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1 Introduction

The telecommunications industry has undergone rapid change in several as-
pects during the last years. The breakup of former state-owned monopolies
and deregulation in the local call market was in many countries accompa-
nied by exorbitantly high growth rates in the mobile telephony market. This
has shifted the focus of research in telecommunications to markets charac-
terized by two-way interconnection. In such a market, competing service
providers are typically interconnected, and part of their service consists of
terminating calls that originate on their rivals’ networks. Since this is costly,
firms collect per-minute access charges (or interconnection fees) from each
other for termination.

From a regulatory viewpoint, an important issue is how to set these ac-
cess charges. It is commonly agreed that networks competing for customers
in linear retail prices should not be allowed to set their access charges non-
cooperatively. The reason is that this would result in a “double marginaliza-
tion” problem. Intuitively, by unilaterally increasing its termination charge,
a network can raise the marginal call costs of the rival network1. This trans-
lates into a higher rival’s retail price, leading to a lower rival’s market share
and a higher market share of the own network. In a noncooperative, sym-
metric equilibrium then, two equal networks will both charge high access
fees and high call prices, which may well exceed the monopoly price, if sub-
stitutability between networks is low. However, since network traffic tends
to be symmetric, only the high prices enter into equilibrium profits, while
access charges received and payed out cancel. In sum, profits as well as
consumer surplus are low.

One way of alleviating the double marginalization problem is to impose
reciprocity of access charges, i.e. to demand that both networks charge the
same unit access fee. This can be achieved by a regulator setting an appro-
priate reciprocal access charge, or by letting the networks freely negotiate
over the access charge, subject only to reciprocity. In many OECD coun-
tries, interconnection arrangements are indeed handled in the latter way,
with regulatory intervention only if negotiations fail. Now, while collusion
over retail prices is illegal in general, cooperative agreement on the access
charge is allowed and often encouraged. This makes sense only if firms are
not able to indirectly collude over retail prices by colluding over the access
charge. Unfortunately this is by no means obvious.

One has to be careful when judging the role of the access charge. The fact
that, due to traffic symmetry, a reciprocal access charge does not explicitly
appear in equilibrium profits, does not mean that networks are indifferent
about its level.2 Equilibrium profits do in fact strongly depend on the access

1 This is called the raise-each-other’s-cost effect by Laffont and Tirole (2000).
2 Armstrong (1998) e.g. mentions a paper by the New Zealand Ministry of Com-

merce supporting this wrong intuition. It was termed the bill-and-keep fallacy by
Laffont and Tirole (2000).
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charge, but only indirectly, through the noncooperatively determined equi-
librium call prices which are affected by total termination costs, including
access charges.

In the second half of the 1990s, serious concerns have been raised in
the literature about firms’ ability to use a cooperatively determined access
charge as a collusion device (see e.g. Brennan (1997)). As noted already by
Katz, Rosston, and Anspacher (1995), networks have an incentive to agree
on a high (above marginal cost) reciprocal access charge in order to achieve
high end user prices. Together with the confirming results from the first
explicit models (see below for details on this literature), this has led many
researchers to adopt the view that collusion in the retail market is associated
with high access charges. This view was only slightly clouded by subsequent
opposite results arising from refinements of the basic models, which tried
to eliminate some of the less realistic assumptions of these models.

This paper is concerned with one particular assumption routinely in-
voked by the economic literature on two-way access. It is the assumption
that consumers do not benefit from receiving calls. I believe that this is
not only unrealistic, but also assumes away a potentially significant effect,
which arises if firms can set different prices for calls terminating on-net
and off-net, i.e., if they use termination-based price discrimination – what
e.g. mobile telephony providers typically do. The reason for this is that
with termination-based price discrimination, if consumers care about being
called, their total surplus does not only depend on the prices offered by the
network they are subscribed to, but also on the price the rival sets for calls
into this network. Without this call externality, a network raising its price
for off-net calls would only reduce volume demand of its own customers.
Taking into account the call externality makes clear that this also hurts the
rival’s customers, and hence makes the rival less attractive to subscribe to.
This effect leads both networks to set higher off-net prices than without
the call-externality. Indeed, if receivers’ utility is sufficiently great, with lin-
ear pricing this may lead to equilibrium off-net prices above the monopoly
level, accompanied by rather low on-net prices, even if the access charge
is equal to marginal cost. A decrease in the access charge then lowers the
off-net price and raises the on-net price, so both prices move towards the
monopoly level. This, of course, raises profits, and consequently the collusive
level of the access charge is below marginal cost. Since this is also the case
for the welfare maximizing access charge, however, letting networks cooper-
ate in determining the access charge might even improve welfare compared
to cost-based access regulation.

If networks compete in two-part tariffs, it is known that even without
taking into account the call externality the collusive access charge is be-
low cost. If receivers’ utility is accounted for, the same intuition as in the
linear pricing case leads to even lower collusive access charges. Hence for
competition in two-part tariffs, the cooperative choice of the access charge
is unambiguously below cost.
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The overall impression from these results is that lifting some of the
unrealistic restrictions from the standard model makes high collusive access
charges appear rather the exception than the rule. It also seems as if the
marginal costs of call termination might loose their hitherto focal role in
the issue of regulating access charges.

The rest of this paper is organized as follows. Section 2 reviews the
literature on two-way interconnection and explains the phenomena related
to linear and nonlinear pricing, termination-based price discrimination, and
the call externality. In Section 3 I introduce the model of LRTb and the
specific extension including the call externality in this model. Section 4
explains the notions of consumer equilibrium and network equilibrium. The
analysis of the model and the explanation of the diverse results starts with
the linear pricing case in Section 5, and continues with the nonlinear pricing
case in Section 6. A final discussion concludes.

2 Literature Overview

The first to show the negative welfare effects of cooperatively determined ac-
cess charges within an explicit model were Armstrong (1998), Laffont, Rey,
and Tirole (1998a)– henceforth LRTa, and Carter and Wright (1999). They
employ models where two networks are differentiated in the Hotelling style
and compete for customers in linear, nondiscriminating prices. The model
of LRTa is by now widely accepted as the “standard model” of two-way
interconnection, and most of the subsequent literature uses this model as a
starting point. Basic assumptions of LRTa’s model include that consumers
do not benefit from receiving calls and that calling patterns are balanced.3

All these authors conclude that the negotiated access charge may be used
as a collusive device and will definitely exceed the marginal cost of access.

2.1 Nonlinear Pricing

If networks may compete in nonlinear prices, e.g. two-part tariffs, this result
does no longer hold. As LRTa show, equilibrium profits are independent of
the access charge, leaving networks indifferent about the price of intercon-
nection. The intuition is that although usage fees still increase with the
access charge, networks can counterbalance the negative impact on market
share by lowering the fixed fee. Thus competition remains strong, and the
access charge looses its collusive function.

Dessein (2001) studies a model where consumers differ in volume demand
or subscription demand. He shows that introducing heterogeneity in volume
demand leaves the neutrality of the access charge unaffected. This result

3 A balanced calling pattern requires that, ceteris paribus, consumers are equally
likely to call customers of both networks, and hence the percentage of on-net calls
of a network equals the market share of that network.
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is also supported by Hahn (2002). If demand for subscription is elastic,
however, some consumers may choose not to subscribe in equilibrium. As
Dessein (2001) and Schiff (2002) show, this leads networks to prefer an
access charge below marginal cost. The reason for this is the emergence of
positive network externalities in the absence of full participation.

2.2 Termination-Based Price Discrimination

The mentioned models do best describe local fixed-link telecommunication
networks. With the rise of mobile telecommunication, however, the prac-
tice of termination-based price discrimination became apparent. In mobile
networks it is commonly observed that different prices are charged for calls
terminating in different networks. Usually the price for calls terminating in
the same network where they originate (on-net calls) is lower than the price
for calls leaving the network (off-net calls). Price discrimination of this type
creates positive (tariff-mediated) network externalities despite interconnec-
tion. Given the observed price structure, a consumer is the better off the
larger the market share of the network he is subscribed to.

Termination-based price discrimination was already studied by Econo-
mides, Lopomo, and Woroch (1996). However, their results differ substan-
tially from the results discussed below, since they assume that the subscrip-
tion decisions are made before prices are set, which renders market shares
effectively exogenous.

A seminal paper introducing price discrimination into the models men-
tioned above is Laffont, Rey, and Tirole (1998b), henceforth referred to as
LRTb4. Among other results they show that with linear pricing, the collusive
role of the access charge is reduced by the possibility of price discrimination.
The reason is that similar to the case of two-part tariffs above, a higher ac-
cess charge is reflected in a higher off-net price, but the building of market
share is not necessarily linked to an increase in the access deficit, since cus-
tomers can be attracted by lowering the on-net price. However, as opposed
to the nondiscriminatory, nonlinear pricing case, the collusive role of a high
access charge is not completely removed. Proposition 2 of LRTb states that
the access charge still locally acts as a collusion device, which means that
profits increase locally, if the access charge is increased above marginal cost.

As in the nondiscriminatory case, the corresponding result for nonlinear
prices is quite different. Gans and King (2001) demonstrate that networks
competing in two-part tariffs with discriminating call prices will negotiate
a very low (below marginal cost) access charge in order to soften competi-
tion. They also conclude that the widespread “bill and keep” arrangements,
corresponding to a zero access charge, may be undesirable from the con-
sumers’ perspective. As Cherdron (2000) notes, however, their result, pre-

4 A summary of the results of LRTa and LRTb is given in Laffont, Rey, and
Tirole (1997).
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dicting off-net prices below on-net prices, is somewhat at odds with what
can be observed in existing mobile networks.

Summarizing the above, while under nonlinear pricing networks are ei-
ther indifferent about the access charge or prefer an access charge below
marginal cost, the work concerned with the linear pricing case unanimously
suggests that networks will negotiate a high access charge to maximize joint
profits. Subsequently, I will show that actually the opposite might be the
outcome of network competition in linear prices, and networks might well
make use of a reciprocal access charge below marginal cost. This result may
look similar to the one of Gans and King (2001), but there is an impor-
tant difference. While their result has been criticized for being out of line
with observed price structures, this does not apply to my findings, at least
in the linear pricing case. Access might be sold at a discount, but off-net
prices still exceed on-net prices in equilibrium. Moreover, there turns out
to be little scope for regulatory intervention against “bill and keep” ar-
rangements. These arrangements might result from collusion, but then they
are also welfare improving compared with cost-based access pricing. How-
ever, for competition in two-part tariffs, the Gans and King (2001) result is
confirmed if receivers’ utility is taken into account. The negotiated access
charge is always below marginal cost, and off-net calls are cheaper than
on-net calls.

2.3 Introducing Call Externalities

All of the papers discussed above share the basic assumption that a call
generates utility only for the caller and not for the receiver. In this paper I
divert from this assumption by introducing call externalities. The obvious
point that a call generates utility also for the receiver has been recognized5,
but nonetheless widely neglected in the literature. Only recently, and in-
dependently from this work, Kim and Lim (2001), and Jeon, Laffont, and
Tirole (2002) have come up with similar models incorporating a call exter-
nality. However, they study a “receiver pays” system, where both the caller
and the receiver of a call are charged. Note that the receiver of a phone
call incurs the opportunity costs of the time the call takes. Hence he must
get some strictly positive utility from a call, otherwise he would not answer
the call. On the other hand it might be argued that at least on average the
utility of the receiver will be smaller than the utility of the caller. Whatever
the “real” average magnitude of receivers’ utility, neglecting it is likely to
introduce a relevant distortion in the analysis of network competition.

First, however, it can be seen that under nondiscriminatory pricing the
analysis of competition remains unchanged6. It is clear that volume demand
is independent of any call externality. Obviously, nondiscriminating prices

5 DeGraba (2000) suggests that the total utility generated by a call is shared
equally between the calling parties. See also the discussion in Hahn (2001).

6 See also the discussion in Schiff (2001).
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also make the subscription decision independent of receivers’ utility. Hence
neither subscription nor volume demand or profits are influenced by the
level of passive utility. This means that the results derived from the stan-
dard model of nondiscriminatory pricing discussed above carry over to the
extension we study here. The only deviation from LRTa’s model arises in
the judgement of welfare implications. Indeed, neglecting the call externality
underestimates social welfare. To implement the social optimum, the price
of a call would have to be below marginal cost.

Volume demand stays of course independent of the call externality also
with termination-based price discrimination, but the subscription decision
is influenced if on-net prices differ from off-net prices. This is because the
utility from receiving calls contributes to the positive network externality
under on-net prices (say) below off-net prices. An increase in a network’s
market share raises the number of calls received by (and hence benefits the)
subscribers of this network. In their subscription decision, consumers com-
pare the net utilities they receive from joining either network. If a network
raises its off-net price, this has two effects. First, the net utility of this net-
work’s customers decreases, and second, since these customers’ demand for
off-net calls falls, also the rival network’s customers suffer, because they less
frequently enjoy the benefit of being called. This second effect lowers cus-
tomers’ incentives to switch to the rival network. As the access charge, the
call externality is reflected in equilibrium prices, which determine profits.
Indeed, if the utility of receiving calls is sufficiently high, the second ef-
fect explained above becomes so strong that networks will prefer an access
discount in order to keep the resulting off-net prices below the monopoly
price.

This analysis rests on the assumption that profits are directly deter-
mined only by prices. Note, however, that in the case of two-part tariffs
profits also depend on the fixed charge. As mentioned above, this has a
deep impact on the nature of competition. The case of termination-based
price discrimination with two-part tariffs is analyzed in chapter 5.2 of Jeon,
Laffont, and Tirole (2002). Although their work is devoted to the receiver
pays system, they include a short study of their model in the absence of
reception charge, which of course coincides with a caller pays system. Inter-
estingly, they show that if receivers’ utility is high enough (equal to callers’
utility), then for any given level of the access charge, the price for off-net
calls in a symmetric equilibrium becomes infinite, resulting in connectivity
breakdown. The intuition for this is the following. Any off-net call made
generates utility for the caller and the receiver. However, since only the
caller pays for the call, if receivers’ utility is high, net surplus is higher for
the receiver than for the caller. This means that while raising the off-net
price may decrease the direct profit from off-net calls, at the same time it
makes the own network more attractive, resulting in an increase in market
share. The total effect on profit becomes positive, if receivers’ utility is high.
Furthermore, if receivers’ utility is high enough, the total effect on profit is
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positive regardless of the level of the off-net price. This, of course, means
that the only equilibrium has an infinite off-net price.

We conclude that the introduction of call externalities has a strong im-
pact on the outcome of competition in the case of termination-based price
discrimination. This is the case I study for the remainder of this paper.

3 The Model

In this section I introduce the model. It is based on the model of LRTb,
but for simplicity I neglect fixed costs (which does not change the results
qualitatively). On the other hand, I extend the model by adding the call
externality.

3.1 Cost and Price Structure

Imagine a market with two networks labeled 1 and 2. Both networks have
full coverage. The marginal cost of originating or terminating a call is c0 > 0,
and the total marginal cost of a call is c = 2c0 + c1, where c1 ≥ 0 is the
marginal cost of transmitting a call from the originating to the terminating
end. The reciprocal unit access charge is a ≥ −(c0 + c1)7. Networks either
compete in linear prices pii (for on-net calls within network i) and pij (for
off-net calls originating in network i and terminating in network j), or, in
the case of two-part tariffs, also in the fixed charge Fi.

3.2 Subscription Decision and Demand

On the demand side there is a large number of consumers. A consumer can
be member of at most one network. From the consumers’ point of view the
networks are horizontally differentiated as in Hotelling’s model. The net-
works are located at the extreme points of the unit interval [0, 1], and each
consumer is located at some address x ∈ [0, 1]. The total number of con-
sumers, normalized to 1, is distributed uniformly on this interval. The degree
of horizontal differentiation is measured by a parameter t corresponding to
the “transport costs”. A consumer located at x faces a disutility of t|x−xi|
if he subscribes to network i, where x1 = 0 and x2 = 1 are the locations of
the two networks.

Consumers have homogeneous preferences for calls to other consumers.
Calls to different consumers constitute independent goods and total utility
is additively separable. The utility from an active call of length q is given by

7 A negative access charge corresponds to subsidising termination. The subsidy
cannot be larger than the costs of originating and transmitting a call, however,
since otherwise a network could make profits by installing a computer which per-
manently calls into the rival network.
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u(q), where u′ > 0 and u′′ < 0.8 Consumers also get utility from receiving
calls. We denote the utility of receiving a call (passive utility) of length q by
a strictly increasing and strictly concave function ū(q).

A consumer with income y, subscribed to network i and located at x,
making a call of length qout to some other consumer and receiving a call of
length qin from some consumer9, enjoys a total utility of

ν0 + y + u(qout) + ū(qin)− t|x− xi|,

where ν0 is some fixed surplus from being connected, large enough to guar-
antee full participation, i.e. to prevent consumers from not subscribing in
equilibrium.

The timing is as follows. First, networks cooperatively choose a recipro-
cal access charge, then they (noncooperatively) set on- and off-net prices,
and the fixed charge, in case of two-part tariffs. Consumers choose a net-
work to subscribe to and then they choose the length of their on- and off-net
calls.

Let q(p) = argmaxq{u(q) − pq} be the consumer’s demand, writing qij

short for the demand for on- and off-net calls q(pij). Denoting by ν(p) =
maxq{u(q)− pq} net surplus, under price discrimination with given market
shares α1 and α2, network i offers its subscribers a total net surplus of10

wi = αi[ν(pii) + ū(qii)] + αj [ν(pij) + ū(qji)]− Fi.

Letting hij = ν(pij) + ū(qji), we may write

wi = αihii + αjhij − Fi. (1)

4 Existence and Stability of Equilibria

4.1 Existence of Consumer Equilibria

For fixed prices, a consumer equilibrium is given if the market shares are
such that no consumer has an incentive to unilaterally switch to the other
network. If the market is cornered, i.e. if αi = 1 for some i, then even the
consumer with the weakest preferences for network i (the consumer located
at xj) chooses to subscribe to this network. On the other hand, if there is a
shared market equilibrium with 0 < αi < 1, then the consumer located at
x = α1 is indifferent between the networks. The market share α1 = α (and

8 For technical reasons I assume additionally that the Inada conditions u′(0) =
∞ and u′(∞) = 0 are fulfilled, guaranteeing strictly positive and finite demand
for all positive prices.

9 One could imagine that each consumer makes exactly one call to each other
consumer, and only the length of a call is variable.
10 Throughout this article let j = 3 − i, if it appears on only one side of an
equation.
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α2 = 1−α) in a shared market equilibrium can thus be calculated from the
indifference condition

w1 − tα = w2 − t(1− α),

and reads

α =
1
2

+ σ(w1 − w2),

where σ = 1/2t measures the substitutability between the two networks.
Inserting from (1), setting α = α1 = 1− α2 and solving for α yields

α =
H1

H1 + H2
, (2)

with Hi = 1/2 + σ(hij − hjj + Fj −Fi). For a shared market equilibrium to
exist, H1 and H2 must have the same sign: H1H2 > 0.

4.2 Stability of Consumer Equilibria

In general, there may be multiple consumer equilibria for given prices. How-
ever, some of these can usually be eliminated by pointing out that an eco-
nomically meaningful equilibrium has to be stable with respect to an appro-
priate adjustment dynamic. Following the analysis in LRTb, we conclude
that generically there are either three consumer equilibria (the two cornered
market outcomes and an unstable shared market equilibrium), if both H1

and H2 are negative, or a unique, stable consumer equilibrium, which is a
cornered market one if H1H2 < 0, and a shared market equilibrium if H1

and H2 are positive.

4.3 Network Equilibrium

Imagine prices and the fixed charge are fixed and a corresponding stable
consumer equilibrium has been realized. If in this situation neither network
can gain by unilaterally changing its prices or fixed charge (taking into
account the dependence of consumer equilibria on these values), then these
values constitute what we call a network equilibrium. For the remainder of
this paper I concentrate on symmetric network equilibria.

5 Part I: Linear Pricing

First we examine the case of linear pricing, which means that networks are
not allowed to use a fixed charge. So in this section let F1 = F2 ≡ 0.
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5.1 Necessary Conditions for Symmetric Network Equilibria

Turning to the networks’ pricing decisions, we first derive the profit func-
tions. For given prices and a corresponding stable consumer equilibrium α,
profit of network 1 is given by

π1 = α2(p11 − c)q11 + α(1− α)(p12 − c)q12 + (a− c0)(q21 − q12),

and an analogous equation holds for π2. If we write

Mij = [pij − c(1 + m)]qij + mcqji

for the unit profit of network i (the profit a single customer of network
i generates with one active call to and one passive call from network j),
denoting by m = (a− c0)/c > −1 the (relative) markup on access, profit of
network i can also be written in the form

π1 = α2M11 + α(1− α)M12.

Taking into account that Mii depends only on pii, the first order condi-
tions for a shared market equilibrium are given by

∂π1

∂p11
= 2α

∂α

∂p11
M11 + α2 ∂M11

∂p11
+

∂α

∂p11
(1− 2α)M12 = 0,

∂π1

∂p12
= 2α

∂α

∂p12
M11 + α(1− α)

∂M12

∂p12
+

∂α

∂p12
(1− 2α)M12 = 0,

and the respective equations for network 2.
Looking for a symmetric shared market equilibrium, where p11 = p22,

p12 = p21, and α = 1/2, the first order conditions for network 1 read

∂α

∂p11
M11 +

1
4

∂M11

∂p11
= 0,

∂α

∂p12
M11 +

1
4

∂M12

∂p12
= 0.

Inserting from (2), rearranging terms, and with a little abuse of notation
treating ū(qij) as an indirect utility function ū(q(pij)) of pij , we get

∂M12

∂p12
=

∂M11

∂p11

(ν′ − ū′)(p12)
(ν′ + ū′)(p11)

, (3)

∂M11

∂p11
= −σM11

(ν′ + ū′)(p11)
H1

. (4)

What can we infer from these equations about the prices in a stable
shared market equilibrium? First, note that M11, the simple unit profit
(p11− c)q11, is positive for p11 > c, and upward sloping for p11 < pM , where
pM denotes the monopoly price (for marginal cost c)

pM = argmaxp{(p− c)q(p)}.
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We also know that ν′ + ū′ < 0 and that H1 must be positive for the shared
market equilibrium to be stable. From (4) then follows that the unit profit
M11(p11) has the same sign as its derivative. Hence, necessarily, c < p11 <
pM . In this sense the equilibrium on-net price is “well-behaved”. This need
not be the case for the off-net price. As equation (3) suggests, the sign of
∂M12/∂p12 depends on the sign of ν′ − ū′, which may well be positive if
marginal passive utility is high.

5.2 Constant Elasticity of Demand

To be a bit more specific, I use the explicit utility function

u(q) =
q1−1/η

1− 1/η
, η > 1,

from LRTb, which yields the constant elasticity demand function11 q(p) =
p−η, indirect utility u(q(p)) = η

η−1p1−η, net surplus ν(p) = 1
η−1p1−η, and a

monopoly price of pM = ηc
η−1 .

Furthermore, I assume that the utility from passive calls is a fixed frac-
tion β of the utility from active calls,

ū(q) = βu(q), with 0 ≤ β < 1.

With these specifications, the first order conditions for network 1 can be
expressed by the following two equations.

p−1
12 =

1
1 + m

(
1

pM

2βη

1 + βη
+

1− βη

1 + βη
p−1
11

)
, (5)

p−1
12 =

[
pM

η(pM − p11)p
η−1
11

− η − 1
2σ(1 + βη)

] 1
η−1

. (6)

I have intentionally written these equations so as to describe the recip-
rocal value of the off-net price as a function of the reciprocal value of the
on-net price. This allows me to draw the graphs of the two functions, as is
done in Figure 1, and find all symmetric candidate equilibria as points of
intersection of the corresponding curves.

Let us first have a closer look at (5). The right hand side of this equation
is an affine linear function of p−1

11 , which depends on the parameters m, η,
and β, but not on σ. Its slope decreases with β, falling from (1 + m)−1 for
β = 0 to zero for β = 1/η and approaching −(1 + m)−1 for β →∞. At the
monopoly price p11 = pM , we have

p−1
12 =

1
1 + m

2βη + 1− βη

(1 + βη)pM
=

1
(1 + m)pM

,

11 This is useful for deriving the quantitative results presented later on. However,
by continuity these results continue to hold qualitatively, if we depart from the
CED assumption.



Two-Way Interconnection 13

1/pM

[(1+m)pM]-1

1/pM

1/p12

1/p111/c

Fig. 1 The line given by (5) and the curve given by (6). Here, βη < 1 and m > 0.

which is independent of β. Graphically this means that by increasing the
relative importance of passive utility, the line in the p−1

11 - p−1
12 -plane given

by (5) is rotated clockwisely around the point
(

1
pM , 1

(1+m)pM

)
. Note that

without passive utility (i.e. for β = 0) equation (5) reduces to

p12 = (1 + m)p11,

the proportionality rule from LRTb. For βη = 1, we get ν′(p) ≡ ū′(q(p)),
that is, marginal net surplus of a network’s own customers equals marginal
passive utility of the rival’s customers for any level of the off-net price. In
this case varying the off-net price has no influence on the market shares,
since the positive and the negative effect exactly cancel out. Then it is
clearly optimal for the network to set the off-net price to its monopoly level,
p12 = (1 + m)pM . This is reflected by the line (5) becoming a horizontal at
this value for βη = 1.

Turning to (6), we can see that this equation does not involve a, the
access charge. For η > 2, the right hand side of (6) is defined only if the
expression in square brackets is nonnegative. The second term of this ex-
pression is a negative constant, it does not depend on p11. The first term is
positive for p11 < pM and – viewed as a function of p−1

11 – downward sloping
from its vertical asymptote {p11 = pM} to its minimum at p11 = c. For
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p−1
11 > c−1 the function given by (6) is strictly increasing and unbounded,

its slope converging to η−1/(η−1) for p−1
11 → ∞. Furthermore, this function

is convex at least for values of p11 slightly below pM . The second term in
square brackets shifts the curve up (for σ →∞) or down (for σ → 0).

As noted, (6) has a negative slope in the relevant region c < p11 < pM .
Hence there exists at most one point of intersection with (5) in this region,
if the slope of this line is nonnegative, i.e. if βη ≤ 1. If β exceeds 1/η, the
slope of (5) is negative, and there may exist two points of intersection).
However, the second point will be outside the relevant region if σ is small.

5.3 Second Order Conditions

The next proposition establishes the existence of a unique, stable, symmetric
equilibrium for low substitutability.

Proposition 1 If σ is small enough, there exists a unique, stable, symmet-
ric equilibrium. Its price constellation is given by the intersection of (5) and
the downward sloping part of (6).

Proof Consider the case σ = 0. Then the networks are monopolies and the
prices are at their respective monopoly levels. Graphically, (6) degenerates
to a vertical line at p11 = pM , intersecting (5) in p12 = (1 + m)pM . This
symmetric candidate equilibrium is thus unique and stable (since Hi =
1/2 > 0). Moreover, the market shares are constant for σ = 0. Hence, given
the candidate equilibrium values of p22 and p21, network 1’s profit is

π1(p11, p12) =
1
4
[(p11 − c)q11 + (p12 − c(1 + m))q12 + mcq21].

This function is quasi-concave in (p11, p12), hence (pM , (1 + m)pM ) is its
unique maximum. For positive values of σ the slope of (6) becomes fi-
nite, this means that the candidate equilibrium on-net price falls below
the monopoly price. The candidate equilibrium remains unique for small
values of σ, and by continuity of Hi in σ it remains stable. Also, by con-
tinuity of the market share in prices and in σ, network 1’s profit function
remains quasi-concave. Hence the second order conditions are fulfilled for
low substitutability. ut

This proof is similar to the proof of Proposition 1 in LRTb. The result
is slightly different, however, in the sense that the call externality prevents
the existence of equilibrium in the case of high substitutability, even for
a = c0. For example, if a = c0 (i.e. m = 0) and t = 0 (i.e. σ = ∞), the curve
given by (6) admits its minimum at p11 = p12 = c. For any positive value
of β, however, (5) yields p12 > c at p11 = c, and hence there is no point of
intersection in the relevant region for large enough values of σ.



Two-Way Interconnection 15

5.4 Equilibrium Analysis

From now on I concentrate on the case where substitutability is low enough
to guarantee existence of a unique stable equilibrium. We then ask, in which
way the equilibrium depends on the various parameters of the model.

5.4.1 Comparative Statics The next lemma shows that while the on-net
price always decreases with the substitutability parameter σ, the direction of
movement of the off-net price depends on the strength of the call externality
and on the elasticity of demand. On the other hand, an increase in the access
charge always lowers the on-net price and raises the off-net price.

Lemma 1 For σ > 0 and β ≥ 0, the symmetric equilibrium prices given by
(5) and (6) are such that
(i) The on-net price decreases with σ and the off-net price decreases with σ
if βη < 1, increases with σ if βη > 1, and is constant at p12 = (1 + m)pM

if βη = 1.
(ii) The on-net price decreases in a, while the off-net price increases in a.

Proof An increase in σ shifts the graph of (6) upwards and does not influence
the graph of (5). The point of intersection thus moves to the right, i.e. p−1

11

increases. The vertical direction of movement depends on the slope of (5).
If βη < 1 (this includes the LRTb case β = 0), the slope is positive, so also
p−1
12 increases. If βη > 1 the slope is negative and the intersection point

moves down, and if βη = 1 the line is horizontal at p−1
12 = [(1 + m)pM ]−1.

Increasing a or, equivalently, m, shifts the line (5) downwards. Since (6)
slopes downward in the relevant region, the point of intersection moves
down and to the right. This means p11 falls and p12 rises. ut

In contrast to the result in LRTb, more substitutability exerts upward
pressure on the off-net price, if β is large enough. Intuitively, if the call
externality-induced negative effect of an increasing off-net price on the ri-
val’s customers is large, higher substitutability creates incentives for the
networks to exploit this effect and raise the off-net price while lowering the
on-net price to compensate their own customers.

Remark Part (ii) of the lemma appears to contradict the corresponding
result of LRTb, since the case of no call externality is not excluded. LRTb
(p. 48) state that the off-net price may decrease in a if σ is not small enough.
In their proof they give a numerical example for this phenomenon. However,
the values they provide (η = 2 and σ = c = m = 1) lead to the candidate
equilibrium prices p11 = 1 = c and p12 = 2. A small increase in a then
does indeed decrease the off-net price, but simultaneously the on-net price
falls below marginal cost and, as noted above, in this region any candidate
equilibrium is unstable and will therefore never be realized. In the region
c < p11 < pM , where the consumer equilibrium is stable, (6) is strictly de-
creasing and hence the off-net price inevitably rises with the access charge.
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Fig. 2 If βη > 1, connectivity breakdown may occur for a high access charge.

5.4.2 Connectivity Breakdown For small σ > 0 the curve (6) cuts the
1/p11-axis, and the smaller σ, the closer the intersection point lies to p11 =
pM . If βη > 1, the slope of the line (5) is negative. Hence, by increasing
m we can shift the line down until it intersects the curve exactly at the
1/p11-axis (see Figure 2). Thus we have an equilibrium with 1/p12 = 0, or
p12 = ∞. This proves the following lemma.

Lemma 2 For small σ > 0 and βη > 1 there exists ā, such that for a → ā
from below, p12 →∞. The threshold ā approaches infinity, if σ goes to 0 or
βη falls to 1.

This is the case of connectivity breakdown, which has already been ob-
served by Jeon, Laffont, and Tirole (2002) for the case of two-part tariffs.
The intuition is the same as in their case. If βη > 1, then any off-net call
benefits the receiver more than the caller. Raising the off-net price makes
the difference in net surplus smaller and hence increases the network’s mar-
ket share. If a is large enough, then this increase in market share more than
offsets the corresponding loss in direct profit from off-net calls for all levels
of the off-net price. Hence it is optimal for the network to deter any off-net
call by raising its price to infinity.
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5.5 The Collusive Role of the Access Charge

Part (ii) of Lemma 1 states that varying the access charge results in the
equilibrium prices moving in opposite directions. We know that the equilib-
rium on-net price is always below the monopoly price. If this is also the case
for the off-net price, the impact on profits of varying the access charge is
ambiguous. If, however, the off-net price is above the monopoly price, both
prices will move towards the monopoly price (and hence raise profits) only
if the access charge is lowered. Imagine βη > 1. This is not an unrealistic
case, since η > 1 and β may well be only slightly below 1. The slope of (5)
is then negative, and for σ > 0 we have p12 > (1 + m)pM in equilibrium.12

Now let the access charge equal marginal termination cost, so m = 0. Then
the off-net price exceeds the monopoly price, and we have the situation de-
scribed above. In order to maximize equilibrium profits, both networks will
negotiate an access charge a below c0.

If βη = 1, the equilibrium off-net price is (1+m)pM , independently of σ.
For a = c0 then p12 is at the monopoly level, while p11 is below pM . Starting
from these values, a small decrease in a raises p11 towards the monopoly
price and thereby has a positive first-order effect on profits from on-net
calls, but only a second-order (negative) effect on profits from off-net calls.
In sum, profits rise. By continuity this continues to hold if βη is not too far
below 1. This shows that networks may prefer an access discount even for
βη < 1. For very low values of β, of course, this need not be the case.

Graphically, this can easily be seen if we keep in mind that since (6) is
independent from the access charge, networks can only shift the line (5) up
or down by varying the access charge. Thereby they can select any point on
(6), subject to the restriction m > −1. Maximizing profits, they will choose
the point where their isoprofit curve is tangent to (6). The point of tangency
is unique, at least if σ is not too large, since (6) is convex in the vicinity of
p11 = pM and the equilibrium profit function is quasi-concave in equilibrium
prices (the upper-contour sets of the isoprofit curves are convex), peaking
at the “monopoly point” (1/pM , 1/pM ). It follows immediately that the
tangency point will lie northeast from the monopoly point, as illustrated
in Figure 3. This means that with the negotiated profit-maximizing access
charge, both on- and off-net prices are smaller than the monopoly price. If
the slope of (5) is negative or only slightly positive, of course, this implies
that this line intersects {p11 = pM} above the monopoly point. Hence [(1+
m)pM ]−1 > (pM )−1, or m < 0. This analysis proves the first part of the
next proposition.

Proposition 2 Fix σ > 0 small enough. There exists 0 < k < 1 such that if
βη > k, networks will agree on an access discount, if βη < k, networks will
negotiate an access markup, and if βη = k, networks will agree on a = c0.

12 For σ = 0 the market consist of two separate monopolies and the optimality
of pii = pij = pM implies that networks will prefer m = 0 (a = c0).
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1/p12

1/p111/c

1/c

(1+β)/c

(1+β)/c

isoprofit
isowelfare

Fig. 3 Tangency points between (6) and the isoprofit respectively isowelfare
curves. For small σ, the welfare maximizing choice of a is below the profit maxi-
mizing one, which in turn is below c0 if β is not too small.

Remark The case β = 0 is the case without passive utility, and I could in
principle just refer to Proposition 2 of LRTb. In this proposition they state
that for small σ > 0 (and for β = 0) the profit maximizing access charge
exceeds c0. While this statement turns out to be true, unfortunately their
proof is flawed13, so I give the correct proof here.

Proof It suffices to show that networks will negotiate a markup on access if
β = 0. Given the analysis in the last paragraph, the second and third part of
this proposition then follow immediately from continuity of the negotiated
access charge in βη and from the intermediate value theorem, respectively.
Note, that for a = c0 and β = 0, the line (5) is the diagonal {p12 = p11}. By
symmetry of the equilibrium profit function in p11 and p12, the slope of the
isoprofit curves is equal to −1 all along the diagonal. The slope of (6) at the
13 In their proof, LRTb (p. 49) argue that for small σ > 0 their Lemma 2 shows
that both on-net and off-net prices increase with the access charge. From this they
infer that starting from a = c0, a small increase in the access charge raises both
prices toward the monopoly level and therefore leads to higher profits. However,
actually their Lemma 2 (correctly) states that for small σ > 0 the on-net price
decreases in a. Hence it is not obvious that an increase in a does indeed raise
profits.
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intersection with the diagonal, on the other hand, converges to −∞ as the
point of intersection approaches the monopoly point, i.e. if σ → 0. Thus, for
small σ the point of tangency is below the diagonal (see Figure 3), where
p11 < p12, and by the proportionality rule (recall that we are considering
β = 0 here), m > 0, i.e. a markup on access, is a necessary condition for
this. ut

Note that the last sentence of this proof also establishes that for small σ,
the profit maximizing point of tangency lies below the diagonal. Since net-
works will choose the access charge to let this point become an equilibrium,
we obtain the following corollary:

Corollary 1 If σ is positive but small and networks may cooperatively de-
termine the access charge, then the resulting equilibrium prices will show a
markup on off-net calls.

5.6 Welfare and the Socially Optimal Access Charge

From the social viewpoint, the optimal access charge is the access charge
that maximizes welfare, the sum of profits and consumer surplus, in equi-
librium:

W (p11, p12) =
1
2
[(1 + β)u(q11)− cq11 + (1 + β)u(q12)− cq12]. (7)

The unconstrained welfare maximizing choice of prices would yield prices
strictly below marginal cost for β > 0. This is due to the call externality,
which is not internalized by the calling party when choosing volume demand.
To maximize welfare, the caller must be induced to extend the length (or
frequency) of his calls up to the point where marginal total utility created
equals marginal cost. This means (1 + β)u′(qij) = c and is induced by a
price of pij = (1 + β)−1c. Of course these prices cannot be sustained in an
equilibrium, since then profits are negative.

Assume a benevolent regulator can set an arbitrary access charge subject
to the technical constraint a > −c0 − c1. By symmetry, the iso-welfare
curves surrounding the unconstrained optimum have a slope of −1 along
the diagonal {p11 = p12}. Since the slope of (6) at the intersection with the
diagonal is smaller than −1 for small σ, we can conclude that for small σ the
point of tangency of (6) and the iso-welfare curves lies above the diagonal,
and therefore also above the profit maximizing point on (6), as shown in
Figure 3. This means that the welfare maximizing access charge is below
marginal cost and also below the profit-maximizing access charge. Moreover,
I can show that the welfare maximizing access charge might actually fall
below zero. It follows from the additively separable form of (7) that the
iso-welfare curves have vertical tangents at p12 = c(1 + β)−1. Since (6) is
a vertical line at p11 = pM for σ = 0, the point of tangency approaches
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(1/pM , (1 + β)/c) as σ → 0. Denoting the socially optimal access charge by
aw, this implies that (1 + aw−c0

c )pM converges to c
1+β , or

aw → c0

(
1− c

c0

1 + βη

η + βη

)
.

It can be seen that the sign of aw depends on the relative size of β and η.
Note that c ≥ 2c0 and for β = 1 the second factor in brackets is 1+η

2η > 1
2 .

Thus the expression in brackets is negative, and so is aw. Similarly, if η ≤ 2,
then the second factor in brackets exceeds 1/2 for any positive β, and again
aw < 0. The profit maximizing access charge aπ, on the other hand, is
always positive for small σ > 0. We summarize this as follows.

Proposition 3
(i) aw < c0 for small σ.
(ii) If c

c0

1+βη
η+βη > 1, then aw < 0 < aπ for small σ. This includes the cases

β = 1 or η ≤ 2.
(iii) If c

c0

1+βη
η+βη < 1, then 0 < aw < aπ for small σ.

The more realistic of the cases (ii) and (iii) of this proposition seems to
be (ii), since it follows from η < 2. Note that in this case networks may ac-
tually agree on a “bill and keep” arrangement, which sets a = 0. This might
result from the consideration that in existing mobile phone networks, “bill
and keep” helps to save transaction costs of interconnection, a point not
included in my model. If transaction costs are substantial and were taken
into account, “bill and keep” might indeed turn out to be profit maximiz-
ing. Note, however, that contrary to the view of Gans and King (2001),
from Proposition 3(ii) it follows that “bill and keep” is welfare improving
compared with cost-based access pricing.

In our model a higher level of substitutability may even lead to a perfect
alignment of networks’ and the regulator’s objectives. If the slope of (6) at
the intersection point with the diagonal equals −1, then, provided equilib-
rium still exists, this point maximizes profits and welfare simultaneously,
and the corresponding access charges coincide. For even larger values of σ,
the order of these access charges will be reversed.

6 Part II: Nonlinear Pricing

In this section we examine the collusive role of the access charge under
nonlinear pricing, which here means competition in two-part tariffs. The
profit equation for network 1 becomes

π1 = α2(p11 − c)q11 + α(1− α)(p12 − c)q12 + (a− c0)(q21 − q12) + αF1.

As usual when competing in two-part tariffs, networks set prices so as to
maximize social welfare, and then extract consumer surplus via the fixed
charge. For the on-net price, the call externality is fully internalized by the
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network’s pricing decision, while when setting the off-net price networks
take into account the call externality induced negative impact on its market
share of a low off-net price. This leads to prohibitively high off-net prices if
β is large. Indeed, Jeon, Laffont, and Tirole (2002) derive the equilibrium
prices14

p11 = c/(1 + β), p12 = (1 + m)c/(1− β). (8)

Hence, as β → 1, the off-net price goes to +∞, resulting in connectivity
breakdown.

6.1 Profit Maximizing Access Charge

In a symmetric equilibrium, differentiating profit with respect to the fixed
charge yields

∂π1

∂F1
=

∂α1

∂F1
[(p11 − c)q11 + F1] +

1
2
.

Using equation (2), where H1 +H2 does not depend on F1, we can solve for
the profit maximizing fixed charge and find

F1 = 1/(2σ)− (ν11 − ν12)− (ū11 − ū12)− (p11 − c)q11.

Inserting the equilibrium values of prices and the fixed charge into the profit
equation and solving for the profit maximizing access charge, we finally get

mπ = − 1 + 3ηβ

1 + 2ηβ + η
,

which for 0 < β < 1 implies aπ < c0. Hence, under two-part tariffs, networks
will invariably negotiate an access charge below marginal cost. This collusive
access charge is the smaller, the larger β is. mπ goes to −1 for β → 1
and approaches −1/(1 + η) for β → 015. The resulting off-net price p12 =

c
1+2β+1/η is always below the on-net price. Note, that while the off-net price
for any given access charge goes to infinity when passive utility gets closer
and closer to active utility, this is not the case for the off-net price resulting
from the collusive choice of the access charge (both the nominator and the
denominator go to zero in the second equation in (8)). The intuition for this
is of course that connectivity breakdown cannot be optimal for networks
that are maximizing joint profits.

14 They also show that a stable symmetric equilibrium exists, if σ is small and
a is not too far from c0.
15 For β = 0 we get the result of Gans and King (2001). They do not use a
CED function and only state that the collusive access charge is given implicitly
by q((1 + mπ)c) = mπcq′((1 + mπ)c). With our CED function q(p) = p−η this is
equivalent to mπ = −1/(1 + η).
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6.2 Welfare Maximizing Access Charge

The socially optimal access charge aw would be the one giving rise to an
off-net price of p12 = c/(1 + β). This is achieved by the (negative) markup
mw = −2β/(1 + β), equivalent to

aw = − 2βc

1 + β
+ c0. (9)

It can be seen that the socially optimal access charge is below marginal cost,
but always greater than the profit maximizing access charge. We summarize
our findings in the following proposition.

Proposition 4 If networks compete in two-part tariffs, then −c0 − c1 <
aπ < aw < c0.

This shows that with two-part tariffs, setting the access charge at marginal
cost can never be optimal from the social viewpoint. On the contrary, from
the social viewpoint, “bill and keep” may not only be an improvement over
cost-based access pricing, but even optimal. (From (9), β = c0

3c0+2c1
implies

aw = 0.)

7 Conclusion

I have argued that taking into account the utility of receiving calls has a
strong impact on the outcome of competition between equals in the case of
termination-based price discrimination. In that case, if networks are not too
substitutable, I have shown that for sufficiently great levels of receivers’ util-
ity, collusion over the access charge will result in access sold at a discount,
even in the linear pricing case. For the case of two-part tariffs, we derived
qualitatively the same results as Gans and King (2001) do, including the
anomaly of off-net prices below on-net prices. However, with linear pricing,
on-net prices stay below off-net prices in equilibrium, and the socially opti-
mal access charge may favor a “bill and keep” arrangement. In this light, re-
cently raised concerns about networks using high access charges as collusion
device appear unconvincing at least in the presence of termination-based
price discrimination.

It might be argued that the linear pricing case is of less relevance here,
because existing mobile telecommunication networks obviously do make use
of two-part tariffs. The usual arguments put forward in defense of linear
pricing is that the results of the standard literature on nonlinear pricing
resemble that of competition in linear prices as soon as one deviates from
the assumption of customer homogeneity in demand. The conjecture that
this will also be the case for models of two-way interconnection is e.g. found
in LRTa, LRTb, and Armstrong (1998). As mentioned in Section 2.1, Des-
sein (2001) has shown, in a model based on the LRTa model, that this
conjecture is not true if consumers differ only in volume demand, and is
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even reversed if consumers differ in demand for subscription. However, this
does not completely resolve the question of the real-world relevance of linear
pricing, since his model excludes the possibility of termination-based price
discrimination. What catches one’s eye is that Dessein’s (2001) second re-
sult (and the analogous result of Schiff (2002)) of collusive access charges
below cost resembles our main findings. Indeed, the intuition is similar in
spirit. In both cases the main difference to the LRTa model is that positive
network externalities are introduced. In Dessein’s (2001) model a network
that lowers its price induces the market to grow, which through the network
externality benefits not only this network’s customers, but also the rival’s.
Analogously in the present model, lowering the off-net price benefits the
rival’s customers as well as the own customers. Therefore, in both cases,
prices tend to be too high in equilibrium, which in turn induces networks
to agree on a relatively low access charge to compensate these effects. This
seems to indicate that combining the two mechanisms at work by allowing
for customer heterogeneity in the present model would lead to an even lower
cooperative access charge, a point I would like to suggest for future research.
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