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Abstract

This paper investigates the interplay of investment irreversibility, predatory behavior, and limited

liability in a duopoly with aggregate demand uncertainty. We �nd that limited liability and

investment irreversibility is likely to produce predatory behavior in very competitive industries in

which prices react strongly to changes in quantity and capacity increases are not too costly.

The rationale for this may be summarized as follows: Under limited liability, the owners of a �rm

have to decide whether they are willing to �nance losses from private funds, or whether they

rather default on the �rms obligations in adverse states. However, market conditions themselves

become endogenous in a duopoly since the quantity decisions of all competitors determine the

market price. If now investment is irreversible, it is a strong commitment. It hence becomes a

device to force others to leave early and allows oneself to commit to leave late. If the ability to

promote the exit of a competitor is strong, it may then even result in �rms investing only to prey,

i.e. �rms invest only to consequently monopolize the market.

Therefore, the model of this paper explains predatory behavior in a duopoly without invoking

reputational, network- or learning-e¤ects. Moreover, this paper�s model also does not de�ne

predatory behavior as deviations from tacit collusion.
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1 Introduction

Predatory behavior as some special form of anti-competitive practices has a long tradition

of debate both among academic economists and practitioners. It has been studied widely

at least since Selten (1978) introduced his "chain store paradox". Selten claimed that

predatory behavior could not emerge among rational competitors even though predation�

especially in a dynamic context� has some intuitive appeal.

The intuitive predatory outcome could be reestablished by later contributions. How-

ever, most of these contributions either modelled predatory behavior as a static and once-

and-for-all increase in quantity, modelled predation as a result of learning or network

e¤ects, or de�ned predation as temporary deviations from tacit collusion. Yet, the present

paper shows that it is not necessary to restrict the analysis of predatory behavior to these

phenomena. In our approach predatory behavior emerges dynamically from time to time,

but is not modelled as a break-down of collusion. Instead, predation results from the

interaction of investment-irreversibility and exit decisions. If investment is irreversible, it

has a strong strategic in�uence on exit decisions. It is a commitment to leave the market

late and at the same time it promotes the exit of the competitor. Therefore, �rms may

wish to invest upon a decrease in demand. This temporarily depresses prices further and

forces the competitor to exit. Consequently, a market decline triggers a predatory race for

market shares.

Predation was �rstly re-established after Selten�s "paradox" by Kreps and Wilson

(1982) and by Milgrom and Roberts (1982). They modi�ed Selten�s model by introducing

asymmetry of information among competitors. Yet, predatory behavior in their models

is a static phenomenon as a consequence of the inherently static nature of information.

Firms act more aggressively all the time to deter entry respectively to promote exit of

competitors. Analogously, when strategic commitment triggers predation, in most models

(e.g. Brander and Lewis 1986, Bolton and Scharfstein, 1990, or Glazer, 1994) there is no

change of behavior over time. Again �rms act more aggressively in any state of the world.

Empirically however, the aggressiveness of competitors seems to switch from periods of

less competition to periods of aggressive competition and vica versa.1

Existing dynamic theories of predation often take tacit collusion as starting point.

Examples for this are models which study price wars.2 In these models, market conditions

are uncertain (in the future), and so �rms have symmetric but imperfect information.

Changes in demand may then trigger deviations from collusion when deviations become

pro�table. As a result, �rms start price wars from time to time, and this approach gives

predation as a dynamic phenomenon a theoretical underpinning. Yet, the focus on tacit

collusion remains a caveat. To avoid this, alternative approaches have been suggested
1See for example Busse�s (2002) analysis of price wars in the airline industry.
2See Ordover and Saloner (1989) for a summary or for more recent contributions Fershtman and Pakes

(2000) or Busse (2002).
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for network industries3 and industries with prominent learning-curve e¤ects (Cabral and

Riordan, 1994 and 1997). Nevertheless, these models remain only valid for to certain types

of industries.

However, the strategic commitment approach integrates naturally into a dynamic

framework of predatory behavior, once one accepts the assumption of (partial) irreversibil-

ity of investment. Then, strategic real options theory4 becomes a valid tool to analyze

competition, exit, and irreversible investment. Although irreversible investment is the

possibly strongest form of commitment, and may thus have a strong strategic in�uence

on other decisions of a �rm, most of the real options literature has ignored the strategic

interaction of (potential) exit and investment.

If a �rm can exit a market at will and has only limited liability, its owners have to de-

cide whether they are willing to �nance possibly negative cash �ows from private funds, or

whether they rather default on the �rms obligations in adverse states. Consequently, �rms

need to determine at which market conditions they will optimally default and exit. How-

ever, market conditions themselves become endogenous in a duopoly since the investment

and thus quantity decisions of all competitors determine the market price.

If investment alters the market price of produced goods, investment decisions of one

�rm alter the likelihood of exit for the other �rm: A �rm that invests and expands

production, receives higher earnings at the expense of other �rms. Upon exit, this �rm

looses more income while a non-investing �rm looses less income when it leaves. Thus,

the investing �rm wishes to delay exit after investment, while the other �rm wishes to

exit more early. In consequence, investment is not only a commitment to leave the market

late, but also a device to force others to leave early, so that the interdependence of both

�rms�earnings transforms investment into a device with a twofold strategic value. This

strategic value gives �rms a strong incentive to commit themselves and invest early and

in the extreme, the ability to promote the exit of a competitor may even result in �rms

investing only to prey. They invest only to consequently monopolize the market.

This incentive to monopolize can be substantial and hence, the interplay of limited

liability and irreversibility of investment in�uences investment decisions becomes strate-

gically important. Against the strategic incentive �rms need to trade o¤ the gain from

waiting and obtaining more information, the value of waiting. One of the main points

of our paper is the analysis of these two countervailing forces, strategic commitment and

value of waiting.

As both forces counteract, predatory behavior does not take the form of stronger

competition in all states of the world. In our approach, predatory behavior emerges as a

policy triggered by adverse market conditions. Moreover, we do not model predation as a
3See Athey and Schmutzler (2001) for a general model of investment and increasing dominance that

includes network-industries as a special case.
4See for example Huisman and Kort (1999), Sparla (2001), Weeds (2003), or Murto (2004).
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break down of some collusive situation. The break down of collusion has been studied by

Grenadier (1996) in a real options duopoly-model of investment. In his model investment

cascades are triggered by a market decline that breaks up collusion. In our model, we also

�nd investment in declining markets, but we explain this as a result of an interaction of

investment and exit decisions.

This interaction and predatory behavior are our two points of focus, and that focus

clearly distinguishes our work from existing ones which study exit decisions in a duopoly

using a real options framework: Sparla (2001) discusses partial but irreversible capacity

reductions, Lambrecht (2001) and Murto (2004) both analyze complete exit. In all three

papers (Sparla, Murto and Lambrecht), �rms are assumed to be unable to increase ca-

pacity, so that predatory behavior cannot emerge. Yet, Lambrecht also studies sequential

market entry and exit decisions. There, he �nds that entrants sometimes crowd out an

existing monopolist upon market entry. Nevertheless, there is no market entry in a declin-

ing market in his model and the roles of the �rms are preassigned with respect to who

enters �rst.

Both, irreversible investment and exit decisions, have been studied before by Joaquin

and Khanna (2001), but predatory investment cannot occur in their model of potential

competition, because they assume that (rational) exit of the competitor imposes a loss on

the remaining �rm. For a monopoly, Jou (2001) models both, entry and exit, and relates

them to the issue of optimal �nancing. Obviously predation is no issue in monopoly.

Wether predatory behavior occurs in equilibrium in our model depends on idiosyn-

cratic and on aggregate factors. In the aggregate the �competitiveness� of the market

is important. If adjustment costs are high or prices hardly react to changes in quantity,

predatory investment never occurs.

In the idiosyncratic domain, the di¤erence between �rms in �xed running (overhead)

costs determines their propensity for predation. In this respect, the most closely related

papers are Fershtman and Pakes�(2000) theoretical work and the empirical paper of Busse

(2002). Busse �nds for the airline industry that �nancial leverage is one of the main

determinants for starting a price war. This result is important for our �ndings, as interest

payments on debt are naturally one important source of �xed cost. Moreover, Busse �nds

that the probability of starting a price war reacts in a non-linear fashion to changes in the

�nancial situation of a �rm. We �nd a similar result in our theoretical model.

The theoretical analysis is complemented by numerical examples. The mathematical

structure only allows to generate analytical conditions for optimal strategies. Closed-form

solutions for optimal investment and exit strategies cannot be derived when both deci-

sions are to be considered simultaneously, see Dixit and Pindyck (1994). In consequence,

only numerical simulations can provide some insight on the magnitude and economic sig-

ni�cance of the strategic e¤ects studied. Therefore, one section of the paper provides

some numerical examples. In these examples, strategic motives are indeed very impor-
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tant. Firms invest predatorily, i.e. not because investment has a positive present value on

its own, but because it allows to drive the competitor out of the market. If strong price

reactions enable predatory behavior upon a market decline, �rms also invest early when

the market grows and investment does not immediately force the competitor to exit. In

consequence, the gain from waiting for more information is sometimes even fully o¤set by

strategic incentives and in this extreme, the �rst investor behaves in equilibrium as if it

follows a naive net-present-value rule.

The rest of the paper proceeds as follows. Section 2 outlines the model and presents

the basic assumptions. Section 3 discusses non-strategic investment and exit decisions of

monopolists. Section 4 derives �rm value in duopoly and the corresponding price triggers

for investment and exit. Section 5 presents our numerical results. Section 6 concludes.

Detailed proofs are available in the appendix.

2 Model setup

2.1 General assumptions

We model a market with stochastic demand �uctuations in continuous time t; t 2 [0;1[.
In this market, up to two risk-neutral �rms can produce and sell. Total production given,

the price process (Pt)t�0 is assumed to be a geometric Brownian motion and shall be given

by

Pt = D(Qt)Yt , (1)

dYt = Yt (�dt+ �dBt) . (2)

Yt measures the aggregate state of demand and Bt denotes a standard Brownian motion.

Qt denotes aggregate industry production and the inverse demandD maps these quantities

to prices which are then shifted by Y . Production of each individual �rm i at time t shall

be denoted by qi;t. For the sake of simplicity, we assume that output is solely produced

by a capital good which does not depreciate.

For t = 0 we assume that both �rms already operate in the market, each with some

initial production qi : Moreover, both �rms may exit irreversibly at no cost at any time,

i.e. irreversibly chose q = 0. Additionally, we assume that a �rm is unable to temporarily

suspend production. As long as a �rm operates it has to pay some �xed costs of operation

bi, e.g. coupon payments for debt, overhead costs etc. Therefore, instantaneous pro�ts of

�rm i are given by

qi;tPt(Qt; Yt)� bi . (3)

Both �rms may also invest and irreversibly (except for potential permanent exit) in-

crease production to �qi at cost Ci. Hence, there are 9 possible states of production (q1; q2) :

The set of possible states is given by f0; q
1
; �q1g � f0; q2; �q2g:
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Whenever one of the �rms invests or exits, the price changes instantaneously. When

for example one �rm quits the price jumps up immediately. For notational convenience,

we de�ne a function � for the relative price change induced by a change in aggregate

supply from Q� to Q+.

�Q�;Q+ :=
Pt(Q+)

Pt(Q�)
=
D(Q+)

D(Q�)
(4)

2.2 Firm Value

The �rms are assumed to have unlimited access to external resources, i.e. they can �nance

any losses and investment costs if they wish. Both �rms discount future pro�ts at the risk-

adjusted discount rate �, and seek to maximize �rm value. The discount rate � shall be

larger than the drift of the price � to obtain a �nite expected �rm value: Moreover, we

assume j�j < �2

2 : This assures that Pt reaches any �nite value in �nite time.
5

Under these assumptions, the roots of the so called �fundamental quadratic equation�

(see e.g. Dixit and Pindyck, 1994) are given by

�1;2 =
1

2
� �

�2
�

s�
1

2
� �

�2

�2
+
2�

�2
, (5)

which implies �1 > 1 and �2 < 0 and �1 + �2 = 1� 2 ��2 > 0:
Therefore, as in Jou (2001, p. 72), the general solutions for the �rm value Vi(P; qi; q�i)

of �rm i is given by the following equation.6

Vi(P; qi; q�i) = qi
P
��� �

bi
� + ai1(qi; q�i)P

�1 + ai2(qi; q�i)P
�2 . (6)

The constants ai1 and ai2 re�ect not only the (qi; q�i)-state dependent option value of

the investment and exit option; but also the expected change in pro�ts due to potential

actions of the competitor. Consequently, strategic considerations have an important in�u-

ence on both parameters, and ai1 and ai2 will vary with the state of production (qi; q�i):

2.3 Game sequence and equilibrium concept

Therefore, ai1 and ai2; have to be solved for by deriving further conditions that re�ect the

dynamic optimality of investment and exit plans. Hence, it is useful to recall the timing

structure of the game. At each point in time an active �rm may chose to

(1) invest and increase capacity to �qi if it has not invested yet,

(2) exit and become inactive from then on,

(3) or keep production constant and wait.

5As Sparla (2001) argues, if the drift � is strong compared to the variance �2, the probability that
�rms will not exit in �nite time is strictly positive. However, this causes notational inconvenience as one
root of the �fundamental quadratic equation�(see below) has to be �adjusted�to derive the correct value
functions, see Sparla (2001) for details.

6See appendix for details. As usual, we denote by �rm �i the competitor of �rm i.
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Figure 1: Examples of possible sequences of events

Consequently, each state (q1; q2) can be seen as subgame (stage) and the following

sections will derive and specify �rm value and strategies at the various states (q1; q2).

Figure 1 displays some of the possible sequences of action that may occur depending

on the realization of the Brownian motion.

We do not assume which �rm invests or exits �rst, but let this be determined in

equilibrium. Therefore, whenever the �rst �rm acts (invests or exits) the other �rm must

be at least indi¤erent between acting somewhat earlier to be the �rst mover or taking the

action later as the second mover. Consequently, it is necessary to discuss �rst the behavior

of both �rms as second mover (for investment just as for exit) to obtain the valuation of

both competitors for the second mover�s position. This valuation is crucial for solving the

competition for the position of the �rst mover using the just outlined indi¤erence principle

for equilibrium investment and exit. For the exit game the position of the second mover

coincides with the position of a monopolist.

When positions are valued di¤erently, the analysis greatly simpli�es. To obtain this

simpli�cation, the �xed costs of both �rms shall di¤er. There may also (but not nec-

essarily) be a di¤erence between both �rms with respect to the quantities the two �rms

produce both, at high and at low capacity. All di¤erences, both in costs and quantities, are

summarized in the function li (qi) := bi
qiD(qi)

; the ratio of �xed costs to monopoly earnings

at Yt = 1. Without loss of generality, we assume �rm 2 is the �rm with the the larger

ratio of �xed costs to earnings once both �rms have invested. In other words �rm 1 is

more e¢ cient with respect to overhead costs.

Assumption 1: l1 (�q1) < l2 (�q2) :

The cost di¤erence now allows us to concentrate on simple trigger strategies to char-
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acterize �rm behavior. These strategies de�ne a price trigger for investment and exit of

a �rm for any state of the game in which that �rm is active. Firms can chose a non-
predatory strategy that is characterized by exit at low prices and by a single price

trigger for investment for each state
�
q
i
; q�i

�
. If a �rm chooses a predatory strategy it

will not exit at low prices, but will instead use its investment option and invest, since this

promotes the exit of the competitor.

De�nition 1 A vector P#i 2 R11+ of (qi; q�i)-state-contingent price-triggers for investment

P inv;iq
i
;q�i ; predation P

pred;i
q
i
;q�i and exit P

exit;i
qi;q�i

P#i =

0BBBB@
P inv;iq

i
;�q�i P inv;iq

i
;q�i

P inv;iq
i
;0| {z }

investment

; P
pred;i
q
i
;�q�i P pred;iq

i
;q�i| {z }

predation

;

P exit;i�qi;�q�i P exit;i�qi;q�i
P exit;i�qi;0

P exit;iq
i
;�q�i P exit;iq

i
;q�i

P exit;iq
i
;0| {z }

exit

1CCCCA (7)

characterizes a stationary Markov-strategy of �rm i:

This notation of a strategy allows for both predatory and non predatory behavior.

Given strategy P#i �rm i invests when the price is equal to or is larger than the investment

price trigger for the �rst time in the current state (q1; q2). Firm i exits when the price

equals the respective exit-price trigger for the �rst time.

If the strategy is non-predatory, we have P pred;iq
i
;�q�i < P

exit;i
q
i
;�q�i and P

pred;i
q
i
;q�i

< P exit;iq
i
;q�i
: These

values make sure that �rm i never invests predatorily, since it will have left before the

triggers are reached.

In a predatory strategy at least one of the triggers P pred;iq
i
;�q�i or P

pred;i
q
i
;q�i

falls between the

respective exit and investment price-triggers. In this case �rm i invests also when the

price falls to the predatory investment price-trigger. It does so, since investment promotes

the exit of the competitor.

Predatory price triggers are de�ned for any state in which the �rm can still increase

capacity. Therefore, a strategy de�nes for each state a price trigger for investment, for

predation and for exit, although prices may actually never reach that price triggers of �rm

i in equilibrium. If for example in state
�
�qi; q�i

�
the competitor of �rm i exits before the

price-trigger P exit;i�qi;q�i
is actually reached, the state changes, and the trigger now e¤ective is

P exit;i�qi;0
: Therefore, the strategy de�nition de�nes also (most) behavior out of equilibrium.

Out of equilibrium situations are only ignored in our de�nition of a strategy for �rm i if

they result form a mistake of �rm i itself. This simpli�cation allows to describe strategies

in the convenient price trigger form.

So de�ned strategies are Markovian and stationary as they only condition on the

current price and state but neither on the history of the game (Markovian) nor on time

itself (stationarity). Our focus on pure strategies is motivated by notational convenience,

but underlying is the continuous time equilibrium concept of Fudenberg and Tirole (1985).
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This concept uses mixed strategies and an extended strategy space. However, equilibrium

outcomes are equivalent to those in which agents employ pure strategies, see section 3 in

Fudenberg and Tirole (1985) for details. With the de�nition of a strategy, we can now

describe what is a best response and an equilibrium in the game studied.

De�nition 2 A vector of (qi; q�i)-state-contingent price-triggers �P
#
i is aMarkov-perfect

best-response in pure strategies of �rm i to the vector of price triggers P#�i of �rm

�i, if:

(a) for all (qi; q�i) it is credible not to exit before the declared exit price-trigger

8P > �P exit;iqi;q�i : Vi

�
P; qi; q�ij �P#i ; P

#
�i

�
> 0: (limited liability)

(b) Moreover, �rm i has no incentive to preempt on its own price triggers for investment:

8P 2
h
�P pred;iq
i
;q�i ;

�P inv;iq
i
;q�i

i
: Vi

�
P; q

i
; q�ij �P#i ; P

#
�i

�
� Vi

�
P; qi; q�ij �P

#
i ; P

#
�i

�
� Ci

(no preemption)

(c) And using other price triggers P#i that ful�ll the above credibility constraints does not

increase value at the proposed price triggers:

Vi

�
�P exit;iqi;q�i ; qi; q�ij �P

#
i ; P

#
�i

�
� Vi

�
�P exit;iqi;q�i ; qi; q�ijP

#
i ; P

#
�i

�
Vi

�
�P pred;iqi;q�i ; qi; q�ij �P

#
i ; P

#
�i

�
� Vi

�
�P pred;iqi;q�i ; qi; q�ijP

#
i ; P

#
�i

�
(optimality)

Vi

�
�P inv;iqi;q�i ; qi; q�ij �P

#
i ; P

#
�i

�
� Vi

�
�P inv;iqi;q�i ; qi; q�ijP

#
i ; P

#
�i

�
:

De�nition 3 A Markov-perfect equilibrium in pure strategies is a pair of vectors�
P#i ; P

#
�i

�
; so that each vector is a best response to the other.

The �rst two constraints re�ect the credibility of a strategy. If a �rm likes to act before

a proposed price trigger has been reached, a threat to use this trigger cannot be credible.

In fact, the "limited liability" is a "no-preemption" constraint for the exit decision. When

the limited liability constraint is binding, �rm i chooses to exit before the exit price trigger

is actually reached, i.e. it preempts on its own exit. Note, however, the constraint does

not imply that the �rm does never have negative pro�ts. Only the expected value of

future (and current) pro�ts must be positive. Therefore, the constraint is conditional on

the strategy of the competitor�especially conditional on whether �rm i expects to leave

�rst or expects to leave second.

The optimality constraint implies that the equilibrium price triggers need to be best

response price triggers also for any (q1; q2) subgame. They cannot be just "good threats"
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at the very beginning of the game. Therefore, we can and need to solve for the equilibrium

by backward induction over the states (not over time). Because of this, we start with the

analysis of a monopoly, as this is the "subgame" reached, once one �rm has left.

Yet, the de�nitions above are somewhat imprecise from a very formal perspective.

Strictly speaking, the strategies �rms use should be sets of prices and �rms exit or invest

once the price hits any boundary of these sets for the �rst time. However, we have only

given upper bounds for exit and lower bounds for investment. Murto (2004) shows that

�rms may optimally use disconnected sets as optimal strategies for exit. This means a �rm

may exit when prices reach some high price interval, it will not exit on an interval of smaller

prices, but exit again when prices decrease further (gap-equilibrium). The intermediate

interval of inaction can of course only be reached by intermediate initial prices or by

mistake. Our equilibrium- and best-response de�nitions understand the �rms�strategies

in Murto�s way, but we restrict our analysis only on the largest interval of prices for exit.

This is re�ected in our de�nitions: They give no restriction for �rm i for any prices below

its own exit price-trigger. However, this procedure is only justi�ed in case strategies are

in fact disconnected sets if the initial price is not intermediate.

The following assumption ensures, that (a) price levels always exist, so that investment

is pro�table and (b) allows us to concentrate on simple price triggers for the exit decisions:

Assumption 2: (a) Investment increases revenues of the investing �rm, regardless of
whether the other �rm has invested or not, i.e.

D(q
i
+ q�i)qi < D(�qi + q�i)�qi; q�i 2 f0; q�i; �q�ig (8)

(b)Moreover, the initial price-level P0 shall be such that none of the �rms optimally
exits at t = 0 or exits when prices increase.

Part (b) of the assumption avoids the kind of di¢ culties of non-unique exit equilibria

studied by Murto (2004).

3 Firm Value, and the Timing of Investment and Exit for a Monopolist

3.1 Monopolist with large capacity

We begin our analysis with a monopolist that has already carried out its investment

option. This subgame is reached when a monopolist with low capacity invests or when

the competitor of a duopolist with high capacity exits. In other words, the monopolist�s

position is the position of the second mover with respect to exit.

The case of a monopolist with an exit option is well studied which allows us to primarily

build on established results�e.g. from Jou (2001). For a monopolist who already operates

at high capacity the following rationale determines the value of ai1 and ai2 and leads to
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Proposition 1. When price P tends to in�nity the option to exit becomes worthless and

so ai1 (�qi; 0) = 0: When exit is timed optimally a value matching and a smooth pasting

condition must hold, so that we can infer P exit;i�qi;0
and ai2 (�qi; 0) from these two conditions

which are given by the following equations

Vi(P
exit;i
�qi;0

; �qi; 0) = 0 (9)

@Vi(P
exit;i
qi;0

; �qi; 0)

@P
= 0: (10)

Proposition 1 Having invested, the monopolist´ s �rm value is

Vi(P; �qi; 0) = �qi
P

�� � �
bi
�
+

bi
�(1� �2)

 
P

P exit;i�qi;0

!�2
. (11)

The price trigger for exit is given by P exit;i�qi;0
= �2(���)

(�2�1)�
bi
�qi
.

Proof. Denote the revenues process by R := �qiP: This process has exactly the same

properties as the price process in Jou (2001). The proposition then follows straightforward

from Jou´ s Proposition 1.

From this proposition we can see that holding the option to exit adds bi
�(1��2)

�
P

P exit;i�qi;0

��2
to the expected value of pro�ts �qi P

����
bi
� the �rm would obtain when continuing operation

in�nitely.

3.2 Monopolist with an investment option

If the monopolist is able to increase capacity, ai1 is no longer zero. Instead, the ability

to increase capacity adds another pair of value-matching and smooth-pasting conditions,

which are optimality conditions for investment. Now ai1 and ai2 both have to be si-

multaneously solved for from the system of equations generated by smooth-pasting and

value-matching conditions for both, exit and investment. The conditions for investment

are given by

Vi(P
inv;i
q
i
;0 ; qi; 0) = Vi(�q

i
;�qi � P

inv;i
q
i
;0 ; �qi; 0)� Ci; (12)

@Vi(P; qi; 0)

@P

����
P=P inv;iq

i
;0

=
@Vi(�q

i
;�qi � P; �qi; 0)
@P

�����
P=P inv;iq

i
;0

: (13)

The former condition equalizes the value before investment and value after investment,

taking into account the cost of investment Ci: The latter condition ensures that value

changes smoothly in Y: Due to the change in production, prices react di¤erently to changes

in Y before and after investment. The �q
i
;�qi term corrects for this.
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For the exit price decision, the conditions remain similar to the case without invest-

ment.

Vi(P
exit;i
q
i
;0 ; q

i
; 0) = 0 (14)

@Vi(P
exit;i
q
i
;0 ; q

i
; 0)

@P
= 0 (15)

Yet, the value function is more complicated and involves terms to the power of �1 and

�2: This no longer allows to solve for the optimal price triggers analytically. However, the

trigger prices and ai1 and ai2 can be determined numerically from equations (12)� (15) :

4 Firm Value, and the timing of investment and exit in duopoly

In contrast to monopoly, behavior in duopoly is determined by strategic considerations.

The complexity of the strategic situation increases with the number of �rms that can

increase capacity. Therefore, we begin with the analysis of a duopoly in which both

�rms have already exercised their investment option and operate at high capacity �qi.7

Thereafter, we analyze the situation which naturally precedes this one: One �rm is already

at high capacity, whereas the other �rm still operates at low capacity and may invest. At

last the situation is studied where both �rms still have the option to invest.

4.1 Both �rms operate at high capacity

When both �rms have invested, so that we are in state (�q1; �q2) ; both �rm nevertheless

have to decide whether and when to exit. This decision in particular determines who

leaves �rst and who monopolizes the market. However, a priori it is not obvious which

�rm will leave �rst. But since we assumed the two �rms to di¤er in their �xed costs of

operation, the only Markov-perfect equilibrium of the resulting exit game is the one in

which the �rm with the larger overhead exits at its monopoly exit price. This is shown by

the proposition below, which is similar to Murto�s (2004, p. 13) result when gap equilibria

do not exist or Lambrecht�s (2001) result for the sub-game perfect equilibrium of the exit

game.8

Proposition 2 In all Markov-perfect equilibria in pure strategies of the (�q1; �q2)-subgame
(exit after investment), �rm 2, the �rm with the larger �xed costs, chooses its monopoly

exit price as the price trigger for bankruptcy P exit;2q2;q1
= P exit;2q2;0

, whereas �rm 1 chooses as

exit-price trigger some P exit;1q1;q2
2
i
�q1+q2;q1

�1P exit;1q1;0
;�q1+q2;q2

�1P exit;2q2;0

h
:

Proof. See appendix.
7This is similar to the pure exit games studied by Lambrecht (2001) and Murto (2004).
8As there are equal costs of exit (they are zero for both �rms) in our model no gap equilibria can arise

when �rms only decide on exit.
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Firm 2 exits at its monopoly exit price trigger, but this does not mean �rm 2 quits at

the same state of demand Y as in monopoly. Total production is larger in duopoly and

this lowers the price keeping the state of aggregate demand Y constant. Thus, as exit

occurs at the same price, in duopoly the exit state of demand Y must be larger than in

monopoly.

Since �rm 1 leaves second in equilibrium, its exit price-trigger, P exit;1q1;q2
; is in a sense

just "virtual". Along the equilibrium path, this price trigger will never be reached: Firm

2 quits before the price drops to P exit;1q1;q2
; the new state is (�q1; 0), and the e¤ective exit

price-trigger becomes P exit;1q1;0
: Thus, P exit;1q1;q2

only determines what �rm 1 would do if �rm

2 by mistake (with zero probability) had not left when the price drops to P exit;1q1;q2
:

Due to this virtuality, P exit;1q1;q2
is partly undetermined. Firm 1 can choose any exit

price trigger that �rstly would never result in its immediate exit once �rm 2 has left�
P exit;1q1;q2

> �q1+q2;q1
�1P exit;1q1;0

�
and secondly does not allow �rm 2 to chose a lower exit

price-trigger
�
P exit;1q1;q2

< �q1+q2;q2
�1P exit;2q2;0

�
:

With exit price-triggers determined on the basis of Proposition 2, we can now compute

the value functions when both �rms are at high capacity. According to Proposition 2, �rm

2 behaves myopically and so its value function is the same as when it is a monopolist.

Firm 2�s potential exit, however, changes �rm 1´s value, and so, its value function

needs to be determined anew; especially the �option values� a11; a12 in (6) have to be

re-calculated.

Again to determine a11 we suppose price tends to in�nity. Then the exit option becomes

worthless and hence a11 = 0:9 The other constant, a12; can be solved from the following

value-matching condition at the exit price of �rm 2

V1(P
exit;2
q2;0

; �q1; �q2) = V1(��q1+�q2;�q1P
exit;2
q2;0

; �q1; 0): (16)

This condition equalizes �rm 1�s value at the logical second before and after the exit of

�rm 2. The condition yields for a12 after some algebraic calculations

a12(�q1; �q2) = g �
1

1� �2
b1
�

 
1

P exit;1�q1 ;0

!�2
; (17)

with g de�ned as

g := (��q1+�q2;�q1)
�2| {z }

<1

��2 (��q1+�q2;�q1 � 1)| {z }
>0

�
�q1b2
�q2b1

�1��2
> 1:

The ratio �q1b2
�q2b1

=
P exit;2�q2;0

P exit;1�q1;0

is the ratio of monopoly exit prices; the stated inequalities are

shown to hold in the appendix. Substituting (17) in (6) we obtain for the value of �rm 1

9See e.g. Jou (2001) for details.
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Figure 2: Equity-value of �rm 1

(a) g is large, V non-monotonous (b) g is small, V monotonous

the following expressions

V1(P; �q1; �q2) = �q1
P

�� � �
b1
�
+ g � b1

(1� �2) �

 
P

P exit�q1;0

!�2
, P � P exit;2q2;0

. (18)

As one can now easily see, a factor g > 1 is added in (11) to the price of the exit option

in the presence of a competitor who leaves the market when prices decline. Factor g is

composed of the costs of postponed exit (��q1+�q2;�q1)
�2 and the gain when �rm 2 exits,

which is a �hedge� against bad states. This hedge outweighs the cost of waiting, thus

increases value, and� importantly for what follows� kinks value of �rm 1 at the price at

which �rm 2 exits. Once �rm 2 has left, only the limited liability (partly) shields �rm

1 against losses induced by a decrease in price. In contrast, before �rm 2 has left, when

prices drop �rm 1 can expect also to gain from �rm 2 leaving .

How much value �rm 1 gains upon exit of �rm 2 especially depends on the demand

function. When prices react very strongly to changes in quantity, the value gain and hence

g is large. In such a case �rm 1�s value may even decrease in price when the price is near

the exit price of �rm 2�see �gures 2(a),(b).

This point is of importance, as it is crucial for enabling predatory investment, as we

will see later. Algebraically one obtains for the right-hand �rst derivative of V1 w.r.t. P;
@V1
@P

+
; at P exit;2�q2;0

, i.e. when �rm 2 exits:

@V1(P exit�q2;0
; �q1; �q2)

@P

+

= �q1
1

�� � + g �
�2b1

(1� �2) �

 
P exit�q2;0

P exit�q1;0

!�2�1
1

P exit�q1;0

: (19)

This derivative is negative if

�g � �2b1
(1� �2) �

 
P exit�q2;0

P exit�q1;0

!�2�1
1

P exit�q1;0

> �q1
1

�� � , g �
 
P exit�q2;0

P exit�q1;0

!�2�1
> 1; (20)

and factor g can be arbitrarily large when ��q1+�q2;�q1 is large. For the last inequality to

hold, it is su¢ cient that ��2 (��q1+�q2;�q1 � 1) > 1:
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4.2 One �rm operates at high capacity while the other �rm has an
investment option

Before both �rms reach high capacity, �rms invest sequentially. As Huisman and Kort

(1999) show, non (tacit)-collusive simultaneous investment does not occur in equilibrium.

Although both �rms may become leader in equilibrium in the homogeneous setting they

study, almost surely the �rms never invest simultaneously if not colluding. So without

collusion we can concentrate the analysis on sequential investment.

Concentrating on sequential investment will help to keep our analysis focused. There-

fore, we do not explicitly study collusive simultaneous investment nor do we study collu-

sive inaction. Collusive equilibria actually may arise, but the analysis for this carries over

straightforward from Huisman and Kort (1999). Will will turn again to this point when

we discuss the competition for the leader�s position.

To study this competition, we analyze the investment decisions inducing backwardly

over the (qi; q�i)-states. So we begin with the situation where �rm �i already increased
capacity and �rm i may now follow. We have seen that the �rms di¤er substantially once

both are at high capacity. Due to this asymmetry, we need to study the behavior of both

�rms as followers separately. We begin with �rm 2. It turns out that this is the easier

case to analyze.

4.2.1 Firm 2 as follower

We have seen that �rm 2 will leave the market �rst when both �rms are at high capacity.

At low capacity, �rm 2�s overhead costs are even larger relative to its earnings than they

are when �rm 2 operates at high capacity. Thus, before investment �rm 2 is in a weaker

position than after investment, see �gure 3. Therefore, �rm 2 will also exit �rst if it

operates at low capacity and �rm 2�s investment will delay �rm 2�s own exit. Moreover,

investment does not alter this outcome of the exit game, once �rm 1 already operates

at high capacity. Thus, in state
�
�q1; q2

�
�rm 2 leaves �rst just as in state (�q1; �q2) : This

allows �rm 2 to completely ignore the strategic character of the situation:

Proposition 3 As a follower, �rm 2 behaves myopically. It chooses the same exit and

investment price-triggers that a monopolist on the residual demand function D (q2 + �q1)

would choose. Firm 1 uses an exit price trigger analogously to proposition 2 and exits

second.

Proof. See appendix.

That �rm 2 as follower behaves myopically is a result similar to other games with

preemption (e.g. Weeds, 2003).
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Figure 3: Exit-prices and value of �rm 2

4.2.2 Firm 1 as follower

If �rm 1 is the follower the strategic situation changes dramatically: In contrast to �rm

2, �rm 1�s actions a¤ect the likelihood of its competitor (�rm 2) leaving the market. This

increases the value of investment for �rm 1 and induces �rm 1 to exercise its investment

option more early.

Yet, more interesting is what happens at low prices. Consider the following situation:

Suppose at low capacity �rm 1 has a much smaller production than �rm 2, but both �rm

have similar overhead costs. Without any investment option �rm 1 would clearly leave

�rst. Suppose that �rm 1 still exits �rst if it only invests when the price rises. This may

now lead to the interesting situation shown in �gure 4. In this �gure, at high capacity

V1 is falling in P; which is possible as we have seen. For intermediate prices the gain in

expected earnings does not cover the costs of investment. However, for both high and low

prices there is a gain from investing. At high prices investment pays and is carried out at

a high price-trigger. For low prices �rm 1 has a high probability to monopolize the market

soon if it invests and so investment becomes pro�table at low prices, too. In consequence,

�rm 1 would not exit, but rather predatorily invest when prices decline. Firm 2 does not

have this opportunity to prey.

Whether or not �rm 1 preys, we need to determine in order to calculate the equilibrium

of the exit game. The decision to prey depends for �rm 1 on �rm 2�s exit price P exit;2�q2;q1
. For

the moment, this price-trigger can be taken as given, but will be determined endogenously

in equilibrium in a later section. Yet, individual optimality already puts a restriction

to the exit price-trigger, as the following Lemma shows. This Lemma proves useful in

discussing the existence of predatory investment in our model.

Lemma 1 (a) If �rm 2 leaves the market �rst, P exit;2�q2;�q1 < P exit;2�q2;q1
holds and P exit;2�q2;�q1 = P exit;2q2;0

as derived in Proposition 3.

(b) Moreover, in all cases P exit;2�q2;q1
< ��1q

1
+q2;q1+q2

P exit;2�q2;�q1 :
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Figure 4: Possibility of predatory investment

Proof. See appendix.

Now, what determines whether �rm 1 invests predatorily? For predatory investment

to occur, �rm 1�s gain in value from increasing capacity must exceed investment costs

also at low prices. This value gain, is the di¤erence of �rm 1�s value at high capacity,

V1(�q1+q2 ;q1+q2P; q1; q2) and �rm 1 value at low capacity, V̂1(P; q1; q2); assuming �rm 1

can only invest at a single high price trigger. If the value gain from investment exceeds

investment costs at prices below the single price trigger, �rm 1 enjoys a capital gain by

investing at low prices, too. On the extreme, this can mean that �rm 1 invests at all

prices above ��1q
1
+q2;q1+q2

P exit;2�q2;�q1 ; which happens when the value gain from investing is not

smaller than investment costs, C1; for intermediate prices. When investment costs exceed

the returns from investment for intermediate prices, like they do in �gure 4, then �rm 1

will predatorily invest at a low price additionally to its investment at a high price trigger.

For this high price trigger, it is necessary to know at least a lower bound that separates

the regular investment from predatory investment. Otherwise, the price triggers cannot be

distinguished numerically and the hypothetical value function V̂1 cannot be determined.

To obtain this lower bound to the investment price trigger, we construct another

hypothetical value function for �rm 1 under the assumption that �rm 1 has no investment

option at all. For this hypothetical situation, the exit equilibrium can be easily found by

applying proposition 2, and so the hypothetical value function, ~V1; is well de�ned. The

function itself is a lower bound to the true value of �rm 1, just as it is a lower bound to

V̂1.

Having constructed ~V1; we then compare this theoretical value with the value of �rm 1

at high capacity. For very large prices ~V1(P; q1; q2) < V1(�q1+q2 ;q1+q2P; q1; q2)�C1 must
hold, since investment pays due to assumption 2(a). Therefore, the (largest) solution to

~V1(P; q1; q2) + C1 = V1(�q1+q2 ;q1+q2P; q1; q2)
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is our lower bound to regular investment.

If on the one hand investment does not pay for all prices, but on the other hand

predatory investment is pro�table, then there must be a price region Z where

V̂1(P; q1; q2) >
eV1(P; q1; q2) > V1(�q1+q2 ;q1+q2P; q1; q2)� C1:

holds for P 2 Z; but for some P 0 < minZ

V̂1(P
0; q

1
; q2) < V1(�q1+q2 ;q1+q2P

0; q1; q2)� C1

holds, so that investment is pro�table at P 0. Since eV1 is a lower bound for V̂1, the last
inequality implies

eV1(P 0; q
1
; q2) < V1(�q1+q2 ;q1+q2P

0; q1; q2)� C1:

Consequently, since both functions are continuous, it is necessary for predation to occur

that

eV1(P; q
1
; q2) + C1 = V1(�q1+q2 ;q1+q2P; q1; q2) (21)

has more than one solution in P , recall �gure 4 and see �gure 5. The largest solution to

this equation de�nes the lower bound for the non-predatory investment price-trigger. At

most we may have 4 di¤erent price regions that di¤er in the pro�tability of investment:

Lemma 2 Other things being equal (21) has at most three solutions in P > maxfP exit;2q2;q1
; P exit;1q

1
;q2
g:

At most two of these solutions can be larger than ��1q1+q2 ;q1+q2P
exit;2
�q2;�q1 .

We denote the solutions with P �(< P ��)(< P ���) respectively and the set of solutions by

S.

Proof. See appendix.

Hence, formally max (S) is our lower bound for non-predatory investment. Figure 5

displays possible solutions to (21) that are non-unique.

If there is no solution, �rm 1 will invest at any price. This may occur when the costs of

investing are low, the competitor�s exit is very likely, and prices react strongly to changes in

quantity. In this case monopoly is a very valuable position and �rm 1�s investment speeds

up the competitor�s exit substantially. Then investment allows �rm 1 to monopolize the

market much sooner, so that �rm 1 likes to invest at any price level. In such a situation

however, �rm 2 has no incentive at all to be the �rst �rm to invest. We will not further

focus on this case.

If there is only one solution, we know that there will be no predatory investment.

Given the exit equilibrium, in the single solution case investment is determined by the
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Figure 5: Multiple solutions to (21)

(a) two solutions (b) three solutions

usual smooth-pasting and value-matching conditions for �rm 1:

V1(P
inv;1
q
1
;�q2 ; q1; �q2) = V1(�q1+q2 ;q1+q2P

inv;1
q
1
;�q2 ; q1; q2)� C1; (22)

@V1(P; q1; q2)

@P

����
P=P inv;1q

1
;�q2

=
@V1(�q1+q2 ;q1+q2P; q1; q2)

@P

�����
P=P inv;1q

1
;�q2

: (23)

If (21) has only one solution, we can solve for the investment price-trigger and value

function, for any given constellation of exit price-triggers
�
P exit;2q2;q1

; P exit;1q
1
;q2

�
.

If there is more than one solution to (21) we need to calculate the value of �rm 1 if

it was restricted to invest at a price above max (S) : This is the value function V̂ and

the corresponding hypothetical investment price-trigger P̂ inv;1q
1
;�q2 can again be calculated

for any constellation
�
P exit;2q2;q1

; P exit;1q
1
;q2

�
: For this calculation, we simply use the above two

conditions (22) and (23), but constrain P̂ inv;1q
1
;�q2 to be larger than max (S) :

We then compare the value after investment V1(�q1+�q2 ;�q1+�q2P; �q1; �q2) with the hypo-

thetical value V̂ (P; q
1
; �q2) taking investment cost C1 into account. If there is a price P 2h

maxfP exit;2�q2;q1
; P exit;1q

1
;�q2 g; P̂

inv;1
q
1
;�q2

h
such that the gain in value from investment, V̂ (P; q

1
; �q2)�

V1(�q1+�q2 ;�q1+�q2P; �q1; �q2); outweighs investment costs C1; then �rm 1 has an incentive to

invest predatorily. This means, we search for solutions to

V̂ (P; q
1
; �q2) = V1(�q1+�q2 ;�q1+�q2P; �q1; �q2)� C1 (24)

on the interval
h
maxfP exit;2�q2;q1

; P exit;1q
1
;�q2 g; P̂

inv;1
q
1
;�q2

i
; where P̂ inv;1q

1
;�q2 is a solution by de�nition. Two

possible structures may emerge as displayed in �gure 6:

1. If (24) has one further solution, there is an Investment/ No-Investment/ Investment

scheme, i.e. a low price-trigger for which investment occurs and a high price trigger

for investment and a region of inactivity in between. See �gure 6(a).

2. If (24) has three solutions, the situation gets more complex. If occasionally P is
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Figure 6: Solutions to (24)

(a) two solutions (b) three solutions

very low, �rm 1 has no incentive to invest because �rm 2�s exit is very likely anyway.

When the price rises, �rm 1 �nds it pro�table to invest predatorily. Yet, as the price

rises further �rm 1 again becomes inactive, but invests again when prices get very

large. See �gure 6(b). Starting between the two largest solutions, we obtain the

same Investment/ No-Investment/ Investment scheme as above.

Now, when does predatory investment occur? The following proposition gives su¢ cient

conditions

Proposition 4 Suppose V1 is not monotonically increasing at high capacity, i.e. g >�
P exit;�q2;0

P exit;1�q1;0

�1��2
.

(a) Then V1 (P; �q1; �q2) obtains its minimum on P > P exit;2�q2;0
at Pmin = g

1
1��2 P exit;1�q1;0

:

(b) Suppose �rm 1 exits �rst when it has no investment option and low capacity, i.e.
D(q

1
)

D(�q2)
< b1�q2

b2q1
: Moreover, assume that the revenue increase from investment is small

relative to the gain from �rm 2 leaving, i.e. g >
�
D(q1+q2)��q1
D(q

1
+q2)�q1

�1��2
: Then there

exist investment costs C1, so that (21) has multiple solutions.

(c) Suppose
D(q

1
)

D(�q2)
> b1�q2

b2q1
; so that �rm 2 exits �rst at low capacity without investment

option. Moreover, assume �rm 1�s value at high capacity decreases faster in Y than

it decreases if �rm 1 is at low capacity. Expressed formally, this condition is

@ eV1
@P

�
�q

1
+q2;q1+q2

�1P exit;2q2;0
; q
1
; q2

�
>
@V1
@P+

�
P exit;2q2;0

; q1; q2

�
�q

1
+q2;q1+q2 :

Then there exist investment cost C1 so that predatory investment occurs. @V
@P+

is the

right-hand partial derivative:
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Proof. See appendix.

The case studied in part (c) of the proposition is relatively restrictive. It requires

that �rm 1 bene�ts from a change in the likelihood of �rm 2�s exit more strongly at high

capacity than it does at low capacity. This occurs, if �rm 1 is small at low capacity, but

is relatively large at high capacity. Unfortunately, the condition cannot be boiled down to

an expressions similar to those in part (b) of the proposition.

The proposition, however, does not clarify whether we may arrive in a situation like

in �gure 6(a) or (b). For the �gure 6(b)-type situation the later analysis quickly becomes

very complex. We can however avoid complications even in this situation and keep the

following analysis focused and tractable by assuming �rm 2 does not invest at very low

prices. Then predatory investment of �rm 1 only occurs when prices fall:

Assumption 3: The investment cost of �rm 2, C2; are large enough so that �rm 2 will

not invest at prices below ��1q1+q2 ;q1+q2P
exit;2
q2;q1

:

Given this assumption, state
�
q1 ; q2

�
can only be initially reached at prices larger

than ��1q1+�q2 ;q1+q2P
exit;2
q2;q1

: To see this, suppose S has three elements (P �; P ��; P ���); from

Lemma 2, we know that at most two elements of S are larger than ��1q1+�q2 ;q1+q2P
exit;2
q2;q1

.

Therefore, the smallest element of S; P �; is smaller than the price after investment: Hence,

it cannot be the case that �rm 1 �nds predatory investment pro�table after an increase

in price, but not initially. See �gure 6(b).

Of course, predatory investment does not always occur. When prices react weakly

to changes in supply, then �rm 1 does not gain much from �rm 2�s exit. This gives the

following

Proposition 5 If demand is su¢ ciently elastic, i.e. 8Q1; Q2 : �Q1;Q2 � 1; or if demand
is not too inelastic and the costs of investment C1 are su¢ ciently large, then predatory

investment never occurs.

Proof. See appendix.

In case predatory investment does occur, the exit value-matching condition for �rm 1

has to be modi�ed to

V1(P
pred;1
q
1
;q2

; q
1
; q2) = V1(�q1+q2 ;q1P

pred;1
q1 ;q2

; q1; q2)� C1 . (25)

This value matching condition requires value before and after investment to be equal at

the time of predatory investment. On the timing for its investment, �rm 1 decides without

any constraint. For regular investment, it uses a smooth-pasting condition to optimally

determine the price trigger. For predatory investment, �rm 1 will always wait until the

price falls to the point at which investment forces the other �rm to leave immediately

afterwards. This is a result of the following Lemma.
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Proposition 6 If a �rm invests predatorily (but does not invest at any price), it prefers

to invest not before price falls to ��1q
1
+q�i;�q1+q�iP

exit;�i
q�i;�qi : At this price the competitor leaves

directly after investment is realized. For example in state
�
q
1
; �q2

�
�rm 1 prefers to invest

predatorily at ��1q
1
+�q2;�q1+�q2P

exit;2
�q2;0

if it invests predatorily.

Proof. See appendix.
At ��1q

1
+q2;q1+q2

P exit;2q2;0
the value function V1(�q

1
+q2;q1+q2P; q1; q2) has a kink, so there

is no need for a smooth-pasting condition to hold�which is may be a simpli�ed alternative

way to express the above Lemma.

Economically, this means �rm 1 will wait with predatory investment until investment

will force �rm 2 to leave directly afterwards with probability 1. Before, the increase in

earnings does not cover the costs of investment and also �rm i does not loose any monopoly

gain by waiting for a further price decrease. It can still make sure to obtain that gain by

investing later at �q
1
+q2;q1+q2

�1P exit;2q2;0
:Waiting longer is suboptimal, �rm 1 would forego

the monopoly pro�ts. In summary:

Corollary 1 If �rm 1 invests predatorily in state
�
q
1
; �q2

�
; then it will use P pred;1q

1
;�q2 =

��1q
1
+q2;q1+q2

P exit;2q2;0
as price trigger for predatory investment.

4.3 Investment decisions in duopoly when no �rm has invested yet

When neither of the �rms has invested, yet, both �rms compete for being the �rst investor

(leader) timing investment strategically. Suppose �rm i becomes the leader. While q�i
stays low, �rm i has invested and increased its own capacity and now can only decide on

exit. However, �rm i is still in�uenced by �rm -i�s investment decisions. Therefore, �rm

i0s value function is determined by the value-matching condition for the price at which

�rm �i invests and by the equilibrium of the exit game. So we have

Vi(P
inv;�i
q�i;�qi

; �qi; q�i) = Vi(�q1+q2 ;q1+q2P
inv;�i
q�i;�qi

; q1; q2); (26)

and if �rm i expects to leave �rst, value matching for exit yields

Vi(P
exit;i
�qi ;q�i

; �qi ; q�i) = 0; (27)

or else, when �rm i expects to leave second, value matching yields

Vi(P
exit;�i
q�i ;�qi

; �qi ; q�i) = Vi(��qi+q�i;�qi
P exit;�iq�i ;�qi

; �qi ; 0): (28)

These conditions determine �rm i0s valuation of the leader�s position. This valuation

di¤ers from the valuation of the follower�s position and the value di¤erence between both

positions determines �rm i0s incentive to preempt on �rm �i and take the lead. Following
Huisman and Kort (1999), we de�ne a function �i(P ) that represents the advantage of
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taking the role of the leader at price P: This means �i(P ) measures the di¤erence in value

of investing at P instead of becoming the follower when the other �rm invests at price P:

�i(P ) := Vi(�qi+q�i ;qi+q�iP; qi ; q�i)� C| {z }
Value as leader

� Vi(�qi+q�i ;qi+q�iP; qi ; q�i)| {z }
Value as follower

Whenever �i(P ) = 0 �rm i is indi¤erent between taking the lead at price P and follow-

ing. In order to describe the root-behavior of �i(P ) some more (short-hand) notation is

necessary. We denote the state-
�
q
i
; q�i

�
price at which �rm i invests after becoming the

follower by P i, i.e. P i = ��1qi+q�i ;qi+q�iP
inv;i
qi ;q�i

. Analogously, P i is the price at which �rm

i quits as follower, invests predatorily, or �rm �i quits, whichever happens �rst:

P i := �
�1
qi+q�i ;qi+q�i

�max
n
P exit;iqi ;q�i

; P pred;iqi ;q�i
; P exit;�iq�i ;qi

o
:

The following proposition gives the maximum number of indi¤erence points, i.e. solutions

to �i(P ) = 0.

Lemma 3 (a) On M :=

�
max
j=1;2

fP jg; min
j=1;2

fP jg
�

�i(P ) = 0 (29)

has at most three solutions.

(b) Suppose P i � P�i, so �rm i as follower invests earlier than �rm �i would do in that
position. Then �i(P ) = 0 has at most two solutions on M: In addition to solutions

on M , P�i is also a solution and
@�i(P�i)

@P < 0:

(c) If P i > P�i , then �i(P i) = 0 and �i(P ) < 0 for all P 2
�
P�i; P i

�
:

(d) If �i(P ) = 0 has two solutions on M and P i � P�i as in (b), or �i(P ) = 0 has three
solutions and P i > P�i as in (c), then �i(maxfP ig) > 0: Moreover, there can only
exist one additional solution on min

j=1;2
fP jg < P < max

j=1;2
fP jg if P i < P�i:

Proof. See appendix.
If there are two solutions to �i(P ) = 0 and P i � P�i (or three solutions and P i > P�i),

the smallest one is the preemption threshold for predatory investment and the (next)

larger one is the preemption threshold for non-predatory investment. These thresholds

are denoted by P pred;ipre and P inv;ipre respectively. They are represented by the dotted lines

in �gure 7(a) and represent a price at which �rm i is indi¤erent between being the leader

and being the follower. For (an environment of) prices below P pred;ipre and above P inv;ipre �rm

i prefers the leader�s position.
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Figure 7: Preemption thresholds for

(a) both, predatory and regular investment (b) only regular investment

If there is only one solution for �i(P ) = 0 on M , there is only a non-predatory

preemption threshold, see �gure 7(b).

If P i � P�i; then �i( �Pi) > 0: At �Pi �rm i follows, i.e. it invests and has to pay

investment costs Ci: The game now enters state (�qi; �q�i) : This is worse for �rm i than

being the leader at the same aggregate state of demand Y: The leader�s position implies a

higher price, since �rm �i�s investment is still to come.
In the extreme the leader�s position can be so valuable for �rm i that �i(P ) = 0 may

have no solution onM: Suppose, for example, that the price reacts very strong to quantity

changes and only �rm i taking the lead can force �rm �i to exit �rst. In such a case �rm
i has a strong incentive to invest both, predatorily and non-predatorily.

When there are no solutions to �i(P ) = 0; obviously no solution can serve as a pre-

emption threshold. Instead we set P inv;ipre = min (M) and P pred;ipre = P i: This is the only

case in which P inv;ipre > P pred;ipre :

Also, the other extreme may be attained. If P i > P�i, �rm i might prefer to be the

second mover at any price, so that �i(P ) < 0 for all P < P i: If the value of waiting is

very large for �rm i due to large overhead costs, such a situation may for example occur.

However, by de�nition �i( �Pi) = 0 and hence we set P
inv;i
pre = P i.

Now, these thresholds and �i(P ) only describe the incentive of �rm i to take the

lead and invest, given that it expects its competitor to do the same otherwise. It can

well be that none of the �rms would unilaterally like to invest below max �Pj ; although

preemption thresholds from �i(P ) = 0 exist. The function �i only describes conditional

incentives to invest earlier, and this conditionality applies to both regular and predatory

investment. For predation, there may be a situation where none of the �rms gains from

predatory investment unless it expects the other �rm to prey in the future. For regular

investment, both �rms may prefer the gains from tacit-collusive delay (or even inactivity)

to the leader�s position at all prices.

This leads to the well studied typical problem of non-unique equilibria in timing games

of (dis-)investment which is associated with Fudenberg and Tirole´s (1985) notion of



The Other Side of Limited Liability:Predatory Behavior and Investment Timing 24

perfect timing game equilibria. Equilibria that only base on the relative valuation of the

leaders position are not renegotiation proof.10 Hence, for non-predatory investment we

need to compare the valuation of tacit collusion, V Ci
�
P; qi ; q�i

�
, with the valuation of

the leader�s position Vi(�qi+q�i ;qi+q�iP; qi ; q�i)�Ci. We do not derive the collusive value
function explicitly but refer to Huisman and Kort (1999), Sparla (2001) or Weeds (2003)

for a detailed discussion and derivation of V Ci in similar cases.11 If there exists a price

such that one �rm prefers the leader�s position over simultaneous investment, only the

preemption equilibrium studied in the proposition below prevails:

Proposition 7 If there exists a P such that for one of the �rms Vi(�qi+q�i ;qi+q�iP; qi ; q�i)�
Ci > V Ci

�
P; qi ; q�i

�
; then the only Markov-perfect equilibrium for the preemption game

for non-predatory investment is the following: Let L be the �rm for which P inv;Lpre <

P inv;�Lpre : Firm L takes the lead and chooses an investment-price trigger so that the competi-

tor is at least indi¤erent between becoming leader or follower. Therefore, either P inv;Lq
L
;q�L =

P inv;�Lpre or P inv;Lq
L
;q�L is set unconstrained optimal and solves a smooth pasting condition, if

this yields a smaller price than P inv;�Lpre .

Proof. See appendix.

As outlined before, that preemption thresholds exist for predatory investment does

not necessarily imply that predatory investment occurs in a renegotiation-proof Markov-

perfect equilibrium. Again, we need to de�ne an auxiliary value function V̂ : This function

is based on assumed exit price-triggers and the non-predatory investment equilibrium as

described before. Just as in the case when �rm 1 is the follower, only if at least for one

�rm

V̂i

�
��1qi+q�i ;qi+q�iP

exit;�i
q�i ;�qi

; qi ; q�i

�
+ C < Vi(�qi+q�i ;qi+q�iP

exit;�i
q�i ;�qi

; qi ; q�i) (30)

there will be predation in equilibrium. If in addition predatory preemption thresholds are

de�ned for both �rms� i.e.�i(P ) = 0 has multiple solutions� then there will be preemp-

tion for predation and the following proposition describes the resulting equilibria.

Proposition 8 Suppose there is a preemption game for predatory investment. In addi-
tion,

(a) suppose P pred;ipre < P inv;�ipre for both �rms. Then the only Markov-perfect equilibrium

(outcome) is that the �rm with the higher P pred;ipre takes the lead for predatory invest-

ment. It invests when the price falls to P pred;iq
i
;q�i : This price trigger is P

pred;i
q
i
;q�i = P

pred;�i
pre

10 Indeed, in some numerical simulations (not reported) we found non-renegotiation-proof predatory
equilibria. Renegotiation-prooveness is but a strong assumption on rationality.
Therefore, we might in reality observe a circular situation of the following form: One agent takes pre-

emptive, predatory action in threat of a predatory action of the other agent. This other agent however
has no incentive to undertake that action as long as the �rst agent does not take action. The �rst agent
however takes action as she is threatened. Triggered o¤ by a sunspot, the situation escalates.
11The appendix contains a description of how this function can be derived.
FOR THE REFEREE: This appendix could be dropped to shorten the paper.
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if preempting is a constraint. If preemption poses no constraint, i.e. if P pred;�ipre <

��1qi+q�i ;qi+q�iP
exit;�i
q�i ;�qi

; the trigger is P pred;iq
i
;q�i = �

�1
qi+q�i ;qi+q�i

P exit;�iq�i ;�qi
.

(b) Suppose P pred;ipre > P inv;�ipre for �rm i and one of the �rms has an unilateral (un-

constrained) incentive to invest on
h
P inv;�ipre ; P pred;ipre

i
. If P0 > P pred;ipre ; then in all

Markov-perfect equilibria �rm �i invests predatorily at P pred;ipre .

(c) Again suppose P pred;ipre > P inv;�ipre for one of the �rms, but none of the �rms has

an unilateral incentive to invest on
h
P inv;�ipre ; P pred;ipre

i
: Then in all renegotiation-

proof Markov-perfect equilibria �rm i invests predatorily at its unconstrained optimal

predatory investment price-trigger or at P pred;�ipre ; whichever is the higher price.

Proof. See appendix.

If there is no preemption for predation but �rm i has an unilateral incentive to prey, i.e.

(30) holds for �rm i; then �rm i will invest predatorily at ��1qi+q�i ;qi+q�iP
exit;�i
q�i ;�qi

: To avoid

further complication for determining the exit price-triggers, and avoid strategic situations

of the "gap-equilibrium" type studied by Murto (2004), we make the following assumption

according to the price-level (and investment costs) in t = 0 :

Assumption 4: At the initial price-level P0 at least one �rm �nds it unpro�table to

invest and both �rms do not �nd it pro�table to exit. Moreover, P0 lies between the

preemption thresholds
�
P pred;ipre ; P inv;ipre

�
, i.e.

min
i=1;2

fP pred;ipre g < P0 < max
i=1;2

fP inv;ipre g :

4.4 Equilibrium exit-strategies

So far, we have taken the price-triggers which both �rms use for their exit-decision as

given. However, exit strategies have to be determined as an equilibrium of both �rms

competing to monopolize the market. We already studied their exit decisions, when �rm

2 is at low, but �rm 1 is at high capacity, when both �rms are at high capacity, or when

one of them is a monopolist. We will now generalize the exit equilibrium considerations

to any state (qi; q�i) : This includes the states studied before just as well as the situation

when only �rm 1 or both �rms operate at low capacity.12

Given that �rm i expects to exit �rst in state (qi; q�i) ; �rm i will use the value-matching

and smooth pasting condition

Vi(P
exit;i
qi;q�i ; qi; q�i) =

@Vi
@P

(P exit;iqi;q�i ; qi; q�i)
!
= 0 (31)

12Pure exit decisions have been studied by Lambrecht (2001) and Murto (2004) in more detail. Essen-
tially, their analysis carries over, so we can be relatively brief.
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Figure 8: Construction of P ind;iqi;q�i

to determine its own exit price-trigger. Firm i can ignore the exit price of the competitor

once it expects to leave �rst. Being the �rst to exit is worse than being the second and

thus, �rm i will never make an e¤ort meeting the constraint that its exit-price trigger

must be larger than �rm �i�s exit price. Hence, the exit price-trigger that is determined
according to conditions (31) is myopic and will be denoted by Pm_exit;iqi;q�i :

If �rm i expects to leave second in state (qi; q�i), q�i 6= 0; its value function is locally
independent from its own exit price-trigger P exit;iqi;q�i . Only being second to leave matters.

Thus, �rm i is indi¤erent about the level of its own exit price-trigger on the margin. There-

fore, there are always multiple equilibria which only di¤er with respect to the (virtual)

exit price-trigger of the �rm which exits second.

However, which �rm actually exits second we still need to determine. Here, the limited

liability constraint of De�nition 2 is crucial. Denote by P ind;iqi;q�i the largest exit-price-trigger

�rm i can use, so that the limited liability constraint (in De�nition 2) of �rm �i holds
with equality for some P 0 given that �rm �i expects to leave second. Expressed formally
this is:

P ind;iqi;q�i := sup

8>>>>><>>>>>:
P exit;iqi;q�i

�����������

8P exit;�iq�i;qi :| {z }
even if �rm -i leaves second,

9P 0 > P exit;iqi;q�i :| {z }
before �rm i leaves

V�i
h
P 0; q�i; qijP#�i;

�
P#i ; P

exit;i
qi;q�i

�i
= 0| {z }

�rm -i prefers to exit

9>>>>>=>>>>>;
(32)

If �rm i chooses an exit price trigger below P ind;iqi;q�i , �rm �i cannot credibly threaten to
stay longer than �rm i; because the limited liability constraint would become binding

otherwise, see �gure 8.

Thus, �rm �i leaving at the myopic price trigger and the other �rm choosing an exit

price-trigger smaller than P ind;iqi;q�i will be an equilibrium if P
ind;i
qi;q�i ful�lls the other conditions

of De�nition 2.

Note that P ind;iqi;q�i always exists and P
ind;i
qi;q�i � ��1qi+q�i;q�iP

exit;�i
q�i;0

always holds, since
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�rm �i would immediately exit in state (q�i; 0) at any price below P exit;�iq�i;0
, so that at

��1qi+q�i;q�iP
exit;�i
q�i;0

the limited liability constraint de�nitely binds for �rm �i: The same
argument also implies that �rm i cannot threaten to exit below ��1qi+q�i;qiP

exit;i
qi;0

: This time,

�rm i would immediately exit after �rm �i had left. Therefore, P ind;iqi;q�i � ��1qi+q�i;qiP
exit;i
qi;0

is necessary to make P ind;iqi;q�i a credible threat.

The following proposition describes all equilibria of the exit-game. What type the

equilibrium actually attains, depends on the parameters of the environment.

Proposition 9 (a) Suppose that for �rm i the myopic exit price-trigger Pm_exit;iqi;q�i ; ob-

tained from (31) ; is smaller than P ind;iqi;q�i : Then the only equilibrium of the (qi; q�i)

stage is that �rm �i chooses Pm_exit;�iq�i;qi and �rm i chooses a price-trigger lower than

or equal to P ind;iqi;q�i.

(b) If
h
�qi+q�i;qi

�1P exit;iq�i;0
; P ind;iqi;q�i

i
= ;; then �rm i chooses its myopic exit price-trigger

P
m_exit;i
qi;q�i in all equilibria of the (qi; q�i) stage.

(c) If Pm_exit;�iq�i;qi > P ind;iqi;q�i and
h
�qi+q�i;qi

�1P exit;iq�i;0
; P ind;iqi;q�i

i
6= ;; then �rm i choosing

some P exit;iqi;q�i 2
h
�qi+q�i;qi

�1P exit;iq�i;0
; P ind;iqi;q�i

i
and �rm �i choosing Pm_exit;�iq�i;qi is an

equilibrium of the (qi; q�i) stage, but only if this yields no incentive for �rm
�i to invest predatorily.

(d) If in any possible equilibrium given in (c) some �rm has an incentive to invest preda-

torily, then both �rms preempt on predatory investment.

Proof. See appendix.

A few explanatory remarks that give an idea of the proof and reasoning of this propo-

sition seem appropriate: The idea behind (a) can be summarized relatively simple. Even

if �rm i plans to leave �rst, it will choose Pm_exit;iqi;q�i and consequently forces �rm -i to

leave �rst. Hence i can only exit second. This line of argument is discussed in detail in

Lambrecht (2001).

Case (b) has already been analyzed to the most extent. More interesting is (c). Firstly,

it gives rise to the problem of equilibria that are even non-unique in the sequence of exit.13

It may be the case that both �rms can force the other �rm to leave �rst. In the numerical

analysis we tackle this problem by assuming that the �rm with the larger P ind;iqi;q�i is selected

as the one who leaves second.14

13As explained before, equilibria always are non-unique in the exit-price of the �rm leaving second.
These exit price-triggers are only e¤ective out of equilibrium.
14This selection can be motivated by the following idea: Suppose �rm �i chooses an exit price-trigger

marginally larger than P ind;iqi;q�i : Is the choice of P
ind;i
qi;q�i still credible then? Of course not for the �rm with

the lower P ind;iqi;q�i :
Conversely, this rule can be interpreted as a notion of conservativeness in the following sense: Suppose
the shareholders of �rm i imagine the worst case, i.e. �rm �i defaults just one logical second before i0s
(proposed) trigger price is reached. Then only if the proposed exit price trigger is larger than the own
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Secondly, under a credible threat of predation, �rm i can never expect to leave second

and monopolize the market. Thus, �rm �i will choose an exit price trigger below P ind;�iq�i;qi

(if this is possible) and exit second. Firm i planing to leave �rst may or may not prevent

the predatory investment. Whether predatory investment still occurs is determined as

outlined before.

5 Numerical Examples

On the basis of the theoretical discussion in the last sections we can calculate the equilib-

rium for any given parameter constellation numerically. This section now presents some

examples based on some variations in parameter values. Table 1 contains the values for

the non �rm-speci�c parameters. In all calculations an isoelastic inverse demand function

is used. Three cases are considered, in two of them investment costs are homogeneous, in

the other one investment costs di¤er among �rms.

Table 1: General Parameter Values
Discount Rate � 0.05
Drift � 0.03
Variance �2 0.1
Inverse-Demand Q��

Tables 2 and 3 report the results for these three cases. First of all, from these ex-

amples we see that investment price-triggers for the duopoly and the monopoly di¤er

signi�cantly.15

For the follower, this is just the standard result of (Cournot) competition�the residual

demand is less elastic. For the preemption threshold of the leader, the low price-trigger is

a result of strong �rst-mover advantages of the Stackelberg-leader. The usual �rst-mover

advantages are ampli�ed in the presence of predatory behavior and / or a reversed order

of exit upon investment.16 These additional �rst-mover advantages can be very strong

which can be seen by comparing the price-triggers with the "naive" or "Marshallian"

net-present-value price trigger for investment. This naive price trigger can be calculated

indi¤erence price trigger, i has no incentive to exit before.
Another motivation for this rule would be that �rms step by step and sequentially undercut each other�s
exit price-triggers before the actual game commences.
15This is also true for the trigger values of Y , which can be obtained by rescaling the price triggers by

1:86607 for the leader and 1:95912 for the follower, setting D (q) = 1:
16The e¤ect of the reversed order of exit can also be seen by comparing the follower investment price-

triggers: For �rm 1 investment is more valuable as follower compared to �rm 2. It invests earlier to become
the �rm that later monopolizes the market.
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as

NPVRule_1 =
�Ci�

qi�qi+q�i ;qi+q�i � qi
� ; or (33)

NPVRule_2 =
�Ci�

qi�qi+q�i ;qi+q�i � qi�qi+q�i ;qi+q�i
� : (34)

In the three cases, the price triggers are 8.2, 7.6, and 10.9 respectively assuming the other

�rm never invests (rule 1). If one assumes the other �rm invests at t = 0 unless �rm

i invests (rule 2), then the net-present-value rule yields a price trigger of 4.5 in case A,

which is only slightly below the equilibrium investment-price trigger of �rm 1.

The �true�naive net-present-value rule investment-price trigger uses the equilibrium

behavior of �rm 2 and hence falls in between the two extremes. Therefore, the equilibrium

investment threshold price trigger is extremely close to or lower than this "naive" price

trigger. Hence, we can conclude that the gains from waiting are completely outweighed

in some cases by the threat of being forced to exit �rst. This strong strategic value of

investment is present in all three exemplary cases.

The main di¤erences (in the parameters) between cases A, B, and C may be summa-

rized as follows:

Case A Firm 1 has lower leverage before and after investment.

Case B Firm 1 has a higher leverage before, but lower leverage after investment.

Case C The size of the investment projects di¤ers between Firm 1 and 2.

Comparing the equilibrium outcomes of the three cases (see tables 2 and 3) shows that

the �rm with the higher initial, the �rm with the higher post-investment leverage, and the

�rm with the lower leverage in both states can prey in equilibrium. Therefore, interpreting

the overhead costs as debt-service, our model includes not only the cases studied by Busse

(2001) but also cases in which the �nancially healthier �rm preys. Figure 9 shows the �i
functions for both �rms corresponding to Case A. Recall, these functions represent the

gain of becoming the leader.

Table 4 reports the e¤ects of a change in the �xed costs of �rm 1 (relative to Case

A). When investment does not change the ordering of exit price triggers the e¤ect of �xed

costs on investment-price triggers is rather minor. As �rm 1 becomes leader in equilibrium,

investment in duopoly is delayed by an intermediate increase in �xed costs.

However, if both �rms become more similar, overhead costs starkly in�uence invest-

ment decisions. If �rm 2 can expect that �rm 1 leaves the market �rst when �rm 2

becomes the leader then �rst-mover advantages become very strong. As we have seen, the

�rst-mover advantages can be strong enough to induce �rm 1 to invest below the simple

net-present-value price trigger in equilibrium.
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Table 2: Case A,B: � = 0:9
Firm 1 (A) Firm 1 (B) Firm 2

Production before Investment 18 17.9 18
Production after Investment 20 20 20
Investment-Costs 171.43 171.43 171.43
Fixed-Costs [Overhead] 49.9 49.9 50
MONOPOLY
Exit-Price Trigger after investment 0.4496 0.4496 0.4505
Exit-Price Trigger before investment 0.4980 0.4980 0.4990
Investment-Price Trigger 99.844 95.337 99.844
DUOPOLY
Both Invested, Exit-Price Trigger Firm 2 exits Firm 2 exits 0.45049
Firm 1 Follower: Exit-Price Trigger 0.4867 0.4888 Firm 1 exits
Firm 1 Follower: Investment-Price Trigger 15.872 15.061 Firm 1 inv.
Firm 2 Follower: Exit-Price Trigger Firm 2 exits Firm 2 exits 0.4881
Firm 2 Follower: Investment-Price Trigger Firm 2 inv. Firm 2 inv. 17.48
Preemption Threshold Non-Predatory Investment 4.57881 4.36741 4.895 (4.873)
Unilateral Incentive to Predatorily Invest as Leader No No Yes
Firm 1: Predatory Investment-Price Trigger 0.611624 0.6206 Firm 1 inv.

Table 3: Case C: � = 0:8

Firm 1 Firm 2
Production before Investment 17 18
Production after Investment 21 20
Investment-Costs 228.57 171.43
Investment-Costs per unit 57.14 85.72
Fixed-Costs [Overhead] 70 70
MONOPOLY
Exit-Price Trigger after investment 0.601 0.631
Exit-Price Trigger before investment 0.7296 0.695
Investment-Price Trigger 34.75 49.77
DUOPOLY
Both Invested, Exit-Price Trigger Firm 2 exits 0.631
Firm 1 Follower: Exit-Price Trigger 0.693 Firm 1 exits
Firm 1 Follower: Investment-Price Trigger 9.293 Firm 1 inv.
Firm 2 Follower: Exit-Price Trigger Firm 2 exits 0.680
Firm 2 Follower: Investment-Price Trigger Firm 2 inv. 15.924
Preemption Threshold Non-Predatory Investment 3.579 3.109
Unilateral Incentive to Predatorily Invest as Leader No Yes
Firm 1: Predatory Investment-Price Trigger Firm 2 inv. 0.786
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Table 4: E¤ects of �rm 1�s �xed costs on investment-price triggers

�xed costs P inv;1q
1
;0 P inv;1q

1
;q2

P inv;1pre P inv;2pre

49.9� 99.8436 15.8715 4.57881 4.89525
49 99.8422 17.2948 6.0871 6.52665
48 99.8407 17.2942 6.08645 6.52679
47 99.8392 17.2935 6.08581 6.52694
40 99.8294 17.2894 6.08161 6.5279
35 99.8232 17.2868 6.07892 6.52851
� Firm 1 exits �rst as follower and also predatorily invests as leader.

Figure 9: Gain, �i; from becoming the leader, Case A

Although only results for �rms that are relatively symmetric are reported, solutions

have been calculated for cases that are more asymmetric in production or investment costs.

Qualitatively, the results do not change much moving to asymmetric cases; only predatory

outcomes become more likely, i.e. we obtain predatory equilibria also for cases with a

greater di¤erence in �xed costs or less pronounced reactions in price. Generally speaking,

predatory outcomes are likely if �rm 1 is small compared to �rm 2 and both have large

overhead costs.

6 Conclusions

In this paper the analysis of real options in duopoly has been extended to allow for

simultaneous irreversible investment and exit decisions. The duopoly has been modelled

in continuous time, and �rms could default on their obligations at no costs.

We have found that allowing for endogenous exit decisions alters the strategic situa-

tion signi�cantly. Firms may invest not because investment is fundamentally pro�table,

but because this makes the exit of the competitor more likely ("predatory investment").

Therefore, in the model presented �xed costs have a negative strategic e¤ect. This may

for example explain why companies are willing to spend much lump-sum money and e¤ort

to cut back on overhead costs.
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However, the �xed costs are found to have a discontinuous e¤ect on investment in-

centives. For moderate costs, investment tends to decrease when �xed costs increase.

However, if cost levels get large enough, investment-incentives become very strong. Then

both �rms seek to become the leader and subsequently monopolize the market as soon as

revenues drop due to adverse shocks to aggregate demand.

This reasoning gives an explanation for predatory behavior in a dynamic setting, but

is neither relying on asymmetric information among competitors nor on learning-curve or

network e¤ects. The numerical examples show that in equilibrium both, the �rm with the

larger and the �rm with the smaller overhead, may invest predatorily. Moreover, we have

found that the outlined strategic incentive can have a substantial in�uence also for invest-

ment not directly aimed at crowding out the competitor. The strategic motive may even

completely o¤set the value of waiting. Then, in equilibrium the �rst �rm times investment

as if it would follow a "naive" net-present value rule for investment. Hence, the interac-

tion of exit and investment decisions becomes economicly important when irreversibility

of decisions is taken into account.

The irreversibility framework also partly shields our model of predatory investment

against the usual critique that a predator could just acquire its competitor. Whether or

not acquisition is a possible alternative depends on the kind of �xed costs that drive the

competitor into exit. If, for example, the �xed costs come in the form of �nancial obliga-

tions, then the remaining �rm may not necessarily be able to default on them separately

after the acquisition. Consequently, buying the �rm means loosing one exit option and

capacity cannot be reduced saving on �xed costs. Yet, aggregate capacity reduction is

exactly the reason for predatory investment. In such a case, the predator may prefer to

actually spend investment costs over the acquisition of its competitor.

For further research several extensions can be made: First of all, overhead-costs may

be chosen endogenously. Moreover, collusive behavior could be studied. Other possible

extensions include market entry and technological choice. Moreover, welfare issues and

issues of competition policy have not been analyzed.
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7 Appendix

In the following appendix, we �rst derive the functional form of the value function used

in our model. Thereafter, the proofs which were omitted in the main text are presented.

7.1 Deriving the value functions

The expected capital gain is calculated treating Vi(P; qi; q�i) as an asset value and using

(2). This yields according to Itô´s Lemma:

E
�
dVi(P; qi ; q�i)

dt

�
=
1

2
�2P 2

@2Vi(P; qi; q�i)

@P 2
+ �P

@Vi(P; qi; q�i)

@P
(35)

This expected capital gain plus the dividend, qiP � bi; must be equal to the normal return
�Vi(P; bi ; qi ; q�i) to eliminate arbitrage. Thus, we obtain the following di¤erential equation

�Vi(P; qi; q�i) =
�2

2
P 2
@2Vi(P; qi; q�i)

@P 2
+ �P

@Vi(P; qi; q�i)

@P
+ qiP � bi (36)

A particular solution to this equation is

Vi(P; qi; q�i) = qi
P

�� � �
bi
�

(37)

The complementary solution as in (6) involves terms in the form of P � ; for each solution

� to the fundamental quadratic equation

�2
�2

2
+ �

�
�� �

2

2

�
� � = 0 (38)

as given in (5) : (See Dixit and Pindyck (1994) for details.) Hence, the value function Vi
takes the form

Vi(P; qi; q�i) = qi
P
��� �

bi
� + ai1(qi; q�i)P

�1 + ai2(qi; q�i)P
�2 . (39)

7.2 Proofs of the propositions of the main text

7.2.1 Proof of Proposition 2

For notational convenience, we introduce some short-hand notation. We denote by �1 :=

�q1+q2;q1 ; by �2 := �q1+q2;q2 ;and by r :=
q1b2
q2b1

. Closely related to r is the ratio of relative

�xed costs, l2l1 ; since r =
l2
l1
�2
�1 :

Lemma 4 Under the assumptions of our model and with g as in the main text

g � h := (�1)�2 � �2 (�1 � 1)
�
r

�2

�1��2
� 1 (40)

holds for all �1 � 1 � ��(1��2)2 :
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Proof. We have 1 � ��(1��2)2 and so h must be smaller than g :

h(�1) =

�
1

�1

���2
��2|{z}
+

(�1 � 1)| {z }
+

�
r

�2

�1��2
| {z }
<r1��2

(41)

�
�
1

�1

���2
� �2 (�1 � 1) r1��2 = g (�2) :

Now, taking the �rst derivative of h with respect to �1 yields

@h(�1)

@�1
= �2�

�2�1
1 � �2

�
r

�2

�1��2
Using r = l2

l1
�2
�1 ; we obtain

@h(�1)

@�1
= �2�

�2�1
1 � �2

�
l2

l1

1

�1

�1��2
= ��2�

�2�1
1

"�
l2

l1

�1��2
� 1
#
> 0

Assumption 1 yields l2
l1
> 1. Now, note that h(1) = 1 which completes the proof.

Lemma 5 For any P exit;2q2;q1
and P � P exit;2q2;q1

� ��1q1+q2;q2P
exit;2
q2;0

> 0 value of �rm 1 is

positive in state (�q1; �q2).

Proof. The later �rm 2 exits, the lower will be �rm 1�s value, since �rm 1 must wait

longer to monopolize the market. Hence, we only need to check, whether �rm 1�s value

is positive for all P � P exit;2q2;q1
when P exit;2q2;q1

= ��1q1+q2;q2P
exit;2
q2;0

= ��12 rP
exit;1
q1;0

: This is the

lowest price at which �rm 2 would not obtain negative value if �rm 1 leaves at �rm 2�s

exit price-trigger. Expecting that �rm 1 leaves second, the corresponding value matching

condition for �rm 1 yields

�q1
�� ��

�1
2 rP

exit;1
q1;0

� b1
�
+ �

�
��12 rP

exit;1
q1;0

��2
=

�q1�1
�� ��

�1
2 rP

exit;1
q1;0

� b1
�
+

1

1� �2
b1
�

 
�1
��12 rP

exit;1
q1;0

P exit;1q1;0

!�2

� represents the option-value term, ai2: Substituting in
�2
�2�1

���
�

b1
�q1
for P exit;1q1;0

; we obtain

�q1
�� ��

�1
2 r

�2
�2 � 1

�� �
�

b1
�q1
+ �

�
��12 rP

exit;1
q1;0

��2
=

�q1
�� ��1�

�1
2 r

�2
�2 � 1

�� �
�

b1
�q1
+

1

1� �2
b1
�

�
�1�

�1
2 r
��2 :

This can be rewritten as

��12 r
�2

�2 � 1
b1
�
+ �

�
��12 rP

exit;1
q1;0

��2
= �1�

�1
2 r

�2
�2 � 1

b1
�
+

1

1� �2
b1
�

�
�1�

�1
2 r
��2 :
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Subtracting ��12 r
�2
�2�1

b1
� and dividing by

�
��12 r

��2 we obtain
�
�
P exit;1q1;0

��2
=

b1
�

1

1� �2

�
(1��1)��12 r�2 +

�
�1�

�1
2 r
��2� ���12 r���2

=
b1
�

1

1� �2

 
�
�2
1 � �2 (�1 � 1)

�
r

�2

�1��2!
= h � b1

�

1

1� �2
:

Substitution � back in our general formulation of �rm 1�s value function, we obtain for

the hypothetical value H of �rm 1�given that �rm 2 exits at ��1q1+q2;q2P
exit;2
q2;0

:

H (P ) =
�q1P

�� � �
b1
�
+ h � b1

�

1

1� �2

 
P

P exit;1q1;0

!�2
; P � ��1q1+q2;q2P

exit;2
q2;0

(42)

This is of the same form as V: Ignoring for the moment that V changes its form at P exit;1q1;0
;

we rewrite H as

H (P ) = V (P; �q1; 0) + (h� 1) �
b1
�

1

1� �2

 
P

P exit;1q1;0

!�2
| {z }

>0

: (43)

By construction, we know that V obtains its minimum at P exit;1q1;0
with V

�
P exit;1q1;0

; �q1; 0
�
= 0:

Moreover, we know h � 1 from the above Lemma. Hence, H (P ) � 0 follows.

Proof of Proposition 2. First note that under the proposed equilibrium strategy

�rm 2 never becomes a monopolist. Therefore, only the actual price and not the quantity

of the competitor matter for �rm 2. Thus, �rm 2 behaves myopically. Therefore, the value

of �rm 2 under the proposed strategy is zero at P exit;2q1;q2
; which then is indeed the optimal

trigger price.

Secondly, we have to show that �rm 2 cannot pro�tably choose an exit price trigger smaller

than P exit;1q1;q2
: Suppose �rm 2 chooses a lower price trigger. Then �rm 2 becomes monopolist

after �rm 1 exits. However, the price after �rm 1 has left the market is still below �rm

2´s monopoly exit price-trigger, and hence the value associated with this strategy must

be negative. Hence, �rm 2 has no incentive to deviate.

Firm 1 also has no incentive to exit at a price di¤erent to P exit;1q1;q2
: If �rm 2 chooses P exit;2q2;q1

;

all price triggers below P exit;2q2;q1
yield the same payo¤ given P . According to Lemmas 4 and

5 this payo¤ is positive and larger than the value of the �rm that leaves �rst. So for �rm

1, leaving second is credible and pro�table.

Last, we need to show, that there can be no other equilibrium in which �rm 1 exits second:

If �rm 1 chooses an price-trigger larger than �q1+q2;q2
�1P exit;2q2;0

, �rm 2 can pro�tably

deviate and set a price slightly smaller, leave second, and obtain monopoly pro�ts.

That
i
�q1+q2;q1

�1P exit;1q1;0
;�q1+q2;q2

�1P exit;2q2;0

h
is non-empty follows straightforward from

assumption 1, the assumption on l1
l2
.
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7.2.2 Proofs of Proposition 3 to 6 and Lemma 1 and 2

Proof of Proposition 3. Investment causes no continuous costs but only a lump

sum payment. Thus, earnings after investment are strictly larger than before investment.

Because of this, �rm-value at low capacity is strictly smaller than it is at high capacity.

Therefore at low capacity, �rm 2 must leave before P exit;2q2;0
has been reached� both, in

duopoly and monopoly. Otherwise its value would become negative before exit, see �gure

3. Due to the same reasoning as in proposition 2, �rm 2 can again not credibly threaten

to exit second. Hence, we obtain P exit;2q
2
;�q1 > P exit;2�q2;�q1 = P exit;2�q2;0

:

As before, this leads to myopic behavior of �rm 2, so that P exit;2q
2
;�q1 = P exit;2q

2
;0 and P inv;2q

2
;�q1 =

P inv;2q
2
;0 .

Proof of Lemma 1. (a) Potential investment of �rm 1 decreases the value of �rm 2.

In monopoly or in state (�qi; �q�i) there is no such potential investment of a competitor. In

both cases, at P exit;2q2;0
�rm-value is zero. Thus, if �rm 2 has not left in state

�
�q2; q1

�
when

prices are as low as P exit;2q2;0
; the potential investment will force �rm-value to be negative.

Therefore, the stated inequality must hold.

(b) Upon investment of �rm 1, prices drop by factor �q
1
+q2;q1+q2

: Therefore, if �rm 1

actually invests at ��1q
1
+q2;q1+q2

P exit;2�q2;�q1 �rm 2 would immediately leave and obtain zero

value. However, potential investment decreases the value of �rm 2 only by the expected

value of the loss upon investment. This is less than the drop in value caused by actual

investment. Therefore, �rm 2�s value at��1q
1
+q2;q1+q2

P exit;2�q2;�q1 must be positive and the stated

inequality follows.

Proof of Lemma 2. If �rm 2 exits �rst, eV1(P; q
1
; q2) exhibits a kink. Due to Lemma

1, this kink must be at a smaller P than the kink in V1(�q
1
+q2;q1+q2P; q1; q2): De�ne the

continuous function

f(P ) := eV1(P; q
1
; q2) + C1 � V1(�q

1
+q2;q1+q2P; q1; q2): (44)

If �q1+q2;q1+q2P
exit;1
q
1
;q2

< P exit;2q2;0
, then f (P ) has the following functional form for

P > maxfP exit;2q2;q1
; P exit;1q

1
;q2
g:

f(P ) =

(
x11P + x12P

�2 + C if �q1+q2;q1+q2P < P
exit;2
q2;0

x21P + x22P
�2 + C if �q1+q2;q1+q2P � P

exit;2
q2;0

: (45)

Otherwise,

f (P ) = x31P + x32P
�2 : (46)

Hence, f must be either concave or convex on each subset, but is possibly concave or

convex on both subsets. Consequently f(P ) = 0 can have at most four solutions.

By assumption 2(a), after investment a company pro�ts stronger from a demand-increase,

so lim
P!+1

f(P ) = �1: Moreover, neglect for the moment the change in the functional
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form of f at maxfP exit;2q2;q1
; P exit;1q

1
;q2
g; but suppose f keeps the form of (45) for all P �

��1q
1
+q2;q1

P exit;1�q1;0
: This is the price when �rm 1 exits in monopoly after investment normal-

ized to state
�
q
1
; q2

�
-prices. As eV1(P; q

1
; q2) � 0 by construction, and V1(��1q1+q2;q1P

exit;1
�q1;0

; q1; q2) =

0; we can conclude f(��1q
1
+q2;q1+q2

��1q1+q2;q1P
exit;1
�q1;0

) > 0. Therefore, the number of solutions

to f(P ) = 0 must be odd on the set of price-levels that are larger than the monopoly exit-

price. Now note that
n
P
���P > maxfP exit;2q2;q1

; P exit;1q
1
;q2
g
o
is subset of this set. This completes

the proof.

Proof of Proposition 4. (a) First note that V1 (P; �q1; �q2) is convex (and decreasing

at P = P exit;2q2;0
), so that @V1

@P (P; �q1; �q2) = 0 is a su¢ cient condition for a minimum. We

have

@V1
@P

�
Pmin; �q1; �q2

�
= 0, �q1

�� � + g �
b1
�

�2
1� �2

"
Pmin

P exit;1q1;0

#�2�1
1

P exit;1q1;0

= 0,

1

P exit;1q1;0

"
Pmin

P exit;1q1;0

#�2�1
= g�1� �q1

�� �
�

b1

�2
�2 � 1

,
"
Pmin

P exit;1q1;0

#�2�1
= g�1 , Pmin = g

1
1��2 P exit;1q1;0

(b) If �rm 1 exits �rst when not equipped with an investment option, it will behave my-

opically and exit at �q1
q
1

P exit;1q1;0
: Comparing this exit price with ��1q1+q2 ;q1+q2P

min; where

V1(�q1+q2 ;q1+q2P; q1; q2) obtains its minimum, we �nd that g >
�
D(q1+q2)

D(q
1
+q2)

� �q1q
1

�1��2
en-

sures that �rm 1 will not exit at a price larger than ��1q1+q2 ;q1+q2P
min: Thus, at C1 =

V1(P
min; q1; q2) � ~V1

�
��1q1+q2 ;q1+q2P

min; q
1
; �q2

�
both functions are tangentially. Increas-

ing C1 by some small amount yields multiple solutions to (21).

(c) If �rm 2 exits �rst, the peak in V1
�
�q1+q2 ;q1+q2P; q1; q2

�
lies at P = �q

1
+q2;q1+q2

�1P exit;2q2;0
.

According to Lemma 1, �q
1
+q2;q1+q2

�1P exit;2q2;0
> P exit;2q2;q1

: Thus, the peak in eV1 �P; q1; q2�
is at a price lower than �q

1
+q2;q1+q2

�1P exit;2q2;0
: Consider the costs C 0 that give

eV1 �P; q1; q2�+ C 0 < V1 ��q1+q2;q1+q2P; q1; q2� (47)

for all P � �q
1
+q2;q1+q2

�1P exit;2q2;0
except for one point P 0(see �gure ??). At this point

either both functions are tangentially or P 0 = �q
1
+q2;q1+q2

�1P exit;2q2;0
; which is ruled out by

the assumption on the derivatives.

Therefore, at costs C 0 �rm 1 invests for all prices P � �q
1
+q2;q1+q2

�1P exit;2q2;0
and

V̂1

�
P; q

1
; q2

�
� V1

�
�q

1
+q2;q1+q2P; q1; q2

�
� C 0:

Now take costs to be equal to C 0 + "; " > 0: Assuming that there is only one price

trigger for investment P inv, will lead to a contradiction: For this trigger P 0 � P inv holds.
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Figure 10: Loss in value from a single trigger

De�ne the stopping-time � (p) := infft 2 RjPt = pg; then the di¤erence in value for
�q

1
+q2;q1+q2

�1P exit;2q2;0
< P < P 0 evaluates as

V̂1

�
P; q

1
; q2jC 0

�
� V̂1

�
P; q

1
; q2jC 0 + "

�
= E

"Z �(P inv)

0

�
V1

�
�q

1
+q2;q1+q2Pt; q1; q2

�
� C 0 � eV1 (Pt; q1; q2)� e��tdt

�����P0 = P
#

� E

"Z �(P 0)

0

�
V1

�
�q

1
+q2;q1+q2Pt; q1; q2

�
� C 0 � eV1 (Pt; q1; q2)� e��tdt

�����P0 = P
#
> 0:

Both inequalities follow from (47) (and �(P inv) � � (P 0) ): Thus, a marginal change in

costs would lead to a non-marginal drop in value, since the last integral does not depend

on ": However, if �rm 1 uses a system of two price-triggers of investment depending on ";

the value drop is only marginal and hence for " small enough two price-triggers must be

optimal.

Proof of Proposition 5. If ��q1+�q2;�q1 ! 1; we have g ! 1 and �rm 1 does not

gain from �rm 2 leaving. Moreover, the value of �rm 1 as a monopolist and its value as a

duopolist converge. Therefore, �rm 1 cannot gain anything from �rm 2 leaving.

If demand is not completely inelastic, �rm 1�s value at the exit price of �rm 2 is bounded.

Now suppose the costs of investment exceed this value. Then there can be no solution

to (21) for prices smaller than ��1q1+�q2 ;q1+q2P
exit;2
q2;q1

. Moreover, the number of solutions to

(21) must be odd: At ��1q1+�q2 ;q1+q2P
exit;2
q2;q1

the left hand side of (21) is larger than the right

hand side, while for P ! 1 the reverse holds true. So the �rst and the last time both

functions cross, the value function at low capacity crosses from above. Hence, the number

of solutions is odd (V is continuous). However, from Lemma 2 we now know there can be
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at most two solutions. Thus, both value functions can only cross once.

Proof of Proposition 6. Suppose it is optimal for �rm i to invest at a price P 0

strictly larger than �q
i
+q�i;qi+q�i

�1P exit;�iq�i;�qi . Then the only cost of a marginal delay, i.e.

a marginal decrease in the predatory investment price trigger, is the expected foregone

increase in earnings. This marginal loss is�expressed a bit more formally:

L (X) :=
@E
R �1
�0(X)

e��t
�
�qi�q

i
+q�i;qi+q�i � qi

�
Ptdt

@X

������
P0=X

: (48)

In this term �1 denotes the time of exit of the competitor and �0 := infftjPt � X _ Pt �
P inv;iq

i
;q�ig is the time of investment of �rm i: Both �0 and �1 are stochastic variables (stopping

times). Note that this derivative gets larger, the larger X is: While the change in �0
remains the same, the integrand increases. The time of the competitor leaving, �1; is

unchanged by altering the predatory investment price-trigger X; yet, only as long as X is

strictly smaller than �q
i
+q�i;qi+q�i

�1P exit;�iq�i;�qi :

The expected gain from delay is constant in X and given by

G (X) :=
@E
�
e���0(X)Ci

�
@X

�����
P0=X

: (49)

To be optimal, at P 0 marginal gain and marginal loss from waiting must be equal. So

L (P 0) = G (P 0) needs to hold. But then, at any price P 00strictly larger than P 0 �rm i

would prefer to have invested earlier, as L (P 00) > G (P 00) = G (P 0) : Therefore, P 0 can

only be a locally optimal investment price trigger if �rm i invests at all prices larger than

P 0: Hence, it cannot be a predatory investment price-trigger.

However, at �q
i
+q�i;qi+q�i

�1P exit;�iq�i;�qi the exit time of the competitor, �1; also changes

in the predatory price-trigger. Therefore, the same argument does not apply to P 0 =

�q
i
+q�i;qi+q�i

�1P exit;�iq�i;�qi : Hence, �q1+q2;q1+q2
�1P exit;2q2;0

is the only candidate for a predatory

investment price-trigger.

7.2.3 Proof of Lemma 3

Lemma 6 �i(P ) can be represented by �i(P ) = x0i + x1iP + x2iP
�1 + x3iP

�2 for P 2
M := [max

j=1;2
fP jg; min

j=1;2
fP jg]; with x1i > 0; x2i < 0: Moreover, �i(P ) is also continuous on

[min
j=1;2

fP jg;max
j=1;2

fP jg]
Proof. First note that �i(P ) has the stated functional form since it is a di¤erence of

functions of the type given in (5) (which are analytic on M): It is clear that the follower�s

�rm value must be a convex function. Moreover, the leader´ s value decreases by the poten-

tial entry of the follower, therefore x2 < 0: Sales are increased by investment; this implies

x1 > 0. Continuity follows from the value-matching conditions
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Lemma 7 Let f(P ) = x0 + x1P + x2P
�1 + x3P

�2; P > 0 and x1 > 0; x2 < 0; then f

has at most three roots. Moreover, if at P 0 f(P 0) > 0; there can only be two roots of f for

P < P 0:

Proof. We have to consider two cases:
Case 1: x3 � 0; then f is concave and therefore has at most two roots.
Case 2: x3 > 0. Firstly, note that the second derivative changes its sign at most once:

Suppose f 00(P �) = P ��2
�
�1 (�1 � 1)x2P ��1 + �2 (�2 � 1)x3P ��2

�
= 0: Then

f 000 (P �) = �2P ��3
h
�1 (�1 � 1)x2P ��1 + �2 (�2 � 1)x3P ��2

i
+ P ��2

h
�1 (�1 � 1)�1x2P ��1 + �2 (�2 � 1)�2x3P ��2

i
. (50)

However, the �rst term equals �2f
00(P �)
P � and thus, is zero and therefore:

f 000 (P �) = P ��2[�1 (�1 � 1)�1| {z }
>0

x2P
��1| {z }

<0

+ �2 (�2 � 1)�2| {z }
<0

x3P
��2| {z }

>0

] < 0 . (51)

This implies that the second derivative changes its sign at most once.

Therefore, the turning point P � divides f in a convex and a concave part. If f (P �) < 0,

then on the concave part of f; i.e. P > P �; there may be two roots. Since f (P �) < 0

function f crosses 0 from above at any P < P �; such that f (P ) = 0; so that f 0 (P ) must

be negative. Yet, f is convex on this subset and so there can be no additional roots to this

third one. The case f (P �) � 0 follows analogously.

Proof of Lemma 3. (a) follows straightforward from the last two Lemmata.

(b) At P i �rm i invests as follower, therefore

Vi(�qi+q�i ;qi+q�iP; qi ; q�i) = Vi(�qi+q�i ;qi+q�iP; qi ; q�i)� C 8P � P i: (52)

This implies �i(P ) > 0 if P i � P < P�i and �i(P�i) = 0; since sales of the leader are

larger before the follower has invested and

Vi(�qi+q�i ;qi+q�iP�i; qi ; q�i)� C = Vi(�qi+q�i ;qi+q�iP�i; qi ; q�i)� C: (53)

(c) At prices larger than P�i �rm �i invests as follower, therefore �rm i can only trigger

joint investment and

8P � P�i : Vi(�qi+q�i ;qi+q�iP; qi ; q�i)� C = Vi(�qi+q�i ;qi+q�iP; qi ; q�i)� C. (54)

As long as P < P i; it is not pro�table for �rm i to invest as follower and obtain

Vi(�qi+q�i ;qi+q�iP; qi ; q�i)�C: Hence, the right-hand term must be smaller than the value
of i being the follower when P < P i.

(d) �i(max
j=1;2

fP jg) > 0 follows from the continuity of �i and in case (b) from �i
�
�Pi
�
> 0;

respectively �i
�
�P�i
�
< 0 in case (c). De�ne f (P ) as stated in Lemma 7. Now suppose
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that �rm i exits at P i � P�i, then �i(P ) > f (P ) for P < P i; since the value of �rm i

as follower is a convex function with derivative zero at P i: Therefore, for �i(P ) to have

an additional root, f(P ) must have an additional root, too. However, due to Lemma 7,

f (P ) cannot have that additional root.

If �rm i invests predatorily at P i; then for all min
j=1;2

fP jg < P < max
j=1;2

fP jg

�i(P ) = Vi(�qi+q�i ;qi+q�iP; qi ; q�i)� Vi(�qi+q�i ;qi+q�iP; qi ; q�i) > 0 (55)

because the sales of the follower are lower, and �rm �i exits later.

7.2.4 Proofs of Proposition 7 to 9

Proof of Proposition 7. First note that at P = P inv;LqL ;q�L �rm L indeed prefers to be

the leader, because �i(P ) > 0: Moreover because of the assumption on the valuation for

collusion we have a preemption game for non-predatory investment: Suppose � denotes

the stopping-time associated with the optimal investment-price trigger of �rm i: Then �rm

�i has an incentive to invest at time � � �; as long as the price is above its preemption
threshold. Therefore, when Pt 2 [P pred;�Lpre ; P inv;�Lpre ] �rm �L prefers to be the follower,
while at P inv;LqL ;q�L �rm L pro�table invests.

Proof of Proposition 8. (a) Suppose �rm i wishes to invest at a price P 0 < P pred;�ipre :

De�ne � to be the corresponding stopping time. Then �rm �i would have an incentive
to preempt and invest at a smaller price at time � � ". Therefore, investing predatorily
below P pred;�ipre cannot be part of an equilibrium. However, at prices between P pred;�ipre

and P inv;�ipre �rm �i wishes to become follower and will therefore not preempt. Moreover,
at prices below P pred;ipre �rm i wishes to become leader, so that the solution described is

indeed optimal for �rm i; given �rm �i would invest as soon as prices hit the preemption
thresholds.

(b) If �q�j+qj ;q�j+qj
�1P exit;jqj ;�q�i falls between P

pred;i
pre and P inv;�ipre and �rm �j has a unilateral

incentive to invest at a price P 0 from this interval, this establishes a credible threat of �rm

�j investing at P 0. Thus, the �rms wish to preempt until P pred;ipre is reached. At this price

�rm i is indi¤erent between becoming leader or follower. As investment-price trigger,

�rm �i will choose its unconstrained optimal predatory investment-price trigger (if this is
possible). If the constraint binds, P pred;ipre is chosen as investment price-trigger.

(c) We �rstly need to argue that investing on [P inv;�ipre ; P pred;ipre ] cannot be renegotiation-

proof. Suppose one �rm would invest at P � 2 [P inv;�ipre ; P pred;ipre ]: Then, since neither �rm

has an unilateral incentive to invest at some price P 2 [P inv;�ipre ; P pred;ipre ]; both �rms would

�nd it pro�table to renegotiate and sign an incentive compatible contract that investment

should be carried out at the proposed price-triggers for predatory and non-predatory

investment.

The result for predatory investment follows from the same line of argument.



The Other Side of Limited Liability:Predatory Behavior and Investment Timing 42

Proof of Proposition 9. (a) Firm value is increasing in the exit price of the com-

petitor. If undercutting the price-trigger of �rm i is not credible even when i chooses the

myopic price-trigger, then �i cannot threaten to exit second.
(b)

h
�qi+q�i;qi

�1P exit;iq�i;0
; P ind;iqi;q�i

i
= ; implies that leaving second always yields positive eq-

uity value for all credible exit price triggers of the competitor i: Therefore, in this case

�rm �i will leave second, as this increases value at the myopic exit price-trigger. Note
that since P ind;iqi;q�i � ��1qi+q�i;q�iP

exit;�i
q�i;0

; the interval can never be empty for both �rms.

(c) This has been already mostly discussed in the main text. It remains to be mentioned

that if �rm �i invests predatorily, this decreases value below the value obtained by be-
having myopically, since the competitor will only invest predatorily (if not preempting) if

she expects to leave second after investment.

(d) See main text.

7.3 Construction of the collusive value

Once the price has reached the price-trigger at which the follower invests, but the leader has

not invested yet, both �rms can only invest simultaneously. For simultaneous investment,

we need to distinguish two cases. In the �rst case, simultaneous investment decreases

revenues of both �rms, and in the other case investment increases revenues for at least

one �rm.

In the former case, both �rms will rather abstain from investing at all, than to invest

simultaneously. In the latter case, we need to determine the investment price-trigger at

which each of the �rms prefers to invest simultaneously. If simultaneous investment only

increases revenues for one �rm, the other �rm will simply set the "collusive investment

price-trigger" to in�nity and ai1 = 0:

To determine the preferred collusive investment price-trigger for �rm i; P
c_inv;i
q
i
;q�i

; we

have to solve the smooth pasting and value matching conditions for investment for the

this price-trigger.

V Ci

�
P
c_inv;i
q
i
;q�i

; q
i
; q�i

�
= Vi

�
�q

1
+q

2
;�q1+�q2P

c_inv;i
q
i
;q�i

; �qi; �q�i
�
� Ci

@V Ci

�
P; q

i
; q�i

�
@P

������
P=P

c_ inv;i
q
i
;q�i

=
@Vi

�
�q

1
+q

2
;�q1+�q2 � P; �qi; �q�i

�
@P

������
P=P

c_ inv;i
q
i
;q�i

In this calculation the value matching conditions for exit have to be taken into account. If

�rm i expects to leave �rst this is Vi(P
exit;i
qi ;q�i ; qi ; q�i) = 0; and the value matching condition

becomes the following, if �rm i expects to leave second:

Vi(P
exit;�i
q�i ;qi

; qi ; q�i) = Vi(�qi+q�i;�qi
P exit;�iq�i ;qi

; qi ; 0): (56)

Now any price-trigger is a candidate for collusive investment that falls between the

largest price-trigger for the follower to invest, normalized to
�
q
1
; q
2

�
-prices, and the
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lowest of the preferred collusive price-triggers. The upper bound of this interval is the

pareto-optimal equilibrium and will be re-negotiated as collusive investment price-trigger.

Formally, we determine the equilibrium collusive investment price-trigger P c_inv;�q
i
;q�i

as

mini=1;2

�
P
c_inv;i
q
i
;q�i

�
: The constants ai1 and ai2 are then solved from the value matching

conditions for investment

V Ci

�
P
c_inv;�
q
i
;q�i

; q
i
; q�i

�
= Vi

�
�q

1
+q

2
;�q1+�q2P

c_inv;�
q
i
;q�i

; �qi; �q�i
�
� Ci (57)

and exit.
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