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Cournot Competition Yields Spatial Avoiding Competition in Groups

Abstract

This paper characterizes the properties of equilibrium location patterns in an Anderson-
Neven-Pal model and uses these characteristics to comprehensively find the subgame perfect
Nash equilibria, most of which are not yet found in the literature. Since the external compe-
tition effect may be exactly canceled out, or internal competition strictly dominates external
competition, or the internal competition effect is consistent with the external competition
effect, therefore without any externality and prior collusion, a competitive group structure
may form endogenously in equilibrium and firms tend to avoid competition inside each group.
The analyses of an Anderson-Neven-Pal model are instructive in studying the conditions for
a capacity to implement a “Nash combination.”

1 Introduction

Beginning with the original work of Hotelling (1929), spatial competition has been studied for
over seven decades. Compared to other oligopoly models, the analyses of spatial competition not
only present traditional oligopoly characteristics, but also display the equilibrium in a geometric
way; thus, spatial competition models are often instructive so as to study the general rules
about equilibrium competition patterns in a non-cooperative game. Hotelling (1929) analyzes
a location-price non-cooperative game in a linear market with a linear transportation cost and
he claims that both firms agglomerate at the market center in equilibrium. Hotelling’s claim is
termed as “the principle of minimum differentiation,” and ever since then the analyses concerning
locational agglomeration and dispersion have opened up.

Although the original intention in Hotelling (1929) is to try to relax Bertrand competition by
a spatial or physical differentiation in products, d’Aspremont et al. (1979) show that the relaxing
effect in competition is not strong enough when the two firms are too close. Hence, the second
stage of Hotelling’s location-price game is not well defined and the location equilibrium does
not exist. To avoid the problem in Hotelling’s framework, d’Aspremont et al. (1979) propose
to apply a quadratic form of transportation costs and conclude that the two firms locate at
the two ends of a linear market in equilibrium, which is termed as “the principle of maximum
differentiation.”

Instead of a linear market, Salop (1979) considers oligopoly competition in a one-dimensional
bounded market without a boundary, i.e. a circular market. Kats (1995) follows Salop’s settings
and shows that the equal-distance dispersion is a location equilibrium in a location-price game.
Kats attributes non-existence of the equilibrium in pure strategies under a Hotelling model to
the fact that neither firm competes with rivals on both sides of their locations, and thus the
locations of firms tend to agglomerate in a linear market, but disperse when a circular market
is considered.
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In contrast to a location-price game, Hamilton et al. (1989) and Anderson and Neven
(1991) consider a location-quantity (Cournot competition) game in a linear market with spatial
discrimination. Both papers state that the two firms agglomerate at the market center in the
unique equilibrium. Anderson and Neven (1991) not only successfully explain the overlapping of
duopolists’ market shares, but also claim that the equilibrium location pattern is determined by
the instruments in competition: Cournot competition yields a spatial agglomeration. Gupta et
al. (1997) extend Anderson and Neven’s framework to a non-uniform distribution of consumers
and demonstrate that the agglomeration equilibrium is robust under a wide variety of consumer
distributions. Mayer (2000) allows the production cost to vary in different market points and
concludes that the agglomeration of firms is still a common result in a linear market.

In a recent paper, Pal and Sarkar (2002) extend a location-quantity game in a linear market to
cases when multiple plants are owned by each firm. Pal and Sarkar (2002) provide a fascinating
induction to demonstrate that the complex problem in determining the equilibrium locations
of plants for competitive multi-plant firms can be approximated by a simple one whereby each
firm behaves as a multi-plant monopolist in determining the locations of its plants. Pal and
Sarkar (2002) verify that the inter-firm agglomeration equilibrium claimed in Anderson and
Neven (1991) is robust in the multi-plant cases when both firms have an equal number of plants.
When the number of plants owned by each firm is not the same, however, Cournot competition
may give rise to complete spatial dispersion.

To verify the deterministic viewpoint in Anderson and Neven (1991), Pal (1998) proposes a
location-quantity game to a circular market. The oligopoly model with Cournot competition in a
circular market is called an Anderson-Neven-Pal model (or, in short, an A-N-P model) through-
out this paper. Pal (1998) discovers a dispersed location equilibrium and hence he claims that
the market structure (i.e. linear or circular market) is a more crucial factor than the competition
device (i.e. price or quantity). Chamorro-Rivas (2000) further verifies Pal’s dispersed location
equilibrium even when multi-plant cases are considered. Matsushima (2001), however, offers a
counter example to Pal’s dispersed location pattern: When there is an even number of firms in
a circular market engaging in Cournot competition, half of the firms agglomerate at one point
and the rest of the firms agglomerate at the opposite point in equilibrium.

There are several questions which have not yet been answered in the literature. First, does
a deterministic viewpoint exist to exhibit the most significant factor in determining whether the
firms’ locations are agglomerated or dispersed in equilibrium? Second, similar to the question
asked in Pal (1998), does any general conclusion exist regarding the equilibrium location patterns
in a circular Cournot competition? Due to the existence of a counter example in Matsushima
(2001) against the intuition of the dispersed location equilibrium in Pal (1998) that equilibrium
locations tend to minimize the aggregate transportation cost of all firms, the consistent intuition
behind all equilibria in a circular Cournot competition needs to be re-examined.

The purpose of this paper is to show that there are many more symmetric and asymmetric
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equilibrium location patterns missing in the literature, which can be found by applying the
characteristics of location equilibria. It is implied by the findings of equilibrium location patterns
that the true intuition in an Anderson-Neven-Pal model is for each firm to “avoid competition
in groups in equilibrium.” In other words, without any externality and collusion in advance
in a non-cooperative game, various competitive group structures may endogenously form, and
firms tend to avoid competition with the other firms inside the same group in equilibrium.1

The new findings of equilibria not only offer a great diversity of equilibrium location patterns
in spatial competition, but also show that, unfortunately, whether equilibrium locations are
agglomerated or dispersed cannot be systematically categorized by some principal determinants,
such as market structures or competition devices.

Fortunately, this paper further presents a characteristic of an Anderson-Neven-Pal model
whereby, under some conditions, an equilibrium profile with a large number of firms can be char-
acterized by several sub-profiles, each corresponding to a Nash equilibrium with a small number
of firms. These conditions may be applicable in other oligopoly models or non-cooperative games
with a large number of players. Therefore, as with the varieties of equilibrium location patterns
going beyond what many can imagine about, the value of an Anderson-Neven-Pal model in both
the spatial competition and the group interaction topics exceeds our expectations. This value of
the model can be strikingly highlighted only by examining the true intuitions behind the model
itself.

Intuitively, the existence of a group of outside firms inevitably intensifies the competition
faced by each firm inside a group. There are, however, some situations where the firm’s best
response for competition with the other firms inside the same group is not influenced by the
existence of groups of outside firms. For instance, this occurs when the external competition
effect from one outside firm is exactly canceled out by that from another outside firm; or the
internal competition inside the group strictly dominates competition with outside firms; or
the best response for the other inside firms’ choices is consistent with that for the outside firms’
choices. Given that the choices of outside firms match a specific pattern, when the best response
of each firm inside a group for internal competition is not changed by the outside firms’ choices,
the existence of outside firms will not alter the Nash equilibrium status quo of competition inside
the group. Suppose that the outside firms’ best responses for their interior competition are not
altered for the same reasons when the equilibrium locations inside the group is given; then a

1This is in contrast to the analyses of congestion games such as Rosenthal (1973), Milchtaich (1996), Konishi

et al. (1997a), and group formation games in Konishi et al. (1997b) and Hollard (2000), whereby different groups

are separated by different alternatives (i.e. the players in the same group choose the same alternative) and each

player’s action is equivalent to choosing which group he/she joins. In the present paper, each action has no

apparent relationship with the group chosen by the player, and a group structure (which means a partition of the

set of all players) is generated by the equilibrium competition patterns in locations. In other words, each firm

forms a group with the most influential rivals in competition rather than with the other players choosing the same

alternative.
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combination of the equilibrium profile of the inside firms with that of the outside firms will of
course corresponds to a Nash equilibrium profile of all firms of all groups. To the authors’ best
knowledge, this intuitive view is a novel aspect and will be examined henceforth.

The rest of this paper is organized as follows. Section 2 shows the settings of the model.
Section 3 presents the characteristics of a location equilibrium. The analysis of SPNE location
patterns is shown in Section 4. Finally, the conclusions are discussed in Section 5.

2 The Model

Suppose there are N firms engaging in spatial Cournot competition, N ≥ 2, where consumers
are uniformly distributed on a circular market with a perimeter normalized to 1. Denote qi

and xi as the quantity and the location of firm i, respectively, i ∈ {1, . . . , N}. Hence, the
strategy profiles (qi)Ni=1 and (xi)Ni=1 represent the quantity and the location choices of N firms,
respectively.

Following Anderson and Neven (1991) and Pal (1998), each firm’s demand function on each
point x in a circular market is set to be

pi(x) = α − Q(x) = α −
N∑

i=1

qi(x). (1)

It is assumed that all firms have the same production technology and zero production cost.
Following the same notations in Kats (1995) and Pal (1998), the transportation cost of goods
from plant xi to one point x is expressed as t · |x − xi|, i = 1, ..., N , where |x − xi| represents
the shortest distance between xi and x in a circular market. To ensure that each firm serves
the whole market, α > Nt/2 is assumed, and for simplicity t is assumed to be 1. Given the
locations and quantities of all firms, the profit function of firm i in one market point x, where
x ∈ [0, 1), is expressed as

πi(x1, x2, ..., xN , x) = (pi(x) − |x − xi|) qi(x), i,= 1, ..., N. (2)

The equilibrium concept adopted in this paper is that of a subgame perfect Nash equilibrium
(Selten, 1975). The backward induction approach is applied to find the subgame perfect Nash
equilibria of a two-stage non-cooperative game, where all firms choose their locations simulta-
neously in the first stage and then they simultaneously decide their quantities in the second
stage. Assume that any arbitrage among the consumers is infeasible and production costs are
irrelevant to quantities and locations. Hence, the firm’s quantity choices and the competitions
among firms in quantities are strategically independent across different market points. There-
fore, the Cournot equilibrium in the second stage is a composite of the equilibrium quantities
at all market points x ∈ [0, 1). It can be checked that the equilibrium quantities and profits in
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the second stage are

qi(x1, x2, ..., xN , x) =
1

N + 1
(α +

N∑

j=1

|x − xj| − (N + 1)|x − xi|), (3)

πi(x1, x2, ..., xN , x) = qi(x1, x2, ..., xN , x)2, i = 1, ..., N. (4)

In the first stage, given the other firms’ locations, each firm chooses its plant location to
maximize total profit over the circular market which is

Πi(x1, x2, ..., xN ) =
∫ 1

0
πi(x1, x2, ..., xN , x) dx, (5)

s.t. xi ∈ [0, 1), i = 1, ..., N. (6)

To simplify the induction processes of finding the subgame perfect Nash equilibria, it is appro-
priate to analyze the properties characterizing the location equilibria, which are presented in
the next section.

3 Characteristics of a Location Equilibrium

Following the symbolic notations in Osborne and Rubinstein (1994), for any strategy profile
s ≡ (xi)Ni=1 and any i = 1, .., N , denote s−i to be the vector of all firms’ locations except the
location of firm i, i.e. s−i ≡ (x1, ..., xi−1, xi+1, ..., xN ). One can also denote (s−i, xi) to represent
the profile (xi)Ni=1. Furthermore, the locations of a subset of all firms with nl firms, where
1 ≤ nl ≤ N , can be expressed by a list sl = (xl

1, . . . , x
l
nl

), whereby every element xl
j ∈ sl

corresponds to a different firm’s location xi ∈ s. Suppose there are L lists sl, l = 1, . . . , L,
whereby the location of each firm i corresponds to one (and only one) element of one and only
one list for all i = 1, . . . , N , then one can also denote (sl)Ll=1 to represent the profile (xi)Ni=1. The
definition of sl helps highlight the formation of competitive groups. It should be emphasized
first that, however, the properties of the subgame perfect Nash equilibrium (SPNE) locations.
These properties help to determine the SPNE location patterns in the next section.

Proposition 1. Given s∗−i and xi ∈ [0, 1
2 ], the necessary condition of an optimal location for

firm i is equivalent to the transportation-cost-median condition that

∫ xi+
1
2

xi

N∑

j 6=i

|x − xj| dx =
∫ xi

0

N∑

j 6=i

|x − xj| dx +
∫ 1

xi+
1
2

N∑

j 6=i

|x − xj | dx. (7)

Proof. From equation (5), the total profit of firm i can be expressed as

Πi(x1, . . . , xN ) =
∫ xi

0
πi(x1, . . . , xN , x)dx +

∫ xi+
1
2

xi

πi(x1, . . . , xN , x)dx +
∫ 1

xi+
1
2

πi(x1, . . . , xN , x)dx. (8)
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Differentiating Πi(x1, . . . , xN ) with respect to those xi which appear in the upper and lower
bounds of each integrator yields2

qi(x1, ..., xN , x)2|x=xi +
{
qi(x1, ..., xN , x)2|x=xi+

1
2
− qi(x1, ..., xN , x)2|x=xi

}

−(qi(x1, ..., xN , x)2|x=xi+
1
2

= 0. (9)

Since |x−xi| equals (xi−x), (x−xi), and (1−x+xi), for all x belongs to [0, xi), [xi, xi + 1
2),

and [xi + 1
2 , 1), respectively, it can be checked that

∂πi(x1, ..., xN , x)
∂xi

= 2qi(x1, ..., xN , x)
∂qi(x1, ..., xN , x)

∂xi
, (10)

where

∂qi(x1, ..., xN , x)
∂xi

= − N

N + 1

(
∂|x − xi|

∂xi

)
=





−N
N+1 , ∀ x ∈ [0, xi) ∪ [xi + 1

2 , 1),

N
N+1 , ∀ x ∈ [xi, xi + 1

2).

(11)

Hence, the first-order derivative of Πi(x1, . . . , xN ) with respect to xi is

∂Πi(x1, ..., xN )
∂xi

=
∫ xi

0

∂πi(x1, ..., xN , x)
∂xi

dx +
∫ xi+

1
2

xi

∂πi(x1, ..., xN , x)
∂xi

dx

+
∫ 1

xi+
1
2

∂πi(x1, ..., xN , x)
∂xi

dx

=
2N

N + 1

{
−

∫ xi

0
qi(x1, ..., xN , x)dx +

∫ xi+
1
2

xi

qi(x1, ..., xN , x)dx

−
∫ 1

xi+
1
2

qi(x1, ..., xN , x)dx

}
. (12)

Since N is positive, the first-order condition of optimization for firm i is equivalent to
∫ xi+

1
2

xi

qi(x1, . . . , xN , x)dx =
∫ xi

0
qi(x1, . . . , xN , x)dx +

∫ 1

xi+
1
2

qi(x1, . . . , xN , x)dx. (13)

Equation (13) shows that the optimal location for firm i coincides with its quantity-median.
For there is no boundary in a circular market, however, by contrast to the quantity-median
condition in a linear market as claimed in Pal and Sarkar (2002), one extra item that is∫ 1
xi+

1
2
qi(x1, . . . , xN , x)dx is added to the right-hand side of the quantity-median condition in

a circular market (equation (13)). Furthermore, it is always true for all xi ∈ [0, 1
2 ] in a circular

market that
∫ xi+

1
2

xi

α − N(|x − xi|)dx =
∫ xi

0
α − N(|x − xi|)dx +

∫ 1

xi+
1
2

α − N(|x − xi|)dx. (14)

2The intuition of equation (9) is explained as follows. Since each firm serves the whole market for all its

locations, any adjustment of xi affects firm i’s aggregate profit through only a redrawing of the distribution of

quantities supplied over the whole market rather than changing the market range served by firm i.
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From equations (3), (13), and (14), the quantity-median condition can be further simplified to
be3

∫ xi+
1
2

xi

N∑

j 6=i

|x − xj|dx =
∫ xi

0

N∑

j 6=i

|x − xj|dx +
∫ 1

xi+
1
2

N∑

j 6=i

|x − xj|dx. (15)

Equation (15) is defined as the “transportation-cost-median (of other firms) condition” through-
out this paper.4 ‖

Any location xi is said to be at a transportation-cost-median if xi coincides with equation (7).
It should be noted that equation (7) is equivalent to the first-order condition of optimization,
and furthermore, this equivalence is not affected by the order of locations xi, i = 1, . . . , N . In
other words, given the locations of the other firms, the transportation-cost-median condition
checks which candidate point is firm i’s optimal location in the interval [0, 1

2 ].5

For firm i’s arbitrary location, the diameter passing through xi of course divides the whole
market into two half-circles. The transportation-cost-median condition implies that, given the
other firms’ locations, the aggregate transportation cost to the consumers in one half-circle left
(or right) to firm i’s optimal location is the same as that in the other half-circle. The intuition
is that, when x∗

i is not at a transportation-cost-median, it is not at a quantity-median either.
In a spatial Cournot competition, the marginal profit from one half-circle (left or right to x∗

i )
due to a tiny change in x∗

i is positively related to the aggregate quantity from that half-circle.
Hence, once the aggregate quantity of one half-circle is not equal to that of the other half-circle,
the aggregate profit for firm i can be raised by an infinitesimal increase or decrease in x∗

i . Thus,
x∗

i cannot be an optimal location for firm i. To save words in the following statements, the
right-hand side and the left-hand side of the transportation-cost-median condition should be
denoted by some simple and clear notations.

Definition 1. Denote LHS and RHS to represent the left-hand side and the right-hand side
of the transportation-cost-median condition (equation (7)), respectively. That is, for all xi ∈
[0, 1/2],

LHS =
∫ xi+

1
2

xi

N∑

j 6=i

|x − xj|dx,

3There does not exist an equality similar to equation (14) for all xi in a linear market; thus, the quantity-

median condition in a linear Cournot competition such as Pal and Sarkar (2002) cannot be simplified to be a

transportation-cost-median condition.
4For all xi ∈ [0, 1

2
], it can be checked that

∫ xi+
1
2

xi
|x − xi|dx =

∫ xi

0
|x − xi|dx +

∫ 1

xi+
1
2
|x − xi|dx = 1

8
. Hence,

the words in the parentheses “of other firms” can be replaced by the words “of all firms” and will be omitted

hereafter.
5For the location problem in another half-circle xi ∈ [1/2, 1), the necessary condition of optimization for firm i

can be analogized by the same way to be
∫ xi

xi− 1
2

∑
j 6=i |x−xj | dx =

∫ xi+
1
2

0

∑
j 6=i |x−xj | dx+

∫ 1

xi

∑
j 6=i |x−xj| dx.
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and

RHS =
∫ xi

0

N∑

j 6=i

|x − xj |dx +
∫ 1

xi+
1
2

N∑

j 6=i

|x − xj |dx.

There are several implications behind the transportation-cost-median condition which are
useful to simplify subsequent inductions and instructive to explore an A-N-P model.

Remark 1. In an A-N-P model with N firms, the transportation-cost-median condition is
equivalent to

LHS =
N − 1

8
. (16)

Proof. Since for each j 6= i,
∫ 1
0 |x − xj|dx = 1

4 ,6 and the number of all firms except firm i is
N − 1, thus LHS + RHS = (N − 1)

∫ 1
0 |x − xj |dx = (N − 1)/4. Therefore, the transportation-

cost-median condition LHS = RHS can be rewritten as LHS = (N − 1)/8. ‖

Remark 1 implies that the information from one side of the transportation-cost-median
condition is sufficient to find the locations satisfying the necessary condition of optimization,
and thus attention can be focused on only LHS hereafter.7 From the transportation-cost-median
condition, the optimal location for firm i must balance the aggregate transportation costs of the
two half-circles which are divided by the diameter passing through x∗

i . Hence, the following
remark is consistent with normal intuition.

Remark 2. Given s∗−i and xi ∈ [0, 1
2 ], if no firm is located in the interval (xi + 1

2 , 1) ∪ [0, xi),
but there exists at least one firm located in the other interval (xi, xi + 1

2), or vice versa, then xi

does not satisfy the transportation-cost-median condition for firm i.

Proof. For each xj ∈ [xi, xi+ 1
2 ], j 6= i, since xj−xi ≥ 0 and xj−(xi+ 1

2) ≤ 0, ∀j ∈ {1, . . . , N}\{i},
hence,

∫ xi+
1
2

xi
|x − xj|dx =

∫ xj

xi
(xj − x)dx +

∫ xi+
1
2

xj
(x − xj)dx = (xj − xi)(xj − (xi + 1

2)) + 1
8 ≤

1
8 . There exists, however, at least one firm with a location xj ∈ (xi, xi + 1

2) where for this

firm,
∫ xi+

1
2

xi
|x − xj|dx < 1

8 . Thus, it is proved that LHS < N−1
8 and from Remark 1, the

transportation-cost-median condition for firm i is not satisfied. ‖

In an A-N-P model, each firm offers its most quantities to those consumers living around its
plant. The implication of Remark 2 shows that, if there exists a half-circle without any firm,
then firm i can earn more profit by moving its major market to serve those consumers. The
phenomenon shown in Remark 2 is due to the strategic location effect that the more competitor’s

6For all xj ∈ [0, 1
2
],
∫ 1

0
|x − xj |dx =

∫ xj

0
(xj − x) dx +

∫ xj+ 1
2

xj
(x − xj) dx +

∫ 1

xj+ 1
2
(1 − x + xj) dx = 1

4
. On the

other side, for all xj ∈ [ 1
2
, 1),

∫ 1

0
|x − xj |dx =

∫ xj− 1
2

0
(1 − xj + x) dx +

∫ xj

xj− 1
2
(xj − x) dx +

∫ 1

xj
(x − xj) dx = 1

4
.

7The reason for choosing LHS rather than RHS is based on the convenience in calculations.
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quantity there is, the less one firm’s demand will be when the products of the firms are complete
substitutes (refer to equation (1)). Under spatial Cournot competition, the area with the rival’s
highest quantity is the location of the rival’s plant, and thus the best response for each firm is
to move away from rivals’ locations as far as possible.

Corollary 1. (Transportation-cost-median property) In an A-N-P model with N firms,
a profile of locations s∗ = (x∗

1, x∗
2, . . . , x

∗
N ) constitutes a subgame perfect Nash equilibrium with

N firms if and only if x∗
i is at a transportation-cost-median, for all i = 1, . . . , N .

The intuition of Corollary 1 is that, given the locations of other firms, the optimal location
for the firm is at a transportation-cost-median. Hence, if in an SPNE there exists any firm whose
location is not at a transportation-cost-median, then this firm has an incentive to deviate from its
equilibrium location to a transportation-cost-median location, a contradiction to the definition
of SPNE. The transportation-cost-median condition, however, is only a necessary condition of
optimization. The candidate point satisfying the transportation-cost-median condition must be
checked by the second-order condition to ensure that it is a maximizer rather than a minimizer
for firm i’s profit function.

Proposition 2. In an A-N-P model with N firms, given s∗−i and suppose xi ∈ [0, 1
2 ], the sign

of the second-order derivative of Πi(x1, . . . , xN ) with respect to xi is the same as the sign of the
first-order derivative of LHS with respect to xi. That is,

∂2Πi(x1, . . . , xN )
∂x2

i

T 0 iff h
def
=

∂LHS

∂xi
=

N∑

j 6=i

|xi +
1
2
− xj| −

N∑

j 6=i

|xi − xj| T 0. (17)

Proof. From equation (12), the second-order derivative of firm i’s profit function is8

∂2Πi(x1, . . . , xN , x)
∂x2

i

=
2N

N + 1

{
N

N + 1
+ 2qi(x1, . . . , xN , x)

∣∣∣x=xi+
1
2
− 2qi(x1, . . . , xN , x) |x=xi

}

=
4N

(N + 1)2




N∑

j 6=i

|xi +
1
2
− xj | −

N∑

j 6=i

|xi − xj |


 . (18)

From Definition 1, it can be checked that

h(x1, . . . , xN )
def
=

∂LHS

∂xi
=

N∑

j 6=i

|xi +
1
2
− xj| −

N∑

j 6=i

|xi − xj |. (19)

8A very detailed calculation is shown here. ∂2Πi(x1,...,xN ,x)

∂x2
i

= 2N
N+1

{ Nx
N+1

|xi
0 + Nx

N+1
|xi+

1
2

xi + Nx
N+1

|1
xi+

1
2

+

2qi(x1, . . . , xN , x)|x=xi+
1
2

− 2qi(x1, . . . , xN , x)|x=xi}, where Nx
N+1

|xi
0 + Nx

N+1
|xi+

1
2

xi + Nx
N+1

|1
xi+

1
2

= N
N+1

and

qi(x1, . . . , xN , x)|x=xi+
1
2
− qi(x1, . . . , xN , x)|x=xi = 1

N+1
(
∑N

j 6=i |xi + 1
2
− xj | − N

2
−
∑N

j 6=i |xi − xj |).

9



Since N > 0, the proposition can be proved by a comparison of equations (18) and (19). ‖

Proposition 2 shows that LHS must be negatively sloped at x∗
i to ensure it being the optimal

location for firm i. Otherwise, if ∂LHS/∂xi = 0, then the third-order derivative of the profit
function must be checked. Instead of the complexity in calculating ∂2Πi/∂x2

i , Proposition 2
and Remark 1 show that the equilibrium locations can be found and verified by using only the
information of LHS of the transportation-cost-median condition. Furthermore, the second-order
condition of optimization can be simplified as follows.

Remark 3. In an A-N-P model with N firms, the second-order condition of optimization for
firm i is equivalent to

h̃
def
=

N∑

j 6=i

|xi − xj | >
N − 1

4
, (20)

at the optimal location x∗
i .

Proof. Since for each j 6= i, |xi + 1
2 − xj | = 1

2 − |xj − xi|, thus,
∑N

j 6=i |xi + 1
2 − xj | = N−1

2 −∑N
j 6=i |xi−xj|. Therefore, a sufficient condition h < 0 can be re-written as

∑N
j 6=i |xi−xj| > N−1

4 .
‖

It is noted that once h̃ < (N − 1)/4, then the second-order condition of optimization is not
satisfied. The simplified form of the second-order condition of optimization shown in Remark 3
is helpful in proving the following remark.

Remark 4. In an A-N-P model with N firms (N ≥ 3), given s∗−1 = (x∗
2, x

∗
3, . . . , x

∗
N ) = (x∗

2, x
∗
2 +

d, . . . , x∗
2 + (N − 2)d) such that d ≥ 0 and |x∗

N − x∗
2| = (N − 2)d < 1

2 , there then exists a non-
negative distance a ≡ 1

4 − 1
2 |x

∗
N − x∗

2| where the second-order condition of optimization for firm
1 is not satisfied for all x1 ∈ (x∗

2 − a, x∗
N + a).

Proof. See Appendix 1. ‖

When N = 3 and a ≡ 1
4 −

1
2 |x

∗
3−x∗

2| is given, it should be noted that (x∗
3 +a)− (x∗

2 −a) = 1
2 .

Thus, Remark 4 shows that, given two competitors’ locations are not at the two ends of the same
diameter, firm 1’s optimal location is only possible in the half-circle farthest from its competitors
on average. When N > 3, it is implied by Remark 4 that, compared to any location in a less
competitive market area, to locate in an area with aggressive competition is not an optimal
choice and further verifies the avoiding-competition gravity in an A-N-P model.

10



4 Analysis of the SPNE Location Patterns

4.1 Basic equilibrium location patterns

After examining several properties of the equilibrium locations, there are now enough instru-
ments to induct the SPNE location patterns in an A-N-P model. It is appropriate to first
investigate the basic equilibrium location patterns in the cases with a small number of firms.
Some interesting implications can be pointed out by a comparison of these basic location patterns
with those patterns when there is a generalized number of firms in the market.

Proposition 3 (Pal, 1998). When there are two firms (N = 2), the dispersed location pattern
(x∗

1, x
∗
2) such that |x∗

1 − x∗
2| = 1

2 constitutes the unique subgame perfect Nash equilibrium.

Proof. Without loss of generality, given x∗
2 = 0 and consider x1 ∈ [0, 1

2 ], then from Remark
2 only two points x1 = 0 and x1 = 1

2 coincide with the transportation-cost-median condition.
Furthermore, when N = 2, h̃ = 0 < N−1

4 = 1
4 at x1 = 0 and h̃ = 1

2 > 1
4 at x1 = 1

2 . Thus, from
Remark 3, given x∗

2 = 0, only x∗
1 = 1

2 is the unique optimal location for firm 1, and vice versa.
Therefore, it is proved that (x∗

1, x
∗
2) = (0, 1

2) constitutes the unique SPNE. ‖

Based on the remarks in the previous section, the proof of the above proposition can be
written in a very concise form. From Proposition 3, the uniqueness of the equilibrium is valid in
an A-N-P model with two firms. In what follows, however, it will be shown that the variety of
the equilibrium location patterns is not unique when there are more than two firms competing
in a circular market with quantities and locations.

Lemma 1. Suppose there are three firms in an A-N-P model (N = 3). The profit is the same
for firm 1 for all its available location choices when a dispersed location pattern of the other
firms s−1 = (x2, x3) is given such that |x2 − x3| = 1

2 .

Proof. Without loss of generality, given x2 ∈ [0, 1
2 ] and x3 = x2 + 1

2 , the profit for firm 1 can be
checked to be

Π1 =
1
64

(4α2 − 2α + 1), ∀ x1 ∈ [0, 1). (21)

It is noted that Π1 is independent of x1, and thus the profit is the same for firm 1 for all locations.
‖

Starting from an arbitrary location in a circular market, given that the other two firms are
located at two ends of the same diameter, when firm 1 moves toward one firm, its location at
the same time moves away from the other firm in the same distance. Furthermore, when the
firms engage in spatial Cournot competition, the shorter the distance is between firm 1 and any
other firm, the more intensive the competition (and thus the smaller equilibrium quantities) will
be between them (refer to equation (3)). Hence, given the locations of the other two firms being
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opposite to each other, an increase in the intensity of competition from firm 1 with one of the
other two firms will be exactly canceled out by a decrease in that competition with the other
firm. Therefore, all location choices yield the same intensity in competition and thus the profit
is the same for firm 1 for all its locations. Lemma 1 highlights a characteristic of an A-N-P
model with three firms whereby one firm’s optimal location choice is independent of the choices
of the other firms, given that the locations of the other firms match one specific pattern in that
they are opposite to each other.

The property shown in Lemma 1 will be generalized to an N -firm version in Lemma 2. This
property can help find asymmetric location equilibria in an A-N-P model with three firms - a
finding that is missing in the literature.

Proposition 4. When there are three firms (N = 3). (i) The dispersed location pattern
(x∗

1, x
∗
2, x

∗
3) = (0, 1

3 , 2
3) constitutes a symmetric subgame perfect Nash equilibrium; (ii) The

semi-agglomerated-at-two-points location pattern where (x∗
1, x

∗
2, x

∗
3) = (0, 0, 1

2) or (x∗
1, x

∗
2, x

∗
3) =

(0, 1
2 , 1

2) constitutes an asymmetric subgame perfect Nash equilibrium.

Proof. See Appendix 2. ‖

Besides Matsushima’s (2001) agglomeration-at-two-points location pattern, Proposition 4
offers another counter example to Pal’s (1998) intuition that equilibrium location patterns min-
imize the total transportation cost of serving the entire market. To minimize the total trans-
portation cost, given s∗−1 = (0, 1

2), the location x1 = 1
4 (or x1 = 3

4) should strictly dominate
other location choices for firm 1. The statement is not true in an A-N-P model, however. From
Lemma 1, when s∗−1 = (0, 1

2) is given, the profit is the same for all firm 1’s location choices.
Hence, in the case with three firms, the minimum transportation cost principle is valid only in
the dispersed location pattern. The real intuition behind all location equilibria in an A-N-P
model can be strikingly revealed by examining the generalized N -firm cases, while the intuition
of the second part of Proposition 4 will be explained after Proposition 6.

4.2 Equilibrium location patterns with N firms

When there are N firms engaging in Cournot competition in a circular market, all location equi-
libria can be categorized into five equilibrium location patterns which are shown subsequently
in what follows.

Proposition 5. (Dispersed-by-pairs location pattern) In an A-N-P model with N firms
(N is even), suppose there are N

2 lists sl∗ = (xl∗
1 , xl∗

2 ), l = 1, . . . , N
2 , such that |xl∗

1 − xl∗
2 | = 1

2 ,

then the profile s∗ = (sl∗)
N
2
l=1 constitutes a symmetric subgame perfect Nash equilibrium.

Proof. See Appendix 3. ‖
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The dispersed-by-pairs location pattern in Proposition 5 shows that all firms are located at
two ends of N

2 diameters where each diameter may or may not overlap with another diameter.
In other words, when there is an even number of firms in an A-N-P model, an equilibrium
location pattern with N firms is just an arbitrary combination of N

2 lists such that each of
them corresponds to an equilibrium location profile with two firms. Denote θl ∈ [0, π] to be
the degree of angle between the diameter passing through the points in sl∗ and the diameter of
s(l−1)∗, l = 2, . . . , N

2 . The most surprising characteristic shown in Proposition 5 is that every

(θl)
N
2
l=2 such that θl ∈ [0, π], l = 2, . . . , N

2 , corresponds to a location equilibrium. Therefore,
Matsushima’s (2001) agglomerated-at-two-points location pattern is a special case with θl = 0,
∀ l = 2, . . . , N

2 , and Pal’s (1998) dispersed location pattern is also a specific case with θl = 2π/N ,

∀ l = 2, . . . , N
2 . In fact, in the aspect of (θl)

N
2
l=2, there are infinite equilibrium location patterns.

Proposition 5 implies that, given N −2 firms’ locations (sl∗)
N
2
l=2 whereby each firm is opposite

to another on the same diameter, the relative consideration among different location choices for
the firm with location x1

1 is affected only by the firm whose equilibrium location x1∗
2 is not

included in (sl∗)
N
2
l=2. In other words, the firm with x1

1 chooses to avoid competition (or say,
to be paired) with the firm that is not paired with any other firms, as does the firm with x1

2.
Therefore, the existence of the other N − 2 firms that are paired with each other is neutral to
the competition of the firms with location variables in s1 = (x1

1, x
1
2), and the same property is

presented for all sl. All firms can thus be viewed as several groups which are divided by the
equilibrium competition patterns.

Proposition 5 is very helpful in revealing the intuition in an A-N-P model. In a circular
Cournot competition, the consideration of each firm may not be consistent with that to minimize
the transportation cost of all firms (as claimed in Pal (1998)), nor is it consistent to agglomerate
with some other firms (as claimed in Matsushima (2001)).9 As highlighted in Proposition 5 and
the following propositions, the real intuition behind the competition in an A-N-P model is to
“avoid competition with the other firm(s) in the same group (pair).” That is, in equilibrium,
a competitive group structure is naturally formed where each firm tends to avoid competition
with the other firms inside the same group. The reason for Proposition 5 being valid is closely
related to several characteristics of an A-N-P model, which will be explained after Lemma 2.

Lemma 2. (Neutral property) In an A-N-P model with N + 1 firms (N is even), the profile

of all firms’ locations can be viewed as s = (x1, (sl)
N
2
l=1) such that sl = (xl

1, x
l
2). Suppose xl∗

1 and

xl∗
2 are given that |xl∗

1 − xl∗
2 | = 1

2 , l = 1, . . . , N
2 , then when (sl∗)

N
2
l=1 is given, the profit is the

9For example, when N = 4, s∗ = (x∗
1, x

∗
2, x

∗
3, x

∗
4) = (0, 0, 1

2
, 1

2
) constitutes a Nash equilibrium. Moreover, given

(x∗
2, x

∗
4) = (0, 1

2
) and for arbitrary x′

3 ∈ [0, 1), the optimal location for firm 1 is always x∗
1 such that |x∗

1 −x′
3| = 1

2
.

Given (x∗
3, x

∗
4) = ( 1

2
, 1

2
) and arbitrary x′

2 6= 0, however, x1 = x′
2 is not an optimal location for firm 1. Therefore,

when s∗−1 = (0, 1
2
, 1

2
) is given, the consideration of firm 1 in choosing x∗

1 = 0 is to avoid competition with firm 3

(or firm 4), rather than to agglomerate with firm 2.

13



same for firm 1 for its all available location choices x1 ∈ [0, 1). At this time, (sl∗)
N
2
l=1 is said to

present the neutral property.

Proof. Since all firms except firm 1 are located at the two ends of N
2 diameters (one diameter

may or may not coincide with another diameter), then without loss of generality, one can denote
xl∗

1 and xl∗
2 to be locations in the intervals [x1

1, x
1
1 + 1

2) and [x1
1 + 1

2 , 1)∪ [0, x1
1), respectively, such

that |xl∗
1 − xl∗

2 | = 1
2 .

As shown in the proof of Proposition 5, for each x ∈ [x1
1, x

1
1 + 1

2), there exists one and
only one point x′ ∈ [x1

1 + 1
2 , 1) ∪ [0, x1

1) and |x′ − x| = 1
2 such that |x − xj∗

1 | = |x′ − xj∗
2 |

and |x − xj∗
2 | = |x′ − xj∗

1 |. Hence, the transportation-cost-median condition is satisfied for all
x1 ∈ [0, 1), which is equivalent to stating that ∂Π1/∂x1 = 0, ∀ x1 ∈ [0, 1). Since Π1 is continuous

in x1 when (sl∗)
N
2
l=1 is given, Π1 is a constant with respect to x1. Thus, it is proved that the

profit is the same for all firm 1’s available locations. ‖

Lemma 2 is a generalized version of Lemma 1 with more than three competitive firms. The
intuition behind Lemma 2 is similar to that of Lemma 1: Given that the locations of the other
firms match the dispersed-by-pairs location pattern, for any diameter dividing the whole market
into two half-circles, then the location pattern in one half-circle will be the same as that in
the other half-circle after rotating it in a counter-clock direction of 180 degrees, and vice versa.
Therefore, for all diameters, the location pattern in one half-circle is effectively symmetric to
that in the other half-circle. This symmetry of the two half-circles ensures that the intensity of
the competition from firm 1 with other firms is the same for all its location choices, and thus
the profit is the same for all x1 ∈ [0, 1).

Intuitively, under what situations is the existence of another group of outside firms neutral
to the competition inside a group of firms? One trial answer is the situation where there is no
competition between the firms in different groups. The current analysis, however, offers another
potential but interesting explanation for a neutral phenomenon between competitive groups in
an A-N-P model: Given a group of outside firms achieving an equilibrium, for each inside firm,
the external competition effects from all outside firms are exactly canceled out with each other.
Therefore, the comparison among different choices only relates to the firms in the same group,
and the existence of a group of outsiders is neutral to the competition of the firms inside the
group.

The value of understanding the intuition and the neutral phenomenon in an A-N-P model is
in that, under some circumstances, a Nash equilibrium of a large number of players is composed
of several sub-profiles, each corresponding to a Nash equilibrium of a smaller group of players.
From the analysis of Proposition 5, the sufficient conditions to construct such a circumstance are
related to two characteristics of an A-N-P model. The first characteristic is the neutral property
as shown in Lemma 2 that, given a group of players achieving an equilibrium, the payoff is the
same for any outside player for all its available strategies. When one player makes a comparison
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among different strategy alternatives, given an equilibrium profile of outside players presenting
the neutral property, the player is just like facing a market without any outside player, and
thus the competition with outside players is neutral to the internal competition with the other
players inside the same group. The second characteristic is the linearity of each player’s best-
response function in every other player’s alternative (as shown in the transportation-cost-median
condition). This linearity isolates the impact for one player’s best response caused by each other
player and thus the mutual reinforcement of the internal competition effect and the external
competition effect is evaded.

The following proposition verifies whether the intuition of avoiding competition in groups is
valid when there is an odd number of firms in an A-N-P model.

Proposition 6. (Semi-agglomerated-at-two-points location pattern) For any odd num-
ber N > 2, suppose there are N−1

2 lists sl∗, l = 1, . . . , N−1
2 , such that s1∗ = (x1∗

1 , x1∗
2 , x1∗

3 ) =
(0, 0, 1

2) or (0, 1
2 , 1

2) and sl∗ = (xl∗
1 , xl∗

2 ) = (0, 1
2), l = 2, . . . , N−1

2 . The semi-agglomerated-at-two-
points location pattern s∗ = (s1∗, s2∗, ..., s

N−1
2

∗) constitutes an asymmetric subgame perfect Nash
equilibrium.

Proof. See Appendix 4. ‖

Proposition 6 offers an equilibrium location pattern, which has not yet been found in the
literature, when there is an odd number of firms in an A-N-P model.10 Intuitively, for any firm
with an equilibrium location at 0, since the locations of the other firms just match the dispersed-
by-pairs location pattern, from the analyses of Lemma 2, the external competition effect from
any firm is exactly canceled out by another firm. Therefore, the profit is the same for all its
available locations and the firm has no incentive to deviate from the equilibrium location 0.

On the other hand, for an arbitrary firm with an equilibrium location at 1
2 , since the locations

of N − 3 of the other firms form a dispersed-by-pairs location pattern, the external competition
effect from these N − 3 firms is canceled out with each other. Hence, the optimal location is
determined only by the other two remaining firms whose equilibrium locations are both at 0.
From Proposition 4, the internal competition effect from these two firms induces the firm to
have no incentive to deviate from the equilibrium location 1

2 .
The semi-agglomerated-at-two-points location pattern shown in Proposition 6 can be viewed

as a composite of N−1
2 location sub-profiles such that (N−1

2 −1) of them each fits the equilibrium
location pattern with two firms (as shown in Proposition 3) and one of them fits the equilibrium
location pattern with three firms (as shown Proposition 4). Hence, the intuition of avoiding
competition in groups is still valid in the semi-agglomerated-at-two-points location pattern.
Unlike the implications in Proposition 5 whereby any arbitrary combination of the location
equilibria (each with two firms) corresponds to a location equilibrium with N firms, Proposition 6

10In fact, the reference point which is the point “0” in Proposition 6 can be generalized to represent any point

in a circular market.
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implies that these N−1
2 location sub-profiles can be combined to constitute a location equilibrium

only with some specific directions. It is noted that the firms in each location sub-profile, which
matches the equilibrium location pattern with two or three firms, are on the two ends of the
same diameter. Therefore, the specific directions require that all these N−1

2 diameters must
overlap with each other.

Even in an A-N-P model, there exist some location equilibria which cannot be decomposed
into several equilibria of different and exclusive groups. In these location equilibria, only one
group which contains all firms in the market is formed, just as shown in Proposition 7 with an
odd number of firms.

Proposition 7. (Dispersed-completely location pattern) For any odd or even number
N ≥ 2, the dispersed location pattern at an equal distance from the nearest neighboring firms
such that s∗ = (x∗

1, x
∗
2, . . . , x

∗
N ) = (0, 1

N , . . . , N−1
N ) constitutes a symmetric subgame perfect Nash

equilibrium.

Proof. See Appendix 5. ‖

When there is an odd number of firms, as shown in Proposition 7, no competition effect
from any firm is canceled out by that from another firm, and only one group containing all
firms is formed in equilibrium. The internal competition effect disperses all firms as evenly as
possible, and as conjured in Pal (1998), the dispersed-completely location pattern minimizes the
total transportation cost of all firms. The following lemma plays a crucial role in the proof of
Proposition 8 and Proposition 9.

Lemma 3. In an A-N-P model with N + 1 firms (N is even), the profile containing all firms’
locations can be viewed as s = (x1, (xl)N+1

l=2 ). When (x∗
l )

N+1
l=2 is given to follow the dispersed-

completely location pattern, then point x∗
1 is firm 1’s optimal location if and only if there exists

x∗
l , l = 2, . . . , N + 1, such that |x∗

1 − x∗
l | = 1

2 .

Proof. Given xl = l−2
N , l = 2, . . . , N + 1, and without loss of generality, consider x1 ∈ [0, 1

2N ]. It
suffices to check whether x∗

1 = 1
2N is an optimal location for firm 1.

From the proof of Proposition 7 (equation (??) in page ??), when only the locations of firms
l ∈ {3, . . . , N + 1} are considered (i.e. the last N − 1 firms), it is shown that

∫ x1+ 1
2

x1

∑

xj∈(x∗
l )N+1

l=3

|x − xj |dx =
(N − 1)(N − 4x1)

8N
. (22)

From the proof of Proposition 6, equation (??), when x∗
2 = 0 is given,

∫ x1+ 1
2

x1

|x − x∗
2|dx = −(x1)2 +

x1

2
+

1
8
. (23)
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Hence, a summation of the above two equations shows that

LHS =
∫ x1+ 1

2

x1

∑

xj∈(x∗
l )N+1

l=2

|x − xj |dx = −(x1)2 +
x1

2N
+

N

8
. (24)

Since there are N + 1 firms in the market, from Remark 1, the transportation-cost-median
condition requires that LHS = N

8 , and thus only two points x1 = 0 and x1 = 1
2N are candidates

for optimization.
From Proposition 2, it is shown that

h =
∂LHS

∂x1
= −2x1 +

1
2N

. (25)

Therefore, h = 1
2N > 0 at x1 = 0 and h = − 1

2N < 0 at x1 = 1
2N . It is proved that, given

(x∗
l )

N+1
l=2 = (0, 1

N , . . . , N−1
N ), x∗

1 = 1
2N is an optimal location for firm 1. ‖

Lemma 3 shows that every dispersed-completely location pattern with an odd number of
firms does not present the neutral property defined in Lemma 2. That is, the profit is not the
same for any outside firm for all its locations when an odd number of the other firms’ locations are
given to match the dispersed-completely location pattern. The following proposition, however,
shows that a combination of two or more dispersed-completely location profiles corresponds to
a location equilibrium with a larger number of players, given that the number of overlapping
stacks is not larger than the number of the elements in each stack.

Proposition 8. (Intergroup-agglomeration-and-intragroup-dispersion location pat-

tern) In an A-N-P model with N firms, suppose N = nJ , where 2 ≤ J ≤ n. There exists a
location equilibrium s∗ = (s1∗, . . . , sJ∗) where sl∗ = (0, 1

n , 2
n , . . . , n−1

n ), for all l = 1, . . . , J .

Proof. See Appendix 6. ‖

Given the other firms’ locations, since the location problem is homogeneous for all firms,
it suffices to verify whether any firm chosen arbitrarily has an incentive to deviate from its
equilibrium location, i.e. the firm with x1∗

1 = 0. When only the firms in s1∗
−1 are considered, then

from Proposition 7 the internal competition effect indicates that the optimal location is indeed
at x1

1 = 0. When only the firms in (sl∗)Jl=2 are considered, then from Lemma 3 the external
competition effect indicates that the optimal location is at x1

1 = 1
2n . When the number of outside

groups is smaller than the number of firms in each group, however, the competition with other
inside firms strictly dominates the competition with all outside firms. Therefore, even when
(s1∗

−1, (s
l∗)Jl=2) is given, the optimal location x1∗

1 = 0 is the same as the optimal location when
only s1∗

−1 is given.
Proposition 8 displays an equilibrium location pattern whereby a competitive group structure

with J groups is formed in equilibrium. Here, firms tend to avoid competition with the other
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firms inside the same group, and at the same time each of them will agglomerate with one
and only one firm in each other group. In other words, a combination of J sub-profiles each
matching with the dispersed-completely location pattern with n firms exactly constitutes SPNE
locations with nJ firms, when the locations of these groups exactly overlap with each other and
the number of outside groups (J − 1) is not larger than the number of the other inside firms
(n-1). The intergroup-agglomeration-and-intragroup-dispersion location pattern shows that, in
fact, the locational agglomeration or locational dispersion cannot be clearly classified.

Suppose that each group with n firms is viewed as a multi-plant firm with n plants. The
intergroup-agglomeration-and-intragroup-dispersion location pattern is very similar to the equi-
librium location pattern in the multi-plant cases in a linear market as shown in Pal and Sarkar
(2002). In a linear market with multiple plants analyzed in Pal and Sarkar (2002), it is the
intra-brand effect that disperses all of one firm’s plants and the natural location effect that
dominates the strategic location effect to agglomerate some of the plants of different firms. In
a circular market with a single plant as shown in Proposition 8, however, it is the strategic
location effect (coming from the substitution in demand) that makes all firms in the same group
avoid competition with each other, while the inter-group agglomeration comes from the internal
competition effect in each group strictly dominating the external competition effect with outside
firms.

After comparing the dispersed-by-pairs location pattern with the intergroup-agglomeration-
and-intragroup-dispersion location pattern, it is shown that the neutral property is only a suf-
ficient, rather than a necessary, condition for a capacity to implement a “Nash combination”:
A combination of multiple profiles, whereby each of them corresponds to a Nash equilibrium
of a smaller group of players, constitutes a profile corresponding to a Nash equilibrium of all
players in all groups. Proposition 9 offers an equilibrium location pattern composed of several
sub-profiles whereby some of them present the neutral property, while the others do not.

Proposition 9. (Intergroup-partial-agglomeration-and-intragroup-dispersion location

pattern) In an A-N-P model with N firms, suppose there are L lists sl∗ = (xl∗
1 , xl∗

2 ), l = 1, . . . , L,
and J − L lists sg∗ = (xg∗

1 , xg∗
2 , . . . , xg∗

n ), g = L + 1, . . . , J , such that
(i) |xl∗

1 − xl∗
2 | = 1

2 , l = 1, . . . , L, L ≥ 1,
(ii) sg∗ = (0, 1

n , . . . , n−1
n ), g = L + 1, . . . , J where 1 ≤ J − L ≤ n, n ≥ 3, and

(iii) ∀ l = 1, . . . , L, there exists xl∗
i , xg∗

k , i = 1, 2, k = 1, . . . , n, such that xl∗
i = xg∗

k ;
then s∗ = ((sl∗)Ll=1, (s

g∗)Jg=L+1) constitutes a subgame perfect Nash equilibrium with N firms
whereby N = 2L + n(J − L).

Proof. See Appendix 7. ‖

Proposition 9 captures the characteristics of a new equilibrium location pattern which has
never been seen in the literature. Suppose there are J lists where (i) L of them follow the
dispersed-by-pairs location pattern; (ii) J − L of them follow the intergroup-agglomeration-
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and-intragroup-dispersion location pattern; and (iii) each paired group has at least one firm
agglomerating with one (and only one) firm of every dispersed-completely group; then a com-
bination of all these J lists corresponds to a Nash equilibrium in locations of all firms in all
groups.

The intuition of Proposition 9 can be discussed in three parts. First, take a look at any
arbitrary firm in arbitrary group g; for example, firm 1 in group J (with a location xJ

1 ). From the
analyses of Lemma 2, the external competition effect from one firm in each group l, l = 1, . . . , L,
is canceled out by the other firm in that group, and thus the external competition effect coming
from each group l is nil for all l = 1, . . . , L. From the analyses of Proposition 9, when the number
of outside groups (J − L − 1) is not larger than the number of the other inside firms (n − 1),
the internal competition effect from the other firms in the same group J strictly dominates the
external competition effect from outside firms in groups g ∈ {L + 1, . . . , J − 1}. Thus, the
optimal location xJ∗

1 is eventually determined by the other inside firms’ locations in the same
group J .

Second, in each group l, l = 1, . . . , L, for any firm whose equilibrium location is agglomerated
with at least one firm in every dispersed-completely group g, g = L + 1, . . . , J . For example,
the firm with an equilibrium location x1∗

1 agglomerates with another firm with a location xJ∗
1 .

Since the equilibrium profile of all firms’ locations except x1∗
1 is exactly the same as that except

xJ∗
1 , then the reasons for xJ∗

1 being an optimal location can also be applied to x1∗
1 .

Finally, in each group l, l = 1, . . . , L, for any arbitrary firm whose equilibrium location does
not agglomerate with any firm in any dispersed-completely group; for instance, the firm with
a location variable x1

2. Again, from Lemma 2, the external competition effect from the other
paired groups l ∈ {2, . . . , L} is nil. Moreover, from Lemma 3, the best response for internal
competition with the firm with x1∗

1 is consistent for external competition with the dispersed-
completely groups. Therefore, the optimal location x1∗

2 is the same as the location to avoid
competition with the other firm inside the same group l = 1.

Proposition 9 shows that, since the external competition effect may be exactly canceled out,
or the external competition effect may be consistent with the internal competition effect, or
the internal competition effect strictly dominates the external competition effect, an optimal
location for local competition may be consistent with that for global competition. Thus, an
equilibrium location pattern under global competition seems the same as a composite of several
location patterns each corresponding to an equilibrium for local competition of a few firms. It
is now suitable to summarize the equilibrium location patterns in an A-N-P model from the
aspect of an odd or an even number of firms.

Corollary 2. In an A-N-P model, when the number of firms N ≥ 2 is even, then the strategy
profile s∗ = (s1∗, s2∗, . . . , sJ∗) constitutes a subgame perfect Nash equilibrium, whereby

sl∗ = (xl∗
1 , xl∗

2 ), such that |xl∗
1 − xl∗

2 | =
1
2
, l = 1, . . . , J, and J =

N

2
,
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or

sl∗ = (0,
1
n

, . . . ,
n − 1

n
), l = 1, . . . , J, n ≥

√
N is odd, and J =

N

n
≥ 2 is even,

or

sl∗ = (xl∗
1 , xl∗

2 ), such that |xl∗
1 − xl∗

2 | =
1
2
, l = 1, . . . , L, L ≥ 1,

sg∗ = (0,
1
n

, . . . ,
n − 1

n
), g = L + 1, . . . , J, n ≥

√
N − 2L is odd, 1 ≤ J − L ≤ n is even,

and ∀ l = 1, . . . , L, there exists xl∗
i , xg∗

k , i = 1, 2, k = 1, . . . , n, such that xl∗
i = xg∗

k .

Proof. The first equilibrium location pattern comes from Proposition 5. Since the constraint N
n ≤

n is equivalent to n ≥
√

N , the second equilibrium location pattern is implied by Proposition
8. The third equilibrium location pattern comes from Proposition 9 and a conversion of the
constraint J − L = (N − 2L)/n ≤ n. ‖

Corollary 3. In an A-N-P model, when the number of firms N > 2 is odd, then the strategy
profile s∗ = (s1∗, s2∗, . . . , sJ∗) constitutes a subgame perfect Nash equilibrium, whereby

s1∗ = (0,
1
2
, 0) or (0,

1
2
,
1
2
), and sl∗ = (0,

1
2
), l = 2, . . . , J, where J =

N − 1
2

,

or

sl∗ = (0,
1
n

, . . . ,
n − 1

n
), l = 1, . . . , J, n > 2 is odd, and J =

N

n
≥ 1 is an odd number,

or

sl∗ = (xl∗
1 , xl∗

2 ), such that |xl∗
1 − xl∗

2 | =
1
2
, l = 1, . . . , L, L ≥ 1,

sg∗ = (0,
1
n

, . . . ,
n − 1

n
), g = L + 1, . . . , J, n ≥

√
N − 2L is odd, 1 ≤ J − L ≤ n is odd,

and ∀ l = 1, . . . , L, there exists xl∗
i , xg∗

k , i = 1, 2, k = 1, . . . , n, such that xl∗
i = xg∗

k .

Proof. The first equilibrium location pattern comes from Proposition 6, and the second one is
a summary of Proposition 7 and Proposition 8. The third equilibrium location pattern comes
from Proposition 9 where J − L being odd is implied by an odd number N . ‖

The equilibrium location patterns in an A-N-P model have now been systematically catego-
rized in the above two corollaries. Although the possibility of other equilibrium location patterns
is hard to be ruled out, the results of this paper so far are much more comprehensive than those
in the literatue. The following numerical examples can help to strengthen the conviction of this
paper.
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Table 1. Numerical location equilibria in Anderson-Neven-Pal models.

Number Location equilibria
of firms

N = 2 (0, 1
2)

N = 3 (0, 1
3 , 2

3), and (0, 1
2 , 0)

N = 4 {(0, 1
2 , x2

1, x
2
1 + 1

2) | x2
1 ∈ [0, 1

2 ]}
N = 5 (0, 1

5 , 2
5 , 3

5 , 4
5 ), (0, 0, 0, 1

2 , 1
2), and (0, 1

3 , 2
3 , 0, 1

2 )
N = 6 {(0, 1

2 , x2
1, x

2
1 + 1

2 , x3
1, x

3
1 + 1

2) | x2
1, x

3
1 ∈ [0, 1

2 ]}, and (0, 1
3 , 2

3 , 0, 1
3 , 2

3)
N = 7 (0, 1

7 , 2
7 , 3

7 , 4
7 , 5

7 , 6
7), (0, 0, 0, 0, 1

2 , 1
2 , 1

2), (0, 1
5 , 2

5 , 3
5 , 4

5 , 0, 1
2 ),

(0, 1
3 , 2

3 , 0, 1
2 , 0, 1

2), and (0, 1
3 , 2

3 , 0, 1
2 , 1

3 , 5
6)

N = 8 {(0, 1
2 , x2

1, x
2
1 + 1

2 , x3
1, x

3
1 + 1

2 , x4
1, x

4
1 + 1

2) | x2
1, x

3
1, x

4
1 ∈ [0, 1

2 ]},
and (0, 1

2 , 0, 1
3 , 2

3 , 0, 1
3 , 2

3)
N = 9 (0, 1

9 , 2
9 , 3

9 , 4
9 , 5

9 , 6
9 , 7

9 , 8
9), (0, 0, 0, 0, 0, 1

2 , 1
2 , 1

2 , 1
2), (0, 1

7 , 2
7 , 3

7 , 4
7 , 5

7 , 6
7 , 0, 1

2 ),
(0, 1

5 , 2
5 , 3

5 , 4
5 , 0, 1

2 , 0, 1
2 ), (0, 1

3 , 2
3 , 0, 1

3 , 2
3 , 0, 1

3 , 2
3), (0, 1

2 , 1
3 , 5

6 , 2
3 , 1

6 , 0, 1
3 , 2

3 ),
and (0, 1

5 , 2
5 , 3

5 , 4
5 , 0, 1

2 , 1
5 , 7

10)

* For simplicity, given that at least one firm is located at point 0.
** When N = 3, the proof is shown in Proposition 4. When N = 5 or N = 7 or N = 9,
the first location equilibrium is proved by Proposition 7 and the second one is implied
by Proposition 6. The details in verifying other location equilibria with an odd number
of firms are shown in Proposition 9, while the listed equilibria with an even number of
firms are all covered in Proposition 6 and Proposition 9.

The above numerical results (shown in Figure 1 and Figure 2) can also be checked individually
and the complexity in calculations rapidly rises with the number of firms increasing in the market.
In other words, the traditional methodology seems difficult to solve the equilibria in an A-N-P
model with an arbitrary number of firms.11 From these examples, the intuition that firms tend
to avoid competition in groups in equilibrium in an A-N-P model is always true. For instance,
given s1∗ = (0, 1

3 , 2
3) and s2∗ = (0, 1

2), then the profile s∗ = (s1∗, s2∗) constitutes an SPNE with
N = 5, where s1∗ and s2∗ are just the location equilibria with two and three firms, respectively.
When N = 7, the location equilibria can be viewed as (0, 1

7 , 2
7 , 3

7 , 4
7 , 5

7 , 6
7), ((0, 1

5 , 2
5 , 3

5 , 4
5), (0, 1

2 )),
((0, 1

3 , 2
3), (0, 1

2 ), (0, 1
2)), and ((0, 1

3 , 2
3 ), (0, 1

2), (1
3 , 5

6)), respectively. It is noted that in an A-N-
P model, contrary to the analyses of congestion games such as Rosenthal (1s973), Milchtaich
(1996), and Konishi et al. (1997a), and group formation games in Konishi et al. (1997b) and
Hollard (2000), the group joined by one firm is not only determined by its own location alterna-
tive, but also by its rivals’ choices. The results of this paper show that although the competitive
group structures and the equilibrium competition patterns are much more varied, however, the

11This is the reason why this paper solves the equilibria by using the characteristics of the equilibria rather

than applying a traditional methodology.
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intuition behind all location equilibria is consistent in that firms tend to avoid competition with
the other firms inside the same group which is endogenously formed in equilibrium in a circular
market with Cournot competition.

5 Concluding Remarks

Instead of verifying the equilibrium location patterns in tedious ways, this paper first character-
izes the properties of location equilibria in an Anderson-Neven-Pal model, and then uses these
properties to solve the equilibrium location patterns, most of which are not yet found in the litera-
ture. The results show that equilibrium location patterns in a circular market with Cournot com-
petition include the dispersed-by-pairs, semi-agglomerated-at-two-points, dispersed-completely,
intergroup-agglomeration-and-intragroup-dispersion, and intergroup-partial-agglomeration-and-
intragroup-dispersion location patterns. The puzzle about the conflict between Pal’s (1998)
dispersed location pattern and Matsushima’s (2001) agglomeration-at-two-points equilibrium is
solved by this paper, showing that both of the equilibria are special cases of the dispersed-
by-pairs location pattern. These new findings of equilibrium location patterns imply that, like
the shapes of amoebas, the equilibrium competition patterns and the competitive group struc-
tures of an economic society are much more manifold than what one can imagine about spatial
competition.

It is also implied from the diversity of equilibrium location patterns that locational agglom-
eration or dispersion cannot be categorized simply by the market structure (linear or circular
market) or the competition device (Bertrand or Cournot competition). What can be said is, at
most, the intuition behind the location patterns in equilibrium under different structures and
competition devices. In a circular market with Cournot competition, the consistent intuition of
all equilibrium location patterns is that firms tend to avoid competition by groups. When the
external competition effect is exactly canceled out, or the external competition effect is consis-
tent with the internal competition effect, or the internal competition effect strictly dominates
the external competition effect, the existence of a group of outside firms has no effective impact
on one firm’s best response for the competition with other inside firms. In other words, an
optimal location under local competition is consistent with an optimal response for global com-
petition. Therefore, without any externality and prior collusion, a competitive group structure
is endogenously formed by the equilibrium location patterns, and inside each group, firms tend
to avoid competition with the other insiders. In contrast to the implication of Pal and Sarkar
(2002) where the location choices for one duopolist’s multiple plants can be neutral to that of
the other firm in equilibrium, this paper shows that, even though competition among all firms
of all groups does exist in an Anderson-Neven-Pal model, the equilibrium locations of a group
of firms may be neutral to that of another group of firms.

Faced with an n-person non-cooperative game problem where the number of players joining
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the game may be a large or an unknown number, an ideal treatment is to first divide all
players into several different and exclusive groups and solve the equilibrium of each group;
then a combination of all equilibrium profiles will correspond to an equilibrium of all players
of all groups. When this ideal treatment is applicable, the model is said to have a capacity to
implement a “Nash combination”. In a model structure with a capacity to implement a Nash
combination, all characteristics of the equilibrium of a 2-person game (or non-cooperative game
with few players) can be maintained with that of an n-person game.

From the analyses of the dispersed-by-pairs location pattern, the sufficient conditions include
the neutral property that, given a group of players achieving a Nash equilibrium, the payoff is
the same for any outside player for all available strategies and the linearity of each player’s
reaction function in every other player’s alternative. When one player makes a comparison
among different strategy choices, given an equilibrium profile of outside players presenting the
neutral property, the player is just like facing a market without any outsider and thus the
external competition is neutral for the internal competition, while the linearity of the reaction
function isolates the influence for one player’s best response caused by each of the other players.
It can be inferred that, not only the Anderson-Neven-Pal model, there is a capacity to implement
a Nash combination in all symmetric non-cooperative games satisfying these two conditions. In
these models with a large number of players, a Nash equilibrium under global competition can be
found by first looking for Nash equilibria each for a group of few players and then a combination
of these equilibrium profiles will yield the exact result. Further serious work, however, is needed
to verify these observations.

The analyses of an Anderson-Neven-Pal model are not only instructive in spatial competi-
tion, but may also have great implications in studies about topics such as anti-trust policy,12

international trade, and the competition between different schools,13 organizations, industries,
or networks.

12The sufficient conditions to implement a Nash combination can also be viewed as the theoretical conditions

to isolate the competition of a group of firms from the competition of another group of firms in equilibrium, which

may be applicable in analyzing industrial policies.
13A professor in one university competes in research not only with colleagues belonging to the same school, but

also with other researchers in other universities, even though they may not be in the same country.
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N = 2

N = 3

N = 4

N = 5

N = 6

θ1 θ2

θ1

represents two firms agglomerating at the point

represents one firm’s location

represents three firms agglomerating at the point

θi represents arbitrary degrees of the angle

Figure 1: The equilibrium location patterns with N firms, N = 2, 3, 4, 5, 6, in Anderson-Neven-
Pal models.



N = 7

N = 8

N = 9

represents two firms agglomerating at the point

represents one firm’s location

represents three firms agglomerating at the point

θ1 θ2
θ3

represents two firms agglomerating at the point

represents one firm’s location

represents three firms agglomerating at the point

represents four firms agglomerating at the point

represents five firms agglomerating at the point

θi represents arbitrary degrees of the angle

Figure 2: The equilibrium location patterns with N firms, N = 7, 8, 9, in Anderson-Neven-Pal
models.


