2, meaning that each agent can see the two cells 

situated in the four cardinal directions. Moreover, we endow 10% of the overall 

population with ICT platforms, meaning that approximately 10 agents will be 

members of the cyber network. 
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The same random number seed was used for all the simulation runs ensuring fewer 

artefacts present in the results. The model was programmed in the Strictly Declarative 

Modelling Language (SDML) developed at the CPM (Wallis and Moss, 1994) to 

support the modelling of social processes with multi-agent systems. The results were 

analysed using the graphical output capabilities of SDML platform and the network 

analysis software toolkit UCINET 5.0 (Borgatti, Everett, and Freeman, 1999). 

 

5.1 Knowledge Diffusion Dynamics  

We ran 400 cycles for each simulation, obtaining a long-term stationary state. 

When ν is set equal to two we observe substantial increases in both mean and 

variance, suggesting a polarisation of knowledge distribution and an increase in the 

knowledge gap. Given the structure of knowledge expressed by the cognitive map, we 

calculate mean and variance based on the total number of activated nodes for each 

agent. Figure 4 shows these dynamics: first we plot µ against time and we observe 

that the average number of activated nodes grows substantially over the first 50 

cycles, the pace of learning being approximately 4 nodes per cycle. Then, it speeds up 

remarkably, almost tripling the pace of learning (reaching approximately 11 nodes per 

cycle). This dynamic reflects the fact that agents first start interacting with their 

geographical neighbours, then they learn of the existence of acquaintances of their 

initial acquaintances and are therefore able to make better choices for interaction. 

Moreover, after several interactions they learn valuable information about their 

acquaintances’ level of education through the individual model of preference. In other 

words, they understand with whom it is worth interacting. After the first 120 cycles 

the average level of knowledge flattens out and then barely grows in the following 

100 cycles until finally at about 230 cycles reaches its maximum value. This is due to 
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the fact that the CM of some agents has become saturated. Finally, after about 230 

cycles the mean curve levels-off, meaning that the system has reached a stable 

equilibrium. 

 

Figure 4.   Changes in the mean and variance of knowledge (ν = 2). 

 

Subsequently, we plot the variance in knowledge against time and we observe 

that σ2 first decreases slightly over the first 50 cycles or so, whereupon it reaches a 

turning point. After the first 150 cycles the variance slows down considerably and 

finally reaches a stationary state after 230 cycles. The variance pattern adds some 

useful information to our understanding: in the beginning, when everybody is 

interacting only with their closest neighbours there are similar learning opportunities 

for each agent, the learning path being rather homogeneous. On the other hand, when 

agents learn about of the existence of other acquaintances, and the network structure 
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evolves, the society starts dividing into clusters7 or sub-groups of fast- and slow- 

catching-up agents, and the learning path becomes heterogeneous and unequal.  

Looking at individual dynamics corroborates this interpretation. We can clearly 

see how the model generates multiple equilibria, suggesting the existence of 

unconnected sub-clusters of agents. The groups converge to separate equilibria at very 

different intervals, one at 2044, one at 1532, one at 540, and several smaller groups at 

lower values. This is responsible for the high variance observed in the graph above. 

       

Figure 5.   Changes in the average level of knowledge by individuals (ν = 2). 

 

 

To explain the agent learning behaviour illustrated by figures 4 and 5, we must 

consider the dynamics underlying the structure of knowledge in the model. The 

number of agents with fully saturated CMs increases over time, and as agents 

approach this state they have a reduced potential for learning, i.e. the learning region 

                                                                 
7 We will come back to this point in the following section while studying the network structure.  

Source: Simulation results 
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becomes smaller. However, on the other hand, in the early stages of the simulation 

this region tends to widen in the CM  of the majority of agents, giving the potential for 

greater gains. In addition, agents will have increased opportunities to gain from 

interactions as CMs become more heterogeneous. For example, two agents with 

identical schooling will not be able to gain from an interaction in cycle 0, whereas 

later in the simulation they most likely will experience a small gain. This begs the 

question: to what extent is the observed increase in knowledge due to the widening of 

the learning region (i.e. the structure of the CM), and to what extent is it due to agents 

making better choices for interaction (i.e. the preferential model of acquaintance 

selection). 

The efficiency of the learning mechanism has been demonstrated through 

exploration of a very similar model presented elsewhere (Morone and Taylor, 2004) 

(see section 7), where the authors discovered a more rapid diffusion process compared 

with simulations where there is no model of ‘preferential acquaintance selection’. We 

leave this test of different learning mechanisms for further investigation. 

More information on the structure of the network can be gathered by studying 

the dynamics through which agents make new connections. We will do so by looking 

at the average number of acquaintances and its variance. We expect to observe a 

monotonic increase in the number of acquaintances over the first few cycles: every 

interaction presents the opportunity to meet a new acquaintance, whilst agents will not 

start disconnecting non-gainful relationships until several cycles have passed (i.e. 

when the strength level has fallen below the threshold value).  

Starting values describe the state of the system with the local-network  in 

conjunction with the cyber-network : this situation is one of very low average number 

of acquaintances and variance as shown in figure 6. As anticipated, during the early 
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part of the simulation the average number of acquaintances increases sharply, moving 

from an average of approximately two acquaintances, to an average of almost 20 after 

30 cycles.8 However, the variance behaves even more dynamically. It starts quite low, 

skyrockets over the first 50 cycles, then decreases (with several ups and downs) and 

eventually stabilizes at the initial low level after approximately 200 cycles. Thus 

when all agents have attained their maximum possible knowledge and learning has 

finished, the majority of acquaintances are dropped and we return to a system very 

similar to the local-network  configuration with low mean and variance. 

 

Figure 6.   Average number of acquaintances and variance (ν = 2). 

 

The variance behaviour during the learning period of the first 150-200 cycles is 

easily explained by considering the many disconnected agents and sub-groups in the 

network. As the density of connections in the main population increases, these agents 

remain with relatively very few (or zero) acquaintances, and this largely accounts for 

                                                                 
8 It is worth noting that the average number of acquaintances reported here do not include the cyber 
acquaintances as it is constant over time.  

0

20

40

60

80

100

120

0 100 200 300 400

Cycles

A
ve

ra
ge

 n
u

m
b

er
 o

f 
ac

q
u

ai
n

ta
n

ce
s 

an
d

 
va

ri
an

ce

average variance 

Source: Simulation results 



 21 

the high variance seen in figure 6.  In this simulation experiment, few agents have got 

a very small number of acquaintances, whilst the vast majority of agents are 

extremely well connected. Clearly, this is not facilitating the equality of knowledge 

flows, keeping the wrapped grid as a whole a rather un-cohesive environment.9 

 

5.2 Enhancing Knowledge Flows 

One possible way to facilitate knowledge flows would be to make the global 

simulation environment more cohesive by increasing the density of the network. We 

could achieve this target either reducing the grid size or alternatively increasing the 

visibility range of each agent. These two options are technically very similar, as they 

increase the initial connectivity (and make possible more subsequent connections), 

practically reducing the geographical distance between agents. A useful example of 

the importance of the cohesiveness of environments to enhance knowledge flows is 

provided by the literature on industrial districts. Several authors10 pointed out the 

importance of cohesiveness and geographical proximity in determining the overall 

efficiency of a district.  

In our first simulation we had an overall density of the graph of one agent per 4 

cells with a visibility equal to two. This produced a rather un-cohesive environment 

where groups of agents were isolated from each other. By raising the value of ν from 

two to six we increased the cohesiveness of the global environment. In figure 5 we 

report changes in the variance dynamics after changing the visibility value. We can 

clearly see how the variance behaves very differently according to the tuning of the 

visibility parameter: rising ν from two to three the model diverges at a slower pace 

                                                                 
9 It is worth clarifying this point:  prestigious agents are facilitating knowledge flows but the network 
structure is not facilitating it. 
10 See among others: A. Marshall, 1952; G. Becattini, 1990; G. Dei Ottati, 1994. 
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and towards a much less unequal equilibrium. If we raise the ν value to four and five, 

we can observe a short-term behaviour during which the variance decrease describing 

a converging pattern. Subsequently, after the first 100 cycles, the variance starts 

growing again and the model stabilises around a value of the variance not to 

dissimilar from the original one.  Finally when ν is set higher than five, the model 

shows a converging behaviour both in the short-term as well as in the long run steady-

state. 

 

         Figure 7.   Knowledge variance transition. 

  

 

Increasing ν, we decrease the number of isolated agents and the number of 

isolated sub-groups. Nevertheless, when the visibility is set equal to six, our 

simulation shows that convergence is not always complete (i.e. the model does not 

converge to zero variance and maximum mean) solely because there is one agent who 

is totally isolated and hence unable to be engaged in any interaction. Nonetheless, 

99% of the population reach the highest possible level of knowledge in less than 250 

Source: Simulation results 
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cycles. Likewise, when visibility is increased the distribution of acquaintances is more 

even. 

 

Figure 8.   Changes in the average level of knowledge by individuals (ν = 6). 

 

 

In figure 9 we can see that the average number of contacts per agent is higher 

than in the case v=2 . Throughout the simulation agents maintain more connections: 

this number peaks at about 27 acquaintances and remains at a high level for nearly 

200 cycles, producing a very dense network. Interestingly however, the variance is 

much lower than in the case v=2, implying that agents are almost uniformly 

maintaining a high number of personal contacts. As in the previous case, the average 

number of acquaintances starts decreasing as soon as the model converges towards the 

long run steady state around cycle 270. 

In this second simulation, the mean number of acquaintances is much higher 

than the variance, reversing the result of the first simulation. The difference is largely 

attributable to the reduced number of disconnected agents, and the result illustrated in 
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figure 9 therefore gives us a more accurate picture of the typical connectivity of 

agents following the preferential acquaintance selection model.   

In conclusion, increasing the visibility range generates a more interconnected 

environment, which in turn produces improvements both in terms of overall efficiency 

(i.e. speed of knowledge diffusion) as well as in terms of equality of distribution.  

 

Figure 9.   Average number of acquaintances and its variance (ν = 6). 

 

Given the structure of our model, an alternative way of enhancing knowledge 

diffusion would be increasing the percentage of agents endowed with ICT. So far, we 

have assigned an ICT platform to just 10% of the population. Raising this value 

would represent an alternative way of bridging over the physical distance among 

agents and making the environment more cohesive.  

When ICT penetration is boosted up to 30%, we can observe a rapid increase in 

the number of agents able to converge to the absolute maximum in the long run steady 

state. Nonetheless, almost 15% of the overall population is unable to converge and 
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appears to be fully disconnected and hence unable to interact at all. This implies that 

the overall variance would increase quite rapidly, converging to a high value. 

Further increasing the ICT penetration to 50%, however, we have the situation 

where almost all agents are able to converge to the highest possible level of 

knowledge exactly as we saw in the case where visibility was set equal to six.  

 

Figure 10.   Changes in the average level of knowledge by deciles. 

Different values of ICT penetration. 

 

As we can see in figure 10, when we push ICT penetration up to 50% (meaning 

that every second agent has access to internet platform), the model will converge to a 

long run steady state in which more than 90% of the agents will reach the highest 

possible level of knowledge. Nonetheless, 400 cycles did not prove sufficient to reach 

the steady state, meaning that the pace of convergence is much slower if compared to 

a model with high degree of visibility. In other words, both actions to enhance 

knowledge flows (i.e. increasing the cohesiveness of the network by means of higher 
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visibility, and increasing the ICT diffusion) will generate a long-term stationary state 

in which almost every agent converges.  

Nonetheless, increasing the visibility seems to be a more efficient tool to reach 

this target. Knowledge flows distribute more equally if we increase the size of each 

agent’s neighbourhood (and hence local-network ) rather than superimposing one large 

cyber-network over half of the population. In fact, this second option will account for 

greater chances of social exclusion even though it results in initially very much lower 

average path length and high cliquishness as we will see in the following section. 

 

5.3 Calculating network properties 

In this section we present our results for the small world calculations. We have 

calculated average path length and cliquishness at different stages of simulations and 

for three different scenarios.11 In this way we can compare network properties with 

the knowledge diffusion results presented above. More precisely we have calculated 

small world properties at cycles 0, 10, 50, 100, 150, 200, 250, 300, 350 and 400; for 

the network with visibility equal to two and ICT penetration equal to 10%, for the 

network with visibility equal to six and ICT penetration equal to 10%, and finally for 

the network with visibility equal to two and ICT penetration equal to 50%. These 

results are then compared with those characterising comparable random networks. In 

this way we can examine the robustness of small world structures following the test 

first introduced by Watts and Strogatz (1998) and described in section 5 above.  

                                                                 
11 C was calculated by taking the average over all agents of the proportion of an agent’s 

acquaintances that are themselves acquainted. This was a straightforward calculation made by means of 

querying the database of SDML at the appropriate stage of the simulation. L was calculated by 

importing the relational data into UCINET 5.0 and using the Networks-Properties function to produce a 

matrix of path lengths between each node. The average path length was determined by finding the 

density of the matrix. More detailed information on these calculations are available upon request. 
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In the first two cases, where ICT penetration is set to 10% and v varies (we did 

the calculations for v equals two and v equals six) the same pattern is observed: 

cliquishness increases and average path length decreases over the first 150 cycles as 

the system becomes more densely connected and knowledge flows more intense. 

After this period the system starts converging towards the long-run steady state 

equilibrium and, as the system stabilises, there are fewer gainful interactions and 

agents start disconnecting from their acquaintances. At this point, the average number 

of connections falls and cliquishness decreases, whilst the average path length starts 

increasing. Eventually the network evolves back towards the initial configuration. 

This is not the case in the third simulation, however, where ICT is set equal to 

50% and v equals two. The initial system is much more densely connected due to the 

high level of ICT penetration. Nonetheless, agents can disconnect from their initial 

cyber acquaintances (unlike their geographical neighbour acquaintances) and 

therefore we observe that cliquishness goes considerably down after the first 150 

cycles whilst the average path length rises. 

In each case, the initial network is small world due to the presence of the cyber-

network  which connects far-distant agents and reduces the path length of the network. 

What we can observe looking at the network calculations, is that in every case the 

system preserves the most efficient network structure (i.e. the small world) for the 

duration of the simulation, and in particular, the learning period (i.e. the first 150-200 

cycles) is characterised by very low average path length and high cliquishness. 
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Table 1.  Small world calculation results 
 

   

 

Cycle
average path 

length (among 
reachable pairs)

cliquishness average path length cliquishness 

0 5.9910 0.3497 4.2305 0.0297
10 2.5330 0.6203 2.0504 0.0945
50 2.2850 0.6910 1.6495 0.1631

100 2.0480 0.6999 1.6890 0.1528
150 2.1050 0.6903 1.7334 0.1425
200 3.1320 0.5995 3.0940 0.0443
250 4.3330 0.4609 4.5854 0.0273
300 4.0950 0.5015 4.6714 0.0268
350 3.5630 0.4677 4.8788 0.0257
400 3.9250 0.4135 4.8991 0.0256

First simulation results: v=2 and ICT=10%

simulation random network

Cycle
average path 

length (among 
reachable pairs)

cliquishness average path length cliquishness 

0 3.1280 0.4514 2.5375 0.0614
10 2.3390 0.4541 1.8583 0.1192
50 1.9090 0.6677 1.4224 0.2547

100 1.9830 0.6695 1.4663 0.2312
150 2.0180 0.7038 1.4806 0.2243
200 2.3560 0.4811 1.7853 0.1319
250 3.1630 0.3533 2.5678 0.0601
300 3.1780 0.3530 2.5678 0.0601
350 3.2200 0.3758 2.5702 0.0600
400 3.1910 0.3742 2.5726 0.0599

Second simulation results: v=6 and ICT=10%

simulation random network

Source: Simulation results 

Cycle
average path 

length (among 
reachable pairs)

cliquishness average path length cliquishness 

0 1.7370 0.7734 1.2754 0.3699
10 1.5580 0.9712 1.2299 0.4228
50 2.0970 0.7397 1.5596 0.1916

100 2.2250 0.7233 1.6132 0.1737
150 2.2930 0.7901 1.6288 0.1690
200 3.5110 0.3798 2.8793 0.0495
250 5.9450 0.4088 4.1419 0.0304
300 6.0930 0.3732 4.2046 0.0299
350 5.7700 0.3863 4.1918 0.0300
400 6.6450 0.3929 4.2046 0.0299

Third simulation results: v=2 and ICT=50%

simulation random network
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In conclusion, small world properties are observed both when knowledge flows 

lead the system to convergence, and also when they lead to non-convergence. In other 

words, the network structure doesn’t affect directly the distributional aspects of 

knowledge flows. Convergency patterns will be determined solely by the existence of 

isolated agents and subgroups of agents.  

 

6. AN EMPIRICAL APPLICATION OF THIS MODEL 

An interesting exercise to test the usefulness of the model presented in this 

paper would be applying it to an empirical case study. This would allow investigating 

directly the risk of exclusion in a specific society and developing a model which 

might bring insight to the knowledge diffusion process in a well-identified context. 

This kind of exercise was carried out by the authors, who applied the model to the 

Chilean case  (Morone and Taylor, 2004). As we will see, several interesting results 

were obtained.  

The data, which were used to calibrate the model, were a sub-sample of the 

1998 edition of the Encuesta de Ocupación y Desocupación (one of the most 

comprehensive household surveys collected in Santiago de Chile), providing us with 

the following useful variables: district of residence, years of schooling, kind of 

schooling, and use of computers at work. These variables were used to distribute 

agents over the geographical grid, to build the CM  of each agent and to construct the 

cyber network. 

The model environment was defined as a grid that resembled the geographical 

configuration of the metropolitan area of Greater Santiago de Chile. The grid was 

divided into 34 portions, each corresponding to a defined district of Santiago, having 

thus different dimensions and population densities. Defining the grid as a two-
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dimensional geographical region added into the model a core-periphery aspect, with 

some districts being located in a central position and others in a peripheral one.  Each 

agent was initially assigned a district and then allocated, randomly, to a cell within 

that district. Depending on the geographical location, agents were endowed with 

acquaintance lists, and - depending on the empirical data - few agents were selected as 

members of the cyber network. Moreover, each agent was initially endowed with a 

different cognitive map, which depended upon her/his level and kind of education 

(measured as years of schooling and kind of school attended). Each column 

corresponded to a higher level of education. 

The results concerning the knowledge diffusion process were very interesting: 

in presence of high levels of (knowledge) inequality there was a high risk of exclusion 

for those agents initially endowed with low level of education – an ignorance trap 

where agents were never able to catch up. Moreover, looking into the spatial 

dimension of the exclusion process, we found that the ignorance trap mechanism is 

more likely to take place if an initial situation of low level of knowledge is coupled 

with geographical exclusion. In other words, those people who start with a high level 

of individual learning (i.e. schooling) will always be able to escape from the 

ignorance trap mechanism, while more backward people might be trapped if their low 

level of knowledge is cumulated with geographical exclusion. 

These findings appear to be extremely important from a policy prescription 

perspective. Based upon the theoretical results obtained in this paper a twofold policy 

action could be suggested to avoid the occurrence of an ignorance trap: the policy 

maker should aim at reducing the geographical gap between centre and periphery. 

This policy could be implemented through the development of infrastructure, bridging 

the centre-periphery distance, which would correspond to an increase of the visibility 
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range of our model population, as well as through the development and improvement 

of ICT connections. In other words, the exclusion risk could be minimised through the 

development of a more comprehensive cyber-network, so that also peripheral agents 

will have the same opportunity to interact with central and semi-peripheral agents. 

 

7. CONCLUSIONS  

In this paper we addressed the issue of knowledge diffusion, developing a 

simulation model to investigate the complex learning process which occurs among 

agents interacting in informal networks. In our model, agents exchange knowledge by 

means of face-to-face interactions, and every time a knowledge transfer occurs, the 

new knowledge acquired is confronted and linked with previous knowledge. In other 

words, knowledge is acquired not through a simple additive process, but by a more 

articulated combinatory process. 

We studied how, within this framework, knowledge flows. Particularly, we 

investigated the occurrence of different long-run steady states for different levels of 

network cohesiveness and ICT penetration. We found a critical level, by tuning the 

visibility parameter, above which convergence in knowledge levels occurs. A 

converging long-run equilibrium was also achieved by increasing the ICT penetration. 

Nonetheless, we showed how this latter option was less efficient than the first one, as 

convergence was slower. We conclude from this that a more effective measure aimed 

towards generating more evenly-distributed knowledge flows should focus upon 

enhancing local-network  connectivity rather than extending the cyber-network 

coverage. 
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Subsequently, we studied the network properties of different systems, showing 

how the model consistently preserved a small world structure, presenting desirable 

properties in terms of overall knowledge flows. 

As a suggestion for further research, we would like to point out the importance 

of better investigating the real nexus between network cohesiveness and ICT 

penetration. In other words, we suggest studying the relation between geographical 

proximity and cyber proximity in order to understand if these two system properties 

are substitutable or, as we would foresee, complementary in promoting knowledge 

flows. 
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