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Abstract

We consider the problem of computing equilibrium prices for exchange economies. We tackle
this problem under the assumption that the traders have either CES (constant elasticity of sub-
stitution) utility functions or a subfamily of ASC (additively separable concave) utilities. For the
subfamily of ASC functions, and for a range of CES functions which include some CES functions
that do not satisfy weak gross substitutability, we translate the equilibrium conditions into a
convex feasibility problem. This enables us to obtain new, polynomial time algorithms for com-
puting the equilibrium. As a byproduct of our work, we prove the uniqueness of equilibrium in
an interesting setting where such a result was not known.

1 Introduction

Theoretical computer scientists have, in the last few years, become aware of the importance of
the computation of market equilibria, originally a central concept of Theoretical Economics [2, 3, 4].
Informally, in an exchange economy there is a collection of goods, initially distributed among “actors”
who trade them. The preference of each of these independent actors for each bundle of goods is
expressed by a “utility function”. Each actor tries to maximize her utility, but is constrained by her
budget (as determined by the value that the “market” – consisting of herself and all the other actors
– gives to the goods she has).

An equilibrium is a set of prices at which there are allocations of goods to traders such that two
conditions are simultaneously satisfied: each trader’s allocation maximizes her utility, subject to the
constraints induced by her budget, and the market clears.

Note that in this formalism there are no restrictions on utility functions other than those imposed
by the fact that they represent rational preferences satisfying standard assumptions: they may have
very complicated dependencies on all goods held by the actors.

An early triumph of Mathematical Economics was the 1954 result by Arrow and Debreu [2]
that, even in a more general situation which includes the production of goods, subject to very
mild and natural restrictions, there is always an equilibrium. The proof relies on very general
fixpoint theorems. The mathematical nature of such general fixpoint problems does not lead to
efficient algorithms – indeed the computation of fixpoints is suspected to be intractable1. In general
equilibria are not only not unique, but the set of equilibrium points may be disconnected. Yet many
real markets do work, and economists have struggled to capture realistic restrictions on markets,
where the equilibrium problem exhibits some structure, like uniqueness or convexity. The general
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approach has been to impose restrictions either at the level of individuals (by restricting the utility
functions considered and/or by making assumptions on the initial endowments) or at the level of
the aggregate market (by assuming that the composition of the individual actions is particularly well
behaved).

Two well studied conditions are gross substitutability – GS (see [34], p. 611) and the weak axiom
of revealed preferences – WARP (see [34], Section 2.F). Although restrictive, these conditions are
useful and model some realistic scenarios.

A utility function satisfies GS (resp., weak GS – WGS) if increasing the prices of some of the
goods while keeping the other prices and the income fixed causes the increase (resp., does not cause
the decrease) in demand for the goods whose price is fixed.

Roughly speaking, WARP means that the aggregate behavior of the market fulfills a fundamental
property satisfied by the choices made by any rational individual trader.

It is well known that GS implies that the equilibrium prices are unique up to scaling ([42], p.
395), and that WGS and WARP both imply that the set of equilibrium prices is convex ([34], p.
608). When the set of equilibria is convex, it is enough to add a non-degeneracy assumption (which
is almost always satisfied) to get the uniqueness of the equilibrium up to scaling [12].

CES utility functions. The most popular family of utility functions is given by CES (constant
elasticity of substitution) functions. A CES function ranks the trader’s preferences over bundles of
goods (x1, . . . , xn) according to the value of u(x1, . . . , xn) = (

∑n
i=1 cix

ρ
i )

1
ρ .

The success of CES functions is due to the useful combination of their mathematical tractability
with their expressive power, which allows for a realistic modeling of a wide range of consumers’
preferences. Indeed, one can model markets with very different characteristics, in terms of preference
towards variety, substitutability versus complementarity, and multiplicity of price equilibria, by
changing the values of ρ and of the utility parameters ci. Whenever the relative incomes of the
traders is independent of the prices, CES functions give rise to a market which satisfies WARP. On
the other hand, CES functions satisfy WGS if and only if ρ ≥ 0, whereas, if ρ < −1, they allow for
multiple disconnected equilibria.

In summary, CES functions are important because (i) economists use them extensively; (ii) they
model markets exposing a variety of different phenomena; (iii) they include, as special cases, utility
functions previously studied by computer scientists; (iv) they generate a market with some structure.
For these reasons they seem to be the prime candidates for a thorough exploration of the market
equilibrium problem.

Our Results. In order to present our results in context, we briefly review recent results on the
computation of market equilibria (see [6] for a more complete review.) The main goal in this area
of research is to provide polynomial time algorithms for the computation of market equilibria. In a
series of papers which started with linear utility functions, more and more general utility functions
were considered [13, 29, 28, 11, 10, 23, 24, 7]. Most of the corresponding market settings fall into
the framework of one of the two conditions above (WGS or WARP).

The technical tool used in some of these results is to reformulate the problem in terms of math-
ematical programming in a way that a polynomial time algorithm (or approximation scheme – in
general the equilibrium point is not a vector of rationals) can be obtained by known optimization
techniques. In particular, convex programming has been proven to be a particularly useful tool
[28, 11, 10].

Our contribution is to present new formulations that, for a large class of utility functions, well
studied in the economic literature, express the equilibrium as the solution of a convex programming
problem. With our techniques we can deal with additively separable concave (ASC) functions of the
form u(x) =

∑
j αjx

ρj

j , where αj ≥ 0, and 0 < ρj < 1, and CES functions with ρ ≥ −1. Note in
particular that our results apply to a range of CES functions, those with −1 ≤ ρ < 0, for which the
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market satisfies neither WARP nor GS.
Besides the algorithmic contribution of the technique, our formalization allows us to conclude

that for this class of functions equilibria are not disconnected, and are thus essentially unique. This
was not known by economists. Indeed it turns out that an exchange economy with traders endowed
with CES utility functions such that −1 ≤ ρ < 0 is not covered by any of the known conditions
that ensure that there are no multiple disconnected equilibria, such as the Super Cobb-Douglas
Property of Mas-Colell [32], and thus our result also provides an original contribution to the theory
of equilibrium. Combined with a result by Gjerstad presented in Section 3.3, our work leads to a
characterization of the CES exchange economies whose set of equilibria is connected.

Our formulation is quite different from Jain’s and Nenakov-Primak’s formulation [28, 36]. Jain’s

approach, which works for utility functions u(x1, . . . , xn) for which log
∑

j
xj∂ju(x)

∂ku(x) is concave, does not
apply to CES functions with −1 ≤ ρ < 0. The general approach we take is to write the equilibrium
conditions as a nonconvex program in the price and allocation variables that involves both equalities
and inequalities. We then show that some of the equalities can be relaxed into inequalities. We
exploit certain necessary and sufficient conditions that must be satisfied by the market demand
function to get rid of the variables representing the allocations of each trader. Finally, we make
some variable substitutions which end up making all the inequalities convex.

One of the consequences of our approach is that in some cases the number of variables and
constraints in our convex programs is smaller by an order of magnitude in comparison to the programs
of Jain and Nenakov-Primak.

In the sequel we present a more precise set of definitions, as well as a sketch of previous results.
The Model. We now describe the exchange market model. Let us consider m economic agents

who represent traders of n goods. Let Rn
+ denote the subset of Rn where the coordinates are

nonnegative. The j-th coordinate in Rn will stand for the good j. Each trader i has a concave
utility function ui : Rn

+ → R+, which represents her preferences for the different bundles of goods,
and an initial endowment of goods wi = (wi1, . . . , win) ∈ Rn

+. At given prices π ∈ Rn
+, each trader

will sell her endowment, and get the bundle of goods xi = (xi1, . . . , xin) ∈ Rn
+ which maximizes

ui(x) subject to the budget constraint2 π · x ≤ π · wi.
An equilibrium is a nonnegative vector of prices π = (π1, . . . , πn) ∈ Rn

+ at which there is a bundle
x̄i = (xi1, . . . , xin) ∈ Rn

+ of goods for each trader i such that the following two conditions hold:

1. The vector x̄i maximizes ui(x) subject to the constraints π · x ≤ π · wi and x ∈ Rn
+.

2. For each good j,
∑

i x̄ij ≤
∑

i wij .

The already mentioned result of Arrow and Debreu [2] implies that, under some quite mild
assumptions, such an equilibrium exists. The above described market model is usually called an
exchange economy. A simplified model, known as Fisher’s model (see [6]), arises when the economic
agents are buyers, endowed with fixed incomes, competing for goods, which are available in fixed
quantities.

Note that Fisher’s model can be seen as a special case of an exchange economy, obtained by
assuming that the initial endowments are proportional, i.e., wi = δiw, δi > 0, so that the relative
incomes of the traders are independent of the prices.

Related Results. Devanur et al. have developed a polynomial time algorithm for Fisher’s
model with linear utilities which is based on a number of max flow computations [13]. A polynomial
time algorithm for this setting also follows from a characterization of Eisenberg and Gale [20, 22].
Unaware of an extension of [20, 22] by Eisenberg [19], Codenotti and Varadarajan have introduced a
polynomial time algorithm for Fisher’s model with Leontief utilities, and have shown how to extend

2Given two vectors x and y, we use the notation x · y to denote their inner product.
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it to homogeneous of degree one utility functions [11]. Jain, Vazirani and Ye [30] have presented some
extensions to include economies of scale in production. Chen et al. [7] have proposed an algorithm
for Fisher’s model with logarithmic utility functions. Their algorithm runs in polynomial time when
either the number of goods or the number of buyers is bounded by a constant.

The result of [13] has inspired the definition of a new model, the spending constraint model [14],
to which the technique used in [13] can still be applied.

The computation of equilibrium prices for Fisher’s model has been the main ingredient in iterative
poly-time approximation schemes which compute an approximate equilibrium for the exchange model
with linear utilities [29, 15]. For the same setting, Garg and Kapoor have introduced an auction
based poly-time approximation scheme [23]. This method has been extended in [24] to markets
where traders have separable utility functions and the individual excess demands satisfy WGS.

For the exchange model, Eaves introduced a formulation based on linear programming tailored
to handle a special case of CES functions, i.e., the Cobb-Douglas utility functions [18].

Unaware of the work by Nenakov and Primak [36], which is written in Russian, Jain [28] intro-
duced a convex program that characterizes the equilibria for the linear exchange model. His convex
program turns out to be the same as the one in [36]. This convex program can also be applied to
characterize the equilibria for several non-linear utilities, including the CES functions with ρ > 0. Ye
[43] has suggested how to solve such convex programs using very efficient interior point and related
methods.

Classical results [3, 4, 5] characterize the equilibria in markets which satisfy WGS as a convex set
defined by an infinite number of linear inequalities. Based on the proofs of these characterizations,
and a related characterization due to Primak [39], Codenotti, Pemmaraju, and Varadarajan [10]
obtained poly-time algorithms for computing equilibria in such markets. Finally, in [8] the authors
showed polynomial time approximation schemes based on tatonnement, as well as extensions of the
results in [10] to some Fisher and production economies.

Organization of this abstract. In Section 2 we introduce the notion of elasticity of sub-
stitution, we describe CES functions and their main properties, and give hints at their economic
relevance. In Section 3 we first show that equilibrium prices and allocations for an exchange econ-
omy, where the traders are endowed with CES functions with −1 ≤ ρ < 0, can be computed by
solving a feasibility problem, defined in terms of explicitly given convex constraints. We then give
a related, but different, convex formulation for CES functions satisfying WGS. We finally point out
the difficulty of generalizing our techniques to the entire range of CES functions. In Section 4 we
present a convex formulation capturing equilibria for markets where the traders have a family of
ASC utility functions. In Section 5 we provide some concluding remarks and mention further work.
Most of the proofs are in the Appendix.

2 CES Utility Functions

The concept of elasticity of substitution has been introduced by Hicks [26, 27] as a natural measure
for the curvature of the indifference curve of a utility function.

The constant elasticity of substitution functional form (CES, for short) was introduced in [41].
A CES function is a concave function (see, e,g, [21], p. 696) defined as

u(x1, . . . , xn) =

(
n∑

i=1

α
1
σ
i x

σ−1
σ

i

) σ
σ−1

,

where the αi’s are the utility parameters, and σ ≥ 0 is the constant representing the given elasticity
of substitution. The function is undefined for σ = 0 and σ = 1.
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CES functions with σ > 1 have been used by Dixit and Stiglitz [16], to analyze the well known
issue of quantity versus diversity. We say that people prefer variety if they experience an increased
utility consuming small quantities of each of a larger number of products. The convexity of the
indifference curves of concave utility functions guarantees that a bundle of goods (1/2, 1/2) is always
preferred to both (1, 0) and (0, 1) if (1, 0) and (0, 1) are equally preferred. CES functions allowed
Dixit and Stiglitz to express such preference for variety with different shadings, and to use their
analysis in several applications.

CES functions have been thoroughly analyzed in [1], where it has also been shown how to derive,
in the limit, their special cases, i.e., linear, Cobb-Douglas, and Leontief functions (see [1], p. 231).
For σ → ∞, CES take the linear form, and the goods are perfect substitutes, so that there is no
preference for variety. For σ > 1, the goods are partial substitutes, and different values of σ in
this range allow us to express different levels of preference for variety. For σ → 1, CES become
Cobb-Douglas functions, and express a perfect balance between substitution and complementarity
effects. Indeed it is not difficult to show that a trader with a Cobb-Douglas utility spends a fixed
fraction of her income on each good.

For σ < 1, CES functions model markets with significant complementarity effects between goods.
This feature reaches its extreme (perfect complementarity) as σ → 0, i.e., when CES takes the form
of Leontief functions. In the latter case, the shape of the optimal bundle demanded by the consumer
does not depend at all on the prices of the goods, but is fully determined by the parameters defining
the utility function.

Many real world market settings are being modeled using CES functions, or their more versatile
nested versions.3

3 Exchange Economies with CES Utility Functions

We derive polynomial time algorithms which follow from a characterization of the equilibria in terms
of convex feasibility. Since an equilibrium price vector that is rational may not exist in general, we
have to settle for an approximate equilibrium [29], at which the allocations to the traders almost
optimize their utility and the market almost clears. Our algorithm will be polynomial not only in
the input parameters but also in the number of bits used in the standard encoding of the rational
number representing the approximation parameter. (We postpone a detailed discussion of this to the
final version.) Whenever the solution can be irrational, such an algorithm is considered equivalent
to an exact algorithm.

We start by characterizing the demand function of traders with CES utility functions. Consider
a setting where trader i has an initial endowment wi = (wi1, . . . , win) ∈ Rn

+ of goods, and the

CES utility function ui(xi1, . . . , xin) =
(∑n

j=1 αijx
ρi
ij

) 1
ρi , where ρi < 1, αij ≥ 0. Note that this

description is equivalent to the form discussed in Section 2, but it is parameterized differently (that
is, ρi = σi−1

σi
). We assume that each good j is desired by some trader, that is, αij > 0 for some i.

We first present a Lemma which characterizes the demand function of trader i at given prices φ,
i.e., the bundle of goods which maximizes her utility function ui(x) subject to the budget constraint
π · x ≤ π · wi.

3Here are some examples. CES functions have been extensively used in the cost effectiveness study of the European
Union Auto-Oil Programme (The working group report can be found in [44]. In particular, see the Annex to part
II, describing the TREMOVE Model 1.3). CES have been used in models of trade that incorporate aspects of scale
economies and product differentiation into equilibrium models (see, e.g., [37]). As a further example, the popular
mathematical programming modeling language GAMS [17] has been extended to treat general equilibrium problems
[40], and in the related software package both production and consumption have been modeled using CES functions
and their special cases.
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Lemma 1 Suppose trader i has an initial endowment of goods wi = (wi1, wi2, . . . , win) ∈ Rn
+ such

that not all wij are 0, and a CES utility function ui(xi1, . . . , xin) =
(∑n

j=1 αijx
ρi
ij

) 1
ρi , where ρi < 1,

αij ≥ 0 and not all the αij are 0. Let π = (π1, π2, . . . , πm) be a set of positive prices for the goods.
Then x̄i = (x̄i1, x̄i2, . . . , x̄in) is the corresponding demand of trader i if and only if (a) π · x̄i = π ·wi,

(b) x̄ij = 0 if αij = 0, and (c) for any k,j such that αik > 0 and αij > 0 we have πkx̄
1−ρi
ik

αik
=

πj x̄
1−ρi
ij

αij
.

Lemma 1 is folklore. For the convenience of the reader we present a proof in the Appendix. We
now show a simple Corollary of Lemma 1 which will be used in Section 3.1.

Corollary 2 Under the assumptions of Lemma 1, x̄i = (x̄i1, x̄i2, . . . , x̄in) is the demand of trader i
at prices π = (π1, π2, . . . , πm) if and only if

(a′) π · x̄i = π · wi,

(b′) There exists βi > 0 such that for all k, we have x̄ik = β
1

1−ρi
i α

1
1−ρi
ik

π
1

1−ρi
k

.

Proof : Since π ·wi > 0, conditions (a) and (b) of Lemma 1 tell us that, for each trader i, xik > 0
for some k such that αik > 0; condition (c) tells us that xik > 0 for all k such that αik > 0. Moreover,

there exists βi such that βi = πkx
1−ρi
ik

αik
for all k such that αik > 0. Since we must have βi > 0, we can

express xik as a function of βi, αik, and πk, and obtain xik = β
1

1−ρi
i α

1
1−ρi
ik

π
1

1−ρi
k

.

Note that this equality holds even for i and k such that αik = 0 (condition (b) of Lemma 1). 2

3.1 CES functions not satisfying WGS

We show that there is a convex formulation capturing equilibria for markets where the traders have
CES utility functions from the range −1 ≤ ρi < 0. This fact, along with the presence of disconnected
equilibria when ρi < −1 (see Section 3.3), and given that CES functions with ρi ≥ 0 satisfy WGS,
settles the question of the elasticities for which a CES exchange economy has multiple disconnected
equilibria.

We are now ready to proceed with our derivation of computationally tractable equilibrium con-
ditions. First of all, recall that xi and π are equilibrium allocations and prices if and only if they
satisfy the conditions of Corollary 2 and the conservation of goods. Formally,

∑

1≤k≤n

πkxik =
∑

1≤k≤n

πkwik, for 1 ≤ i ≤ m. (1)

∃βi > 0 such that xik =
β

1
1−ρi
i α

1
1−ρi
ik

π
1

1−ρi
k

, for 1 ≤ i ≤ m, 1 ≤ k ≤ n. (2)

∑

1≤i≤m

xik ≤
∑

1≤i≤m

wik, for 1 ≤ k ≤ n. (3)

Since for each good k there is a trader i such that αik > 0, we have ui(xi1, . . . , xik, . . . , xin) <
ui(xi1, . . . , xik + δ, . . . , xin) for any (xi1, . . . , xik, . . . , xin) ∈ Rn

+ and δ > 0. This implies that πk > 0,
for k = 1, . . . , n. Also, we have
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∑

1≤k≤n

πk

∑

1≤i≤m

xik ≤
∑

1≤k≤n

πk

∑

1≤i≤m

wik =
∑

1≤i≤m

∑

1≤k≤n

πkwik

=
∑

1≤i≤m

∑

1≤k≤n

πkxik =
∑

1≤k≤n

πk

∑

1≤i≤m

xik,

where the first inequality follows from the first condition of an equilibrium, the conservation of goods,
and the third relation follows from the fact that xi is the demand of buyer i at prices π, so that
condition (a′) of Corollary 2 holds. Thus the first inequality must be an equality, and we have

∑

1≤i≤m

xik =
∑

1≤i≤m

wik, for 1 ≤ k ≤ n. (4)

So an equilibrium is a vector of positive prices π = (π1, . . . , πn) for which there are allocations
xi ∈ Rn

+ such that relations 1, 2, and 4 are satisfied.
By an argument similar to the one used above, we now replace equalities 1 and 4 by the following

two sets of inequalities:
∑

1≤k≤n

πkxik ≥
∑

1≤k≤n

πkwik, for 1 ≤ i ≤ m, (5)

∑

1≤i≤m

xik ≤
∑

1≤i≤m

wik, for 1 ≤ k ≤ n. (6)

An equilibrium is a vector of positive prices π = (π1, . . . , πn) for which there are allocations xi ∈ Rn
+

such that inequalities 5, 6, and equalities 2 are satisfied.
We can now use equalities 2 to eliminate the variables xik from inequalities 5 and 6. We obtain

the following two sets of inequalities:

β
1

1−ρi
i

∑

1≤k≤n

π
−ρi
1−ρi
k α

1
1−ρi
ik ≥

∑

1≤k≤n

πkwik, for 1 ≤ i ≤ m, (7)

∑

1≤i≤m

(
βiαik

πk

) 1
1−ρi ≤

∑

1≤i≤m

wik, for 1 ≤ k ≤ n. (8)

That is, an equilibrium is a vector of positive prices π = (π1, . . . , πn) such that there exists βi > 0,
for each i, such that the relations 7 and 8 are satisfied.

Let ρ = mini ρi. We now introduce some new variables σk, related to the prices as σk = π
1

1−ρ

k ,

and zi, related to βi as zi = β
1

1−ρ

i . We then show that after these variable substitutions, inequalities
7 and 8 become inequalities that define convex sets, thus giving us a convex program in terms of the
βi and σk that characterizes equilibria.

In terms of the σk’s and zi’s, inequalities 7 become

z
1−ρ
1−ρi
i

∑

1≤k≤n

σ
−ρi(1−ρ)

1−ρi
k α

1
1−ρi
ik ≥

∑

1≤k≤n

σ1−ρ
k wik, for 1 ≤ i ≤ m. (9)

A convenient way to see that each inequality in 9 defines a convex set is to take the power 1
1−ρ

of both sides and obtain

z
1

(1−ρi)

i


 ∑

1≤k≤n

σ
−ρi(1−ρ)

1−ρi
k α

1
1−ρi
ik




1
1−ρ

≥

 ∑

1≤k≤n

σ1−ρ
k wik




1
1−ρ

, for 1 ≤ i ≤ m. (10)
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The left hand side of this inequality is

(zi)
1

1−ρi





 ∑

1≤k≤n

σ
−ρi(1−ρ)

1−ρi
k α

1
1−ρi
ik




1−ρi
−ρi(1−ρ)




−ρi
1−ρi

. (11)

The function

fi(σ1, . . . , σk) =


 ∑

1≤k≤n

σ
−ρi(1−ρ)

1−ρi
k α

1
1−ρi
ik




1−ρi
−ρi(1−ρ)

is concave. Since 0 < −ρi(1−ρ)
1−ρi

≤ 1, it is in fact a CES function of the σk. Since both 1
1−ρi

and −ρi
1−ρi

are positive, and 1
1−ρi

+ −ρi
1−ρi

= 1, the left hand side 11, which is z
1

1−ρi
i f

−ρi
1−ρi
i , is a concave function.

Since ρ < 0, it is easy to check that the right hand side of inequality 10 is a convex function.
Therefore the set of inequalities 10 are convex and each inequality in 9 defines a convex set.

We now turn to inequalities 8 and rewrite them as

∑

1≤i≤m

β
1

1−ρi
i α

1
1−ρi
ik

π
1

1−ρi
− 1

1−ρ

k

≤ π
1

1−ρ

k

∑

1≤i≤m

wik, for 1 ≤ k ≤ n, (12)

We can now plug in the σk’s and the zi’s to get the inequalities

∑

1≤i≤m

z
1−ρ
1−ρi
i α

1
1−ρi
ik

σ
ρi−ρ

1−ρi
k

≤ σk

∑

1≤i≤m

wik, for 1 ≤ k ≤ n. (13)

To see that each inequality in 13 describes a convex set, we finally introduce new variables tik,
and substitute inequalities 13 with

z
1−ρ
1−ρi
i α

1
1−ρi
ik

σ
ρi−ρ

1−ρi
k

≤ tik, for 1 ≤ k ≤ n, and 1 ≤ i ≤ m. (14)

and
∑

1≤i≤m

tik ≤ σk

∑

1≤i≤m

wik, for 1 ≤ k ≤ n. (15)

It is easy to see that inequalities 14 and 15 are equivalent to inequalities 13.
Inequalities 14 can be seen to be convex after rewriting them as

t
1−ρi
1−ρ

ik σ
ρi−ρ

1−ρ

k ≥ α
1

1−ρ

ik zi, for 1 ≤ k ≤ n, and 1 ≤ i ≤ m, (16)

since both 1−ρi
1−ρ and ρi−ρ

1−ρ are nonnegative and 1−ρi
1−ρ + ρi−ρ

1−ρ = 1. Inequalities 15 are linear. We
therefore have the following theorems.

Theorem 3 Let σ1, . . . , σn, and z1, . . . , zm be positive real numbers satisfying the set of inequalities
9 and 13 each of which defines a convex set (or equivalently, the set of inequalities 10, 15, and 16,
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each of which is a convex constraint). Then the vector π = (π1, . . . , πn), given by πk = σ1−ρ
k , is an

equilibrium for the market.

Note that the allocations that correspond to this equilibrium can also be easily computed.

Theorem 4 Suppose the vector π = (π1, . . . , πn) is an equilibrium price vector. Let σk = π
1

1−ρ

k ,
where ρ = mini ρi. Then σ1, . . . , σn is part of a feasible, positive, solution to the system of inequalities
9 and 13 (or equivalently, the system of inequalities 10, 15, and 16.)

3.2 CES functions satisfying WGS

In this section, we consider exchange economies with CES utilities whose elasticity of substitution
is greater than one, and thus satisfy WGS. We show how to formulate the problem of computing an
equilibrium as convex feasibility. The overall approach is quite similar to the one used in Section 3.1.

Consider the program CP1 , which consists of finding positive real numbers σ1, . . . , σn and
z1, . . . , zm satisfying

∑

1≤i≤m

cikz
ti
i σ1−ti

k ≥ qkσk for 1 ≤ k ≤ n

zi ≤



(∑

k

σ1−ρ
k wik

) 1
1−ρ




1−ρi

×



(∑

k

cikσ
−tiρi
k

) 1
−tiρi




ρi

for 1 ≤ i ≤ m,

σk > 0 for 1 ≤ k ≤ n

zi > 0 for 1 ≤ i ≤ m,

where ρ = maxi ρi, ti = 1−ρ
1−ρi

, cik = α
1

1−ρi
ik , and qk =

∑
i wik. Recall that 0 < ρi < 1, and thus

0 < ρ < 1 and 0 < ti ≤ 1.
The sets of inequalities defining CP1 are convex constraints. For the first set of inequalities,

we have that the function on the left hand side is a concave function, and the one on the right is
a linear function. For the second set of inequalities, the right hand side is a function of the form
f1−ρigρi , where the f and g are concave functions (in fact CES functions). Thus the right hand side
is a concave function, and the second set of inequalities define convex constraints. Thus CP1 is a
convex feasibility problem. Note that it is homogeneous in the σj ’s and the zi’s. So we can solve it
by replacing the constraints that these variables be positive by the constraints that they be at least
1.

Theorem 5 Let σ̂ and ẑ be a solution to CP1 . Let xi ∈ Rn
+ be the vector whose k-th component

is xik = ẑi
ticik

σ̂
ti
k

, and π ∈ Rn
+ be the vector whose k-th component is πk = σ̂1−ρ

k . Then π and xi, for

i = 1, . . . , m, are equilibrium prices and allocations.

Theorem 6 Let π and xi, for i = 1, . . . , m, be equilibrium prices and allocations. Let σk = π
1

1−ρ

k ,

and for each i, pick some k such that αik > 0 and set zi = x

1−ρi
1−ρ

ik
π

1
1−ρ
k

α
1

1−ρ
ik

. Then the zi’s and the σk’s

satisfy CP1 .
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3.3 CES exchange economies with multiple disconnected equilibria

In [25], Gjerstad gives the following example of a market with two traders and two goods that has
multiple disconnected equilibria. The first trader has an initial bundle w1 = (1, 0) and the CES
utility function u1(x, y) = ((ax)ρ + yρ)1/ρ, where a > 0. The second trader has an initial bundle
w2 = (0, 1) and the CES utility function u2(x, y) = ((x/a)ρ + yρ)1/ρ. He shows that for each ρ < −1
there is a sufficiently small value of a for which

1. The vector (1/2, 1/2) is an equilibrium price.

2. The vector (p, 1− p) is an equilibrium price for some p < 1/2, and the vector (q, 1− q) is not
an equilibrium price for any p < q < 1/2.

This example therefore does not admit a convex programming formulation in terms of some “relative”
of the prices (such as the one given in Sections 3.1 and 3.2 in terms of the σk) that captures all the
price equilibria. Such a formulation implies that if (p1, 1−p1) is a price equilibrium and (p2, 1−p2) is a
price equilibrium for some p1 < p2, then (p3, 1−p3) is also a price equilibrium for every p1 < p3 < p2.

This suggests that it may not be possible to extend convex programming techniques to encom-
pass markets where some buyers have a CES utility function with the elasticity σ < 1/2 (which
corresponds to ρ < −1 in the example above).

4 Exchange Economies with ASC Utility Functions

We now show how to extend the results of Section 3.2 to economies with some additively separable
utility functions.

Consider an exchange economy with n goods and m traders, where the i-th trader has the
separable and additive utility function ui(xi) =

∑
j αijx

ρij

ij , where αij ≥ 0, and 0 < ρij < 1. We
assume that, for each trader i, there is some j such that αijρij > 0, and that, for each good j, there
is some i such that αijρij > 0. Let ρ = maxi,j ρij . We consider the program CP2 which consists of
finding positive real numbers σ1, . . . , σn and z1, . . . , zm satisfying

∑

1≤i≤m

ρ
1

1−ρij

ij α
1

1−ρij

ij z

1−ρ
1−ρij

i σ

ρ−ρij
1−ρij

j ≥ σj

∑

1≤i≤m

wij for 1 ≤ j ≤ n

zi ≤





∑

j

σ1−ρ
j wij




1
1−ρ




1−ρ

×





∑

j

ρ
1

1−ρij

ij α
1

1−ρij

ij


σ

(1−ρ)ρij
ρ(1−ρij)

j z

ρ−ρij
ρ(1−ρij)

i



−ρ


− 1

ρ




ρ

for 1 ≤ i ≤ m.

Note that the sets of inequalities defining CP2 are convex constraints. In the first set of inequal-
ities, the left hand side is a concave function, and the right hand side is a linear function. For the
second set of inequalities, note that the second factor on the right hand side has the form Bρ, where

B =

(
1∑
k

ck
B

ρ
k

) 1
ρ

. Furthermore, note that (1−ρ)ρik

ρ(1−ρik) + ρ−ρik
ρ(1−ρik) = 1. Therefore Bk is a Cobb-Douglas

function, which implies that B is a concave nested CES function. Thus the right hand side is a
concave function, which shows that these inequalities are convex.

The following two Theorems show that the convex program CP2 captures the equilibrium con-
ditions.
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Theorem 7 Let σ and z be a solution to CP2 . Let πj = σ1−ρ
j , and βi = z1−ρ

i . Let xi ∈ Rn
+ be the

vector whose j-th component is xij =
(

ρijβiαij

πj

) 1
1−ρij . Then π and xi’s are equilibrium prices and

allocations.

Theorem 8 Let π and xi’s be equilibrium prices and allocations. For each i, pick some j such that

αij > 0, and let βi =

(
πjx

1−ρij
ij

ρijαij

)
. Let σj = π

1
1−ρ

j , and zi = β
1

1−ρ

i . Then σ and z are a solution to

CP2 .

5 Conclusions

The existence of multiple disconnected equilibria had troubled the economists several decades ago.
It pointed out the inadequacy, and, sometimes, the inapplicability of tools from general equilibrium
theory. As computer scientists, we are now facing a similar challenge.

Previous work showed the computational tractability of markets that satisfy well understood
properties like gross substitutability and the weak axiom of revealed preferences. We think that the
unrestricted problem is likely to be intractable. The challenge is to explore the unknown territory
between these classes, by trying to characterize other tractable classes, develop new techniques to
compute their equilibria, and understand why and how these techniques work. This paper is a
modest first step in this program.

We see several directions which we believe are amenable to analysis along these lines. We expect
progress in the investigation of some exchange markets where (1) multiple equilibria do exist, but
(2) the market demand is structured and need not be tightly coupled with general fixed point
computations, as it occurs in the general case [38]. Features (1) and (2) are present, for example,
when the traders have CES functions with elasticity of substitution smaller than 1

2 .
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Appendix

Proof of Lemma 1.

Proof : This lemma is folklore: it follows from well-known techniques. For completeness we give
a proof here. Let us first show that if x̄i is a utility maximizing bundle, it satisfies (a), (b), and (c).
The condition (a) follows from local non-satiation of the CES functions, because if part of the budget
is not spent the utility can always be increased by spending it on any good j such that αij > 0. The
condition (b) follows because all the prices are positive, and so the buyer will not spend any part of
her budget on a good that does not add to her utility. For (c), we write the concave maximization
program for maximizing buyer i’s utility:

Maximize ui(xi)
Subject to π · xi ≤ π · wi

xij ≥ 0 for 1 ≤ j ≤ n

We have that x̄i maximizes this program. We must have x̄ij > 0 if αij > 0. Otherwise, the partial
derivative ∂ui

∂xij
is infinite at x̄i and this easily implies that x̄i does not maximize this program. Now

the Kuhn-Tucker stationary-point necessary optimality theorem ([31], page 105) says that there
exists λ ≥ 0 such that

1. ∂ui(x̄i)
∂xij

≤ λπj for 1 ≤ j ≤ n.

2. ∂ui(x̄i)
∂xij

= λπj if x̄ij > 0.
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3. λ = 0 if π · x̄i < π · wi.

¿From the second condition, we see that λ > 0. Using the second condition once again and
eliminating the Lagrange multiplier λ, we obtain for any k and j such that αik > 0 and αij > 0 the
equality

πj

πk
=

∂ui(x̄i)

∂xij
∂ui(x̄i)

∂xik

,

which states the well known fact that, at the optimal solution for trader i, the marginal rate of
substitution between goods j and k (which is the ratio on the right hand side) must be equal to their
price ratios.

The computation of the partial derivatives then gives

πj

πk
=

1
ρi
·
(∑n

j=1 αij x̄
ρi
ij

) 1
ρi
−1 · αij · ρi · x̄ρi−1

ij

1
ρi
·
(∑n

j=1 αij x̄
ρi
ij

) 1
ρi
−1 · αik · ρi · x̄ρi−1

ik

,

i.e.,

πj

πk
=

αij · x̄ρi−1
ij

αik · x̄ρi−1
ik

.

We can rewrite this equation as

πj x̄
1−ρi
ij

αij
=

πkx̄
1−ρi
ik

αik
,

which completes the proof in one direction.
For the other direction, suppose we have a x̄i ∈ Rn

+ that satisfies (a), (b), and (c). From (a) and
(b), we have that x̄ij > 0 for some j such that αij > 0, so (c) then implies that x̄ij > 0 for all j such
that αij > 0. Now by calculations similar to the one above, we get from (c) that for any k and j
such that αik > 0 and αij > 0:

πj

πk
=

∂ui(x̄i)

∂xij
∂ui(x̄i)

∂xik

.

Let λ = πj/
∂ui(x̄i)

∂xij
for all j such that αij > 0. Clearly λ is well-defined and λ > 0. We also have

that ∂ui(x̄i)
∂xij

= 0, for all j such that αij = 0.
Thus we see that x̄i and λ satisfy the three Kuhn-Tucker conditions above. Since the utility

maximization program of buyer i is convex, we can now use the Kuhn-Tucker sufficient optimality
theorem ([31], page 94) to conclude that x̄i is the optimal solution to this program and is therefore
the demand of trader i at prices π.

2

Proof of Theorem 5

Proof : ¿From the first set of inequalities in CP1 we get

∑

1≤i≤m

(
cikẑ

ti
i

σ̂ti
k

)
σ̂k ≥ qkσ̂k for 1 ≤ k ≤ n.
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Canceling σ̂k out, we get

∑

1≤i≤m

(
cikẑ

ti
i

σ̂ti
k

)
≥ qk for 1 ≤ k ≤ n.

¿From the expressions xik = ẑ
ti
i cik

σ̂
ti
k

and qk =
∑

i wik, we get

∑

1≤i≤m

xik ≥
∑

1≤i≤m

wik for 1 ≤ k ≤ n . (17)

The second set of inequalities of CP1 implies that

ẑi ≤



(∑

k

σ̂1−ρ
k wik

) 1
1−ρ




1−ρi

· 1




∑

k
α

1
1−ρi
ik

σ̂

(1−ρ)ρi
1−ρi

k




1−ρi
(1−ρ)ρi




ρi
for 1 ≤ i ≤ m.

This simplifies to

ẑi ≤
(∑

k

σ̂1−ρ
k wik

) 1−ρi
1−ρ

· 1

∑

k
α

1
1−ρi
ik

σ̂

(1−ρ)ρi
1−ρi

k




1−ρi
1−ρ

.

Raising both sides to the power 1−ρ
1−ρi

, we obtain

ẑ
1−ρ
1−ρi
i ≤

(∑

k

σ̂1−ρ
k wik

)
· 1

∑
k

α
1

1−ρi
ik

σ̂

(1−ρ)ρi
1−ρi

k




.

Rearranging, we get



∑

k

α
1

1−ρi
ik ẑ

1−ρ
1−ρi
i

σ̂
(1−ρ)ρi
1−ρi

k


 ≤

∑

k

σ̂1−ρ
k wik.

This is rewritten as



∑

k


α

1
1−ρi
ik ẑ

1−ρ
1−ρi
i

σ̂
1−ρ
1−ρi
k


 σ̂1−ρ

k


 ≤

∑

k

σ̂1−ρ
k wik.

Plugging in xik = α
1

1−ρi
ik

ẑ

1−ρ
1−ρi
i

σ̂

1−ρ
1−ρi
k

and πk = σ̂1−ρ
k , we get

∑

1≤k≤n

πkxik ≤
∑

1≤k≤n

πkwik for 1 ≤ i ≤ m. (18)
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Observe now that
∑

1≤k≤n

πk

∑

1≤i≤m

xik ≥
∑

1≤k≤n

πk

∑

1≤i≤m

wik =
∑

1≤i≤m

∑

1≤k≤n

πkwik

≥
∑

1≤i≤m

∑

1≤k≤n

πkxik =
∑

1≤k≤n

πk

∑

1≤i≤m

xik

where the first inequality follows from (17) and the second from (18). Note that the two inequalities
in this sequence must be equalities. Given that all the πk > 0, this readily implies that

∑

1≤i≤m

xik =
∑

1≤i≤m

wik for 1 ≤ k ≤ n, (19)

and
∑

1≤k≤n

πkxik =
∑

1≤k≤n

πkwik for 1 ≤ i ≤ m. (20)

Now, setting βi = ẑ1−ρ
i and σ̂1−ρ

k = πk in xik = α
1

1−ρi
ik

ẑ

1−ρ
1−ρi
i

σ̂

1−ρ
1−ρi
k

, we get xik =
(

βiαik
πk

) 1
1−ρi . This

means that

x1−ρi
ik πk

αik
= βi (21)

if αik > 0, and xik = 0 if αik = 0. The latter fact along with Equations 20 and 21 show that
conditions (a′) and (b′) of Corollary 2 are fulfilled for each trader i, so xi is her demand at prices π.
Equation 19 gives the conservation of goods. So we have an equilibrium. 2

Proof of Theorem 6

Proof : Since the first part of the proof is the same as the derivation of Section 3.1, we can start
from relations 1, 2, and 4.

We now replace 1 and 4 with inequalities, which are reversed as compared with those from
Section 3.1. We can then use equality 2 to obtain the two sets of inequalities:

∑

i

β
1

1−ρi
i α

1
1−ρi
ik

π
1

1−ρi
k

≥
∑

i

wik, 1 ≤ k ≤ n, (22)

β
1

1−ρi
i

∑

k

α
1

1−ρi
ik

π
ρi

1−ρi
k

≤
∑

k

πkwik, 1 ≤ i ≤ m. (23)

¿From 22 and 23, we now derive the convex inequalities of CP1 .

If we now multiply both sides of 22 by π
1

1−ρ

k , we obtain

∑

i

β
1

1−ρi
i α

1
1−ρi
ik π

1
1−ρ

− 1
1−ρi

k ≥ π
1

1−ρ

k

∑

i

wik.
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If we now plug in the zi’s and the σk’s, we finally obtain

∑

i

z
1−ρ
1−ρi
i α

1
1−ρi
ik σ

1− 1−ρ
1−ρi

k ≥ σk

∑

i

wik,

which means that the zi’s and the σk’s satisfy the first set of inequalities in CP1.
We can write inequalities 23 as

β
1

1−ρi
i ≤

(∑

k

πkwik

)
· 1

∑
k

α
1

1−ρi
ik

π

ρi
1−ρi
k




.

If we now plug in the zi’s and the σk’s, we obtain

z
1−ρ
1−ρi
i ≤

(∑

k

σ1−ρ
k wik

)
· 1

∑
k

α
1

1−ρi
ik

σ

(1−ρ)ρi
1−ρi

k




.

Raising both sides to the power 1−ρi
1−ρ , we get

zi ≤
(∑

k

σ1−ρ
k wik

) 1−ρi
1−ρ

· 1

∑

k
α

1
1−ρi
ik

σ

(1−ρ)ρi
1−ρi

k




1−ρi
1−ρ

.

The last inequality can finally be rewritten as

zi ≤



(∑

k

σ1−ρ
k wik

) 1
1−ρ




1−ρi

· 1




∑

k
α

1
1−ρi
ik

σ

(1−ρ)ρi
1−ρi

k




1−ρi
(1−ρ)ρi




ρi
,

which means that the second set of inequalities in CP1 are satisfied. 2

Proof of Theorem 7.

Proof : The proof is quite similar to that of Theorem 5 and is omitted. 2

Proof of Theorem 8.

Proof :
Equilibrium prices and allocations satisfy the sets of equalities 1 and 4 from Section 3.1. These

conditions can be equivalently rewritten as inequalities:
∑

1≤i≤m

xik ≥
∑

1≤i≤m

wik , for 1 ≤ k ≤ n, (24)

and
∑

1≤k≤n

πkxik ≤
∑

1≤k≤n

πkwik , for 1 ≤ i ≤ m. (25)
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The solution to the consumer’s optimization problem for ASC functions (which consists of a
simple extension of Lemma 1) implies that there exists βi > 0 such that





πjx
1−ρij
ij

ρijαij
= βi if αij > 0

xij = 0 if αij = 0
(26)

Conditions 26 are equivalent to saying that there is a βi > 0 such that

xij =

(
ρijαijβi

πj

) 1
1−ρij

, (27)

which is always well defined since πj > 0, for all j.
Now the sets of relations 24, 25, and 27, have a solution if and only if the inequalities 28, 29,

and 30 below do:

∑

1≤i≤m

(
ρikαikβi

πk

) 1
1−ρik ≥

∑

1≤i≤m

wik, for 1 ≤ k ≤ n, (28)

∑

1≤k≤n

πk

(
ρikαikβi

πk

) 1
1−ρik ≤

∑

1≤k≤n

πkwik , for 1 ≤ i ≤ m, (29)

πk > 0, for 1 ≤ k ≤ n, βi > 0 , for 1 ≤ i ≤ m. (30)

Let us now define ρ = max ρij , and let us make the substitutions zi = β
1

1−ρ

i , and σk = π
1

1−ρ

k .
First of all, note that conditions 30 translate into σk > 0, and zi > 0.

After plugging in the σk’s and the zi’s, inequalities 28 become

∑

1≤i≤m

ρ
1

1−ρik
ik α

1
1−ρik
ik z

1−ρ
1−ρik
i σ

ρ−ρik
1−ρik
k ≥ σk

∑

1≤i≤m

wik for 1 ≤ k ≤ n, (31)

which is the first set of convex constraints in CP2 .
Similarly, inequalities 29 become

zi

∑

1≤k≤n

ρ
1

1−ρik
ik α

1
1−ρik
ik

σ

(1−ρ)ρik
1−ρik

k z

ρ−ρik
1−ρik
i

≤
∑

1≤k≤n

σ1−ρ
k wik for 1 ≤ i ≤ m, (32)

which can be conveniently rewritten in the form

zi ≤





 ∑

1≤k≤n

σ1−ρ
k wik




1
1−ρ




1−ρ

×
[(

1
g(i)

) 1
ρ

]ρ

for 1 ≤ i ≤ m, (33)

where

g(i) =
∑

k

ρ
1/(1−ρik)
ik α

1/(1−ρik)
ik

(σ((1−ρ)ρik)/(ρ(1−ρik))
k z

(ρ−ρik)/(ρ(1−ρik))
i )ρ

which is the second set of constraints in CP2 . 2

18


