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Abstract 

 Noncooperative network-formation games in oligopolies analyze optimal 
connection structures that emerge when linking represent the appropriation of 
cost-reducing one-way externalities. These models reflect situations where one 
firm access to another firm’s (public or private) information and this last cannot 
refuse it. What would happen if decisions are sequential? A model of 
exogenous Stackelberg leadership is developed and first-mover advantages are 
observed and commented.   
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1. Introduction 

Networks of collaboration in oligopolies have been empirically found in several industries. Firms make 

alliances for cost-reducing technologies development. Goyal and Joshi (2003) study models of emergence 

of networks of collaboration among firms that compete in quantities (Cournot) and prices (Bertrand). 

They model linking benefits as bidirectional externality that helps both agreement signers to reduce 

production costs. This is the usual modeling option for mutual consent contracts where technical 

information and collaboration are shared. However, the monodirectional (one-way) externality case can 

also be modeled. Billand and Bravard (2004) use Goyal and Joshi’s basic structure but allow only for 

one-way externality flow. This way of modeling externality flow is meaningful for firms that access 

another firms’ cost-reducing public or private information without reciprocity. Optimal topologies found 

are, for the lowest-cost investment infrastructure, complete (Cournot) and star (Bertrand) networks and 

for the highest-cost investment infrastructure the empty network. Cournot market also allows for 

intermediate topologies (see Table 1 for comparing these two papers’ findings). 
                                                 
1 This work is a recapitulation of Chapter 4 of my PhD thesis dissertation (Larrosa, 2005). I would like to 
acknowledge previous comments and corrections by Fernando Tohmé, Leandro Arozamena, Diego Caramuta and 
Federico Weinschelbaum and from participants in Segundo Congreso Nacional de Estudiantes de Posgrado and 
Seminario Interno de Posgrado at UNS. All errors are mine.  
2 Contact address: San Juan y 12 de Octubre, Planta Baja, Oficina 5, Bahía Blanca – 8000- Argentina. Email: 
jlarrosa@criba.edu.ar 
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Our paper adds the influence of sequential decision in connections’ structure formation. Suppose a market 

with n firms. Suppose that, exogenously given3, a firm can move first by establishing links with other 

firms in the market and the n – 1 follower firms observe this and then choose their own connection 

structure. Later on they will compete in quantities or prices. This is the game setting, initially formulated 

by Stackelberg (1934), that we are going to solve and analysis. 

 

Table 1. Optima topologies 

Authors Type of 
Externality Flow 

Type of Market 
Competition 

Optimum Topology 

Quantity Competition 
(Cournot market) 

• Complete network. Goyal & 
Joshi 
(2003) 

Bidirectional 
Price Competition 
(Bertrand market) 

• Empty network. 

Quantity Competition 
(Cournot market) 

• For highest investment cost: Empty 
network  

• For intermediate investment cost: 
Firms make connections but neither 
complete nor empty networks are 
observed. 

• For lowest investment cost: 
Complete network 

Billand & 
Bravard 
(2004) 

Monodirectional 

Price Competition 
(Bertrand market) 

• For highest investment cost: Empty 
network  

• For lowest investment cost: Centered 
sponsored star network 

 

The main results could be summarized as follows. In Stackelberg single-leader-rest-followers quantity 

competition equilibrium, leader firm obtains as least as much benefits as any follower. In Stackelberg 

single-leader-rest-followers price competition equilibrium, leader firm is the only who obtains benefits. 

More specifically, depending on the value fixed investment cost optimum topology varies. If the cost is 

low enough, optimum topology is the complete network (where leader firm connects to every follower 

firm and each follower firm connect to each other and to the leader firm) if there’s quantity competition, 

and the leader-firm-sponsored star network when there’s price competition. If the cost is sufficiently high, 

for both types of competition, optimum topology is the empty network. For intermediate costs, quantity 

                                                 
3 Some academic literature criticizes the exogeneity of leader firm’s selection process, on a priori all-equal firms. 
Some works model role selection in a previous stage of the game where firms could choose whether they are going 
to move first or later. Endogenous models of Stackelberg competition are Amir and Grilo (1999) and van Damme 
and Hurkens (1999). 
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competition allows for optimum architectures that are neither the empty nor the complete but there are 

connections among firms.  

 

This paper is organized as follows. Section 2 describes the model and definitions. Section 3 presents the 

results in the quantity competition market and price competition market. Section 4 ends the paper with the 

conclusions. 

 

 

2.1 Framework and model 

We follow Billand and Bravard (2004) modeling. Networks represent in this framework the externality 

benefit of information accessing (technical, technological, legal, marketing, management practices and 

the like). This information allows for firms who initiates and maintains the link to reduce production costs 

by adopting more efficient management practices. When externality flow is asymmetric (technically, by 

using directed graphs), firms who form links access to linked firm information and link formation cannot 

be refused. This modeling approach comprises situations like:  

1. Access to firms’ public information by 

a. Surfing competitors’ web sites for acknowledging their products, pricing policies, market 

prestige and the like for benchmarking. 

b. Analyzing balance sheets of stock exchange’s firms for determining their economic and 

financial performance, 

c. Consulting the Patent Register for competitors’ new products, 

d. Reading business magazines that report competitors’ best practices. 

2. Access to firms’ private information by 

a. Accessing through illegal ways other firms’ information, like industrial espionage, 

among others. 

 

Next we define concepts to be applied later on. Let { }1, , , , ,N i j n= K K  with 3n ≥ , be the a set of firms. 

For any ,i j N∈ , , 1i jg =  means that a firm i has formed a direct link with firm j, , 0i jg =  in any other 

case. From here, we denote ( ),1 1,0 1,1 , ,, , , , , , ,i i i i i j i ng g g g g g− += K K K  to firm i‘s link vector. 

 

A network ( ){ }, ,i j i N j N
g g

∈ ∈
=  is a formal description of the directed links that exists among firms. Let G 

be the set of directed networks without loops (we suppose that a firm cannot form a link with itself). 
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We suppose that a link , 1i jg =  allows firm i to access to j’s information but not viceversa. We focus on 

one way resources flow. Let ( ) { }, 1i i jN g j g= =  be the set of firms j such that i obtains externalities from 

j. Let ( )in g  be the cardinal of ( )iN g . We frequently refer to all other firms distinct from i as i’s 

opponents and will be noted as –i. We note  ( ) ( )i ji jn g n g≠− = ∑  as the number of links in the network g 

excluding those links generated by firm i. ( )in g−  can be interpreted as the number of externalities that 

benefits to all other firms except firm i. 

 

We define main network topologies that will be used extensively thru our work. A network g is complete 

if for every pair of firms i and j, there exists a link from i to j. Complete network is denoted as gc. A 

network g is a center sponsored star if and only if there is a firm i such that i has formed one link with 

every firm j, and every j ≠ i has formed no link at all (Figure 1). Center sponsored star network is denoted 

as gs. A network g is empty if there is no firm that has formed any link. This network is denoted as ge. 

 

Figure 1. Network architectures 
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2.2 Linking and cost reduction  

We suppose that establishing a link requires a fixed investment cost given by 0δ > . We suppose that 

firms are initially symmetric with a nonnegative fixed cost γ0 and identical cost functions4. We consider 

that establishing a link is a way of cost reduction. More specifically, we suppose that firm’s marginal and 

average variable cost of a generic firm i N∈  has the same functional form: 

 

               ( )( ) ( )0g g ,i i ic n nγ γ= −       (1)                                   

                                                 
4 γ0 can be thought as the production cost under isolation. 
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where *
0 , Rγ γ +∈  such that ( )0 1nγ γ> − . A network g induces an average variable cost vector given by 

the following function: ( )( ) ( )( ) ( )( ) ( )( ) ( )( ){ }1 2g g , g , , g , , gi i i i i n ic n c n c n c n c n= K K . 

 

2.3 Equilibrium networks 

A network g G∈  is said to be an equilibrium if, leaving constant the set of link formed by another firms, 

any firm that has a connection to any other firm in g G∈  has an incentive of keeping that link. Moreover, 

any firm that is not connected to another firm in g G∈  has no incentive to form a link with this other 

firm. Let g′  be a network where i is the only firm that has the same links in g. 

 

We define ( ) ( )( )g , gi i in n−Π  as net benefits of firms i N∈ . A network g is an equilibrium network, if for 

all i, we have that: 

 

( ) ( )( ) ( ) ( )( )g , g g , gi i i i i in n n n− −′ ′Π ≥ Π , g G′∀ ∈     (2) 

 

Next we begin with the description of the competition structure. 
 
 
3. Stackelberg networks 

Quantity competition á la Stackelberg is represented by a three stages game. In the first stage, only leader 

firm moves by choosing who to connect with; in the second stage, follower firms observe leader firm 

choice and make their own connection decision. Finally, in the third stage, firms simultaneously compete 

in quantities or prices. As leader firm moves first, it will envisage follower firms’ behavior and maximize 

benefits accordingly by using backward-induction. That will be the solving method for the games to 

come. 

 

Then Stackelberg oligopoly is represented as a three stages game: First, leader firm choose the number of 

firms to link with; second, followers firm observe leader firm connections and establish their own linking 

decisions, and; third, there’s quantity competition. Game timing is a sequential connections game 

following by simultaneous (Cournot) quantity game at the end (Figure 2).   
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Figure 2. Game Setting 
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Single leader rest followers is a market where two types of firms exist: the leader firm i with i j≠  that 

for convenience we noted [ ]1i∈  and there exists (n – 1) firms labeled with the j subindex such that j i≠  

and [ ]2, ,j n∈ K  that we will call the set of followers firms. Two kind of market competition will be 

modeled: quantity and price competition. Next section begins with quantity competition definitions and 

modeling.  

 

3.1 Stackelberg quantity competition 

Let qi be the quantity produced by firm i and p the market price. We model a market with homogeneous 

products and quantity competition. We suppose a linear inverse demand function: 

 

 if 
0  if 

ii i Ni N

ii N

qq
p

q
αα
α

∈∈

∈

<−
=  ≥

∑∑
∑

 , with 0α >                               (3) 

 

We suppose that the nonnegative production condition (NPC) ( ) ( )0 1nα γ γ− > −  verifies. Given this 

schema we postulate the following Lemma: 

 

            Lemma 1. Given any network g G∈  and suppose it is verified (1), (3) and the 
NPC. Suppose a single leader rest followers market with quantity competition. 
Then, Stackelberg leader firm’s reaction function *

iq  is 

( ) ( )( ) ( ) ( ) ( ) ( )0* g 1 g
g , g

1
i j

i i j

nn n n
q n n

n
α γ γ γ− + − −

=
+

. If all the above verifies, 

Stackelberg follower firm’s reaction function *
jq  is 

( ) ( )( ) ( ) ( ) ( )0* 2 g g
g , g

1
j i

j i j

n n
q n n

n
α γ γ γ− + −

=
+

. 
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Sketch of the Proof: Using (1) and (3) and solving by backward induction the Stackelberg game gives 

leader firm’s reaction function ( )*
iq ⋅  and follower firm’s reaction function ( )*

jq ⋅ . 

 

Equilibrium benefits are defined by: 

 

( ) ( )( ) ( ) ( )( )( ) ( )
2

g , g g , g gi i j i i j in n q n n nδ∗Π = −     (4) 

 

Following this we postulate:  

 

Proposition 1. Suppose that NPC verifies and there is quantity competition among 
firms in a single leader rest followers Stackelberg market. Suppose that it is verified 
(1) and (3). Then, in an equilibrium network g* for the leader firm i, 
( ) { }0, 1in g n∗ ∈ − . More precisely: 

1. if 
( ) ( ) ( )( )( )

( )

3 2
0

2

2 2 1 7 1

1

n n n

n
n

α γ γ γ
δ γ

− + − + −

+
< , then the complete network gc is the only 

equilibrium network; 
2. if ( ) ( )( )

( )
0

2

2 2 1

1

n n

n
n α γ γδ γ − + − −

+
> , then the empty network ge is the only equilibrium 

network; 

3. if 
( ) ( ) ( )( )

( )
( ) ( )( )

( )

3
0 0

2 2

2 2 1 7 1 2 2 1

1 1
,

n n n n n n

n n
n n

α γ γ γ γ α γ γδ γ γ
− + − + − − + − −

+ +

 ∈ 
 

, then in a equilibrium 

network g*, leader firm i connects in such a way that ( ) { }g 2, 2in n∗ ∈ − .  

 

Proof: See Appendix I. 

 

For the follower firm case, which works with the analogous benefit function 

( ) ( )( ) ( ) ( )( )( ) ( )
2

g , g g , g gj i j j i j jn n q n n nδ∗Π = − , it is established the following proposition: 

 

Proposition 2. Suppose that NPC verifies and there is quantity competition among 
firms in a single leader rest followers Stackelberg market. Suppose also that (1) 
and (3) verify. Then, in an equilibrium network g* for all follower firm j, 

( ) { }0, 1jn g n∗ ∈ − . More precisely: 

1. if ( )
( )

0
21

4
n

α γδ γ −

+
< , then the complete network gc is the only equilibrium 

network; 
2. if ( ) ( )

( )
0

2

1

1
4 n

n

α γ γδ γ − + −

+
> , then the empty network ge is the only equilibrium 
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network; 

3. if ( )
( )

( ) ( )
( )( )0 0

2 2

1

1 1
4 ,4 n

n n

α γ α γ γδ γ γ− − + −

+ +
∈ , then in an equilibrium network g* there are 

x firms j, { }2, , 2x n∈ −K , such that ( )g 1jn n∗ = −  and n – x  firms j such 

that ( )g 0jn ∗ = .  

 

Sketch of the Proof: It is analogous to Proposition 1 (Appendix I) but with the follower firm’s reaction 

function. 

 

Example 1. We reproduce Example 1 from Billard and Bravard (2004: 598) so we define α = 200, γ0 = 

50, γ = 0.2, n = 100 and δ = 1. Figure 3.a represents benefit surface for a leader and follower firm given 

this initial values and increasing link quantities for both, from 0 to 100. It is shown the exponential 

benefits for leader firm if she does not coordinate with follower firm on initiated links quantities choice.  

 

Figure 3. Benefit surfaces and contour plots (n =100) 
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Leader firm obtains, at least, the same benefits that any follower. If both agree in the number of links to 

be established, both will obtain the same amount of benefits. Disagreement in the numbers of established 

links reports higher benefits to leader firm.  

 

However, an interesting aspect arises. We can present bi-dimensional information of Figure 3.a by 

plotting the functional form contours given the Example 1’s values. This is done in Figures 3.b and 3.c 

where in Figure 3.a contour plots are presented. Axis represents number of formed links by leader 

(horizontal) and follower (vertical) firms and lighter gray scale indicates higher benefits surface and 

darker gray scale represent lower benefits surface. Model supposes that connection infrastructure 

investment cost is exogenous. So, as leader firm moves first she will choose the number of connections 

that would maximizes her benefits. Given Example 1’s data this is observed in ( )gin = 99 (Figure 3.b). In 

the second stage of the game, follower firms will observe this choice and will choose their optimal 

connections’ strategy. This is observed in Figure 3.c in the lighter color contour plot, that is ( )gjn = 0. 

This way, these connections’ strategies sustain a leader firm sponsored star network. 

 

Another interesting analysis appears when we sort threshold values of connections infrastructure 

investment costs that determines optimum connections’ infrastructure for both players. So, let 

( ) ( ) ( )( )( )
( )

3 2
0

2

2 2 1 7 1

1

n n nL
c n

n
α γ γ γ

δ γ
− + − + −

+
=  be the value of δ to which leader firm (L) decides for embarking in 

complete network gc connections’ strategy and let ( ) ( )( )
( )

0
2

2 2 1L
1

n n
e n

n α γ γδ γ − + − −

+
=  be the threshold value that 

determines if leader firm decides to adopt the empty network ge connections’ policy. Let also 
( )
( )

0
21

4F
c n

α γδ γ −

+
=  and ( ) ( )

( )
0

2

1

1
4 nF

e n

α γ γδ γ − + −

+
=  be the δ threshold values analogous for the follower firm (F). Next 

we postulate: 

 

Corollary 1. Given the above definitions, δ threshold values for a quantity 
competition Stackelberg market are sorted, form highest to lowest, in the following 
way: L F F L

e e c cδ δ δ δ> > >
.
  

 

Proof: Trivial.   

 

The interval of sorted threshold values δ let us observe that leader firm values are significantly separated 

between each others. The same range of values for the follower firm strategy choice is narrower. Figure 4 
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represents a network with one leader and two follower firms over the range of δ threshold values. From 

left to right we depart from the lowest δ value that coincides as best response for leader and follower firm 

for full connectivity among them, which means that gc (complete network) becomes optimal. However, 

just as the threshold value overcomes L
cδ , leader firm has no incentive to play gc and stops connecting to 

all follower firms. Though, on the interval L F
c cδ δ δ< < , follower firms still play complete network as best 

response. Just on the interval F F
c eδ δ δ< <  neither follower nor leader firms have incentives to play 

complete connections so connections exist but are neither complete nor empty. Once F
eδ δ> , follower 

firms find optimum to keep themselves disconnected while leader firm still find optimum neither full nor 

empty connections. Finally, when L
eδ δ>  ge topology is the best decision for both. 

 

Figure 4. Threshold values and optimal topologies for type of firm 
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It can be noted that leader firm requires for a much larger investment cost for choosing isolation as 

optimal response. Given that, it could be more likely that a leader firm play any form of connections’ 

strategy compared to any follower firm. Under this conjecture, leader firm sponsored star networks would 

emerge as observed optimal response.  

 

3.1.2 Comparing results with Cournot outcomes 

Comparing optimal quantities produced under Cournot or Stackelberg competition usually arises the 

microeconomic interrogative:  how each model’s optimal quantities compare? 

 

Given that both models used the same cost and demand functions, comparison should be direct. As shown 

in specific comparative literature (Dastidar 2004: 559, for a focused description and Vives, 1999 for a 

more general treatment) among classical oligopoly models we should verify that Cournot’s optimal 
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quantity should be an intermediate value between optimal leader firm quantity and optimal follower firm 

quantity in the Stackelberg case. 

 

We define 
( ) ( ) ( )0 g g

1
i jj i

n n nC
nq

α γ γ γ
≠

− + −

+
∑=  as firm’s reaction function in Cournot market (see Billand & 

Bravard, 2004), ( ) ( ) ( ) ( )0 g 1 g
1

i jnn n nS
L nq α γ γ γ− + − −

+=  as leader firm’s reaction function in Stackelberg competition 

and ( ) ( ) ( )0 2 g g
1
j in nS

F nq α γ γ γ− + −
+=  as the analogous follower firm’s reaction function. Effectively we obtain that 

C S
Lq q= , while S S

F Lq q=  if and only if ( ) ( )g gi jn n=  given ( ) ( )( )g gS S
L S i jq q n nγ− = − . Under 

equilibrium, well identified optimal topologies are the complete and empty network, where in both 

( ) ( )g gi jn n=  verifies, leader firm and follower firms coordinate in the number of links established. As 

suggested before, in intermediate network configurations, leader firm will obtain higher benefits that 

under coordination. So if the number of links is uncoordinated it’s better for the leader firm. Under any 

other case, leader firm earns as much as any follower firm. 

 

It is interesting to remember that information is a public good in this setting, so if leader firm connects 

first to any number of firms that do not prevent follower firms to connect using the same or any other 

strategy. 

 

Next, we develop the price competition variant under the Stackelberg setting. 

 

3.2 Stackelberg price competition 

New definitions are required. Let ( )D p pα= −  be the market demand function. For price competition 

case we define demand faced by firms as:  

( )
( )
( )

if ,
if , ,  with equality for  firms

0 if ,  for some 

i i j

i i i i j

i j

D p p p j
d p D p k p p j k

p p j i

< ∀
 = ∀
 > ≠

  (5) 

Total net benefits for firm i is given by: 

( ) ( )( ) ( ) ( )( )( ) ( )g , g g gi i i i i i i i in n d p p c n nδ−Π = − −     (6) 

 

Game setting remains similar in the first two sequential decisions stages but now in the third competition 

is in prices (it analogous with Figure 3 representation but in the third stage there is price competition). 

What is the optimum price and what topology sustains it?  
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Definitely, leader firm would expects follower firms play Bertrand price on the second stage, so leader 

firm’s manager should anticipate this movement and play accordingly. On the third stage, firms compete 

in prices. 

 

We suppose that demand faced by firm i if it fixes price pi is given by (5). Firm i's total net benefit flows 

are determined by (6). Network equilibrium under price competition in Stackelberg market is given by the 

following lemma: 

 

Lemma 2. Suppose a single leader rest followers Stackelberg market. Suppose that 
(1), (5), (6) and the NPC are verified. In a price competition market, in equilibrium 
there only one firm who establish connections to all the other firms and that unique 
firm is the leader firm. 

 

Proof: See Appendix II. In words, in the first stage leader firm sets a price based on other firms’ 

connections strategy profile. As cost function is decreasing on number of links, prices quickly tend to 

fixed cost. Then, leader firm anticipates follower firms will play Bertrand equilibrium price so she fixes 

the minimum feasible amount and follower firms will be out of the connection market in the second stage. 

 

Once established that by moving first leader firm obtains an advantage, only rests to determine optimum 

market topologies. For that to be accomplished, we postulate the following proposition: 

 

Proposition 3. Suppose that equations (1), (5), (6) and the NCP are verified. 
Suppose that is a price competition Stackelberg market. Then the only firm who 
establish links is the leader firm and for that firm it is verified that: 

1. if  ( )0δ γ α γ> − , the empty network, ge, is the only equilibrium network; 
2. if ( )0δ γ α γ< − , the leader-firm sponsored star network, gs, is the only 

equilibrium network.  

 

Proof: See Appendix II. 

 

Paradoxically there are few examples of Stackelberg price competition models in the economic literature. 

A good exception is Dastidar (2004) who finds out that in duopoly sequential price competition leader 

firm gets a higher market share at a lower price and follower firm gets a smaller market share but a higher 



13 

price. In equilibrium, both earn equal profits. Neither leader nor follower firm get advantage under this 

setting. In our case, on the contrary, leader firm gets all. As reflected in Goyal and Joshi (2003), in price 

competition markets competition is so intense that connection’s probability among firms becomes 

smaller. 

 

We end this paper with the conclusions. 

 

4. Conclusions 

To move faster towards getting competitors information could be translated in higher benefits. That 

would be the main finding of this paper. This is another example of first mover advantage (Gal-Or, 1985). 

In this case, firms look for allocate resources in economic intelligence investment. Moving first gives to 

early movers a benefit that could be understood as the benefits of spying the competence. This is 

translated in copying competitors’ best practices that, at the same time, it is transformed in the adoption of 

lower cost production techniques.  

 

It is interesting to note that in our model late movers (followers) are not restricted by early mover choices 

but by the exogenous given cost in connections infrastructure. Connecting firms (spying on them) 

behaves as a public good. If the leader firm connects to any number of followers this will not constraint 

future follower firms choices of connection. This is something that deserves a better modeling as future 

research path. 

 

Finally, leader firm has a wider range of threshold values for adopting optimal topologies. This is another 

advantage that entails greater versatility for leader firm connections’ structure choice.  

 

Other paths of future research comprehends: (i) endogeneizing connections structure’s investment cost for 

dealing with the possibility that firms could modify production structure for adapting themselves in the 

connection market competition; (ii) endogeneizing the process of selecting leader firm role assignment as 

suggested by footnote 3’s quotations.  
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Appendix I. Quantity competition 

Proof of Proposition 3: Demonstration is in three parts. First we show that in an equilibrium network g*, 

for leader firm i, we have that ( ) { }*g 0, 1in n∈ − .  

 

(1) Let g* be an equilibrium network where at least leader firm i is such that ( ) { }*g 2, 2in n∈ − . Let 

suppose that ( )*gin k= . We show that if i has no incentive to sever a link, then it has an interest 

in forming a link (and inversely). We know that in an equilibrium network a firm never has an 

incentive for severing a link. So we have that: ( )( ) ( )( ), g 1, g 0i j i jk n k n∗ ∗Π −Π − > , that is  

( ) ( ) ( ) ( )
( )( )0

2

2 2 1 2 1 g

1
0jk n n n

n
n α γ γ γγ δ− + − − −

+
− > , and then ( ) ( ) ( ) ( )

( )
0

2

2 2 1 2 1 g

1
jk n n n

n
n α γ γ γδ γ − + − − −

+
< = A. In the same 

manner, in an equilibrium network a firm never has incentives to form new links. That is to say 

that, ( )( ) ( )( ), g 1, g 0i j i jk n k n∗ ∗Π −Π + > , that is 
( )( ) ( ) ( )( )

( )
0

2

2 1 2 2 1 g

1
0jn k n n n n

n

γ α γ γ γ γ δ− + + + − +

+
+ >  and then 

( ) ( ) ( ) ( )
( )

0
2

2 2 1 2 1 g

1
jn k n n

n
n α γ γ γδ γ − + + − −

+
<  = B. This way, we must have that 0A B− > . Which never verifies 

given ( )
( )

2

2

2

1
0n

n
A B γ

+
− = − < . Then, if a leader firm i has formed k links such that { }2, ,k n∈ K  then 

is never in equilibrium. In equilibrium, a leader firm forms none or n – 1 links with its followers.  



15 

(2) This is a two parts demonstration. In the first part we are going to see that a firm once has formed 

a complete network has no incentives in sever links. In 2.a we show that if ( ) ( )( )
( )

0
2

2 2 1

1

n n

n
n α γ γδ γ − + − −

+
<  

then gc is an equilibrium network and in 2.b we show that there’s no other network that could be 

an equilibrium network. 

a) A leader firm has no incentives in sever link under complete network gc configuration. Then we 

have to probe that: ( )( ) ( )( )2 21, 1 1 , 1 0i in n n k nΠ − − −Π − − − > . In fact we arrive to 

( )( )( )( )
( )

2
0

2

2 2 2 2 2

1
0

n n k n

n

γ α γ γ
δ

− − + + + − −

+
− >  which verifes that 

( ) ( ) ( )( )
( )

3
0

2

2 2 1 8 1

1

n n n n kn

n
n

α γ γ γ γ γ
δ γ

− + − + − −

+
< . If this 

inequality verifies for 1k n= −  then it verifies for all k. So we have that 

( ) ( ) ( )( )( )
( )

3 2
0

2

2 2 1 7 1

1

n n n

n
n

α γ γ γ
δ γ

− + − + −

+
< . This result will be necessary next. 

b) We show now that an equilibrium network g ≠ gc is not an equilibrium network. In (1) we proved 

that in equilibrium a leader firm form link with all or none of the follower firms. For confirming 

this outcome, we are going to prove if there’s is a chance that a leader firm could establish 

connections with every firm less one or may be with a cluster of firms and this would be an 

equilibrium outcome. We establish that a contradiction by supposing that there exists an 

equilibrium network g* such that the leader firm establish no contacts. As it is an equilibrium 

network it should be check that: ( )( ) ( )( )* *0, g , g 0i j i jn k nΠ −Π > , or what is the same 

( ) ( )( ) ( )( )
( )

0

2

2 2 g 2 g

1

j jn k n n

n
n

α γ γ
δ γ

− + − +

+
> . Then, there is a configuration nj (g*) such that a leader firm i has no 

incentives of forming any links with the follower firms whatever their connections’ structure. So 

we could have that: 
( ) ( ) ( )( )( )

( )

3 2
0

2

2 2 1 7 1

1

n n n

n
n

α γ γ γ
δ γ

− + − + −

+
> , that is a contradiction with (2.a). 

(3) Finally, we show that network ge is an equilibrium network for the leader firm if 
( ) ( )

( )
0

2

2 1

1

n n

n
n α γ γδ γ − + −

+
> . We prove first that if ge is an equilibrium then, in the second part, there’s no 

other equilibrium network. 

a) First we establish that any firm has incentive to form links in ge. Then we have that: 

( ) ( )0,0 ,0 0i i kΠ −Π > , from which we obtain that ( )
( )

0
2

2

1

k n

n
n α γ γδ γ − +

+
> . If this result verifies for 

1k n= −  then it is verified for all k. We obtain that ( ) ( )
( )
0

2

2 1

1

n n

n
n α γ γδ γ − + −

+
> .  

b) Now we demonstrate that there’s no other equilibrium than the empty network ge when it emerges 

as an optimum topology. We have proved in the first part that a network g where exists a leader 
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firm i such that { }(g) 0, 1in n∉ −  cannot be an equilibrium network. Then we must prove that a 

network g, where exists at least one firm i such that (g) 1in n= −  is not an equilibrium network. 

For establishing a contradiction, let suppose that an equilibrium network, g*, where there is at one 

firm i such that (g ) 1in n∗ = − . We have that ( )( ) ( )( )1, g 0, g 0i j i jn n n∗ ∗Π − −Π > , which verifies 

that ( ) ( ) ( )( )
( )

0
2

2 1 g

1

jn n n

n
n α γ γ γ

δ γ
− + − −

−
< , so in this particular case should verifies too: ( ) ( )

( )
0

2

2 1

1

n n

n
n α γ γδ γ − + −

+
< . 

Contradiction.  

 

Appendix II. Price competition 

 

Proof of Lemma 2.  

A. Backward induction first stage  

We begin by presenting the following lemma:  

            Lemma AII.1. (Billand & Bravard, 2004: 601) In equilibrium, there’s at least 

one follower firma that form links.  

 

Proof del Lemma AII.1: We establish a contradiction by supposing that there exists an equilibrium 

network where two (follower) firms j1 and j2 has formed links such that { }1 2, 2, ,j j n∈ K . Let suppose 

that ( ) ( )
2 1

g gj jn n≥  verifies. Given now that ( )( ) ( )( )2 2 1 1
g gj j j jc n c n≤ , j1’s brute benefit is null given that 

1 10j jp nγ γ= −  in equilibrium. For that, we obtain as net benefit’s main component is 
1j

nδ : 

( ) ( )( ) { }1 21 1 2 1 2\ ,g , g j N jj j j j jn n gδ ∈Π = − ∑  

Given that firm j2 has a variable cost ( )( )2 2 0gj jc n γ< , firm j1 should not produce anything if it has no 

formed any link. Therefore we have  

( )( )1 2
0, g 0j jnΠ =  

It follows that 

 ( )( ) ( ) ( )( ) { }1 21 2 1 1 2 1 2\ ,0, g g , g 0j N jj j j j j j jn n n gδ ∈Π −Π = >∑  

given that we have supposed that { }1 2 1 2\ , 1j N j j jg∈ ≥∑ . This is a contradiction. Specifically for own setting, 

in equilibrium we have that in Stackelberg game’s second stage only one follower firm will establish 

links, while the rest of follower firms will not establish any links.  
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Let ξ be the lowest feasible monetary denomination, which we suppose that converges to zero. Then we 

establish the price this firm would set in the market. 

 

           Lemma AII.2. (Billand & Bravard, 2004: 601) Suppose there is one and only 

one firm in the market (say firm l) that forms links. Then the Bertrand 

equilibrium price is given by 0lp γ ξ= − . 

 

For our case we suppose that l is such that { }2, ,l n∈ K , i.e., it is part of the set of follower firms which 

behavior leader firm must anticipate. Given that follower firm l will face a demand function such that: 

( )
( )
( )

if ,
if , ,  with equality for  firms

0 if , for some 

l

l l j
D p

l l l jk

l j

D p p p j N
d p p p j N k

p p j l

 < ∀ ∈
 = ∀ ∈
 > ≠

 

which means that if follower firm sets a lower price than any other firm j she will supply all the demand 

alone. If she sets an equal price that any other firm j, they will equally shared the demand and if she sets 

price higher than j’s then she will no supply anything. For that if firm l is the only one that has formed 

link then she has the lowest marginal cost then she sets price in 0lp γ ξ= −  so to displace the rest of the 

firms of the market. So, there will be 3n −  firms that will not establish any link while one of them, 

conventionally denoted as firm l will form links with all the others follower firms and the leader firm by 

setting a price a bit lower to fixed cost 0γ . 

 

How leader firm would react to that? Given that l has set a price 0lp γ ξ= − , i will play again and would 

set a price a bit even lower given that there would be only one firm establishing links. Using the same line 

of reasoning as Lemma AII.1 and AII.2, there would be only one firm forming link and that firm will set 

the lowest price. Facing the same demand function: 

( )
( )
( )

0

02

0

if ,
if , with equality for  y ,

0 if for some 

i

i i l
D p

i i i l

i l

D p p p
d p p p i l

p p j l

γ ξ
γ ξ
γ ξ

 < = −
 = = −
 > = − ≠

 

leader firm must decide if she will match firm l’s price or if she will cut the price. If she matches pl given 

the model’s demand rationing rule they will share demand with l. If she cuts the price they will earn 

positive profits. The same would happens if leader firm cut the price by another lowest feasible monetary 
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unit, ξ, being the leader new price set in 0 2ip γ ξ= − . Let find out which decision brings more benefits to 

leader firm: 

( ) ( )( )( ) ( ) ( )( )( )2g g 0id p
i i i i l i id p p c n p c n− − − ≥  

 ( )
( )

( )
( )( )

( )
( )

{ ( )
( )( )

1
0 0 0 0 0 02

2g g

2 2 g g 0
lii ii i i i

i i

ppd p d pc n c n

n nα γ ξ γ ξ γ γ α γ ξ γ ξ γ γ
   
   − + − − + − − + − − + ≥      
   
1231442443 14243 1442443 14243

 

 ( ) ( ) ( ) ( )( )( )0
1 g 3 3 7 g 3 0
2 i in nγ α ξ ξ α ξ γ ξ γ− + + − + ≥  

Given that ξ → 0, then we have that ( )( )1
02 g 0inγ α γ− ≥ , which verifies for all feasible values of the 

game. So, leader firm will set 0 2ip γ ξ= − . Under certain functional forms of D (p), price elasticity could 

play a different role in this interpretation. 

 

B. Backward induction second stage 

In the second stage, follower firms will watch the price set by leader firm and they will set their own 

optimal price. But they will find that ( ) 0j jd p =  given that 0 0 2j ip pγ ξ γ ξ− = > = −  then for avoiding 

losses associated with ( ) ( )( ) ( )g , g gj i j jn n nδΠ = −  they will choose ( )g 0jn = .  

 

Proof of Proposition 3. Leader firm’s benefit maximization will be determined by 

( ) ( )( ) ( )
( )

( )
( )( )

( )0 0 0

g

g , g 2 2 g g
ii i i

i i j i i

pd p c n

n n n nα γ ξ γ ξ γ γ δ
 
 Π = − + − − + −  
 
1231442443 14243

 

which is the same that: 

( )( ) ( )
( )

0 0g 2 2 2
g

i

i

n
n

γ α γ ξ ξ α γ ξ
δ

− + − − +
=  

 ( ) ( )
( )

0
0

2 2
2

gin
ξ α γ ξ

δ γ α γ ξ
− +

= − + −  

and given that 0ξ → , we have that 

( )0δ γ α γ= − . 

 

As in Billand & Bravard (2004: 608) here we can distinguish two cases: 
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1. If ( )0δ γ α γ> −  benefits function ( ) ( )( )* *g , gi i jn nΠ  would be decreasing in ( )*gin , which 

implies that leader firm will not have incentives to form links. Leader firm remains isolated and 

optimal market topology will be the empty network. 

2. If ( )0δ γ α γ< −  then benefits function ( ) ( )( )* *g , gi i jn nΠ  would be increasing in ( )*gin , 

which implies that leader firm would have higher incentives to form links. Leader firm 

will connect to all follower firms and optimal market topology will be leader firm 

sponsored star network.  


