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Abstract: 
 
This paper contributes to the recent stream of literature on NK Model’s applications to 
the field of technological evolution. It is argued that while the model has a great 
explanatory potential in economics proper, its behavioral foundations are still 
maladapted for treatment of purportive decision-making strategies for technological 
innovation. Concentrating on the decision rule for accepting novelties, we first analyze 
the consequences of intentional and unintentional imprecision in following hill-climbing 
strategy, highlighting the interplay between rigidity and deliberate experimentation. 
Building on Simon’s insights on satisficing behavior and designing without final goals we 
build a simulative model that provides a possibility to compare strategies differing in the 
desired level of imprecision. Secondly, we shift our attention to the question of 
organizational memory, analyzing in a simulation setting a fully memory dependent and 
a fully memory independent innovation-related strategies. The results confirm that from 
the one hand up to a certain level “imperfection” of rule-following behavior is a virtue 
rather than a threat, while from the other, that past successes can preclude adaptability 
of the firm, while disregarding such successes can be very risky.  
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Introduction1: 

Modeling evolution of boundedly rational agents in economics is a tricky issue in 

many respects. Grounding such attempts in theories originally designed for analyzing 

evolutionary processes in a completely different domain makes the issue even more 

complex. However, coping with the difficulties encountered can well be justified by the 

rewarding end results of such an endeavor. 

The recent and fast growing research on applying Stuart Kauffman’s NK Model 

(Kauffman & Levin 1987, Kauffman 1993) to a vast terrain of behavioral, organizational 

and strategic issues in economics (see Levinthal 1997, Frenken et al. 1999, Kauffman et. 

al. 2000, Gavetti & Levinthal 2000, Rivkin 2000, Fleming & Sorensen 2001 among 

many others) seem to provide a valid way to formalize in analytical, or more commonly, 

simulative models a number of phenomena that formerly have either been disregarded, or 

remained the prerogative of appreciative theorizing. 

Few of the most significant advantages the model provides us with when applied to 

studies of evolving technological and organizational forms in microeconomics can be 

seen as meta-theoretical and not confined to any field of science in particular. First and 

foremost this refers to its graph-theoretical structure and bases in non-integral space, 

presupposing the connections between the elements in the system under scrutiny to have 

as much explanatory power in the analysis of its dynamics as the characteristics of those 

elements themselves. When the system that we analyze is the technology employed by a 

firm, this would translate into a shift from the commonly used (and as commonly 

criticized) production function approach to that of production recipes, acquired ability to 

include in the analysis apart from the existing, the nascent technologies, and the evolution 

taking place on performance or technology landscape where the distance between two 

technologies determines the ease with which a shift from one to another can be made.2 

                                                 
1 The author would like to thank Marco Valente, Koen Frenken, Esben S. Andersen, Ugo Pagano, Patrick 
Llerena, Brian Loasby, Toke Reichstein and the participants of the DRUID 2003 Winter Conference, 
University of Siena Seminar Series, ETIC-LAB Workshop and WEHIA 2003 Conference for their 
comments and suggestions on the previous drafts of the paper. Marco Valente’s help was especially crucial 
for coding the model. All the mistakes and omissions however are mine only. 
2 All those notions and concepts will be defined and explained in detail below 



Nevertheless, the behavioral foundations of the model are clearly field-specific, and 

while fitting well in explaining the evolutionary process of change on microbiological 

level, they need to be seriously adjusted when we venture into an analysis of agents who 

are humans or that are man-made artifacts. Unlike genes, humans can think, define and 

follow different rules, act strategically, improvise, experiment, learn from their mistakes 

and successes, remember and forget, be biased, use insight, etc, etc…The list would have 

still been incomplete even if I went on for the rest of my life. 

Even more ambitious than “simply” listing all the determinants of behavior in 

which human or human-shaped evolution differs from evolution on genetic level, would 

be an attempt to actually incorporate all those in a single model. This is clearly not my 

intention here. 

Instead, I would mainly concentrate on the rule of accepting or rejecting novelty, 

first introduced to the field of technological change by Kauffman & Macready (1995), 

and used quite consistently ever since. My aim would be in trying to show the 

inconsistency of hill climbing scenario from a behavioral point of view in its being both 

myopic and perfect at the same time. The assumption of absolute myopia has been lifted 

in our parallel research (Hovhannisian 2003b) to give a room for analyzing breadth and 

depth of search, while this paper in sequence deals with a scenario of myopic local search 

with noise, or as we call it here, imperfect local search. 

Doing so opens up space to discuss some further behavioral issues like deliberate 

experimentation, satisficing, designing without final goals, organizational memory and 

organizational forgetting. The analysis is formalized in a simulation setting taking as a 

benchmark the original formulation of the model and showing the differences in 

dynamics the named modifications bring about. 

The paper proceeds as follows. In the next section, the framework of research is 

defined, the definitions provided, and the original model discussed. After that we 

concentrate on the search rule used by the agents, and show both desirability and 

plausibility of introducing imperfections in the myopic local search. Special attention is 

given to the requirement of consistency in the treatment of bounds on rationality and 

satisficing behavior. Further on, satisficing behavior is discussed more in detail in 



connection to the issue of designing without final goals (Simon 1969). At this point the 

simulative model, based on the insights thus gained, is built and run in two major 

settings, differing in the treatment of organizational memory. After the analysis of results, 

conclusions are drawn, and further research agenda outlined. 

Defining the Framework of Analysis: 

1.1. Basics of Kauffman’s NK Model 

As the name suggests, two main components of the model are N and K, where the 

former represents the number of elements a system is comprised of, and thus defines how 

large it is, while the latter measures the number of other elements a change in a given 

element’s state affects, and thus defines the level of interdependences within it.   

An additional component of the system is A, which measures the number of 

different states each element can occupy. For simplicity, A is normally set to 2, so that we 

can represent the system as a binary string. For example the string {1110} would 

represent a system of 4 elements, 1 of which is in the state ‘0’, while the 3 others in the 

state ‘1’. If we think of some technology as a system, states of the elements can be seen 

either as an on/off setting of a knob on a machine, or else as a usage of one of the 

alternative technological processes or features. This is similar to the idea of 

morphological analysis of technological trajectories (Foray & Grübler 1991). In their 

example “four characteristic parameters [of molding technology] are identified and 

subdivided: 

P1: The nature of the pattern ( : permanent, : lost); 1
1Ρ

2
1Ρ

P2: The nature of the mold cavity ( : hollow, Ρ : full); 1
2Ρ

2
2

P3: The stabilization force (Ρ : chemical, : physical); 1
3

2
3Ρ

P4: The bonding method (Ρ : simple, Ρ : complex).”1
4

2
4

3 
 

Translating this into our framework, the subscript after each P would denote the 

position of the given element in the string, and the superscript would denote its state (“0” 

or ”1”). In this particular example the elements can be combined in 24=16 different ways 

                                                 
3 Foray, Dominique & Arnulf Grübler (1991) Morphological Analysis, Diffusion, and Patterns of 
Technological Evolution: Ferrous Casting in France and the FRG, in Nakićenović, N. & Grübler, A. 
(eds.) Diffusion of Technologies and Social Behavior. Springer Verlag, page 410 



that we would call technological configurations.4 The efficiency of the system is 

measured as an average over the efficiencies of the elements it is comprised of.5  

In a simple system where the elements are independent, the efficiency of each 

element depends only on its own state, so that the overall efficiency of the system can be 

optimized in at most N steps through making a pair wise comparison between the 

efficiencies of the states of the elements one at a time. 

In more general and realistic case the elements comprising a system are 

interdependent, so that the efficiency of each element depends on its own state and on the 

states of K other elements. The case of K=0 would then represent a system of 

independent elements, while the case of K=N-1 would represent a fully interdependent 

system, with all the other cases falling in-between the two extremes. 

 

1.2.Production Recipes and Technology Landscape 
 

From a formal point of view a system defined in this way is a graph, Γ, composed 

of two types of sets – vertices (the elements of the system) and edges (the connections 

between them), so that we have Γ = (V, E). If we want to use that structure in 

microeconomic theory, we need to make a shift from considering technology (or a firm) 

as a production function to viewing it as a production recipe.  

The word recipe itself leads to a very intuitive example explaining the importance 

of that change. It is indeed not enough to know just the list of the ingredients (elements) 

such as flour, water, salt, yeast and the temperature of the oven, together with their 

relative quantities to bake a loaf of bread. What we also need to know is how those 

ingredients are combined, in what sequence they are to be used and so on.  

This is just as true when we talk about producing a car rather than baking a loaf of 

bread, or, indeed, when we talk about designing the whole organizational and 

technological structure of a firm. 

                                                 
4 in general the number of configurations is AN. 
5 simple average is used in the further analysis. 



As defined by Auerswald et al. (2000): “A production recipe is a complete list of 

engineering instructions for producing given outputs from given inputs.”6  

The specific assignment of states to each operation a technology is comprised of is 

termed a technological configuration. The whole set of possible technological 

configurations then is a multi-dimensional technology landscape.7 The number of 

dimensions here depends on the number of elements each configuration is comprised of, 

while the ruggedness of it is a function of how high is the level of interdependence 

between those elements. The term landscape itself is used due to the way such space 

looks like on a 3D plot. For K=0 such landscape would look like that of and around 

Mount Fuji, with a single peak representing the global (and unique) optimum. With an 

increase in K, however, the correlation between the neighboring points on the landscape 

decreases, and the landscape starts to resemble more that of Alps, with a large number of 

local peaks of different height, and valleys of different depth between them. 

Lobo and Macready (1999) provide the following definition: “A technology 

landscape consists of (1) a profit function assigning a real-valued number to each 

technology in the space of possible technological configurations; and (2) a metric 

structure over the space of technological possibilities which reflects whether any two 

given technologies are “close” to one another or “distant” from each other.”8 

All the technological configurations that have been employed or at least sampled 

represent the sub-set of existing technologies, while the complement sub-set represents 

the (yet) undiscovered or nascent technologies. 

 

1.3. Strategies of Innovative Change 

Generally, firms can innovate either by changing the state of one or several 

elements (operations) that constitute a part of their current technology, or alternatively, 

                                                 
6 Auerswald, Phillip; Stuart Kauffman, José Lobo & Karl Shell (2000) The Production Recipes 
Approach to Modeling Technological Innovation: An Application to Learning by Doing, Journal of 
Economic Dynamics and Control, 24, page 394 
7 Technology landscape is N+1 dimensional, with one dimension for each of the elements plus one for the 
efficiency mapping 
8 Lobo, José & William G. Macready (1999) Landscapes: A Natural Extension of Search Theory, Santa 
Fe Institute Working Paper 99-05-037 E, page1 



by adding, replacing or removing any of those elements. While the latter possibility 

would be extremely interesting to explore, in line with the previous work on the subject, 

only the former option is dealt with in the current paper9. 

Another important assumption concern the distance at which firms search for new 

technologies. We can define the distance between any two technological configurations 

on the landscape as the number of elements whose state has to be changed in order to 

convert from one to another. As Kauffman et al. (2000) write: “More precisely, the 

distance d(ωi,ωj) between the production recipes ωi and ωj is the minimum number of 

operations which must be changed in order to convert ωi to ωj.”10  

Implicit in that statement is that distance is a symmetric measure of differences, so, 

it is as easy to convert Technology A into Technology B as the other way round. This can 

be seen as an alarming limitation of the model setting, but, in order to keep the model 

simple, and again in line with the previous work, the assumption is kept intact11.  

More importantly for the purpose of the current paper, the notion of distance 

between the configurations enables us to distinguish between local search strategies and 

what have been termed the strategies of long jumps. The search is local if the state of only 

one element in the system is changed at a time. At any point then, a firm employing a 

particular technological configuration can move along the edges of the graph to any of 

the adjacent vertices, or else stay where it was. Making a jump would mean that two or 

more elements’ states are changed at a time, so that a firm acquires the ability to move to 

a vertice on the graph, not directly connected to the one where it was before the jump. 

There are several, both theoretical and empirical justifications of considering solely 

local search strategies. First of all, as discussed in Barney (1991), Hannan & Freeman 

(1984), Henderson & Clark (1990) and elsewhere, firms tend to innovate incrementally, 

building on their current competences. Relatedly, Levinthal & March (1981), March 

                                                 
9 There is in fact quite a lot of empirical evidence that this is quite reasonable an assumption. For a 
straightforward example think of an industry like biotechnology. See, however, Altenberg (1994), (1997) 
for a model designed to allow for such possibilities. 
10 Kauffman, Stuart; José Lobo & William G. Macready (2000) Optimal Search on a Technology 
Landscape, Journal of Economic Behavior & Organization, vol. 43, page 146 
11 For an extremely interesting discussion on asymmetric distances see Fontana (2003) and the references 
therein. 



(1991) and Teece (1986) among others show that changing the technological 

configuration drastically is associated with very high risk and uncertainty, and the 

attempts to do so have a very large probability to fail.  

Moreover, the simulation results of the model by Auerswald et al. (2000) confirm 

the intuition that: “Taking bigger steps on a given landscape is somewhat like walking 

with smaller steps on a more rugged landscape. Hence, increasing δ [the number of 

operations altered per trial] should be analogous to increasing e [number of intranalities 

per operation].”12 

Setting Up a Model 

2.1. Search Rule: Internal (In)consistency 

Up until now we have provided a broad picture of the models of search on 

technology landscapes, discussing in sequence their foundations in more general graph 

theory, their common structure and the set of assumptions underlying that structure. Not 

much has been said however about the behavioral foundations and heuristics of search. 

While in any other respect the model below is identical to a number of other models 

of search on technology landscape, this is exactly the search rule employed where the 

modifications are made.  

In economic interpretation of the NK Model’s original setting a firm performs the 

search on the landscape through a random walk. Kauffman et al. (2000) define a search 

rule in the following simple way: “Let θi be the efficiency of the production recipe 

currently used by the firm, and let θj be the efficiency of a newly sampled production 

recipe; if θi <θI, the firm adopts wj ∈ Ω in the next time period; if θi >θj, the firm keeps 

using wi.”13  

Connecting this to a broader literature on search theoretic models (see Roberts and 

Weitzman 1981, Weitzman 1979 or Vishwanath 1992), search strategy put this way can 

                                                 
12 Auerswald, Phillip; Stuart Kauffman, José Lobo & Karl Shell (2000) The Production Recipes 
Approach to Modeling Technological Innovation: An Application to Learning by Doing, Journal of 
Economic Dynamics and Control, 24, page 429 
13 Kauffman, Stuart; José Lobo & William G. Macready (2000) Optimal Search on a Technology 
Landscape, Journal of Economic Behavior & Organization, vol. 43, page 149 



be characterized as local, random and sequential, the agents employing it as possessing 

myopic perfect foresight, while the acceptance rule as overall performance based. 

Some of the non-local search strategies have been outlined above. The most 

profoundly studied non-local search strategy is the one of parallel search, where more 

than one local move is performed synchronously (see Macready et al. 1996). It has been 

found however that parallel search strategies are superior to local search only when the 

current efficiency of the system is very low, becoming increasingly disruptive for 

efficiency levels above average, especially so when the degree of parallelism is high.  

The issue of on what level should the decision on whether to accept or reject a 

possible change in configuration be made has been studied extensively (see e.g. 

Kauffman et al. 1994, Frenken et al. 1999, Dosi et al. 2001, Rivkin & Siggelkow 2003 

and Siggelkow & Levinthal 2003) based on Simon’s insight on decomposability and 

near-decomposability. Among its other merits, this setting allowed for the issue of 

organizational coordination to enter the picture, and show how different the outcome of 

search is under different levels of centralization. 

Nevertheless, probably the most crucial shortcoming of the original setting when its 

behavioral plausibility is put under test is in the internal inconsistency of treating the 

bounds on the rationality of the agents under analysis. There are two different angles to 

look at the “mental skills” of the modeled agents: 

1. From the one hand, the agents are too limited in what they can only observe their 

current state and the consequences of their action (one at a time) for just one period 

ahead, while everything that happened before, and everything that might happen 

after, remains in complete impenetrable darkness. So the agents are bound to make 

a decision on accepting/rejecting novelty having their aspiration level defined 

exclusively by the efficiency of the technology currently in use, and the efficiency 

of the sampled adjacent technology defined exclusively by an extremely short-run 

assessment. So then, a novelty is accepted if and only if the direct immediate gain is 

positive. This story depicts an extremely boundedly rational decision making 

process. 



2. From the other hand, paradoxically, the agents are just too bright in what not only 

they are able to make a precise estimation of the efficiency of the currently used 

technology at each step of the process, but they are able, on top of it, to estimate 

with equal precision the efficiency of a technology a shift to which is under 

consideration at each such step. So they are able to know and not err a tad in 

knowing how good is something that they have never yet used. And they do not use 

the new technology before actually shifting to it in the original setting, because 

even if not stated explicitly, it is implied in the model that the evaluation and action 

stages of the process of change are disjoint and come in sequence rather than in 

parallel. Unlike the one in the previous paragraph, this story depicts an extremely 

over-rational decision making process. 

This might be the right way to represent the evolution of genes in biology14, but the 

inherent internal inconsistency of behavioral foundations on which the model is built, 

from the perspective of man-designed technological evolution, or for that matter, of any 

evolutionary process in social domain, is extremely dangerous and implausible. We are 

simultaneously asking too much and too little from the agents in the model.  

There are two alternative ways the author has pursued in an attempt to smooth out 

the acute edges of the problem mentioned. 

An idea of off-line parallel search with insight has been recently explored (see 

Hovhannisian 2003b), showing that when parallelism is not binding, the evaluation and 

action stages of the process of change clearly distinguished and consistent with each 

other, and the assumption of absolute myopia lifted, the agents are able to reach the 

globally optimal configuration even being way short of possessing perfect foresight. In 

this way we attempt to solve the problem of inconsistency by loosening up the stringency 

of the story described in point (1) above. 

In the present treatment, consequently, the assumption underpinning the story 

described in point (2) is relaxed, so that their myopic foresight is no longer perfect. 

 

                                                 
14 although see Levitan & Kauffman (1995) for a different point of view. 



2.2. Intentional and Unintentional Imprecision 

The “perfectness” part of the assumption of myopic perfect foresight has been 

challenged initially in the literature on simulated annealing (see Kirkpatrick et al. 1983) 

and noisy adaptive walks (see Levitan & Kauffman 1995). However, due to the fact that 

the former was related to the field of evolutionary programming, while the latter was a 

contribution to a debate in evolutionary biology, in neither of the two cases the 

motivation and intuition behind the change made was in any way related to the behavioral 

issues or the treatment of rationality. 

Our claim here is that modification of the assumption is absolutely necessary in the 

social domain for the reason that considering unintentional and intentional imprecision in 

evaluation of novelty is crucial both for the internal consistency of the model setting, and 

for plausibility of the results obtained. 

Unintentional imprecision is the easy part to explain. Indeed, we are hardly ever 

able to measure precisely the efficiency of the techniques and technologies in use, and far 

less so if the efficiency of novel and untried ones is attempted to be estimated. Once we 

put extreme bounds on agents’ foresight, as discussed above, both for the plausibility and 

for consistency of our argument we need to refine and narrow the bounds of their 

analytical and computational skills. It is not to say that the efficiency of a new 

technological configuration cannot be estimated at all, which would have been analogous 

to claim that each and every decision on making a technological change is taken purely at 

random. Instead we claim that while generally capable of making some approximate 

evaluation on whether change would be beneficial or not, some of the changes that would 

have been beneficial are being foregone, while some others that would later turn out to be 

detrimental are being made. 

Indeed, the fact that by far not all the decisions made by firms are precise and 

frictionless, especially when innovation-related decisions are of our concern, comes as no 

surprise to anybody, is well documented in numerous case study analyses, and makes it 

into business news headlines ever so often.  



Unintentional imprecision is not always a bad thing, however. As a matter of fact, 

products of such “mistakes” include cheese, Teflon, Coca Cola, potato chips, Guinness 

beer, aspirin, penicillin, glass, electricity and even America. 

Much more interesting, however, is to make a case for intentionality of imprecision. 

The question we would try to answer below is: even assuming possible a perfectly precise 

estimation of the extremely short-run efficiency of the technological configuration a shift 

to which is contemplated on, would it be wise to follow the search rule as defined in the 

original model?  

And my guess would be: no, it would not. First of all, to see why it will not be wise 

to do so, we need to return to the issue of the rule’s internal (in)consistency.  

The overall value of any technological configuration, or indeed of any action, 

depends in general on two aspects: its current efficiency, and the possibilities for future 

actions a shift to it creates. This is close to the distinction between the of current and the 

option value. Say, standing in a long queue in front of a theater can hardly be called an 

extremely enjoyable way of spending time; however, we do stand in queues, because so 

doing provides us with an opportunity of watching a superb performance later on -- 

something that we might associate with a very high value. So, quite often, we are 

willingly decreasing the efficiency associated with our current state, in order to obtain a 

higher level of efficiency in the future.    

In the myopic setting of the model, the agents do not possess any information about 

what the future might bring, except for in a very short-run. This does not mean, however 

that they do not realize the limits of their own long-term assessment skills. Recognition 

of such limits is an important behavioral factor. As Loasby put it: “[T]he recognition of 

ignorance changes the logic of choice.” 15 

The decision-makers realize that because the simple comparison between the 

current efficiencies of two alternative technological configurations does not contain all 

the necessary information to make a choice, rigidly following the hill-climbing policy, 

                                                 
15 Loasby, Brian (1976) Choice, Complexity and Ignorance. Cambridge University Press, page 74 



they might end up being precisely wrong rather than precisely right. And as the popular 

among economists proverb goes: “it is better to be roughly right than precisely wrong”. 

Rigidity is the key issue here. There is a strong evidence based on theoretical 

grounds, on the accounts of the real internal policies within firms, as well as on common 

sense, that flexibility gained through experimentation, if used within certain limits, is an 

extremely valuable asset.  

Simon writes: “Exposure to new experiences is almost certain to change the criteria 

of choice, and most human beings deliberately seek out such experience”.16 This is a 

central topic for Loasby (1976), March (1978), Weick (1979, 1998), Stacey (1992), 

Peters (1997) and many others. Brown and Eisenhardt (1998) wrote extensively on 

organizational balancing between the rigidity trap (too much structure) and chaos trap 

(too little structure). They provide a beautiful example about how the Naskapi people of 

the North-Eastern Labrador fight for their survival in that unfriendly environment they 

live in, through caribou hunting. Many generations long experience provides them with 

good knowledge of the hunting tactics. Nevertheless, they experiment: 

Most days, the Naskapi relied on the experience of the senior 

hunters in the band. But in times of high uncertainty, when 

game had been particularly scarce, the Naskapi set aside their 

experience and turned to magic. […] So the hunter-dreamer 

cradled a shoulder blade from a long-dead caribou, attached it 

to a stick, and put it over a campfire. The band patiently waited 

for cracks to appear and then hunted in the direction of the 

cracks17.  

That seems like a completely irrational way of decision-making. But, in reality, it 

did help them to survive, because exactly through those random trials, the Naskapi people 

could learn about the new hunting grounds, the ones that would have remained untried if 

they had persisted in following their experience all the time. 

Finally, and especially taking into consideration the above argument, decision 

makers would rationally avoid too high levels of precision in their estimates also for a 
                                                 
16 ibid., page 162 
17 ibid., page 96 



simple reason that both monetary and time costs associated with further increasing it after 

some point would become unjustifiably high. 

 

2.3. Satisficing Threshold and Designing without Final Goals 

Although in quite a different vein, the idea that imperfect solutions to the problem 

can be optimally preferred to perfect ones has initially found its way into NK Model 

related literature in the work by Frenken, Marengo and Valente (Frenken et al. 1999). 

Their idea that: “if problem-solvers are ready to accept algorithms which lead to less than 

optimal (“satisficing”) solutions they can decrease the size (and thus the execution time) 

of the algorithm required to find it”18, is relevant especially to the argument on “costs of 

precision” raised in the previous paragraph. Even more important for the current analysis 

is the definition of the set of “satisficing” solutions they give: “The set of ε-satisficing 

solution is the set of strings whose value is at most ε lower than the global optimum.”19 

Following Frenken (2001) we would call ε a “satisficing threshold.” 20 This idea in 

sequence bears upon the observation by Herbert Simon that: “In the face of real-world 

complexity, the business firm turns to procedures that find good enough answers to 

questions whose best answers are unknowable.”21 

At least in its unintentional part, and to some extent on the intentional part as well, 

our vision of the issue comes very much close to the idea of satisficing threshold. 

However, there are significant differences. 

In their treatment, the threshold applies exclusively to the final level of efficiency 

obtained, while the evolutionary process leading to it leaves the search rule of the original 

model intact. It can be argued that this is exactly the way Simon was suggesting to treat 

the issue. But there are several reasons why we hold a different point of view. 

                                                 
18 Frenken, Koen, Luigi Marengo & Marco Valente (1999) Interdependencies, Near-Decomposability 
and Adaptation. In: Brenner, T. (ed.) Computational Techniques for Modeling Learning in Economics. 
Kluwer Academic Publishers, page 147 
19ibid., page 157 
20 Frenken, Koen (2001) Understanding Product Innovation using Complex Systems Theory. Unpublished 
Academic Thesis. University of Amsterdam, page 76 
21 Simon, Herbert (1969 [1996]) The Sciences of the Artificial. The MIT Press, Cambridge, MA, page 28  



First of all Simon to a large extent dealt with situations when many alternatives 

exist, some fraction of them can be sampled, but only one has to be chosen, and when it 

is, the search stops. So the question was mainly about how large a fraction to sample, 

before making the final choice. On the contrary, in the NK setting, we model agents who 

have to make a choice each period, and regardless of whether the new alternative has 

been accepted or not, the process continues on, and in the next period another choice 

situation is faced. So, unlike the former case when there is a single goal, to which an 

assumption of satisficing threshold can be applied, we have here the case of evolution to 

(generally unreachable) final goal through accepting or rejecting subgoals in the process.  

Simon himself was quite skeptical about considering any goal final. He writes: 

“The idea of final goals is inconsistent with our limited ability to foretell or determine the 

future. The real result of our actions is to establish initial conditions for the next 

succeeding stage of action”22, and also: “A paradoxical, but perhaps realistic, view of 

design goals is that their function is to motivate activity which in turn will generate new 

goals.”23 

Organizational and technological design is indeed an open-end process, and if so, 

there seems to be no reason, or even a possibility, to view some steps in this process as 

leading to more final goals than others. Therefore it seems to be quite natural in the world 

of “designing without final goals”24, to augment the idea of accepting good-enough end 

results with a mechanism of taking good-enough decisions in each step of organizational 

and technological design process. 

There is actually, one final reason, why such a change calls for being made. It is 

quite strange indeed to consider a rule that says: continue search until a solution that is at 

most ε worse than the globally optimal one is found, for a simple reason that this would 

suggest that we actually know the exact value of such global optimum. And, quite 

naturally, we never really do. 

 

                                                 
22 ibid., page 163 
23 ibid., page 162 
24 originally a title of a paragraph in Simon’s book. ibid., page 162 



2.4. Memory Dependence: When We Was Fab vs. No Regrets 

“Back then long time ago when grass was green     “No regrets, they don’t work 
Woke up in a daze, Arrived like strangers in the night    No regrets they only hurt…” 
Fab - long time ago when we was fab…” 
 
George Harrison        Robbie Williams 
 

 In the previous two sections we dealt predominantly with the question of how the 

uncertain future returns would influence out current choices. Future consequences of 

today’s choice, however, are not its sole determinants. Let us now look at the other side 

of the coin, and see how past choices, successes and failures can hinder or influence what 

we are willing, and indeed capable to do today. 

Despite the fact that imperfectness of local search dispels the nearly path-

determined nature of the search process, through endowing the agents with a chance to 

deviate (be it unintentionally or intentionally) from the originally chosen path, past still 

plays a significant role in evaluating today’s choices. 

In fact, it has in this setting a much higher explanatory power than before. In the 

original model’s strictly uphill walk scenario, every new technology a shift to which is 

being made is the most efficient one that has ever been employed by the firm throughout 

its history. This is pretty obvious, since if it wasn’t, a shift to it simply wouldn’t have 

been made. In this simplified representation of realty the efficiencies of the technologies 

used in the past don’t really influence the current aspiration levels by default. 

In the modified version of the model presented here, downhill moves are possible, 

so that the efficiency of the technology currently in use does not necessarily have to be 

the highest of what has been encountered before. Due to the fact that a firm is not 

anymore assumed to be able to estimate the efficiency of an untried technology with 

precision, it might overestimate it, and realize the mistake only when the shift to an 

inferior technological configuration has already been made.  

What if this does happen? Should the firm set as its aspiration level the efficiency 

of the currently used inferior technology, and try to get away from it to a better one as 

fast as they can? Should it alternatively, keep the past, more efficient technology as the 

benchmark with which the possible novel technologies are to be compared with, cashing 



in on the knowledge of the existence of more favorable point in the landscape they 

possess? Should it finally base their decisions on the combination of the two? 

The third option is probably the most interesting to consider, and is the optimal 

choice of action from a decision-maker’s perspective, since balancing between the two 

extremes would have provided a firm with an ability to capitalize on the past, without at 

the same time being too rigid in treating novelty. However, the case of exploring that 

option brings the whole complex dynamics of aspiration level adjustments into the 

picture, and deserves a separate treatment (see Hovhannisian 2003c). 

For the purposes of the current analysis, we would explore instead the extreme 

cases of “memory dependence” that we term after two songs, cited in the beginning of the 

section.  

Agents in When We Was Fab setting are fully memory dependent. Once they have 

made a mistake that brought them to a substantially inferior technology, they will try to 

review their choice and get back to a better technological neighborhood. However, this 

would also mean that no matter how low on the technology landscape they have found 

themselves due to a misjudged shift to an inferior technology, they will stick to it until 

they find a technological configuration that according to their estimations is more 

efficient than the maximally efficient previously encountered one. Hence they would not 

agree to shift to any novel technology even a fraction worse than the one they have 

experienced using in their times when they was fab. And the efficiency of this latter 

technology would serve as their aspiration level. 

On the contrary, the agents in No Regrets setting are careless about their past 

successes and failures, deeming the only pair of efficiencies important in making a 

decision on accepting/rejecting novelty the one currently in use and the one currently 

under scrutiny. So, even if because of a miscalculation of new technology’s efficiency 

they actually made a downhill move, they will not regret the good times, but rather 

would do everything to find an improvement over the currently used, inefficient 

technology. So then, their aspiration level is always kept equal to the their current 

operational efficiency. 



Both alternatives, even if simplifying it quite substantially, reflect the reality of 

decision-making, and have been analyzed in various settings in March & Olsen (1976), 

Weick (1976), Harrison & March (1984), Nystrom & Starbuck (1984) and Miller (1994). 

The first alternative, even if more rigid, provides more certainty. While letting the 

agents explore and experiment in the vicinity of the currently chosen path, this setting 

precludes them from wandering too far away, thus in a way keeping the balance between 

exploration and exploitation. Second alternative is more dangerous in what a series of 

even slight miscalculations can lead to a very significant fall in performance of the firm 

on aggregate. However, the more reckless and novelty seeking behavior can allow the 

agents to spot far better peaks on the landscape.  

 

Simulation Model 

3.1. Simulation Toolkit  

All the simulations below were run using Laboratory for Simulation Development 

(Lsd) language, developed by Marco Valente. Lsd is a freeware that can be downloaded 

from http://www.business.auc.dk/~mv/Lsd/lsd.html. This simulation language is built on 

C++ platform, and thus is characterized by the speed and flexibility of a low-level 

language. However, the layer of interfaces embedded in its structure make it much more 

user-friendly than the former, and possible to use by non-programmers. 

NK Model in the original setting is included in the Lsd package as one of the 

example models. The code for the modified version of it, used in the subsequent analysis 

in the present paper is available on demand from the author. 

 

3.2. Modeling “Imperfect” Local Search Strategies 

We suggest here that the search rule of the original NK model can be easily 

reformulated for the purpose of modeling “imperfect” local search strategies. As it was 

noted before, in the original model, the new configuration wj is adopted instead of the 

current one wi if and only if θj >θi, where θj is the efficiency of a newly sampled 

http://www.business.auc.dk/~mv/Lsd/lsd.html


production recipe, and θi is the efficiency of the production recipe currently used by the 

firm. It has also been noted that because of the particular way in which the original model 

was set up, at each period the currently used technology wi is always the most efficient 

one ever tried, so that  

θi, t=θmax, t for ∀t.                                                    (1) 

Let us instead consider that the firm can observe perfectly only the efficiency of the 

currently employed technological configuration, θi, while observing some hypothetical 

level of efficiency θ j instead of the real value θj, with: 

θ  j = θj +χε        (2)  

where ε is randomly distributed in [-0.5;0.5], and χ is a tunable parameter 

measuring the degree of imprecision (either intentional or unintentional) of the agent’s 

estimation of the new configuration’s potential efficiency level. The extreme case of χ=0 

reflects a perfectly myopically rational strategy of the agents as in the original model, 

while, on the opposite, a case of χ=1 reflects a situation when the observed efficiency of 

a new configuration is maximally random.  

Due to the possibility of shifting to an inferior technological configuration present 

in the current model modification, equation (1) does not hold with certainty anymore, so 

that we can differentiate between the rules of accepting/rejecting novel technologies 

between the agents in When We Was Fab and No Regrets settings. 

The agents using the former strategy would adopt a new configuration if and only 

if θmax <  θ j, while the ones using the latter, would do so if and only if θi  < θ j. 

The mean value of ε is 0, so that on average firms in both settings observe the real 

value of each possible configuration, and are not biased as for the “direction” of 

imprecision. However, given that θ ∈ [0,1], and given the randomness of ε, the 

modification of the model would lead to cases when for the values of χ≠0 and increasing 

towards χ=1, the agent is more and more likely to either reject a configuration that is 

more efficient than the current one, and, more importantly, to accept configurations 



moving it “downhill”. It is assumed that once the new configuration is accepted, its true 

efficiency level becomes perfectly observable for the firm.  

Due to a restriction that the efficiency cannot be negative or have a value of more 

than the maximum of 1, the algorithm of the model on which the simulations are run is 

written in such a way to assign a value of 0 for all the values of θ  j< 0, and a value of 1 

for all θ  j> 1. 

 

2.4. Simulation Results 

For all the simulation runs the value of N was kept constant equal to 20, while the 

value of K ∈ {0, … , N-1}. The value of χ varies for each K in the range {0, … , 0,5}, with 

an interval of 0.025 to account thus for the probability of making a mistake in evaluation 

of the efficiency of the new configuration in the range between 0% and 50% in each 

direction.25 For each value of K the simulation was run 10 times, with different seeds. 

The efficiency of each strategy was computed as the average over the efficiency obtained 

by each of the 10 agents employing it. Hence for each combination of K and χ, 100 

observations were obtained. Due to physical limitations, the never-ending process of 

technological and organizational change was “stopped” at 5000th step. 

The first thing that we want to see is whether our intuition about the imprecision in 

myopic search being a virtue and not only a threat is backed up by the results of the 

simulation runs. Figures 1 and 2 provide the averaged results for all the possible 

combinations of parameters K and χ in the When We Was Fab and No Regrets settings 

respectively.  

<Insert Figures 1 and 2 about here> 

The figures present on a 3-D plot the average efficiency levels obtained by the 

agents for each pair of K and χ at the last, 5000th  step, as well as its 2-D top projection. 

                                                 
25 Larger values of χ were not taken into consideration for the reason of their being clearly inferior for each 
K. 



The first striking result of the modified model is that for no values of K, apart 

from the uninteresting case of K=0, is the perfectly precise rigid behavior (corresponding 

to the case of χ=0) optimal. 

As it can be seen from the figures, only for the cases of low complexity, 

corresponding to low values of K, the optimal level of χ is just marginally higher than 

0%. With increasing K, the optimal levels of χ reach for the both settings a level of 10% 

already for K=3, slowly and steadily rising from 12,5% to 22,5%  for more complex 

systems. The optimal values of χ show quite similar dynamics between the two settings, 

with the values for the No Regrets setting just slightly lower for the corresponding values 

of K.  

In Figures 3 and 4, we analyze instead the efficiency obtained by the agents 

averaged over 5000 time steps for all the combinations of K and χ. 

<Insert Figures 3 and 4 about here> 

This is done in order to control for the possible change in dynamics when the whole 

evolution of the efficiency levels is taken into consideration rather than only the position 

of the agents on the technology landscape at some particular time step. The results 

confirm that the story behind the Figures 1 and 2 is just as valid in this case. 

However, as a prescriptive tool just telling the optimal level of imprecision is not 

enough. As has been discussed in length above, the level of imprecision is both a result of 

intentional strategic action by the agents and unintentional consequence stemming from 

the bounds on their abilities to evaluate the novelty. Hence, the actual value of χ can only 

be partially controlled by a firm. In this circumstances, we would be interested to see how 

large is the range of imprecision levels that lead to attainment of higher efficiency points 

on the landscape than it would have been in the case of employing a χ=0 rigid strategy.  

The results differ substantially for the two settings analyzed. In the When We Was 

Fab scenario, the deviations from the strict uphill walk are controlled to a higher extent 

than for the case of non-regretting agents. Hence even having a level of imprecision level 

substantially higher than the optimal, the results obtained are still preferred to the rigid 

case. Indeed the highest level of imprecision still superior to the case of  χ=0 case 



reaches 25-30% already for the K as low as 3, and stays at about 40% for average-to-high 

levels of complexity. Taking the terminal efficiency level at step 5000 instead of the 

average reinforces the observed dynamics. 

Alternatively, in the No Regrets setting, values of χ too high are too risky, because 

the lack of control for the recurrence of mistake-making means that the agents can drift 

too far downhill, and never be able to recover from the loss of efficiency. So, the intuition 

that this setting is more dangerous is being confirmed just as well.  

Nevertheless, the dangers of this setting are being paid off by the fact that for all the 

levels of complexity, the technological efficiency corresponding to the optimal 

imprecision level is always higher than for the case of less flexible memory dependent  

case of the  When We Were Fab way of strategizing. 

So, just as was intuitively stated in the above section, there is a trade-off between 

the relatively higher certainty of memory dependent way of action, and the relatively 

higher flexibility the non regretting strategy provides for. So, once the firms are sure 

enough they can tune the imprecision to the optimal level, the more risky strategy can be 

applied in order to gain higher returns, but once the imprecision is more of an 

unintentional outcome of bounds on rationality, and cannot be perfectly controlled for, 

the relatively more rigid When We Was Fab strategy is preferred. The results are 

presented graphically in Figure 5 for some values of K. 

<Insert Figure 5 about here> 

The number of local peaks rises with the complexity of the technology landscape, 

and as can also be observed from that figure, the higher is K the larger is the range of χ 

for which the No Regrets setting is the winning choice. This is quite an obvious result, 

since, the larger amount of local peaks leads to a higher chance of getting caught-up on a 

sub-optimal one. But then, the more is that danger, the more valuable becomes the 

flexibility that results from the higher frequency and boldness of experimentation the 

setting is characterized with. 

Finally, an interesting perspective opens up when we look at Figure 6. What the 

figure shows is the comparison of the performance of the agents employing the search 



heuristic of the original model (χ=0), and for the both settings, the “super agents” that are 

able to tune their parameter χ to each of the levels of complexity, given by the parameter 

K, so that to attain the optimal fitness in each of those cases (χ optimal). 

<Insert Figure 6 about here> 

What is interesting here is not only that the figure confirms the previous results; this 

had to be the case for obvious reasons. The interesting observation can be made 

comparing the behavior of from the one hand the line representing the χ=0 case, and, 

from the other, the lines representing the remaining two cases.  

As in the original Kauffman’s model, after a very short initial increase in the 

average fitness, with the growing complexity of the system, its value steadily declines. 

This result was taken to suggest that the agents have to work on decreasing the 

complexity of the system through different mechanisms in order to hope for a better 

overall performance. 

Now, this is not at all necessarily the case if we take the value of χ positive. For 

both of the remaining two cases in the graph, the initial growth is much longer and much 

steeper. Reaching its maximum at K=4, the average efficiency remains pretty high for the 

values of K up to K=7 (and arguably even longer so for the No Regrets case), and does 

not go below the case of K=0 for no values of K, however large it is. On the other hand, 

for the case of χ=0 for all the values of K>8, we observe the average fitness lower than 

that the agent attains in the completely unconnected system, that a K=0 case represents.  

This is important in two ways. First of all, the mechanism that the agents can design 

in order to decrease the complexity of the system are costly, and hence ceteris paribus are 

not desirable.26 Now, using a scheme with a positive value of χ, apart from the other 

pluses, discussed above, thus, lowers that cost just as well. Secondly, the so-called new 

economy calls for an increased emphasis that has to be put on the cases of average and 

high complexity, exactly where the search heuristics employing positive values of the 

parameter χ are performing especially good compared to the case of the original setting 

of the model. 

                                                 
26 for more detailed discussion on dangers of modular design see Hovhannisian (2003b) 



Generalizations and Discussion 

There are several points of possible concern that can be raised regarding the above 

model modifications, and in this section I would try to discuss some of them. 

First of all, one might ask, what actually does the trick? In the modified version of 

the new configuration adopting rule, the factor of randomness seems to play a major part. 

The mechanism seems to be very reminiscent of the simulated annealing principle, well 

known in the literature on genetic programming27.  

In fact, some of the literature on business case studies that served as the starting 

point for the current paper indeed give a lot of attention to randomness as the surprising 

force helping to run the business better. Such is the example in Brown & Eisenhardt cited 

above.  

However, my belief, and my aim in this paper was not to accentuate the role of 

randomness in decision making. The main point was to see how true indeed is the 

proposition of Simon on deliberate experimentation as the guiding force in decision 

making when facing a complex changing world where no goal is ultimately final.  

To check whether random variable actually does play a role, a slight modification 

of the model was developed, in which randomness was absent. It was noticed that while 

in the model modification presented above the errors in precise estimation of the relative 

efficiency of the novel technological configurations could have been both in the sense of 

accepting a configuration that in fact was inferior to the currently employed one, or 

rejecting the ones in fact superior to it, the whole idea of experimentation as the guiding 

force suggests putting more emphasis towards the so to say “optimistic” errors.  

Rejecting what might have been a better way of running the business just does not 

seem to be a good an idea intuitively. So then, would it be right to say that this is exactly 

the acquired option of accepting modifications even if they are slightly inferior to the 

present state of affairs that makes the difference? 

The results of the simulation runs show that this is indeed the case. What was 

changed is again the mechanism of accepting or rejecting new adjacent configurations. 

                                                 
27 I would like to thank Koen Frenken for bringing my attention to this point. 



Instead of the one used above, the following rule was suggested: accept a new 

configuration wj instead of the currently employed configuration wi if and only if θi <θ j, 

where28: 

θ  j = θj +χ/2     (8) 

 

The results are extremely similar to the ones discussed above both in terms of the 

optimal level of χ, and the highest levels of it still superior to the case of χ=0.  

This suggests that this is not the randomization of the strategy, and neither the fact 

of mistake-making per se that is responsible for the results discussed above, but indeed it 

is the case that overly rigid structures of the perfect myopic optimization technique just 

do not let the decision maker gain from the advantages a more flexible scheme of a 

dynamic, experimenting decision making provides. 

Another concern might be raised in this respect. It could be the case that omission 

of such factor as the search costs can benefit overly explorative activities, while a 

modification of the model to a one that accounts for those costs would also allow a 

conservative strategy of accepting only the configurations by some fraction superior to 

the current one becoming a winning one. 

This is a more difficult concern to answer to, because of the difficulties of directly 

measuring such costs in the present algorithm of the model. Nevertheless, some 

conjectures can still be made in this respect. First of all, it has to be noted that search 

costs can be classified in two major groups:  

 The shifting costs between the two adjacent technological or organizational 

configurations 

 The costs of actually estimating whether such change is desirable. 

Now, with no doubts, the search heuristic applied in the present modification of the 

model calls for an increase in the first group of the costs. Experimenting means more 

                                                 
28 χ/2 is taken instead of χ to account for the same magnitude of the effect when we change from a 
stochastic to a deterministic case. 



often changes, and hence more resources have to be directed towards shifting costs. The 

magnitude of that increase can be measured in the simulation runs by the successful 

mutations parameter. And it does increase substantially when we move from the case of 

χ=0 to positive values of χ.  

Thus, depending on K, for its high enough values, the search heuristic 

corresponding to the optimal values of χ presupposes about 10-30 times more shifts than 

in the case of χ=0 for the No Regrets, and about 5-10 times more for the When We Was 

Fab setting, and hence, the overall shift costs should be significantly higher. 

 However, this is not as alarming as it might seem. The thing is that for high enough 

values of K, the optimal value of χ is between 15-25% in both directions, which accounts 

for the double of that values range of desired imprecision. But then, as it has been noted 

above, that imprecision is a way of economizing on the costs of evaluating the relative 

efficiency of the yet untried adjacent technologies.  

Thus, while dragging the shifting costs up, such search heuristic lowers 

significantly the calculation and estimation costs. Measuring the relative magnitude of 

these two effects unfortunately is an unsolved problem yet, but the fact that we are 

considering here the day-by-day small organizational and technological shifts, which are 

not great in magnitude, leaves us to think that the costs associated with such shifts should 

not be too high, and should well be balanced by the decrease in the presumed precision in 

estimating the yet unknown.    

Consequently, one might ask, why do the agents necessarily have to stick to some 

given magnitude of imprecision, rather than trying to tune that parameter in accordance 

with the level of the complexity of the system?  

Indeed, as it has been noted in the discussion of the Figure 6 above, the “super 

agents” able to do so apparently perform better than the agents applying any other given 

search scheme. So, in a way the model restricts the possibilities of the agents. Quite 

obviously, a simpler system calls for more rigid scheme, because of the tradeoff between 

the costs of rigidity (low in this case) and the possibility it gives to reach a higher level of 



efficiency, and that scheme has to become more and more flexible with an increase in the 

complexity. 

Moreover, the possibility of tuning the parameter χ is an important advantage in 

other, probably even more important respect. With the evolution of technology, different 

and quite distinct phases change each other. Apparently then, different values of χ would 

be optimal depending on whether the agents are in the phase of fast and booming 

development of the given technology, or the technology is mature, and only slight and 

slow changes are being made to it. 

Finally, a concern might be raised regarding the question of why don’t the agents 

change the state of several elements at the same time. One of the reasons of not including 

that possibility in the model is that what I was focusing the attention on are the small day-

by-day decisions, and especially since the agents are given possibility to deviate from the 

rigid rule of accepting new technological configurations proposed in earlier papers on the 

subject, a change in the state of more than one element at a time was not seen important. 

From the other hand, Auerswald et al. (2000) confirm the intuition that an effect “taking 

bigger steps on a given landscape” has is “like walking with smaller steps on a more 

rugged landscape.”29 So then, because we consider here the landscapes of all the possible 

levels of ruggedness, introducing a possibility of taking larger steps would just mean 

doing a double work, without expecting any new results. 

Turning from forward-looking  to the question of memory dependence, it is obvious 

to claim that the two cases discussed are not fully representative of how the past is 

weighed in real-life business practice. However, the aim of this paper was not in 

discussing all the range of possible strategies of organizational memory and 

organizational forgetting. 

 

Conclusions 

                                                 
29 Auerswald, Phillip; Stuart Kauffman, José Lobo & Karl Shell (2000) The Production Recipes 
Approach to Modeling Technological Innovation: An Application to Learning by Doing, Journal of 
Economic Dynamics and Control, 24, page 427 
 



The current paper has dealt with broadly two related issues in innovation-related 

business strategizing.  

First we discussed in much detail the question of how the uncertain future returns 

influence our current choices. From the one hand, the internal inconsistency of endowing 

the agents with too much and too little sense-making abilities, present in the original 

model has been criticized. It has been noted that the assumption of firm’s inherent ability 

to precisely estimate the efficiency of a novel technology without bearing the 

consequences of actually having shifted to it, is quite questionable. In this way the 

unintentionality of imprecision entered the picture.  

It was noted further that imprecision is not only a consequence of limits on human 

analytical skills, but a remedy from the rigidity of not realizing our own ignorance. Our 

claim was that once the limits to our foresight precludes the possibility to see such long-

run consequences, firms might be well better off deviating from the strict rule-following 

behavior of accepting only uphill leading modifications of the technology in use. This 

statement goes in line with Weick’s claim that: “Loosely coupled systems may be elegant 

solutions to the problem that adaptation can preclude adaptability.”30  

In a newspaper article I read a while ago it was discussed how people turn back 

from the high-precision all-autonomous housing plans, to the more conventional ones. 

The reason was in that the hi-tech insulation of the walls and windows led to very 

substantial increase of allergies the owners of those houses acquired. Now this is exactly 

the same with overly-rigid search schemes, where the imposed precision of the rule being 

followed leads to the case where the tiny “viruses” that once were introduced (even if not 

intentionally) in the scheme, are not given a chance of leaving the system ever after, and 

ultimately result in its failure or stagnation. 

The analysis of virtues of intentional imprecision has been present in Simon’s and 

March’s works on deliberate experimentation and throughout Weick’s, Loasby’s and 

Stacey’s books and articles. On a more “applied” level, Nystrom and Starbuck (1984) 

observed that: “Experimentation offers many benefits as a central frame of reference for 

                                                 
30 Weick, Karl E. (1976) Educational Organizations as Loosely Coupled Systems, Administrative Science 
Quarterly, March, vol. 21, page 7 



top managers. People who see themselves as experimenting are willing to deviate 

temporarily from practices they consider optimal in order to test the validity of their 

assumption”31 

Again based on Simon-March-Olsen line of work on “designing without final 

goals”, a necessity to adjust the idea of Frenken and colleagues on “satisficing threshold” 

has been proposed. It was argued that technological evolution is an open-end process and 

a shift from applying the satisficing rule to the end results to applying it to every single 

step of technological evolution can be necessary. 

The second key task raised in the current paper was to attempt to answer how much 

indeed do the firms have to be dependant on their own past experience, especially so, 

their past successes. Guided by empirical observations such as: “Organizations succumb 

to crises largely because their top managers, bolstered by recollections of past successes, 

live in world circumscribed by their cognitive structures”32, as well as by insights gained 

from the work on “core rigidities” (Leonard-Barton 2000) and “perils of excellence” 

(Miller 1994) it was proposed to analyze memory dependence in two extreme settings. 

 One of them, termed When We Was Fab strategy, puts too much weight on the past 

successes, and disregards the possible current dire straits. The other, termed a strategy of 

No Regrets, on the opposite, treats the memory “as a pest”, as suggested by Weick 

(1976), and considers the only relevant data for making a choice the efficiency of the 

technology currently in use, and the efficiency of the technology a shift to which is 

possible. While the former brings more certainty into the structure, the latter gains on 

increased flexibility. 

All the above intuitive considerations were put under test in simulation setting, 

using as a benchmark case Kauffman’s NK Model that has attracted recently much 

interest in evolutionary modeling. In our view while having an extremely high potential 

for economic applications this model suffers from the side-effects of direct translation of 

biological concepts into the filed of social evolution.  

                                                 
31 Nystrom, Paul C. & William H. Starbuck (1984) To Avoid Organizational Crises, Unlearn, 
Organizational Dynamics, Spring 1984, page 62 
32 ibid, page 57-58 



The main point of the current analysis thus has been to provide behavioral 

background nested to a larger degree in economic theory and business literature. As the 

analysis in the current paper has shown, when some of the behavioral assumptions are 

tuned to the case of human-influenced (if not to say human-determined) technological 

evolution, a number of conclusions valid for the natural systems fail to hold, or else 

become locally valid, while the others grow in importance.  

In the end, remembering once again Simon’s idea on design without final goals, we 

would like to note that the model discussed in the current paper is by far not meant to be 

considered such a final goal. On the contrary, our belief is that NK-inspired research is 

able to give much more important and general results if we note that probably the greatest 

advantage it provides us with is in the fact that here, unlike either the mainstream 

neoclassical theory, where too much stress is put on rationality and intentionality, or the 

“mainstream” evolutionary economics, where the agents too often are seen as possessing 

no rationality or insight at all, and the purportive strategizing is substituted to a high 

degree with the idea of them adapting blindly to external environmental changes, here we 

are able to bring comparisons between agents employing different (and changing) 

strategies, and putting them in different environments, get the idea on how much valuable 

one or the other is in different circumstances.  
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Figure 5: No Regrets vs. When We Was Fab. Average Efficiency over 5000 Periods for some K  
(Series 1: No Regrets Setting; Series 2: When We Was Fab Setting) 

  

  

  

  



Figure 6: Comparison of Highest Average Efficiency Levels Attained by Agents Using Different 
Strategies (as a Function of K)  

 

 


