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Abstract 
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1. Introduction

A±rmative action remains a contentious subject in the regulation of labor mar-

kets. Policies that give preferential treatment to women or minorities can be

seen as addressing inequities by creating other inequities. For the most part,

economists have tried to evaluate a±rmative action policies by their e®ects on

e±ciency rather than equity, especially productive e±ciency. See for example,

Holzer and Neumark (2000), who argue from an extensive empirical literature

that \a±rmative action o®ers signi¯cant redistribution toward women and mi-

norities, with relatively small e±ciency consequences" (page 559).

At the theoretical level, authors have argued that a±rmative action policies

can enhance e±ciency rather that undermine it. Lundberg and Startz (1983)

and Lundberg (1991) consider a model of statistical discrimination where wages

depend on imperfect signals of ability, and show, among other things, that if

workers with di®erent signalling ability are pooled, there is more incentive to invest

in human capital. Milgrom and Oster (1987) argue that a±rmative action policies

can e±ciently prevent employers from underpromoting women and minorities.

The incentive to underpromote derives from a fear of revealing the worth of their

employees to rival ¯rms, a threat which is higher for the more \invisible" workers,

such as women and minorities.

In this paper I take a di®erent view of both labor markets and a±rmative

action. I consider labor market hierarchies, in which promotion to stage t requires

prior promotion to stage t¡1: I take investments in human capital as exogenous,
and assume that wages at each stage of the hierarchy are immutable. My focus

is entirely on rates of promotion, and how they are a®ected by discrimination of

various types. Examples of such hierarchies might be



² law, where law students are promoted to associates in law ¯rms, associates
are promoted to partner, and some partners eventually become judges;

² corporate life, where there is a well-de¯ned executive hierarchy;

² and academic life where undergraduates are promoted to graduate student,
graduate students are promoted to assistant professor, and assistant profes-

sors are promoted to full professor.

The behavioral premise of the model presented here, which leads to di®erent

promotion rates in hierarchies, is that males are more inclined to take risks than

females. There is considerable evidence that this is so. An excellent summary can

be found in Eckel and Grossman (forthcoming 2003), who report on experiments

that demonstrate, for example, that males and females have di®erent gambling be-

havior. The evidence is also strong from \¯eld studies" (natural experiments such

as observing behavior in placing bets), but less conclusive in \contextual environ-

mental" experiments such as experiments involving insurance choices. One of the

most interesting risk-taking contexts is investment. In a study that used measures

of risk tolerance reported in the Wall Street Journal, and measures of personality

traits developed by psychologists, Stanford and Vallenga (2002) found that males

have much higher risk tolerance than females. Jianakoplos and Bernasek (1998)

came to the same conclusion by observing investment portfolios. Much of the ex-

perimental evidence comes from disciplines other than economics. For example,

psychologists Ginsburg et al (2002) observed children at a zoo in contexts where

the children could choose to engage in a risky activity or not. They concluded

strongly that young boys were much more inclined to put themselves at risk than

young girls.
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I do not wish to leave the impression that this list is exhaustive or even rep-

resentative, but only to argue that it is much easier to ¯nd papers that support

a gender di®erence in risk-taking than to ¯nd papers that reject it. Many schol-

ars have suggested evolutionary arguments for why it might be so. Dekel and

Scotchmer (1999) postulated that males play \winner-take-all" games, and ex-

plored a precise sense in which such games do (or do not) lead to riskier behavior.

The premise in that paper, which is also adopted here, is that such behavior is

genetically coded. The premise that risk-taking is genetic, rather than a rational

response to incentives, or a product of \nurture" rather than \nature," seems

consistent with other genetic evidence, such as the fact that males have higher

variance than females on dimensions such as longevity, size, and vulnerability to

disease.

In this paper, I do not try to explain why males are more risk-taking than

females, but simply explore the consequences for promotion in hierarchies. Agents

are promoted based on signals of ability that can be noisy. The random process

is determined by their genetic coding. This is obviously an extreme and stylized

assumption, but one worth exploring if there is any element of truth to it.

I explore the promotion consequences of three alternative types of performance

standards: equal promotion standards for both genders, standards designed to

promote agents of equal average ability, and standards designed to promote equal

numbers of both genders. The intuition for the consequences of these policies are

explained graphically in the next section, at least with respect to the ¯rst stage of

the hierarchy. Perhaps the most important implication of this discussion is that,

in such a model, \a±rmative action" has no clearly de¯ned meaning. It cannot

be de¯ned without an objective in mind, and the following objectives are pairwise

inconsistent:
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² equal promotion standards

² equal numbers of promotions

² promotion of a pool of agents with equal average ability.

The next section gives a graphical discussion of how the di®erence in risk-

taking matters for promotion. This is followed in Section 3 by a more formal

discussion that extends to an ini¯nite hierarchy. Section 4 explores alternative

interpretations of riak-taking in hierarchies, and in Section 5, I point out some

implications for e±ciency.

2. A Graphical Discussion

Figure 1 shows the distribution of true ability a, denoted G with density g, in each

of two populations, a risk-taking population (males) and a risk-averse population

(females). The density ~g represents the distribution of signals that the risk-taking

population will generate, when their true ability a is confounded by noise. The

signal of a random male will be ¾ = a + u, where a is his true ability, and u is

distributed according to a cumulative distribution function Á with mean zero.

Consider the ¯rst round of a promotion hierarchy. Suppose that the promotion

standard for males is c: That is, every male who generates a signal above c

is promoted. The other promotion standards are for females: The promotion

standard f e will ensure that females are promoted with the same probability as

males, and the promotion standard fa will ensure that the expected ability of

promoted females is the same as that of promoted males: If the promotion policy

is gender blind, then females are also promoted according to the standard c:
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a, σ=a+u 
    f a      f e        c  

g 

g!

Figure 2.1:

The ¯rst thing to notice is the consequence of a gender-blind policy. If males

and females are treated equally in the sense of being promoted according to the

same standard c; then (provided that fewer than half are promoted)

² more males than females are promoted; and

² the females have higher ability on average.

The latter is for two reasons: more men than women are promoted, and some

of them are mistakes.

The gender-blind policy is clearly inhospitable to females at the ¯rst stage,

however reasonable it may seem from a procedural point of view. Consider instead

an \a±rmative action" policy to promote equal numbers of males and females.

Then the promotion standard for females must clearly be lower than for males, in

particular, f e: Even so,

² under an a±rmative action program to promote equal numbers of males and
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females, promoted females will on average have higher ability than promoted

males.

Is this \fair?" An a±rmative action policy aimed at equal numbers is still

inhospitable to females in the sense that, on average, promoted females have

higher ability than promoted males. Their superior ability is due to the fact that,

in promoting males, mistakes are made in both directions. Low-ability males are

promoted, and high-ability males are excluded. Females could reasonably argue

that the system should impose an even lower bar for females, in order to remedy

the discrepancy in average (and marginal) ability.

Consider then an a±rmative action policy aimed at ensuring equal ability of

both promoted groups, instead of equal numbers. Then

² under an a±rmative action goal of promoting females with the same ex-
pected ability as males, fewer males than females will be promoted; and

² the standard for female promotion should be lower than for males, and even
lower than the one than ensures equal numbers.

The much lower promotion standard for females is a bit paradoxical: it ap-

pears to favor females of lower ability than males, but in fact the females have

higher ability on average. A higher standard must be applied to males in order

to compensate for the mistakes.

The graphical discussion only illuminates the ¯rst stage of promotion. At

the second stage, the pools of surviving males and females are di®erent. High-

ability males have been eliminated due to randomness, and low-ability males

remain. How many agents get promoted at the second stage depends again

on the objective. Consider, for example, the gender-blind policy of a common
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standard. At stage two, the males may still have an advantage due to the new

draw of noise that will boost some of them above the bar. However, at stage two,

there is a countervailing e®ect. The boost due to noise must be strong enough

to overcome the higher ability of the remaining females. At some point in the

hierarchy, ability will dominate noise, and males will no longer be promoted in

higher numbers. Fewer and fewer males are promoted, but in yet another switch-

around, at much later stages of the hierarchy, the only males that remain are those

with very high ability who survived their many opportunities to be eliminated.

These issues are considered formally below.

3. The Hierarchy

Let G be a distribution from which each agent's ability, denoted a 2 R; is drawn
independently. Index the agents by i = 1; :::: An agent i generates a signal of

ability ¾it 2 R in period t. If the agent i is female, we assume that ¾it = a
i (the

signal is nonrandom). If the agent i is a male, ¾it = a
i+uit, where the random noise

uit is distributed according to a cumulative distribution function Á with mean zero

and positive variance, and the random draws of noise in di®erent stages of the

hierarchy are independent. The designations \male" and \female" refer to the

riskiness of the signals that are produced. This analysis would obviously apply

to any two groups that di®er in the randomness of their signals. In that sense,

the designations male and female are only illustrative, and can even be reversed

(see below).

Promotion standards are sequences fmtgt=1:::,fftgt=1:::: A male agent i survives
to stage t if ¾id ¸ md for each d · t, and a female agent i survives to stage t if
ai ¸ fd for each d · t: We say that the promotion standards are gender-blind if
there is a sequence fctg such that mt = ft = ct for each t:
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For females, we can assume without loss of generality that the promotion

standards are nondecreasing. If at any point a higher cuto® is followed by a lower

cuto®, that is, ft+1 < ft; then ft+1 can be replaced by ft with no consequence. All

the agents with ability between ft+1 and ft have in any case been eliminated at

stage t. We will thus assume that fftg is nondecreasing. Then a female survives
to stage t if a ¸ ft and does not survive otherwise: Hence the probability that a
random female survives to stage t isZ 1

ft

g(a)da (3.1)

A male with ability a survives to stage t if a+ ud > md for all d · t: Hence the
probability that a random male survives to stage t isZ 1

¡1
g(a)¦td=1(1¡ Á(md ¡ a))da (3.2)

The expected ability of a random female who survives to stage t isZ 1

ft

a
g(a)R1

ft
g(a)da

da =

Z 1

ft

a
g(a)

1¡G(ft)da (3.3)

and the expected ability of a random male who survives to stage t isZ 1

¡1
a

g(a)¦td=1(1¡ Á(md ¡ a))R1
¡1 g(a)¦

t
d=1(1¡ Á(md ¡ a))dada (3.4)

We use the following assumptions, which are assumed throughout.

1. The distribution G is symmetric,1 strictly increasing, has a density g that

is strictly quasiconcave and continuous, and has the real line as support.

2. The distribution Á is symmetric and strictly increasing with zero mean and

support the real line.

1For all x in the support, G(x) = 1¡G(¡x):
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We begin with two lemmas. The intuition for the ¯rst lemma is that the

promoted males include mistakes in both directions. Lower-ability males are

promoted by mistake, and higher-ability males are excluded by mistake. Since

no mistakes are made in promoting females, the only way to ensure that promoted

males have as high ability as females is to promote fewer of them. At the ¯rst

stage, promoting fewer of them will require that females have a lower promotion

standard. At later stages, after males have been eliminated in previous promotion

stages, a lower promotion standard for males can still be consistent with fewer

promotions or higher ability.

Lemma 3.1. Let fmtg ,fftg be the promotion standards. The expected ability of
a random surviving male is lower than the expected ability of a random surviving

female at any stage t at which males have at least as high a probability of survival.

Proof: With a change of variables, y = a¡ ft; the females' expected ability
conditional on survival to t; (3.3), can be written:Z 1

0

(ft + y)
g (ft + y)R1

0
g (ft + y) dy

dy = ft +

Z 1

0

y
g (ft + y)R1

0
g (ft + y) dy

dy (3.5)

For males, with a change of variables y = a¡ft; the expected ability conditional
on survival to t; (3.4), can be written:Z 1

¡1
(ft + y)

g(ft + y)¦td=1(1¡ Á(md ¡ ft ¡ y))R1
¡1 g(ft + y)¦

t
d=1(1¡ Á(md ¡ ft ¡ y))dy

dy

= ft +

Z 1

¡1
y

g(ft + y)¦td=1(1¡ Á(md ¡ ft ¡ y))R1
¡1 g(ft + y)¦

t
d=1(1¡ Á(md ¡ ft ¡ y))dy

dy (3.6)

It holds that (3.5) is greater than (3.6) if the following inequality holds for

y ¸ 0 :
g(ft + y)¦

t
d=1(1¡ Á(md ¡ ft ¡ y))R1

¡1 g(ft + y)¦
t
d=1(1¡ Á(md ¡ ft ¡ y))dy <

g (ft + y)R1
0
g (ft + y) dy
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Since g(ft+y)¦td=1(1¡Á(md¡ft¡y)) · g (ft + y) ; (3.5) is greater than (3.6)
if the denominator of the lefthand side is no smaller than the denominator of the

righthand side. The denominators are the probabilities that a male or female

survives, respectively. ¤
In the next lemma, the ¯rst part re°ects the fact that, regardless of the pro-

motion standards, each male has positive probability of being eliminated at each

stage. Since excluded agents cannot re-enter the pool, only few males will survive

in the long run.

The second part re°ects the fact that, regardless of the promotion standards,

only the males with very high ability will survive many opportunities to be elim-

inated. Thus, in the \long run", it does not matter very much what the pro-

motion standards are, as long as there is a possibility to be eliminated at each

stage. Males that survive will likely have very high ability. In contrast, a female

will survive with probability one if her ability is above the maximum promotion

standard. This means that more females survive in the long run, even without

extraordinary ability.

Lemma 3.2. Let fmtg,fftg be promotion standards that are bounded above and
below. Then

(1) Given " > 0, there exists ~t such that for t > ~t, the probability that a male

survives to stage t is less than "; and

(2) There exists t̂ such that for t > t̂; the expected ability of a surviving male is

larger than the expected ability of a surviving female.

Proof: Let m = inffmtg, ¹m = supfmtg; f = inffftg, ¹f = supfftg:
(1) Let " > 0: Let ~a > 0 satisfy 0 < 1 ¡ G(~a) < "=2 and let ~t satisfy
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Á(a¡m)~t < "=2 for all a · ~a: Then for t ¸ ~t;Z 1

¡1
g(a)¦td=1(1¡ Á(md ¡ a))da

=

Z ~a

¡1
g(a)¦td=1(1¡ Á(md ¡ a))da+

Z 1

~a

g(a)¦td=1(1¡ Á(md ¡ a))da

·
Z ~a

¡1
g(a)Á(a¡m)tda+

Z 1

~a

g(a)¦td=1(1¡ Á(md ¡ a))da
< G(~a)"=2 + (1¡G(~a) < "

(2) Let ¹af be an upper bound on the expected ability (3.3) of surviving females

at each stage:

¹af =

Z 1

¹f

a
g(a)

1¡G( ¹f)da

Let 1 > ± > 0: Let ~a > 0 satis¯y ¡~a ¡m < ~a ¡ ¹m and ¹af

1¡± < ~a: Let â satisfy

~a¡m < â¡ ¹m Let t̂ be such that for t > t̂

¹af

1¡ ± G(~a) Á(~a¡m)
t < (~a¡ ¹af

1¡ ± ) (1¡G(â)) Á(â¡ ¹m)t

and

µ
Á(¡~a¡m)
Á(~a¡ ¹m)

¶t
< ±

To give a lower bound on the expected ability (3.4) of surviving males we will use

the following inequality:

[1¡
µ
Á(¡~a¡m)
Á(~a¡ ¹m)

¶t
] ~a

Z 1

~a

g(a)¦td=1Á(a¡md)da

<

Z 1

~a

ag(a) ¦td=1Á(a¡md) [1¡ ¦
t
d=1Á(¡a¡md)

¦td=1Á(a¡md)
] da

<

Z 1

0

ag(a) [¦td=1Á(a¡md)¡ ¦td=1Á(¡a¡md)] da

=

Z 1

0

ag(a) ¦td=1Á(a¡md)da+

Z 1

0

(¡a)g(a)¦td=1Á(¡a¡md) da

=

Z 1

¡1
ag(a) ¦td=1Á(a¡md) da (3.7)
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Then

¹af

1¡ ±
Z ~a

¡1
g(a)¦td=1Á(a¡md)da <

¹af

1¡ ± G(~a) Á(~a¡m)
t <

(~a¡ ¹af

1¡ ± ) (1¡G(â))Á(â¡ ¹m)t · (~a¡ ¹af

1¡ ± )
Z 1

â

g(a)¦td=1Á(a¡md)da

< (~a¡ ¹af

1¡ ± )
Z 1

~a

g(a)¦td=1Á(a¡md)da

which implies

¹af

1¡ ±
Z 1

¡1
g(a)¦td=1Á(a¡md)da < ~a

Z 1

~a

g(a)¦td=1Á(a¡md)da

Hence, combining with (3.7):

¹af

1¡ ±
Z 1

¡1
g(a)¦td=1Á(a¡md)da < ~a

Z 1

~a

g(a)¦td=1Á(a¡md)da

<
1

(1¡
³
Á(¡~a¡m)
Á(~a¡ ¹m)

´t
)

Z 1

¡1
ag(a)¦td=1Á(a¡md)da

Since 1 < (1¡
³
Á(¡~a¡m)
Á(~a¡ ¹m)

´t
)=(1¡ ±); the result follows:

¹af <
(1¡

³
Á(¡~a¡m)
Á(~a¡ ¹m)

´t
)

1¡ ± ¹af <

Z 1

¡1
a

g(a)¦td=1Á(a¡md)R1
¡1 g(a)¦

t
d=1Á(a¡md)da

da

For t > t̂; female ability (3.3) is less than male ability (3.4). ¤
I use these lemmas to characterize the consequences of gender-blind promotion

standards.

Proposition 3.3. (Gender Blind Promotions) Suppose that the promotion stan-

dards are gender blind and that c1 > EG(a); G(ct) < 1 for all t: Then

(1) At the ¯rst stage, if c1 > EG(a); a random male has a higher probability of
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survival than a random female, and a random surviving female will have higher

expected ability than a random surviving male.

(2) At later stages, t > ~t for some appropriate ~t; the probability that a random

male survives is smaller than the probability a random female survives, but the

expected ability of surviving males is larger than the expected ability of surviving

females.

Proof: (1) At stage 1, the probability (3.2) that a male survives can be

written as follows with a change of variables x = a ¡ c1; and using symmetry of
Á : Z 1

¡1
g(a)(1¡ Á(c1 ¡ a))da =

Z 1

¡1
g(c1 + x)Á(x)dx

=

Z 0

¡1
g(c1 + x)Á(x)dx+

Z 1

0

g(c1 + x)Á(x)dx

=

Z 1

0

g(c1 ¡ x)Á(¡x)dx+
Z 1

0

g(c1 + x)(1¡ Á(¡x))dx

=

Z 1

0

[g(c1 ¡ x)¡ g(c1 + x)Á(¡x)dx+
Z 1

0

g(c1 + x) dx

>

Z 1

c1

g(a) da

The inequality holds because
R1
0
[g(c1¡x)¡ g(c1+x)Á(¡x)dx > 0 due to the

strict quasiconcavity and symmetry of g and c1 > Eg(a): Hence (3.2) is larger

than (3.1) at t = 1: Using Lemma 3.1, the expected ability of a surviving male

is lower than the expected ability of a surviving female.

(2) follows directly from Lemma 3.2 by choosing " > 0 such that (1¡G(f)) > ":
¤
We now turn to alternative policy goals. We ¯rst consider the goal of equal-

izing the probabilities of promotion at each stage, and then consider the goal of

equalizing the average ability of the survivors at each stage.

13



It follows directly from Lemma 3.2(1) that bounded sequences fmtg,fftg can-
not have the property that males and females have the same probability of pro-

motion at all stages. Part (2) of the following proposition points out that it is

impossible to equalize promotion rates with a nondecreasing sequence of promo-

tion standards for males, and in fact, the sequence cannot be bounded below. A

nondecreasing sequence of promotion standards would be the natural interpreta-

tion of a promotion hierarchy. In order to promote equal numbers of males and

females, females must be favored at early stages of the hierarchy, and males must

be favored at later stages of the hierarchy, in terms of the promotion standard.

Proposition 3.4. (Promoting Equal Numbers) Let fmtg,fftg be promotion stan-
dards such that males and females have the same probability of promotion at each

stage t:

(1) If f1;m1 > EG(a), then f1 < m1 (the promotion standard for females is lower

than for males at stage 1).

(2) If the sequence fftg converges to a ¯nite limit, then the sequence fmtg is not
bounded below.

Proof: (1) follows from Proposition 3.3(1), which implies that if m1 = f1;

males have a higher probability of survival than females. Since the probability

of survival is decreasing in m1; the probabilities can only be equal if m1 > f1:

(2) Since fftg converges, the sequence of female survival rates f1¡G(ft)gt=1;:::
also converges, and the sequence of male survival rates fR1¡1 g(a)¦td=1(1¡Á(md¡
a))dagt=1;::: converges to the same limit, say L. Choose an " > 0 such that " < L:
Suppose, contrary to the proposition, that fmtg is bounded below by m: The
,male survival rate at stage t satis¯esZ 1

¡1
g(a)¦td=1(1¡ Á(md ¡ a))da

14



·
Z 1

¡1
g(a)(1¡ Á(m¡ a))tda (3.8)

Choose ~a; â such that â < ~a and

1¡G(~a) < "=3

G(â) < "=3

Choose t̂ such that (1¡ Á(m¡ ~a))t̂ < "=3: Then if t > t̂; the upper bound on the
male survival rate at stage t; (3.8), can be writtenZ â

¡1
g(a)(1¡Á(m¡a))tda+

Z ~a

â

g(a)(1¡Á(m¡a))tda+
Z 1

~a

g(a)(1¡Á(m¡a))tda

<

Z â

¡1
g(a)da+ [G(~a)¡G(â)](1¡ Á(m¡ ~a))t +

Z 1

~a

g(a)da

< "=3 + (1¡ Á(m¡ ~a))t + "=3 < " < L

¤

Proposition 3.5. (Promoting Equal Average Ability) (1) Suppose that the ex-

pected abilities of surviving males and females are the same at stage t under the

promotion standards fmtg,fftg : Then the survival rate of females at stage t

must be greater than that of males. (2) There are no bounded sequences of

promotion standards fmtg,fftg for which promoted males have the same average
ability as promoted females at each t.

Proof: The probability densities of females' and males abilities, conditional

on surviving to stage t, are respectively

g(a)

1¡G(ft) (3.9)
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g(a)¦td=1(1¡ Á(md ¡ a))R1
¡1 g(a)¦

t
d=1(1¡ Á(md ¡ a))da (3.10)

(1) Suppose to the contrary that (3.2) is at least as great as (3.1). Thus

the denominator of (3.10) is at least as great as the denominator of (3.9). Since

¦td=1(1¡Á(md¡a)) < 1 at each t; it follows that the density (3.10) is smaller than
the female density (3.9) at each a 2 (ft;1): The remaining density for males is
on abilities lower than the minimum ability for females, ft: Hence the expected

ability for females is higher than that for males, a contradiction.

(2) Lemma 3.2(2) shows that, for any bounded sequences, the average ability

of surviving males is higher than the average ability of surviving females for late

stages of the hierarchy (large t). ¤

4. Interpretations

Some of these conclusions can be noticed empirically and others cannot. At most

we can observe promotion rules, signals, and proportions promoted, but we cannot

in general observe true abilities.

Of course there is the additional problem of identifying hierarchies that have

adhered to a particular promotion policy despite the legal and political challenges

of the past several decades. It is also hard to identify hierarchies where the

same proportions of women and men have wanted to stay in the pool. Instead,

women and men drop out at di®erent rates for self-motivated reasons such as

child bearing. Nevertheless, I point out two conclusions that would be empirically

consistent with this model if data were available:

1. Under a gender-blind promotion policy, the ratio of surviving females to

surviving males at early stages of the hierarchy should be smaller than in

the original population, but should be larger at later stages of the hierarchy.
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The proportion of females that survive in the limit should exceed their

proportion in the original population.

2. Under an equal-abilities promotion policy, the ratio of surviving females to

surviving males should be increasing with time, and should be greater at

every t than in the original population.

The hypotheses that males generate riskier signals than females, and that the

two groups start from identical distributions of ability, can both be challenged. It

is thus worth commenting on how this model changes under alternative hypothe-

ses.

First, instead of assuming that males and females have the same distribution

of abilities, assume that males have the same mean ability as females, but greater

variance. This is also a \riskiness" hypothesis, but one that characterizes the

populations rather than behavior. The model can be thought of as one in which

males get a single draw of random noise, which persists throughout their working

lives. Or, instead of being independent, the draws of random noise in successive

periods are perfectly correlated.

With independent draws of random noise, a promoted male is always in jeop-

ardy of being excluded by a subsequent draw, and that is why the survival rate of

males is smaller than that of females in the long run. With perfectly correlated

noise, the promoted male has no such fear. Like females, he can only drop out

at a subsequent stage if the promotion standard is raised. As a consequence, the

initial advantage described by Proposition 3.3(1) for gender-blind standards will

persist, and there will always be disproportionately many males in the pool, with

lower average ability than females.

This discrepancy could be remedied with a sequence of standards fftg; fmtg
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that favor females, ft < mt for all t: If the higher signal generated by males is

interpreted as persistent noise, then such a program of a±rmative action would

have the dual bene¯ts of increasing the promotion of women and increasing the

average ability of people who are promoted. However if the higher signal gener-

ated by males is due to the fact that males have higher variance in ability, and

signals accurately re°ect ability, then the policy of a±rmative action would reduce

the average ability of people who are promoted.

The second alternative interpretation reverses the hypothesis about which

group generates risky signals. Again assume that the distributions of abilities

are the same, but instead of assuming that males generate risky signals, assume

that females generate risky signals. An explanation for this reversal might lie in

a variant on the Milgrom and Oster (1987) \invisibility" hypothesis: Neither the

ability of males nor of females is observable, but males generate more evidence

about their true ability than females. Thus when an observer views the signal

at any stage of the hierarchy, interpreted as some type of mean performance, he

believes that he is observing a random variable which is an unbiased estimator

of the mean, but has higher variance for females than males. For reasons that

we will leave aside here, males may generate more evidence in each hierarchical

stage than females. Their abilities may be fully observable, whereas the abilities

of females are observable with noise.

If the hypothesis on riskiness of signals is reversed, then the interpretation of

the above propositions is reversed. Instead of being disfavored at the early stages

of the gender-blind hierarchy and favored in later stages, females are favored in

early stages and disfavored in later stages. In fact, Proposition 3.3(2) can then

be interpreted as the formalization of a 1970's slogan: Women have to be \twice

as good to get half as far."

18



5. E±ciency

The analysis above has been positive and not normative. I have described the

paths of promotions that would follow from various promotion standards. Of

course the motive behind a±rmative action is a normative one, namely, to redress

the apparent inequity of promoting more males than females. We now turn to

whether there is an \e±ciency/equity" tradeo®.

E±ciency is hard to de¯ne in a partial model of a labor market such as this.

In fact, since a±rmative action has many faces, its e±ciency e®ects are hard to

identify in general, as discussed by Holzer and Neumark (2000). I will think of

e±ciency as being served by the promotion of the most able agents.

If the males' signals were so random that the truth was mostly obscured,

it would probably be better to promote only females, for whom the ability is

more observable. This wisdom is particularly compelling if the number of agents

required at the next level of promotion is small relative to the pool, so that

ability is not compromised by promoting enough females to ¯ll the slots. The

main prescription in this regard is given by Proposition 3.5, which points out

that, if equal abilities are desired in the promoted pool, more females than males

must survive at every stage. At early stages of the hierarchy, this should be

accomplished by giving females an a±rmative-action boost (Proposition 3.3(1)),

and at later stages of the hierarchy, equal abilities require that males get an

a±rmative-action boost (Proposition 3.3(2)).

When the initial winnowing process promotes less than half the pool { captured

in the hypothesis that the promotion standard is on the downward sloping part

of the density function { females will initially be disadvantaged under a gender-

blind policy. However their disadvantage will be overcome at later stages. The
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disadvantage is self-rectifying. However, both the early-stage inequities and late-

stage inequities are ine±cient. A better policy would be to increase the promotion

of females at the early stages, e..g, by giving them a lower promotion standard

(\a±rmative action"), and to increase the promotion of males at later stages, also

by tinkering with the promotion standard. This remedy will not be implemented

by promoting equal numbers. With equal numbers, according to Lemma 3.1,

promoted males are less able than promoted females at all stages.
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