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ABSTRACT: In this paper, we analyze how an airline can take advantage of airport dominance 

of a whole network in a market characterized by short-haul routes and congestion. In order to 

tackle this issue, we estimate an equation system, which is based on theoretical grounds, for the 

Spanish domestic market. We find that costs and demand benefits of airport dominance have to 

do with providing a high flight frequency. Such benefits can damage seriously the effectiveness 

of competition as long as the competitive status of major airline’s rivals is threatened. 
 

I. Introduction 

Air transport liberalization in the European Union (EU) has produced positive effects 

on traveler welfare. In domestic markets, travelers enjoy a greater choice among a 

number of alternatives, higher flight frequency and lower prices in the busiest routes. 

Nevertheless, there is a consensus that the achievement, maintenance and increase of 

these benefits in the post-liberalization period depends fundamentally on effective 

competition on those routes.1 It follows that there is concern about the scale advantages 

major airlines hold in their domestic markets as a consequence of their dominance of 

airport access.  

Indeed, the allocation of slots in European airports is based on grandfather rights that 

give “ownership” to airlines on the basis of previous use. Hence flag carriers, which had 

a monopoly or duopoly in the provision of domestic or international services in the 

regulation period, can claim the majority of slots in most airports within their national 

network. This is particularly relevant in case of airport congestion. In addition to this, a 

common characteristic of EU domestic markets is that most of routes are short-haul 

routes.  
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The objective of this paper is to examine how an airline can take advantage of airport 

dominance of a whole network in a market characterized by short-haul routes and 

congestion. In order to meet this objective, we estimate an empirical model, which is 

based on theoretical grounds, for the Spanish domestic market during 2001 and 2002 

At this point, it must be pointed out that the results of this study can be applied to 

the rest of the EU with some confidence because the Spain domestic market is the 

largest in the European Union, as is shown in table 1. The size of Spanish domestic 

aviation results from three factors. First, major cities in Spain are far from each other. 

Second, many high-density connections serve the country’s islands. Finally, the quality of 

service on alternative transport modes is relatively low. Therefore, the large size of the 

Spanish market, along with a strong tradition of charter airlines, allows us to claim that 

the Spanish market is an upper bound in terms of competition opportunities in the 

European context. Additionally, the analysis of the Spanish market allows capturing the 

influence of airport congestion on airline competition. Indeed, the airports of Madrid or 

Barcelona are one of the endpoints of the majority of Spanish routes. In the period 

considered both airports were highly congested.2   

(Insert table 1 about here) 

There is an extensive empirical literature on competition in the airline industry.3 The 

effect of airport dominance on airline prices is one of the main issues that emerges from 

this literature. It is generally found that airport dominance, along with route dominance, 

explains the ability of major airlines to charge higher prices than their competitors. In 

these studies, the price effects of airport dominance follow exclusively from the 

“premium” that major airlines can charge to passengers departing from their main hubs. 

However, the airport dominance of European flag carriers can be even higher in small 

airports. While low cost airlines operating from secondary airports near major cities have 

succeeded in competing with flag carriers on many inter-European routes, the “low cost 

effect” is much more modest in domestic markets. 

In addition, product differentiation has not usually been treated as a primary 

assumption in previous studies.4 However, looking directly at differentiation in the airline 

industry is sensible if we are to test explicitly the cost and demand advantages of airport 

dominance. Indeed, we argue that product differentiation explains the advantages that 

follow from slot control.  



 3

It must be understood that this study is focused on markets based fundamentally on 

short-haul routes. In this way, the average distance of our route sample is 746 kilometers. 

In short-haul routes, flight frequency is the major determinant of quality and it has 

effects on airlines costs (Doganis 2001). Indeed, such frequency influences costs and 

demand on a route as long as it determines capacity and waiting time for airlines services. 

In turn, the flight frequency that airlines can offer depends on airport access. Thus the 

main competitive advantage that an airline can achieve from airport dominance in a 

short-haul market comes from offering a high frequency of flights. 

Wei and Hansen (2005) show that airlines can obtain higher returns in market shares 

from increasing service frequency than from increasing aircraft size in non-stop duopoly 

markets. Their empirical model is focused on the demand side due to the unavailability 

of good instruments on the supply side. In this paper, we jointly estimate demand and 

supply functions.  

The remainder of this paper fleshes out the effects of airport dominance on short-

haul markets and tests them empirically. In the next section, we analyze economic 

features that have the greatest influence on airline competition. In the third section, we 

provide the framework for the hypotheses that are to be tested in the empirical analysis. 

In the fourth, we specify the data used in the empirical analysis, the results of which we 

describe in the fifth. Finally, the last section focuses on the implications of the results.  

 

II. Airline Competition  

Competition in the provision of air transport services depends both on demand and 

supply side characteristics. On the supply side, the seminal study of Caves et al. (1984) 

distinguishes between density and scale economies. Density economies refer to unit cost 

variations due to increases of output on a route. Scale economies refer to unit cost 

variations due to proportional changes both in the size of the route network and in the 

output on each route of the network. The issue here is that although the existence of 

density economies is generally accepted in the sector, there is no clear evidence 

addressing the existence of scale economies (Tretheway and Oum 1992). In fact, density 

economies along with constant scale economies imply that it is not necessarily cost 

efficient to have just one airline dominate all the main airports of a national network.  
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On the demand side, one must note the existence of two different types of travelers. 

On the one hand, business travelers are not as sensitive to prices but pay considerable 

attention to time.5 Leisure travelers, on the other hand, are time insensitive but price 

sensitive. Furthermore, air transport is one of the main examples of industries with 

consumer switching costs (SC). This is due to the use of frequent flier programs (FFP) to 

create brand loyalty in travelers once they have bought an airline’s services (Suzuki and 

Walter 2001). Indeed, travelers who switch airlines lose opportunities to obtain points 

toward various benefits, such as free trips.  Thus SC are associated to the opportunity 

cost of these benefits. 

Klemperer (1987) analyses the role of SC in a two-stage model of oligopoly 

competition. In the second period, SC and the market shares of each firm are 

determined by sales in the first period. Price competition depends inversely on the SC in 

that second period. This relationship follows from the fact that a higher SC means that 

lower prices attract fewer consumers and, at the same time, lead to a greater sacrifice of 

profits from those consumers already captured by an FFP. Thus, in case of high SC, 

there will be few incentives to reduce prices and equilibrium is going to be found near 

monopoly prices.  

Klemperer’s analysis implies the hypothesis that different competition conditions 

arise depending on the market segment to which airlines address their services. Indeed, 

passengers can be differentiated by the amount of SC they bear. FFPs play a limited role 

(and SCs are not relevant) in the market segment focused on leisure travelers. As a result, 

price competition can be tough. However, FFPs can play an important role (SCs should 

be relevant) in the market segment focused on business travelers and may soften price 

competition. Other features, such as quality, can become the main competition variable.  

Recognizing that density economies and demand heterogeneity are both prominent 

characteristics of the airline industry, it is clear that the benefits of airport dominance in 

a market based on short-haul routes come from the role played by flight frequency. A 

higher flight frequency allows a better adjustment to traveler scheduling preferences, and 

in turn, reduces waiting time. Along with the business traveler’s preference for airlines 

that offer flexibility in flight schedule, the demand side advantages that arise from high 

frequency are also related to FFP. A greater number of destinations makes a free trip 

more valuable, and higher flight frequency at each airport speeds the accumulation of 
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points. Indeed, flight frequency can be understood as a quality variable because it 

determines waiting time and allows a more efficient exploitation of FFP. 

In turn, these advantages on the demand side do not exclude the exploitation of 

density economies on the cost side. As long as a high flight frequency reduces the cost of 

a trip in terms of time, it could cause an additional increase in demand. A high flight 

frequency also leads to a high annual utilization of planes and crews (Doganis 2001). 

Furthermore, frequency allows a carrier to increase the proportion of business travelers 

per flight, which reduces the break-even load factor (OCDE 2000). Finally, the cost 

diseconomies that arise from the use of smaller planes as frequency rises are especially 

relevant in long-haul routes (Wei and Hansen 2003).6 Over shorter routes, we want to 

stress, a high flight frequency is not necessarily cost damaging, whereas the demand side 

advantages can be substantial.   

The main determinant of flight frequency in a given route network (and the size of 

this network) is the number of slots that an airline can use in the corresponding airports, 

particularly in case of airport congestion. Given that the allocation of slots in Europe is 

based on grandfather rights, we argue that European flag carriers could benefit from 

airport dominance in their domestic markets by providing a high flight frequency in the 

majority of routes. Indeed, they can capture business travelers through flight schedule 

flexibility and leisure travelers through price discounts. In the following section, we 

develop a methodology to test the effects of airport dominance in airline markets.   

 

III. The empirical model  

III.1. Demand   

Given that service frequency is the main determinant of quality in short-haul air 

transport markets, the demand conditions in a vertical product differentiation model can 

be stated. Products are defined by the pair (S,P) where P is price and S is the quality of 

the product. It is assumed that each airline offers a product of a specific quality in each 

market where it operates, so that it is possible to distinguish products according to an 

increasing ordering of quality: S1<S2<....<Sn. Prices for each variant of quality do not 

have a predetermined ranking: P1,P2,.........Pn. However, higher levels of quality are 

generally associated with higher prices.  
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It is also assumed that each consumer buys one unit of the product that maximizes 

her utility; given the prices and quality of available products, or alternatively, she does 

not buy any product. Hence the utility of consumer i from consuming the product of 

quality Sτ at price Pτ can be expressed as follows: 

 Uiτ (θ,τ)   =  θiSτ - Pτ  if the consumer buys one unit of the product  
                     0            if the consumer does not buy any unit of the product         (1) 
 

Consumer preferences for quality,θi, are distributed in the interval [0,+∞] according 

to a cumulative distribution function F(θi), where F(0) = 0 and F(+∞)=1.7 In the choice 

between adjacent quality varieties, a consumer with a preference for quality θ~  will be 

indifferent to varieties τ and τ-1 if U(θ~ ,τ) = U(θ~ ,τ-1), that is, θ~ Sτ - Pτ = θ~ Sτ-1 - Pτ-1.  

Rearranging, the equilibrium condition is obtained: 

                                    
1

1~
−−

−
=

−

ττ

τ τθ
SS
PP .                                                                  (2) 

 
Thus, the demand of the product with quality Sτ will be equal to the proportion of the 

potential number of consumers, N, with a preference for quality,θ, such that θ > θ~ . 

That is;  

                                 Qτ = N[1-F((Pτ-Pτ-1)/(Sτ-Sτ-1))].                                              (3)    
 
The equation (3) shows the demand for a product with a specific quality, which 

depends on the potential number of consumers and the prices and quality of the 

products associated with different quality varieties. Thus, this equation can be also 

expressed as follows: 

 
                               Qτ = f (N, Pτ, Pτ-1, Sτ, Sτ-1).                                                        (3’)    
 

In air transport markets, the equations (3) and (3’) show the demand of transport 

services of the airline j in the market (route) k, Qjk. The services of the airline j are 

associated with a set of prices and a specific flight frequency (which determines quality). 

The price of each transport service is not unique because airlines can discriminate across 

the different types of passengers (i.e; business or leisure passengers), using different fare 

classes with different restrictions.  

The available data does not allow estimating a demand equation that includes the 

prices effectively charged to each passenger. On the contrary, we must rely on aggregate 
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demand data to account for the different competition conditions associated with the 

different types of passengers. However, it is sensible to argue that quality effects will be 

mostly related to business passengers and price effects will be mostly related to leisure 

passengers.  

For the empirical specification, the demand for the transport services of the airline j 

(j=1,…,n)  that competes in the route k, (Qjk), can be expressed as the product of a 

market demand function (Qk) and an airline market share function (MSjk), where MSjk = 

Qjk/Qk.  

Thus, and taking into account that the equilibrium condition in a vertical product 

differentiation model excludes cross price elasticities among firms, an airline’s demand 

function can be expressed as: 

 

                              Qjk = Qk (Pk,Sk,Nk)MSjk(Pjk/Pk , Sjk/Sk,1)                                   (4)   

 

Where market demand (Qk) depends on the average quality (Sk), the average prices 

(Pk) and variables for the potential number of travelers (Nk). The market share of each 

airline (MSjk) depends on the relative quality (Sjk) and the relative prices (Pjk) of each 

airline with regard to the market average (Sk, Pk).  

Imposing the logarithmic form, the empirical specification for the demand equation 

in the route k can be expressed as follows:  

 
  log(Qk) =α1+β11log(Pk)+β12log(Sk)+β13log(Nk) +β14Disland+ β15win01+β16sum02 + ε1k,       (5)   

 
where the dependent variable is the total number of passengers carried in each route 

(Qk). We include in the demand equation the following explanatory variables:  

1) The average prices in route k (Pk).  

In order to account for the different fare classes, we approximate average prices 

through the average prices in the unrestricted economy class (Peco
k) and a dummy 

variable (Ddiscount
jk) that takes value 1 where airlines set relevant discounts on the 

economy (unrestricted) class and zero in other case.8 We evaluate the existence of 

relevant discounts, using a strict statistic criterion. Discounts are considered to be 

relevant when the variable for price discounts (the rate between the lowest fare class and 

the unrestricted economy fare class) takes a value lower than the standard deviation with 
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respect to the mean. This dummy variable interacts with the average price in the 

unrestricted fare class. Thus, the final expression of the average prices in route k is as 

follows: β11log(Pk)= β’11log (Peco
k) - β’’11[log (Peco

k) Ddiscount
jk]. 

2) The average quality in route k (Sk). 

The discussion about switching costs and frequent flier variables in section II refers 

to the demand effects, especially for business trips, of flight frequency as a quality 

variable. Hence we approximate the average quality through the average flight frequency.  

One must take into account the possible endogeneity of frequency since variations in 

demand can be adjusted to through variations in service frequency. Such frequency 

depends on the quantity and spread of an airline’s slots in the corresponding airports. 

The availability of new slots in the period considered was very low in the main Spanish 

airports and the allocation rules for the existing slots are very tight, which supports the 

exogeneity of this variable. However, we estimate two alternative versions of the demand 

equation according to the treatment of this variable.  

3) The potential number of consumers in route k (Nk) is approximated through the 

average population of the origin and destination regions of the route.  

4) We include as route fixed effects a dummy variable for routes that have an island as 

an endpoint (Disland
k). This variable can capture traffic generation due to the lack of 

competition coming from other transport modes and due to the tourism effect.   

5) We include as seasonal effects dummy variables for winter at 2001 (win01) and 

summer at 2002 (sum02). According to the period of our data set, this means that 

summer at 2001 is considered to be the baseline period. We do not have data available 

for winter at 2002. 

6) ε1k is a random error term.  

Imposing the logarithmic form, the empirical specification for the market share 

equation of airline j in route k can be expressed as follows:  

log(MSjk)=α2+β21(Pjk/Pk)+β22log(Sjk/Sk)+β23Disland+β24win01+β25sum02+ε2jk                     (6) 

 
where the dependent variable is the market share of each airline in the route in terms 

of the passengers carried over it (MSjk). We include in the market share equation the 

following explanatory variables:  

1) The relative prices of each airline with respect to the market average (Pjk/Pk).  
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Airlines price differences in the unrestricted fare classes are small.9 In addition, we 

expect that such differences are fundamentally related to the different levels of quality, 

which are captured through the relative flight frequency.  

Thus, we approximate the price effect in the market share equation through the 

dummy variable for relevant discounts on the economy (unrestricted) class, which is 

constructed in the same way as in the analogous variable for the demand equation. 

Alternatively, we could use the relative prices in the lowest fare class in a continuous 

form. However, due to the high variability of such prices, we do not have good 

instruments for producing such a variable.   

2) The relative quality of the product of each airline with respect to the market 

average (Sjk/Sk).  

As we mention above, the quality effect is approximated through flight frequency. 

Hence the variable for relative quality is measured through the relative flight frequency 

of each airline with respect to the route average. It may be necessary to account for the 

possible endogeneity of the relative frequency if we find such endogeneity for the 

analogous variable in the demand equation.  

3) As in the demand equation we add a set of control variables for the empirical 

specification, which refer to route and seasonal fixed effects. Such variables are 

constructed in the same way as the analogous variables in the demand equation. 

In the analysis of short-haul airline markets, a relevant feature of routes where islands 

are one of the endpoints is the lack of competition coming from other transport modes. 

This fact could distort airline competition for this type of routes as long as collusion 

behavior is easier to implement here.  Furthermore, the two rivals of the Spanish flag 

carrier, Spanair and Air Europa, have a long tradition as providers of charter flights and 

their operating base is established in the major tourist destination, Palma de Mallorca. 

Thus, systematic differences across carriers in terms of market share can be expected 

according to the type of endpoints where they address their services 

4) ε2jk is a random error term.  

The sign of variables for prices and flight frequency can be seen as evidence of the 

way in which airlines compete to attract the different types of travelers. Indeed, a 

positive sign can be expected in the coefficient of the variable for price discounts, given 

that competition to attract leisure passengers should focus fundamentally on prices. That 
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is, higher discounts should be associated with a higher market share of leisure 

passengers. Additionally, a positive sign is expected in the variable for relative frequency. 

This effect should be associated primarily with business passengers.  

 

III.2. Supply  

Having determined demand conditions, we need to characterize airlines competition 

in a non-cooperative oligopoly framework. We begin with the assumption that the 

decision process of airlines has two stages. In the first stage, such airlines choose 

capacity, which depends on the aircraft fleet and flight frequency. Thus, perceived quality 

is determined in this first stage. In the second stage, given the capacities and quality 

offered by all airlines in the framework, they choose prices. Kreps and Scheinkman 

(1983) show that a two-stage game in which two firms make simultaneous 

determinations of capacity and then price is equivalent to the traditional one-stage 

Cournot model. Moreover, several empirical studies find that airlines’ market behavior is 

similar to the Cournot solution.10 Thus, the assumption of competition à la Cournot seems 

to be sensible. 

Given the demand conditions previously formulated, the inverse market demand 

function takes the following form: 

 
                                   Pk = F(Qk,Sk,Nk),                                                                   (7) 
 
where quality (Sk) refers to flight frequency. The cost function can be expressed as 

follows: 

                          Cjk =Cjk (Distk,,Qjk(FQjk, equipjk , lfjk), ωj)                                           (8) 
 
where Cjk is the total costs of airline j from operating on the route k. Total airline 

costs depend on route distance (Distk), output (Qjk) and input prices (ωj). It must be said 

that the empirical model exploits differences across routes, so that the exclusion of input 

prices (mainly wages and salaries) should not affect the results as long as they can be 

considered airline specific fixed costs. In turn, an airline’s output is determined by the 

product of service frequency (FQjk) and aircraft size (equipjk). In order to obtain the 

quantity finally sold, such product must be multiplied by load factor (lfjk).  

The reduced form of the Cournot profit function for each airline j= 1,.....n in the 

market k can be expressed as follows:  
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                                πjk(Qk) = QjkPk(.) - Cjk(.).                                                            (9)   
 
Profit maximization by each airline leads to the following first order conditions: 
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where λ=∂Qk/∂Qjk is the conduct parameter, which takes value 1 under the Cournot 

assumption. Solving equations (7) and (10) simultaneously for each airline and assuming 

symmetry across airlines, first order conditions can be expressed as follows:  
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where Ejk is the specific price-demand elasticity of each airline, C’jk is the marginal cost 

(C’jk = ∂Cjk/∂Qjk) and nk is the number of competitors (nk). From (11), it is possible to 

identify the pricing equation as a mark-up on marginal costs:  

                                 Pjk = φjk(Sjk/Sk, nk)C’jk(Distk, Qjk),                                         (12) 
 

where the mark-up (φjk) is a function of the airlines’ relative quality (Sjk/Sk) and the 

number of competitors (nk), while marginal costs (C’jk) are a function of route distance 

(Distk) and the number of passengers carried on it (Qjk). 

Note that a high flight frequency could have a cost reducing effect in short-haul 

routes. In addition flight frequency is considered to be the main determinant of quality in 

short-haul air transport markets. Thus, the effect of a frequency increase on the prices 

charged by airlines could be ambiguous, given that this variable influences both price 

determinants in an opposite direction:11     
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In airline markets one must account for the price that is charged to each passenger. 

However, the available data does not allow estimating a pricing equation at that level of 

detail. Under the Cournot assumption, prices are understood as mark-up on marginal 

costs. This must be the case for prices in the economy unrestricted fare class, which is 

considered to be a price reference for all fare classes. Indeed, prices in the business and 
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lowest fare classes can be understood as a mark-up and a discount respectively on prices 

in the economy unrestricted fare class.  

Thus, our approach relies on estimating a pricing equation for the economy 

unrestricted fare class and identifying the determinants of discounts in the lowest fare 

class through a binary choice model. In this way, the discount policy can be stated as a 

discrete choice (Ddiscount
jk) of making or not making discounts of a significant amount, 

which can be expressed as follows:  

 
                   Ujk = F(Cjk/Ck, nk) 

                   Ddiscount
jk =  1  if  Ujk> 0                                                                          (13)   

                                    0 if  Ujk≤ 0 

where Ujk is the utility that airlines obtain from discounts. This utility depends on the 

airlines’ relative costs with regard to the market average (Cjk/Ck), which is mostly 

determined by cost economies related to traffic density. In addition, it depends on the 

intensity of competition (nk), which approximates benefits of discounts in terms of 

attracting passengers.  

Imposing the logarithmic form, the empirical specification for the airlines’ pricing 

equation in the economy unrestricted fare class can be expressed as follows: 

log(Pjk)=α3+β31log(Distk)+β32log(Qjk)+β33log(Sjk)+β34log(HHIk)+β35win01+β36sum02+ε3jk, (14) 
 

where the dependent variable is the price in the economy unrestricted fare class (Pjk). 

The explanatory variables included in this pricing equation are the following:  

1) The number of kilometers that separate the origin and destination regions of the 

route (Distk).  

This variable allows estimating cost economies related to actual routing distance. 

There are several reasons that explain that costs increase less than proportionally to 

kilometers flown. Long-haul routes involve higher average speeds, less intensive 

consumption of fuel and a lower frequency of some fixed costs (such as airport fees).  

2)  The number of passengers carried for each airline in the route (Qjk), which allows 

an estimate of cost economies related to route traffic density. As we mentioned above, 

the existence of density economies in the provision of air transport services is generally 

accepted.  

3) The quality of the product offered by each airline (Sjk).  
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Such quality is measured through a variable for airport presence, which is built 

through the average share of each airline, in terms of annual national departures, in the 

origin and destination airports of the route. An alternative measure could be the share of 

each airline in terms of annual domestic departures on the origin airport. However, as 

tables A1 and A2 in the appendix show, the former seems to be a better measure in our 

context because the sample is based on three origin airports and the share of the Spanish 

flag carrier is high in the majority of origin and destination airports.  

As we mention above, the discussion about switching costs and frequent flier 

variables in section II refers to the demand effects, especially for business trips, of flight 

frequency as a quality variable. Given that airport presence and flight frequency are 

correlated, the use of the former variable seems to be appropriate in the analysis of the 

prices charged by airlines as long as one of our main goals is to test the effects of airport 

dominance on the supply side.  

This variable can have a cost effect in terms of the exploitation of density economies 

but this effect should be captured by the variable for demand.  

4) The Herfindahl-Hirschman Index (HHIk) in order to assess accurately the effect 

on prices of the intensity of competition. It must be taken into account that our sample 

is based on non monopoly routes. 

5) We add a set of control variables for the empirical specification, which refer to 

seasonal fixed effects. Such variables are constructed in the same way as the analogous 

variables in the demand and market share equation.   

The variable dummy for routes with an island as an endpoint is excluded from the 

equation to be estimated because its effects should be captured by the variable for route 

traffic density.  

6) ε3jk is a random error term. 

The empirical specification for the discount policy equation takes the following form: 

 
Ddiscount

jk=δ+γ1log(equipjk/equipk)jk+γ2log(APjk/APk)jk+γ3HHIk +γ4Disland
k + 

               + γ5win01+γ6sum02+ηjk,                                                                                                                                         (15) 
 

where the dependent variable is a dummy variable that takes value 1 when airlines 

apply a relevant discount to the prices of the economy unrestricted class (Ddiscount), and 
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zero otherwise. This dummy variable is built in the same way as the analogous variable 

for the demand and market share equations.  

The explanatory variables included in this equation are the following:  

1) The relative size of the aircraft used by airlines with respect to the market average  

(equipjk/equipk)  

2) The share of each airline in terms of departures in the corresponding airports of 

the route with respect to the market average (APjk/ APk).  

3) The Herfindahl-Hirschman Index (HHIk) in order to assess accurately the effect 

on discounts of the intensity of competition. 

4) We include as route fixed effects a dummy variable for routes with an island as an 

endpoint (Disland
k).  

The dummy variable for routes where islands are one of the endpoints can affect 

discounts in two opposite ways. First, discounts could be higher since more leisure 

travelers are expected to islands destinations. Secondly, discounts could be lower since 

competition coming from other transport modes does not take place here. Thus, the sign 

of the coefficient for this variable is a priori ambiguous 

5) We include as seasonal fixed effects variables dummy for winter at 2001 (win01) 

and summer at 2002 (sum02).  

6) ηjk is a random error term. 

The variables for the size of the aircraft and airport presence can have cost and 

quality effects. Nevertheless, we do not expect a significant quality effect in the fare 

classes addressed to leisure passengers.  

The cost effect related to density economies could be captured by a demand variable 

but our policy discount equation allows us to take the role of airport presence into 

account when calculating the probability of making discounts. Indeed, the main interest 

of this equation is to capture explicitly the influence of airport dominance on the 

probability that airlines will make discounts to attract price sensitive consumers. 

The fact that a major airport presence allows airlines to charge higher prices in the 

fare classes addressed to business travelers, and additionally allows more frequent 

discounts in the fare classes addressed to leisure travelers, would be consistent with the 

argument that airlines derive competitive advantages from airport dominance through 

product differentiation.  
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IV. Data  

The sample used in the empirical analysis is composed of 35 Spanish domestic non-

stop routes in which more than one airline is operating with regular flights, and we 

differentiate between the summer and winter. In general terms, the structure of prices (in 

the full-fare classes) and flight schedules of airlines vary between, but not within, 

seasons. Such inter-season variation is especially important in the Spanish case because it 

is a strongly tourist oriented market. We include dummy variables for season (win01, 

sum02) in all the equations to be estimated as seasonal fixed effects. All data refers to 

2001 and 2002.  

Information about the total number of passengers carried by each airline on each 

route has been obtained from the “Boletín de la Oferta por Tramos y Mercados del 

Programa de Vuelos Regulares” that publishes the General Directorate of Civil Aviation 

(Ministry of Transport).  

Demand data refers to non-stop service, without distinguishing between connecting 

and final traffic. We exclude from the analysis routes with intermediate points, which 

show a much higher demand inconvenience and higher costs than non-stops routes in 

short-haul markets. Indeed, Lijensen et al. (2002) show that direct and non direct flights 

are imperfect substitutes. However, the indirect flight is not a substitute when it lasts 

about twice as long as the direct flight. This must be the case in the majority of short-

haul routes. Additionally, the Spanish flag carrier is the one airline that can effectively 

exploit a network effect (in terms of additional demand) that might arise from 

connections to international destinations. Indeed, the fact that our data does not allow 

distinguishing between connecting and final traffic should not bias our results as long as 

connecting passengers refers mostly to services of the network carrier. The possible 

network effect, which is omitted due to data restrictions, should reinforce results related 

to airport dominance advantages such that it even damages the smaller airlines.  

Data on frequency, aircraft size and prices have been obtained for a sample week. 

Information regarding flight frequency and aircraft size has been obtained from the 

Official Airlines Guide (OAG). The round trip prices, differentiating between the lowest 

fare class, the economy (unrestricted) fare class and the business class, charged by each 

airline have been obtained from their respective websites.   
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Variables of prices for the different fare classes are used in order to capture demand 

heterogeneity. Unfortunately, a weighted distribution of passengers in the different fare 

classes is not available. This fact could affect our results if the distribution varies 

substantially across routes and airlines. The use of variables that make reference to route 

characteristics can help in controlling for these differences. In any case, the 

interpretation of the results should take this possible bias into account.  

There is a high variability in the prices charged by airlines in the lowest fare class. In 

order to account for this variability, we have obtained this data under homogeneous 

conditions for each airline. That is, data have been collected one month before traveling, 

the price is for the first trip of the week and the return is on Sunday. However, this 

homogeneous procedure for obtaining our data does not avoid a possible bias when 

using the variable for discounts in a continuous form because the exact amount of the 

discount can change in very short time. This explains our preference for using the 

variable for discounts in a discrete form. However, in the appendix we present the 

results of alternative specifications of some of the equations of the system developed in 

section III. In particular, the variable for prices in the alternative specification of the 

demand equation is an average between prices in the lowest fare class and prices in the 

economy unrestricted fare class, while the variable for discounts in the alternative 

specifications of the market share equation and the policy discount equation is measured 

in a continuous form.  

The population variable is the total average population in the regions of origin and 

destination of a route, according to the population on the first of January according to 

the Statistics National Institute (INE). Data on the percentage of national departures of 

airlines from origins and destinations have been obtained from the “Anuario Estadístico 

de Tráfico” published by the Spanish Airports and Air Navigation (AENA) agency.  

Finally, a few facts about the Spanish air transport market will be helpful. The main 

competitor of the Spanish flag carrier, Iberia, is Spanair, mainly owned by the 

Scandinavian airline, SAS. In third place is Air Europa, owned by a firm devoted to 

tourist activities. Iberia was privatized in a gradual process that finished in 2001. British 

Airways is currently one of the Iberia’s major shareholders. According to the General 

Directorate of Civil Aviation (Ministry of Transports), the Spanish market is composed 

of about 100 routes, and Iberia maintains a monopoly on half of them. In routes where 
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Spanair and/or Air Europa offer services, Iberia’s market share lies between 50 and 90 

per cent. Table 2 shows the descriptive statistics of the main variables used in the 

empirical analysis.  

(Insert table 2 about here) 

V. Estimation and results 

The demand, market share and pricing equations are estimated as an equation system, 

with the policy discount equation estimated separately from the rest of the equations. It 

can be easily shown that our system of equations is over identified. It is common to 

estimate over identified systems through some method based on the Instrumental 

Variables Technique. In this way, all the equations of the system are estimated through 

the Two Stage Least Squares estimator (TSLS). Estimates have been made equation by 

equation, providing the other equations of the system with the instruments for the 

endogenous explanatory variables of each equation. A simultaneous estimation of the 

system is considered to be more efficient, but any possible misspecification of an 

equation moves to the rest of the system.  

 (Insert table 3 about here) 

Table 3 shows the results for the demand equation where prices are treated as 

endogenous variables. All the explanatory variables have the expected signs, although the 

dummy variable for islands is not significant. We found that the possible bias of 

considering frequency an exogenous variable is modest, as it could be expected from 

restrictions regarding the use of slots. Given the potential number of travelers and the 

fixed effects, it is found that prices and flight frequency are the main determinants of 

demand. Indeed, the overall significance of the demand equation is very high.  

In addition, our results show a relatively high elasticity of demand to flight frequency 

since the corresponding parameter takes a value greater than one. This result is 

consistent with the S-curve effect of service frequency on airline’s demand (Wei and 

Hansen 2005). Indeed, demand increases can be even more than proportional to 

frequency increases because of the quality effect 

On the contrary, we find a relatively low price elasticity of demand. Aggregate 

demand increases by about 6 per cent for every 10 per cent decrease in average prices. 

The high proportion of routes with islands as endpoints (16 of 35) in our sample could 

explain the low price elasticity of demand. Indeed, although routes where islands are one 
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of the endpoints should have a high number of leisure passengers, the lack of intermodal 

competition can make passengers less sensitive to prices. 

(Insert table 4 about here) 

Table 4 shows the results for the market share equation, where the variable for 

relative prices is treated as endogenous. As in the demand equation, there is an 

endogeneity issue regarding the variable referencing relative service frequency. However, 

the same argument and test for including this variable as exogenous in the demand 

equation applies in the market share equation. 

All the explanatory variables have the expected signs. Indeed, coefficients for the 

variables for price discounts and relative quality are positive. Thus, the evidence is that 

airlines compete both in price and quality to attract passengers. It can be expected that 

price competition is more relevant for the leisure segment of the market, whereas quality 

competition dominates in the business segment of the market. We also find systematic 

differences in routes with islands as endpoints.  

 (Insert table 5 about here) 

Table 5 shows the results for the pricing equation in the economy unrestricted fare 

class, where the variable for demand is treated as endogenous. All the variables have the 

expected signs.  

Evidence is found that cost economies related to distance and traffic density are 

substantial. Indeed, average prices in the unrestricted economy fare class decreases by 

about 4 and 1 per cent for every 10 per cent decrease in distance and increase in route 

traffic density. Although the size of the density economies obtained seems to be modest, 

it must be said that the negative sign of the variable for demand is consistent with the 

existence of decreasing marginal costs. Indeed, marginal costs can be understood as the 

sum of the costs of carrying an additional passenger for a given capacity (which is 

expected to be constant) and the costs of providing additional capacity (Brander and 

Zhang 1990). The additional capacity can be provided using bigger planes and/or 

increasing service frequency. Bigger planes are generally more efficient and higher service 

frequency increases the annual utilization of the planes and crew. Thus, the costs of 

providing additional capacity decrease so that, under our interpretation, it is sensible to 

find that marginal costs decrease with the level of demand.  
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 In addition, a positive sign in the coefficient of the variable for airport presence is 

found. In this way, average prices in the economy unrestricted fare class increase by 

about 1 per cent for every 10 per cent increase in airport presence. Although the size of 

the airport presence effect seems to be modest, it must be recognized that such effect 

refers exclusively to the mark-up that airlines charge on marginal costs.  

The variable for the Herfindahl-Hirschman Index is not significant. Taking into 

account that our sample is based on non monopoly routes, previous studies have shown 

that the effect of this variable should not be too relevant. In this way, Graham et al. 

(1983) find that prices are positively correlated with route concentration, although this 

relationship decreases with the level of concentration. Additionally, Borenstein (1989) 

finds that airport dominance matters more than route dominance in explaining airline 

prices. Finally, Evans and Kessides (1993) find an important price differential in 

comparisons between monopoly and duopoly routes, but the difference is quite small 

when a third or fourth competitor is added.  

(Insert table 6 about here) 

Table 6 shows the results of the estimation for the policy discount equation. All the 

variables have the expected sign, although the variable for the Herfindahl-Hirschman 

Index is not significant. We account for a possible endogeneity bias of the variable for 

aircraft size using data from the previous year.12 In this equation, the positive sign of the 

variable for airport presence is especially relevant, which means that an airline’s share of 

an airport’s slots positively influences the probability of discounts. The fact that a higher 

airport presence allows higher prices in the full fare classes along with more frequent 

discounts in the lowest fare classes is consistent with the product differentiation 

explanation of the airport dominance advantages. Finally, the negative sign of the 

dummy variable for islands shows that the negative effect of the lack of intermodal 

competition overweight the positive effect of more leisure travelers 

To sum up, the main result that can be inferred from the pricing and policy discount 

equations is that higher scales of operations in an airport allow airlines to both increase 

demand and reduce costs. Indeed, the evidence for the U.S. case (Borenstein 1990, 

Evans and Kessides 1993, Berry et al. 1996) shows that the quality effect of airport 

control on an airline’s prices is higher than the cost effect. However, the cost effect was 

more important than the quality effect in the study by Marín (1995) of the inter-
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European market. Our analysis seems to find a possible explanation for that 

contradiction, since it demonstrates that it is necessary to differentiate across the type of 

consumers to which airlines address their services.  

Tables A3, A4 and A5 in the appendix show the results of the estimation of the 

alternative specifications of the demand equation, the market share equation and the 

policy discount equation. The results are essentially identical to our previous estimation.   

In the Spanish case, Iberia’s dominance of the national airport network has the two 

following implications. First, Iberia is able to offer products of higher quality than its 

rivals for most of the routes where it operates. This allows the flag carrier to capture a 

high proportion of business travelers. And second, Iberia can take advantage of the cost 

economies derived from airport dominance to capture leisure travelers through more 

frequent price discounts. Both effects can damage future competition in the Spanish 

domestic market because the flag carrier can have a higher proportion of business 

passengers per flight and higher load factors per flight than its rivals. As we mentioned 

above, the large size of the Spanish market allows us to conclude that our results are 

representative for the other EU domestic markets.   

 

VI. Concluding remarks 

The contribution of this paper to the literature is to test the cost and demand 

advantages that an airline can obtain from airport dominance of a whole network in a 

market characterized by short-haul routes and congestion. Our empirical model shows 

that such advantages are related to provide a high flight frequency.  

Competition in the leisure segment of the market is mainly focused on price. Taking 

into account that a high service frequency allows a high utilization of crews and planes 

along with a cumulative exploitation of density economies, it can be argued that major 

carriers can take advantage of the cost economies derived from airport dominance when 

they compete for leisure travelers. As a result, they are able to offer major and/or more 

discounts in a market segment where prices must adjust to costs.  

In the business segment of the market, on the other hand, competition is mainly 

focused on quality. In this case, airport dominance can allow major carriers to take 

advantage of demand side economies. Indeed, a high service frequency is especially 

attractive for business travelers who are concerned more with reducing the trip time than 
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with saving money on a ticket, for which they usually do not pay. Moreover, high service 

frequency allows an airline to exploit marketing devices such as FFPs more efficiently. 

As a result, major carriers can charge high prices in the full fare classes without losing 

market share. The trend to convergence on prices in these fare classes can be explained 

by the modest effect that smaller airlines obtain from charging lower prices than their 

rivals (in terms of attracting business passengers).  

The fact that an airline that controls an airport network can offer large discounts in 

the leisure segment of the market and, at the same time, can offer a convenient flight 

schedule in the business segment of the market threatens the competitive position of its 

rivals, so that the effectiveness of competition can be seriously damaged. 

In European domestic markets, flag carriers can hold the advantages from airport 

control. Contrary to other network carriers, the Spanish flag carrier has shown a strong 

record of profits in last years. The dominance of a relatively large domestic market, 

within a context of airport congestion, arises as one of the possible explanations.  

We feel that the implementation of new rules for airport space allocation, especially 

regarding slots, could improve the scope of airline competition. In the Spanish case, 

recent forecasts for the main airports predict a large traffic increase for the period 2000-

2015. Thus, plans call for a doubling of the capacity of the main airports in the national 

network. A more balanced distribution of new slots in such airports is required to 

guarantee airline competition.   
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Notes 

1. The empirical literature on air transport generally rejects the hypothesis that potential 

competition has an important disciplining effect. See for example Morrison and Winston (1987) 

or Hurdle et al. (1989).  

2. Madrid and Barcelona airports are among the worst European airports in terms of average 

delays per movement (Reynolds-Feighan and Button 1999). In addition to this, the maximum 
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number of movements operated per hour was expected by 2004 at Madrid airport (Ministry of 

Transports, Order of October 19th) and by 2003 at Barcelona airport (Ministry of Transports, 

Order of October 22nd).  

3. Major contributions for the US case refer, among others, to Morrison and Winston (1989), 

Borenstein (1989), Dresner and Windle (1992), Evans and Kessides (1993) and Brueckner and 

Spiller (1994). Button et al. (1998) and Marín (1998), among others, discuss airlines competition 

in the European context.  

4. Relevant exceptions are the works of Marín(1995), Berry et al.(1996) and Schipper et al.(2002). 

5. It can be argued that business passengers are increasingly using services of low cost airlines in 

inter-European routes. However, this is particularly true in routes where low cost airlines offer a 

high flight frequency. 

6. Indeed, aircraft costs take place in three stages: during takeoff, during in-flight time at the 

cruise speed and during landing. With regard to the size of the aircraft scale diseconomies arise in 

takeoff and landing, while scale economies arise at the cruise speed. This fact explains that 

aircrafts that minimize costs have a lower size in short-haul than in long-haul routes.  

7. F(θ) must be interpreted as the proportion of consumers with a preference for quality less 

than θ. 

8. The unrestricted economy fare class is defined as the full economy fare class without 

restrictions on changes and refunds and without minimum stay requirements 

9. Indeed, our data shows a much more homogeneous distribution of the base fare than of the 

discounts across airlines. Indeed, the variation coefficient of the variable for the relative prices in 

the full economy fare class is equal to 0.07 while the variation coefficient of the variable for the 

discounts is 0.24.  

10. See for example Brander and Zhang (1990) and Oum et al. (1993). 

11. Alternatively, we could make explicit a model for the optimum amount of flight frequency. 

In the context of airport congestion and tight rules for slot allocation, we claim that flight 

frequency is exogenous. However, we test for a possible endogeneity bias in the empirical 

analysis.    

12. The amount of discounts made is strongly associated to the evolution of load factor figures 

as long as airlines pursue to maximize the average yield per passenger. Other factors being 

constant, a higher size of the aircraft makes more difficult to increase the proportion of seats 

sold. Thus, it could be argued that the amount of discounts and the size of the aircraft are 

simultaneously determined.  However, the possible endogeneity bias should be modest to the 

extent that airline choices on aircraft size can not be rapidly altered and depend on route 

characteristics (distance, demand forecasts, etc) and on the actual fleet at their disposal 
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Tables 

Table 1. Number of annual passengers carried in EU air markets. 2002 

Market Passengers (103) 

Spain 
France 

United Kingdom 
Italy 

Germany 
Sweden 
Portugal 
Finland 

29,022 
27,021 
22,617 
22,527 
20,402 
7,445 
2,930 
2,766 

              Source: Eurostat 
 

Table 2. Descriptive statistics 

Variables (route level) Mean Standard Deviation Minimum Value  Maximum value 

 
Traffic density (number of 

passengers) 
Prices (unrestricted economy class; 

euros) 
Price discounts (euros) 
Weekly flight frequency  

Population of the city-pairs 
Distance 

Airline´s market share  
Herfindahl-Hirschman Index 

 
376,242 

 
264.45 

 
0.68 
79 

2,887,733 
746 
0.39 
0.51 

 
417,447 

 
108.42 

 
0.16 
76.28 

893,713 
647 
0.22 
0.12 

 
17,525 

 
99.78 

 
0.33 
11 

841,668 
131 
0.01 
0.33 

 
2,413,967 

 
535.28 

 
1 

445 
5,114,656 

2190 
0.92 
0.85 
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Table 3. Demand equation (TSLS). Num. observations = 85 

Instruments for log(Pk) and log(Sk): log(Distk), log(equipk), log(APk), Competitors 

Coefficients (White standard errors; Robust to heterocedasticity) 

 
Explanatory variables 

 
Dependent Variable: log(Q k) 

 
 (1) 

Sk (exogenous) 
(2) 

Sk (endogenous) 
 

Intercept 
 

log(Pk) 

 
log(Pk)Ddiscount 

 
log(Sk) 

 
log(Nk) 

 
Dislandk 

 

win01k 

 
sum02k 

 
0.75 (1.63) 

 
-0.54 (0.11)** 

 
0.03 (0.09) 

 
   1.06 (0.05)** 

 
    0.47  (0.11)** 

 
 0.15 (0.10) 

 
  -0.36 (0.08)** 

 
   0.21 (0.07)** 

 

 
0.73 (2.32) 

 
-0.56 (0.19)** 

 
0.04 (0.10) 

 
    1.10  (0.09)** 

 
   0.45 (0.17)** 

 
0.14 (0.11) 

 
-0.35 (0.08)** 

 
  0.21 (0.07)** 

R2adj. 
F-Statistic 

                 0.91 
               129.04** 

 

               0.90 
              86.84** 

     1. Significance at the 1% (**), 5% (*), 10%(+) 
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Table 4. Market share equation (TSLS). Num. observations = 215 

Instruments for log(Pjk/Pk): log(equipjk/equipk), log(APjk/ APk) 

Coefficients (White standard errors; Robust to heterocedasticity) 

Explanatory Variables  Dependent Variable:  log(MSjk) 

 
Intercept 

 
log(Pjk/Pk) 

 
log(Sjk/Sk) 

 
Dislandjk 

 
win01k 

 
sum02k 

 
-1.37 (0.08)** 

 
1.36 (0.31)** 

 
0.88 (0.05)** 

 
0.21 (0.1)** 

 
-0.44 (0.17)** 

 
0.008 (0.05) 

 
R2adj. 

F-Statistic  
 

 
                            0.72 

135.25** 

            1. Significance at the 1% (**), 5% (*), 10%(+) 

 

Table 5. Pricing Equation (TSLS). Num. observations = 215 

Instruments for log(Qjk): log(Nk), Dislandk 

Coefficients (White standard errors; Robust to heterocedasticity) 

Explanatory Variables Dependent Variable: log(Pjk) 

 
Intercept 

 
log(Distk) 

 
log(Qjk) 

 
log(Sjk) 

 
log (HHI k) 

 
win01k 

 
sum02k 

 
3.60 (0.19)** 

 
0.43 (0.007)** 

 
-0.06 (0.01)** 

 
0.08 (0.01)** 

 
0.03 (0.06) 

 
-0.02 (0.01)+ 

 
0.12 (0.01)** 

 
 

R2adj. 
F-Statistic                

 

 
                          0.95 

792.21** 

                    1. Significance at the 1% (**), 5% (*), 10%(+) 
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Table 6. Policy discount equation (logit). Num. observations = 215 

Coefficients (White standard errors; Robust to heterocedasticity) 

Explanatory Variables Dependent variable: Ddiscountjk 

Intercept 
 

log(equipjk/equipk) 
 

log(APjk/APk) 
 

log (HHI k) 
 

Dislandk 
 

win01k 
 

sum02k 
 

-2.48 (0.78)** 
 

2.71 (0.88)** 
 

1.24 (0.33)** 
 

-0.75 (1.10) 
 

-0.97 (0.54)+ 
 

2.53 (0.51)** 
 

0.79 (0.54) 
 

Pseudo R2 
Wald test (χ2) 

                        0.28 
48.08**                          

               1. Significance at the 1% (**), 5% (*), 10%(+) 
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Appendix 

Table A1. Routes of the Spanish domestic market included in the sample  

 
Routes with origin in 

Madrid 

 
Routes with origin in 

Barcelona 

 
Routes with origin in de 

Palma Mallorca  
                          

 
Madrid-Barcelona 

Madrid-Málaga 
Madrid-Valencia 
Madrid-Santiago 
Madrid-Bilbao 
Madrid-Vigo 

Madrid-Alicante 
Madrid-Sevilla 

Madrid-La Coruña 
Madrid-Jerez 

Madrid-Santander 
Madrid-Palma Mallorca 

Madrid-Las Palmas 
Madrid-Tenerife 

Madrid-Ibiza 
Madrid-Lanzarote 

Madrid-Fuerteventura 
Madrid-La Palma 

 

 
Barcelona-Málaga 
Barcelona-Sevilla 
Barcelona-Bilbao 

Barcelona-Santiago 
Barcelona-Vitoria                 

Barcelona-Palma Mallorca 
Barcelona-Ibiza 

Barcelona-Menorca 
Barcelona-Tenerife 

Barcelona-Las Palmas 
Barcelona-Lanzarote 

 

 
Palma de Mallorca-Valencia 
Palma de Mallorca-Málaga 
Palma de Mallorca-Alicante     
Palma de Mallorca-Bilbao       

Palma de Mallorca-Menorca     
Palma de Mallorca-Ibiza 

 

 

 

Table A2. Iberia’s market share in the main Spanish airports. 2002 

Airport Percentage of national 
departures 

Percentage of  total 
departures 

A Coruña 
Santander 

Jerez 
Sevilla 

Valencia 
Vigo 

Bilbao 
Menorca 
Alicante 

Barcelona 
Ibiza 

Asturias 
Madrid 

Santiago 
Málaga 

Gran Canaria 
Fuerteventura 

Palma de Mallorca 
Tenerife 

Lanzarote 
 

100% 
100% 
91% 
87% 
84% 
79% 
71% 
69% 
67% 
66% 
65% 
65% 
64% 
60% 
60% 
53% 
47% 
43% 
36% 
27% 

90% 
93% 
63% 
74% 
70% 
81% 
46% 
61% 
30% 
49% 
51% 
71% 
55% 
66% 
27% 
67% 
55% 
25% 
61% 
58% 
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Table A3. Alternative specification of demand equation (TSLS).  
Num. observations = 85 

Instruments for log(Pk) and log(Sk): log(Distk), log(equipk), log(APk), Competitors 

Coefficients (White standard errors; Robust to heterocedasticity) 

 
Explanatory variables 

 
Dependent Variable: log(Q k) 

 
 (1) 

Sk (exogenous) 
(2) 

Sk (endogenous) 
 

Intercept 
 

log(Pk) 

 
log(Sk) 

 
log(Nk) 

 
Dislandk 

 

win01k 

 
sum02k 

 
0.42 (1.54) 

 
-0.51 (0.10)** 

 
   1.06 (0.06)** 

 
    0.49  (0.10)** 

 
 0.18 (0.10)+ 

 
  -0.42 (0.08)** 

 
   0.17 (0.07)* 

 

 
0.53 (2.21) 

 
-0.54 (0.17)** 

 
    1.10  (0.09)** 

 
   0.47 (0.16)** 

 
0.18 (0.10)+ 

 
-0.42 (0.08)** 

 
  0.18 (0.07)* 

R2adj. 
F-Statistic 

                 0.90 
               135.99** 

 

               0.90 
              93.21** 

     1. Significance at the 1% (**), 5% (*), 10%(+) 

 
Table A4. Alternative specification of market share equation (TSLS).  

Num. observations = 215 
Instruments for log(Pjk/Pk): log(equipjk/equipk), log(APjk/ APk) 

Coefficients (White standard errors; Robust to heterocedasticity) 

Explanatory Variables  Dependent Variable:  log(MSjk) 

 
Intercept 

 
log(Pjk/Pk) 

 
log(Sjk/Sk) 

 
Dislandjk 

 
win01k 

 
sum02k 

 
-3.34 (0.78)** 

 
-6.00 (2.16)** 

 
0.88 (0.17)** 

 
0.79 (0.32)* 

 
-1.51 (0.63)* 

 
-0.67 (0.35)+ 

 
R2adj. 

F-Statistic  
 

 
- 

20.87** 

            1. Significance at the 1% (**), 5% (*), 10%(+) 
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Table A5. Alternative specification of policy discount equation (OLS).  
Num. observations = 215 

Coefficients (White standard errors; Robust to heterocedasticity) 

Explanatory Variables Dependent variable: Discountjk 

Intercept 
 

log(equipjk/equipk) 
 

log(APjk/APk) 
 

log (HHI k) 
 

Dislandk 
 

win01k 
 

sum02k 
 

-0.42 (0.06)** 
 

-0.11 (0.05)* 
 

-0.04 (0.02)* 
 

-0.08 (0.08) 
 

-0.10 (0.03)** 
 

-0.26 (0.03)** 
 

-0.13 (0.03)** 
 

Pseudo R2 
Wald test (χ2) 

                        0.32 
20.87**                          

               1. Significance at the 1% (**), 5% (*), 10%(+) 
 

 

 

 


