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Abstract

This paper studies the estimation of dynamic discrete games of incomplete information.
Two main econometric issues appear in the estimation of these models: the indeterminacy
problem associated with the existence of multiple equilibria, and the computational burden in
the solution of the game. We propose a class of pseudo maximum likelihood (PML) estimators
that deals with these problems and we study the asymptotic and finite sample properties of
several estimators in this class. We first focus on two-step PML estimators which, though
attractive for their computational simplicity, have some important limitations: they are seriously
biased in small samples; they require consistent nonparametric estimators of players’ choice
probabilities in the first step, which are not always feasible for some models and data; and
they are asymptotically inefficient. Second, we show that a recursive extension of the two-step
PML, which we call nested pseudo likelihood (NPL), addresses those drawbacks at a relatively
small additional computational cost. The NPL estimator is particularly useful in applications
where consistent nonparametric estimates of choice probabilities are either not available or very
imprecise, e.g., models with permanent unobserved heterogeneity. Finally, we illustrate these
methods in Montecarlo experiments and in an empirical application to a model of firm entry
and exit in oligopoly markets using Chilean data from several retail industries.
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1 Introduction

Empirical discrete games are useful tools in the analysis of economic and social phenomena whenever

strategic interactions are an important aspect of individual behavior. The range of applications

includes, among others, models of market entry (Bresnahan and Reiss, 1990 and 1991b, Berry,

1992, Toivanen and Waterson, 2000), models of spatial competition (Seim, 2000), release timing

of motion pictures (Einav, 2003, and Zhang-Foutz and Kadiyali, 2003), intra-family allocations

(Kooreman, 1994, Engers and Stern, 2002), and models with social interactions (Brock and Durlauf,

2001). Although dynamic considerations are potentially relevant in some of these studies, most

applications of empirical discrete games have estimated static models. Two main econometric issues

have limited the scope of applications to relatively simple static games: the computational burden

in the solution of dynamic discrete games, and the indeterminacy problem associated with the

existence of multiple equilibria. This paper studies these issues in the context of a class of dynamic

discrete games of incomplete information and develops techniques for the estimation of structural

parameters. The rest of this introductory section discusses previous work in this literature and

describes the contribution of this paper.

The existence of multiple equilibria is a prevalent feature in most empirical games where best

response functions are non-linear in other players’ actions. Models with multiple equilibria do not

have a unique reduced form and this incompleteness may pose practical and theoretical problems

in the estimation of structural parameters. In particular, maximum likelihood and other extremum

estimators require that we obtain all the equilibria for every trial value of the parameters. This

can be unfeasible even for simple models. The most common approach to deal with this problem

has been to impose restrictions which guarantee equilibrium uniqueness for any possible value of

the structural parameters. For instance, if strategic interactions among players have a recursive

structure, the equilibrium is unique (see Heckman, 1978). A similar but less restrictive approach

has been used by Bresnahan and Reiss (1990, 1991) in the context of empirical games of market

entry. These authors consider a specification where a firm’s profit depends on the number of firms

operating in the market but not on the identity of these firms. Under this condition, the equilibrium

number of entrants is invariant over the multiple equilibria. Based on this property, Bresnahan and

Reiss propose an estimator that maximizes a likelihood for the number of entrants. Though this

can be a useful approach for some applications, it rules out interesting cases like models where

firms have heterogeneous production costs or where they produce differentiated products. Notice

also that these restrictions are not necessary for the identification of the model (see Tamer, 2003).1

1 In general, a unique reduced form is neither a necessary nor a sufficient condition for identification (Jovanovic,
1989).
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Computational costs in the solution and estimation of these models have also limited the range

of empirical applications to static models with a relatively small number of players and choice

alternatives. Equilibria are fixed points of the system of best response operators, and in dynamic

games each player’s best response is itself the solution to a discrete choice dynamic programming

problem. There is a curse of dimensionality in the sense that the cost of computing an equilibrium

increases exponentially with the number of players. Furthermore, the standard nested fixed-point

algorithms used to estimate single agent dynamic models and static games require the repeated

solution of the model for each trial value of the vector of parameters to estimate. Therefore, the

cost of estimating these models using those algorithms is much larger than the cost of solving the

model just once.

This paper considers a class of pseudo maximum likelihood (PML) estimators that deals with

these problems and studies the asymptotic and finite sample properties of these estimators. The

method of PML was first proposed by Gong and Samaniego (1981) to deal with the problem of

incidental parameters. In general, PML estimation consists of replacing all nuisance parameters in

a model by estimates and solving a system of likelihood equations for the parameters of interest.

This idea has been previously used in the estimation of dynamic structural econometric models

by Hotz and Miller (1993) and Aguirregabiria and Mira (2002). Here we show that this technique

is particularly useful in the estimation of dynamic games of incomplete information with multiple

equilibria and large state spaces.

Our PML estimators are based on a representation of Markov perfect equilibria as fixed points

of a best response mapping in the space of players’ choice probabilities. These probabilities are

interpreted as players’ beliefs about the behavior of their opponents. Given these beliefs, one

can interpret each player’s problem as a game against nature with a unique optimal decision rule

in probability space, which is the player’s best response. While equilibrium probabilities are not

unique functions of structural parameters, the best response mapping is always a unique function of

structural parameters and players’ beliefs about the behavior of other players. We use these best re-

sponse functions to construct a pseudo likelihood function and obtain a PML estimator of structural

parameters. If the pseudo likelihood function is based on a consistent nonparametric estimator of

players’ beliefs, we get a two-step PML estimator that is consistent and asymptotically normal. The

main advantage of this estimator is its computational simplicity. However, it has three important

limitations. First, it is asymptotically inefficient because its asymptotic variance depends on the

variance of the initial nonparametric estimator. Second and more important, the nonparametric

estimator can be very imprecise in the small samples available in actual applications, and this can

generate serious finite sample biases in the two-step estimator of structural parameters. And third,
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consistent nonparametric estimators of players’ choice probabilities are not always feasible for some

models and data. These limitations motivate a recursive extension of the two-step PML that we

call nested pseudo likelihood estimator (NPL). We show that the NPL estimator addresses these

drawbacks of the two-step PML at a relatively small additional computational cost. We illustrate

the performance of these estimators in the context of an actual application and in Monte Carlo

experiments based on a model of market entry and exit.

There has been an increasing interest in the estimation of discrete games during the last years,

which has generated several methodological papers on this topic. Pesendorfer and Schmidt (2003)

propose a two stage method that is equivalent to our two-step estimator when it is initialized

with consistent nonparametric estimates. Pakes, Ostrowsky and Berry (2003) consider the same

estimator, and combine it also with simulation methods. We compare the performance of this

estimator with the NPL in our Monte Carlo experiments. Bajari, Benkard and Levin (2003)

show that the simulation-based estimator in Hotz, Miller, Saunders and Smith (1994) can be

applied to estimate dynamic models of imperfect competition with both discrete and continuous

decision variables. For the case of static games with complete information, Tamer (2003) presents

sufficient conditions for the identification of a two-player model and proposes a pseudo maximum

likelihood estimation method. Tamer (2004) extends this approach to static games with N players.

Bajari, Hong and Ryan (2004) study also the identification of normal form games with complete

information.

The rest of the paper is organized as follows. Section 2 presents the class of models considered in

this paper and the basic assumptions. Section 3 explains the problems associated with maximum

likelihood estimation, presents the two-step PML and the NPL estimators, and describes their

properties. Section 4 presents several Monte Carlo experiments. Section 5 illustrates these methods

with the estimation of a model of market entry-exit using actual panel data of Chilean firms. We

conclude and summarize in section 6. Proofs of different results are provided in the Appendix.

2 A dynamic discrete game

This section presents a dynamic discrete game with incomplete information similar to the one in

Rust (1994, pp. 154-158). In order to make some of the discussions less abstract, we consider

a model where firms competing in a local retail market decide the number of their outlets. A

model of market entry-exit is a particular case of this framework. Although we do not deal with

estimation and econometric issues until section 3, it is useful to anticipate the type of data that we

have in mind. We consider a researcher who observes many geographically separate markets such
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as (non-metropolitan) small cities or towns. The game is played at the level of individual markets.

The number and the identity of the players can vary across markets. Examples of applications with

this type of data are Bresnahan and Reiss (1990) for car dealers, Berry (1992) for airlines, Toivanen

and Waterson (2000) for fast-food restaurants, De Juan (2001) for banks, Netz and Taylor (2002)

for gas stations, Seim (2000) for video rental stores, or Ellickson (2003) for supermarkets.

2.1 Framework and basic assumptions

Each market is characterized by demand conditions which can change over time (e.g., population,

income and age distribution, etc). Let dt be the vector of demand shifters at period t. There are

N firms operating in the market, which we index by i ∈ I = {1, 2, ...,N}. At every discrete period
t firms decide simultaneously how many outlets to operate. Profits are bounded from above such

that the maximum number of outlets, J , is finite. Therefore, a firm’s set of choice alternatives is

A = {0, 1, ..., J}, which is discrete and finite. We represent the decision of firm i at period t by the

variable ait ∈ A.

At the beginning of period t a firm is characterized by two vectors of state variables which

affect its profitability: xit and εit. Variables in xit are common knowledge for all firms in the

market, but the vector εit is private information of firm i. For instance, some variables which

could enter in xit are the firm’s number of outlets at the previous period or the years of experience

of the firm in the market. Managerial ability at different outlets could be a component of εit.

Let xt ≡ (dt, x1t, x2t, ..., xNt) and εt ≡ (ε1t, ε2t, ..., εNt) be the vectors of common knowledge and

private information variables, respectively. A firm’s current profits depend on xt, on its own

private information εit, and on the vector of firms’ current decisions, at ≡ (a1t, a2t, ..., aNt). Let

Π̃i(at, xt, εit) be firm i’s current profit function. We assume that {xt, εt} follows a controlled
Markov process with transition probability p(xt+1, εt+1|at, xt, εt). This transition probability is
common knowledge.

A firm decides its number of outlets to maximize expected discounted intertemporal profits:

E

( ∞X
s=t

βs−t Π̃i(as, xs, εis) | xt, εit
)

(1)

where β ∈ (0, 1) is the discount factor. The primitives of the model are the profit functions

{Π̃i(.) : i = 1, 2, ...N}, the transition probability p(.|.), and the discount factor β. We consider the
following assumptions on these primitives.

ASSUMPTION 1 (Additive separability): Private information appears additively in the profit func-

tion. That is, Π̃i(at, xt, εit) = Πi(at, xt) + εit(ait), where Πi(.) is a real valued function, and

εit ≡ {εit(0), εit(1), ..., εit(J)} ∈ RJ+1 is a vector of real valued random variables.
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ASSUMPTION 2 (Conditional independence): The transition probability p(.|.) factors as: p(xt+1, εt+1|
at, xt, εt) = pε(εt+1) f(xt+1 | at, xt). That is: (1) given firms’ decisions at period t, private in-

formation variables do not affect the transition of common knowledge variables; and (2) private

information variables are independently and identically distributed over time.

ASSUMPTION 3 (Independent private values): Private information is independently distributed

across players: pε(εt) =
QN

i=1 gi(εit), where, for any player i, gi(.) is a density function which is

absolutely continuous with respect to the Lebesgue measure.

ASSUMPTION 4 (Discrete common knowledge variables): Common knowledge variables have a

discrete and finite support: xt ∈ X ≡ {x1, x2, ..., x|X|} where |X| is a finite number.
Example (Entry and exit in a local retail market): Suppose the players are supermarkets making

decisions on whether to open, continuing to operate or closing their stores. The market is a small

city and a supermarket has at most one store in this market, i.e., ait ∈ {0, 1}. If a supermarket
does not operate a store, it gets zero profits. Opening a new store requires a sunk entry cost α2.

If the supermarket operates a store, its profits depend on: (1) the state of the local economy (e.g.,

population, income, unemployment rate, etc), which is captured by the vector of demand shifters

dt; (2) the store’s years of experience in this market, represented by the variable cit; (3) the number

of firms operating in this market; (4) the average experience of other firms in this market; and (5)

a private information shock εit. Current profits of an active store are:

Π̃it = α0 + α1dt − α2(1− ai,t−1) + α3 cit − δ1 ln

µ
1 +

XN

j=1
ajt

¶
− δ2

ÃPN
j=1 ajtcjtPN
j=1 ajt

!
+ εit (2)

where α0, α1, α2, α3, δ1 and δ1 are parameters. In particular, the parameters δ1 and δ2 capture

the existence of strategic interactions. The set of common knowledge state variables consists of

the demographic variables in dt, the decisions at previous period, and the years of experience of all

supermarkets.

2.2 Strategies and Bellman equations

The game has a Markov structure, and we assume that firms play (stationary) Markov strategies.

That is, if {xt, εit} = {xs, εis} then firm i0s decisions at periods t and s are the same. Therefore,

we can omit the time subindex and use x0 and ε0 to denote next period state variables. Let σ =

{σi(x, εi)} be a set of strategy functions or decision rules, one for each firm, with σi : X×RJ+1 → A.

Associated with a set of strategy functions σ we can define a set of conditional choice probabilities

P σ = {P σ
i (ai|x)} such that,

P σ
i (ai|x) ≡ Pr (σi(x, εi) = ai |x) =

Z
I {σi(x, εi) = ai} gi(εi) dεi (3)
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where I{.} is the indicator function. The probabilities {P σ
i (ai|x) : ai ∈ A} represent the expected

behavior of firm i from the point of view of the rest of the firms when firm i follows its strategy in

σ.

Let πσi (ai, x) be firm i’s expected profit if it chooses alternative ai and the other firms behave

according to their respective strategies in σ.2 By the independence of private information,

πσi (ai, x) =
X

a−i∈AN−1

Y
j 6=i

P σ
j (aj |x)

Πi(ai, a−i, x) (4)

Let Ṽ σ
i (x, εi)be the value of firm i if this firm behaves optimally now and in the future given that

the other firms follow their strategies in σ. By Bellman’s principle of optimality, we can write:

Ṽ σ
i (x, εi) = max

ai∈A

(
πσi (ai, x) + εi(ai) + β

X
x0∈X

·Z
Ṽ σ
i (x

0, ε0i) g(ε
0
i) dε

0
i

¸
fσi (x

0|x, ai)
)

(5)

where fσi (x
0|x, ai) is the transition probability of x conditional on firm i choosing ai and the other

firms behaving according to σ:

fσi (x
0|x, ai) =

X
a−i∈AN−1

Y
j 6=i

P σ
j (aj |x)

 f(x0|x, ai, a−i) (6)

It is convenient to define value functions integrated over private information variables. Let

V σ
i (x) be the integrated value function

R
Ṽ σ
i (x, εi) g(dεi). Based on this definition and equation

(5), we can obtain the integrated Bellman equation:

V σ
i (x) =

Z
max
ai∈A

n
πσi (ai, x) + εi(ai) + β

X
x0∈X V σ

i (x
0) fσi (x

0|x, ai)
o
gi(dεi) (7)

The right hand side of equation (7) is a contraction mapping in the space of value functions (see

Aguirregabiria and Mira, 2002). Therefore, for each firm, there is a unique function V σ
i (x) that

solves this functional equation for given σ.

2.3 Markov perfect equilibria

So far σ is arbitrary and does not necessarily describe the equilibrium behavior of other firms. The

following definition characterizes equilibrium strategies of all firms as best responses to one another.

DEFINITION: A stationary Markov perfect equilibrium (MPE) in this game is a set of strategy

functions σ∗ such that for any firm i and for any (x, εi) ∈ X ×RJ+1,

σ∗i (x, εi) = argmax
ai∈A

n
πσ

∗
i (ai, x) + εi(ai) + β

X
x0∈X V σ∗

i (x0) fσ
∗

i (x
0|x, ai)

o
(8)

2 In the terminology of Harsanyi (1995) the profit functions Πi(a1, a2, ..., aN , x) are the conditional payoffs and the
expected profit functions πσi (ai, x) are the semi-conditional payoffs.
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Following Milgrom and Weber (1985) we can also represent a MPE in probability space.3 First,

notice that for any set of strategies σ, in equilibrium or not, the functions πσi , V
σ
i and fσi depend

on players’ strategies only through the choice probabilities P associated with σ. To emphasize this

point, and to define a MPE in probability space, we change slightly the notation and use the symbols

πPi , V
P
i and fPi , respectively, to denote these functions. Let σ

∗ be a set of MPE strategies, and let P ∗

be the probabilities associated with these strategies. By definition, P ∗i (ai|x) =
Z

I {ai = σ∗i (x, εi)}
gi(εi) dεi. Therefore, equilibrium probabilities are a fixed point. That is, P ∗ = Λ(P ∗), where for

any vector of probabilities P , Λ(P ) = {Λi(ai|x;P−i)}, and:

Λi(ai|x;P−i) =
Z

I

µ
ai = argmax

j∈A

n
πPi (j, x) + εi(j) + β

X
x0∈X V P

i (x
0) fPi (x

0|x, j)
o¶

gi(εi) dεi

(9)

We call the functions Λi best response probability functions. Given our assumptions on the distri-

bution of private information, best response probability functions are continuous in the compact

set of players’ choice probabilities. By Brower’s theorem, there exists at least one equilibrium. In

general, the equilibrium is not unique.

Equilibrium probabilities solve the coupled fixed-point problems defined by (7) and (9). Given

a set of probabilities P we obtain value functions V P
i as solutions of the N fixed point problems in

(7); and given these value functions we obtain best response probabilities using the right hand-side

of equation (9).

2.4 An alternative best response mapping

We now provide an alternative best response mapping (in probability space) which avoids the

solution of the N dynamic programming problems in (7). The evaluation of this mapping is

computationally much simpler than the evaluation of the mapping Λ(P ), and it will prove more

convenient for the estimation of the model.

Let P ∗ be an equilibrium, and let V P∗
1 , V P∗

2 , ..., V P∗
N be firms’ value functions associated with

this equilibrium. Since equilibrium probabilities are best responses, we can rewrite the Bellman

equation (7) as,

V P∗
i (x) =

X
ai∈A

P ∗i (ai|x)
h
πP

∗
i (ai, x) + eP

∗
i (ai, x)

i
+ β

X
x0∈X V P∗

i (x0) fP
∗
(x0|x) (10)

where fP
∗
(x0|x) is the transition probability of x induced by P ∗.4 The term eP

∗
i (ai, x) is the

expectation of εi(ai) conditional on x and on alternative ai being the optimal response for player
3Milgrom and Weber consider both discrete-choice and continuous-choice games. In their terminology {Pσ

i } are
called distributional strategies, and P ∗ is an equilibrium in distributional strategies.

4That is, fP
∗
(x0|x) =

X
a∈AN

³YN

j=1
P ∗j (aj |x)

´
f(x0|x, a).

7



i. By Proposition 1 in Hotz and Miller (1993), this conditional expectation is a function of ai and

P ∗i (x) only.

Taking equilibrium probabilities as given, expression (10) describes the vector of values V P∗
i as

the solution of a system of linear equations. In vector form:³
I − β FP∗

´
V P∗
i =

X
ai∈A

P ∗i (ai) ∗
h
πP

∗
i (ai) + eP

∗
i (ai)

i
(11)

where I is the identity matrix; FP∗ is a matrix with transition probabilities fP
∗
(x

0 |x); and P ∗i (ai),
πP

∗
i (ai) and eP

∗
i (ai) are vectors of dimension |X| which stack the corresponding state-specific el-

ements. Let Γi(P ∗) ≡ {Γi(x;P ∗) : x ∈ X} be the solution to this system of linear equations,

such that V P ∗
i (x) = Γi(x;P

∗). For arbitrary probabilities P , not necessarily in equilibrium, Γi(.)

can be interpreted as a valuation operator: that is, Γi(x;P ) is the expected value of firm i if all

firms (including firm i) behave today and in the future according to their choice probabilities in P .

Therefore, we can characterize a MPE as a fixed point of a mapping Ψ(P ) ≡ {Ψi(ai|x;P )} with

Ψi(ai|x;P ) =
Z

I

µ
ai = argmax

j∈A

n
πPi (j, x) + εi(j) + β

X
x0∈X Γi(x

0;P ) fPi (x
0|x, j)

o¶
gi(εi) dεi

(12)

The only difference between best response mappings Λi and Ψi is that Ψi takes firm i0s future

actions as given whereas Λi does not. To evaluate Λi one has to solve N dynamic programming

problems, whereas to obtain Γi and Ψi one only has to solve N systems of linear equations. In the

context of the estimation of the model, we will see that using mapping Ψ instead of Λ provides

significant computational gains.

Example (Entry and exit in a local retail market): Consider the example in section 2.1. Expected

current profits if not active are πPi (0, x) = 0 and if active they are

πPi (1, xt) = α0 + α1 dt − α2 (1− ai,t−1) + α3 cit − δ1 N
P
it − δ2 C

P
it (13)

with NP
it =

X
a−i∈{0,1}N−1

Pr (a−i|xt) ln
µ
1 +

XN

j=1
a−i(j)

¶
, and CP

it =
X

a−i∈{0,1}N−1
Pr (a−i|xt)³PN

j=1 a−i(j) cjt/
PN

j=1 a−i(j)
´
. We can also write this expected profit as πPi (1, xt) = zPit θ, where

zPit =
©
1, dt, ai,t−1 − 1, cit, NP

it , C
P
it

ª
, and θ is the vector of parameters (α0, α1, α2, α3, δ1, δ2)0. If

the private information shock is normal with zero mean and variance σ2, then ePi (0, xt) = 0 and

ePi (1, xt) = σφ
¡
Φ−1 (Pi(1|xt))

¢
/Pi(1|xt), where φ(.) and Φ (.) are the density and the cumulative

distribution of the standard normal, respectively. The multiplicative separability of the parameters

θ in expected profits implies that these parameters are also multiplicative separable in the mapping

Γi(P ). That is, we can write Γi(P ) = ZP
i θ + σ λPi , where Z

P
i and λPi are a matrix and a vector
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which are obtained by solving a system of linear equations as in (11) in order to collect the infinite

sum of zP and eP (1, .) terms, respectively, along all possible future paths originating from a given

state. Finally, the best response functions Ψi have the following form:

Ψi(1|xt;P ) = Φ
µ ¡

zPit + β ZP
it

¢ θ
σ
+ β λPit

¶
(14)

where ZP
it =

P
x0∈X ZP

i (x
0)∇fPit (x0), λPit =

P
x0∈X λPi (x

0)∇fPit (x0),∇fPit (x0) = fPi (x
0|xt, 1)− fPi (x

0|xt, 0),
and ZP

i (x
0) is the corresponding row of matrix ZP

i .

3 Estimation

3.1 Econometric model and data generating process

Consider a researcher who observes players’ actions and common knowledge state variables across

M geographically separate markets over T periods, where M is large and T is small. This is a

common sampling framework in empirical applications in IO.

Data = {amt, xmt : m = 1, 2, ...,M ; t = 1, 2, ..., T} (15)

where m is the market subindex, and amt = (a1mt, a2mt, ..., aNmt). An important aspect of the

data is whether players are the same across markets or not. We use the terminology global players

and local players, respectively, to refer to these two cases. In our example of the model of market

entry-exit we may have some large firms who, active or not, are potential entrants in every local

market, and some other firms who are potential entrants in only one local market. For instance,

in the fast food industry Mac Donald’s would be a global player whereas a family-owned fast food

outlet would be a local player. Our framework can accommodate both cases. However, we can

allow for heterogeneity in the structural parameters across players only if those players’ decisions are

observed across all or most of the markets. To illustrate both cases, the Monte Carlo experiments

that we present in section 4 are for the model with global players only, and the empirical application

in section 5 is for local players only.

The primitives {Πi, gi, f, β, : i ∈ I} are known to the researcher up to a finite vector of structural
parameters θ ∈ Θ ⊂ RK . Primitives are continuously differentiable in θ. Let θ0 ∈ Θ be the true
value of θ in the population. The researcher is interested in the estimation of θ0. Under Assumption

2 (i.e., conditional independence), the transition probability function f can be estimated from

transition data using a standard maximum likelihood method and without solving the model. We

focus on the estimation of the rest of the primitives. We consider the following assumption on the

data generating process.
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ASSUMPTION 5: Let P 0mt ≡ {Pr(amt = a|xmt = x) : (a, x) ∈ AN × X} be the distribution of
amt conditional on xmt in market m at period t. (A) For every observation (m, t) in the sample

P 0mt = P 0. (B) Players expect P 0 to be played in future (out of sample) periods. (C) There is a

unique θ0 ∈ Θ such that P 0 = Ψ(P 0; θ0) and P 0 6= Ψ(P 0; θ) for any θ 6= θ0.

Assumption 5A establishes that the data has been generated by only one Markov Perfect equilib-

rium.5 Without this assumption, we would need to extend the primitives of the model to include a

probability distribution that determines the likelihood with which different equilibria are selected.6

Assumption 5B is a natural extension which is necessary in order to accommodate dynamic models.

Without it, we cannot compute the expected future payoffs of within-sample actions unless we (once

again) specify the beliefs of players regarding the probability of switching equilibria in the future.

Our assumption avoids the specification of ad-hoc equilibrium selection devices. Assumption 5C is

a standard identification condition.

3.2 Maximum likelihood estimation

For some values of the structural parameters the model can have multiple equilibria. Therefore,

we have a likelihood correspondence instead of a likelihood function and this makes estimation by

maximum likelihood non-standard. To illustrate this issue, let Υ be the set of equilibrium types

and suppose that this set is discrete and countable, e.g., Υ = {1, 2, 3...}. An equilibrium type is a

probability function P τ (θ) where τ ∈ Υ is the index that represents the type. For any type τ we
can define an equilibrium type-specific log-likelihood function:

lτ (θ) =
1

M

XM

m=1

XT

t=1

XN

i=1
lnP τ

i (aimt|xmt; θ) (16)

Under Assumption 5 the population probabilities P 0 belong to one and only one equilibrium type.

That is, there is a τ0 ∈ Υ and θ0 ∈ Θ such that P 0 = P τ0(θ0). If we knew the equilibrium type τ0,

we would maximize lτ0(θ) with respect to θ and obtain the MLE of θ0. Under standard regularity

conditions, this estimator is consistent, asymptotically normal and efficient.

However, we do not know the equilibrium type of P 0, and therefore this MLE is unfeasible. In

principle, we could consider an algorithm that searches both for the equilibrium type τ0 and for the

5This assumption can be relaxed if we are willing to impose some additional structure on the sampling framework.
For instance, suppose there is a finite number of equilibria that are played in the data. The pseudo maximum
likelihood methods in this paper can still be applied if the number of observations (markets) of each equilibrium type
goes to infinity with sample size, and the researcher knows the type of equilibria that is played in each market and
time period, and (if different equilibria are played over time) players do not anticipate the switch from one equilibrium
to another.

6Moro (2003) introduced the assumption that only one equilibrium is present in the data in a somewhat different
context. In his work the researcher observes a function of the equilibrium strategies rather than the equilibrium
object itself; therefore, additional assumptions are needed in order to identify the selected equilibrium from the data.
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vector of parameters θ0. For instance, if we knew and could characterize all the equilibrium types,

we would obtain equilibrium type-specific ML estimators: for any τ ∈ Υ, θ̂τ = argmaxθ∈Θ lτ (θ).

Then, we could define the estimator:

θ̂ = θ̂
τ∗
, where τ∗ = argmax

τ∈Υ
lτ (θ̂

τ
). (17)

In practice, this estimator can be difficult to implement. First, notice that we need to know

all the equilibrium types that the model has on Θ. This is computationally impractical even for

relatively simple models. Second, to obtain an equilibrium type-specific estimator, say θ̂
τ
, we need

an algorithm that guarantees that for different values of θ we always select equilibrium type τ . This

can be a very difficult task for some types of equilibria (see McKelvey and McLennan, 1996). And

third, the computation of this estimator requires one to evaluate the mapping Ψ and the Jacobian

matrix ∂Ψ/∂P 0 at many different values of P . Though evaluations of Ψ for different θ0s can be

relatively cheap because we do not have to invert the matrix (I − βF ) in (11), evaluations for

different P imply a huge cost when the dimension of the state space is large because this matrix

needs to be inverted each time. Therefore, this estimator can be impractical in models where the

dimension of P is relatively large. For instance, that is the case in most models with heterogenous

players because the dimension of the state space increases exponentially with the number of players.

For that type of models this estimator can be impractical even when the number of players is not

too large. These problems motivate the following pseudo likelihood estimators.

3.3 Pseudo maximum likelihood estimation

The PML estimators try to minimize the number of evaluations of Ψ for different vectors of players’

probabilities P . We define first the pseudo likelihood function:

QM(θ, P ) =
1

M

XM

m=1

XT

t=1

XN

i=1
lnΨi(aimt|xmt;P, θ) (18)

where P is an arbitrary vector of players’ choice probabilities. Suppose that we knew the population

probabilities P 0, and consider the following PML estimator:

θ̂U ≡ argmax
θ∈Θ

QM(θ, P
0) (19)

Under standard regularity conditions this estimator is root-M consistent and asymptotically normal,

and its asymptotic variance is Ω−1θθ , where Ωθθ is the variance of the pseudo score, i.e., Ωθθ ≡
E({∇θsm} {∇θsm}0), with sm ≡

XT

t=1

XN

i=1
lnΨi(aimt|xmt;P

0, θ0). Notice that to obtain this

estimator we have to evaluate the mapping Ψ at only one value of players’ choice probabilities.
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However, this PML estimator is unfeasible because P 0 is unknown. Suppose that we can obtain

a
√
M−consistent nonparametric estimator of P 0. For instance, if there are not unobservable

state variables, we can use a frequency estimator or a kernel method to estimate players’ choice

probabilities. Let P̂ 0 be this nonparametric estimator. Then, we can define the feasible two-step

PML estimator: θ̂2S ≡ argmax
θ∈Θ

QM(θ, P̂
0). Proposition 1 presents the asymptotic properties of

this estimator.

PROPOSITION 1: Suppose that: (1) Assumptions 1 to 5 hold; (2) Ψ(P, θ) is twice continuously

differentiable; (3) Θ is a compact set; (4) θ0 ∈ int (Θ); and (5) let P̂ 0 = (1/M)
PM

m=1 qm be an

estimator of P 0 such that
√
M
³
P̂ 0 − P 0

´
−→d N (0,Σ). Then,

√
M
³
θ̂2S − θ0

´
−→d N (0, V2S),

where:

V2S = Ω−1θθ +Ω
−1
θθ ΩθP Σ Ω

0
θP Ω

−1
θθ

and ΩθP ≡ E({∇θsm} {∇P sm}0), with ∇P representing the partial derivative with respect to P .

Given that Ω−1θθ ΩθP Σ Ω
0
θP Ω

−1
θθ is a positive definite matrix, we have that the feasible PML

estimator is less efficient that the PML based on true P 0, i.e., V2S ≥ Ω−1θθ . Furthermore, if P̂ 0A

and P̂ 0B are two estimators of P
0 such that ΣA−ΣB > 0 (positive definite matrix), then the PML

estimator based on P̂ 0B has lower asymptotic variance than the estimator based on P̂ 0A.

Root-M consistency and asymptotic normality of P̂ 0, together with regularity conditions, are

sufficient to guarantee root-M consistency and asymptotic normality of this PML estimator. There

are several reasons why this estimator is of interest. It deals with the problem of indeterminacy

associated with multiple equilibria. Furthermore, repeated solutions of the dynamic game are

avoided and this can result in significant computational gains.

However, the estimator has several important limitations. First, its asymptotic variance depends

on the variance Σ of the nonparametric estimator P̂ 0. Therefore, it can be very inefficient when

Σ is large. Second, and most importantly, for the sample sizes available in actual applications,

the nonparametric estimator of P 0 can be extremely imprecise even when the number of players

is not too large (e.g., 5 players). This can generate serious finite sample biases in the estimator of

structural parameters. We illustrate this problem with several Monte Carlo experiments in Section

4. And third, for some models it is not possible to obtain consistent nonparametric estimates of

P 0. That is the case in models with unobservable market characteristics.

3.4 Nested pseudo likelihood method

The nested pseudo likelihood (NPL) method is a recursive extension of the two-step PML estimator.

Let P̂0 be an initial guess of the vector of players’ choice probabilities. It is important to emphasize
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that this guess need not be a consistent estimator of P 0. Given P̂0, NPL generates a sequence of

estimators {θ̂K : K ≥ 1} where the K − stage estimator is defined as:

θ̂K = argmax
θ∈Θ

QM(θ, P̂K−1) (20)

and the probabilities {P̂K : K ≥ 1} are obtained recursively as:

P̂K = Ψ(θ̂K , P̂K−1) (21)

That is, θ̂1 maximizes the pseudo likelihood QM(θ, P̂0); given P̂0 and θ̂1 we obtain a new vector

of probabilities by iterating in the equilibrium mapping, i.e., P̂1 = Ψ(θ̂1, P̂0); then, θ̂2 maximizes

the pseudo likelihood QM(θ, P̂1); and so on. A NPL fixed-point is the limit of this sequence, if

it exists.7 Clearly, a NPL fixed point (θ̂NPL, P̂NPL) has the following two properties: (a) θ̂NPL

maximizes the pseudo likelihood QM(θ, P̂NPL) and (b) P̂NPL = Ψ(θ̂NPL, P̂NPL). For any given

sample, Brower’s theorem guarantees the existence of at least one NPL fixed-point.8 However, the

set of NPL fixed-points may contain more than one pair (θ, P ). The NPL estimator is defined as

the NPL fixed-point associated with the maximum value of the pseudo likelihood. Proposition 2

establishes the large sample properties of this estimator.

PROPOSITION 2: Suppose that: (1) Assumptions 1 to 5 hold; (2) Ψ(P, θ) is twice continuously

differentiable; (3) Θ is a compact set; (4) θ0 ∈ int (Θ); and (5) the NPL estimator is the NPL fixed-

point with the maximum value of the pseudo likelihood. Then,
√
M
³
θ̂NPL − θ0

´
−→d N (0, VNPL),

where:

VNPL =
h
Ωθθ +ΩθP

¡
I −∇PΨ

0¢−1∇θΨ
i−1
Ωθθ

h
Ωθθ +∇θΨ

0 (I −∇PΨ)
−1Ω0θP

i−1
where ∇PΨ is the Jacobian matrix ∇PΨ(P

0, θ0). Furthermore, if the matrix ∇PΨ has all its eigen-

values between 0 and 1, the NPL estimator is more efficient than the unfeasible PML estimator,

i.e., VNPL < Ω−1θθ < V2S.

NPL estimation maintains the two main advantages of PML: it is feasible in models with multiple

equilibria, and it minimizes the number of evaluations of the mapping Ψ for different values of P .

Furthermore, it addresses the three limitations of the two-stage PML that were mentioned above.

First, under some conditions on the Jacobian matrix∇PΨ, the NPL is asymptotically more efficient

than the unfeasible PML and therefore more efficient than any two-step PML estimator, whatever

7Although we have not proved convergence of the NPL algorithm in general, we have always obtained convergence
in our Monte Carlo experiments and applications.

8The pseudo score ∂QM (θ, P )/∂θ and the equilibrium mapping P − Ψ(θ, P ) are continuous mappings in the
compact set of (θ, P ).
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the initial estimator of P 0 that we use. In other words, imposing the equilibrium condition in the

sample can yield asymptotic efficiency gains relative to the two-step PML estimators. The last part

of Proposition 2 provides one set of sufficient conditions for such a result to hold. Second, in small

samples the NPL estimator reduces the finite sample bias generated by imprecise estimates of P 0.

This point is illustrated in the Monte Carlo experiments of section 4. And third, consistency of the

NPL estimator does not require that we start the algorithm with a consistent estimator of choice

probabilities. If the initial guess P̂0 is a consistent estimator, consistency of a NPL fixed-point

is straightforward because all elements of the sequence of estimators {bθK , P̂K : K ≥ 1} obtained
from the NPL algorithm are consistent (see Aguirregabiria and Mira 2002 for a recursive proof in

the single agent context). If the researcher uses an initial guess which is not consistent, such as a

reduced form parametric approximation with unknown probability limit, the NPL estimator will

still converge in probability to an NPL fixed-point of the Q∞(θ, P ) function, the probability limit

of the sample criterion QM(θ, P ). If the population function has more than one fixed-point local

maximum, a ’poorly behaved’ initial guess P̂0 might identify a NPL fixed point which is not (θ0, P 0).

Condition (5) in Proposition 2 rules this out. In practical terms this means that the researcher

should initiate the NPL with different P guesses and, if different limits are attained he should choose

the one which maximizes the value of the pseudo likelihood. A particularly important implication

of this is that NPL may be applied to situations in which some time-invariant market characteristics

are unobserved by the researcher. This case is treated in some detail in the Appendix.

4 Monte Carlo experiments

This section presents the results from several Monte Carlo experiments based on a dynamic game

of market entry and exit with heterogeneous firms. The specification of the profit function of firm

i is:

Π̃imt = α0i + α1 dmt − α2 (1− aim,t−1)− δ ln

µ
1 +

XN

j=1
ajmt

¶
+ εimt (22)

dmt represents the size of market m at period t (e.g., population in the market). The parameters

to estimate are {α0i : i = 1, 2, ...N}, α1, α2 and δ. The parameters α2 and δ represent entry

cost and the magnitude of strategic interactions, respectively, and they are particularly important

for the dynamics of market structure in this model. We consider a sampling framework in which

the same N firms are the potential entrants over M separate markets. The following primitives

are invariant across the different experiments: N = 5, α01 = −1.9, α02 = −1.8, α03 = −1.7,
α04 = −1.6, α05 = −1.5, α1 = 1, β = 0.95, and {εimt} are iid extreme value with zero mean and
unit dispersion. Also, the variable dmt has a discrete support with 5 points and it follows a first
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order Markov process which is homogeneous across markets.9 For each experiment, we computed

one MPE by iterating in the best response probability mapping starting with a vector of choice

probabilities Pi(ai = 1|x) = 0.5 for every i and x. We have implemented experiments with sample

sizeM = 200 andM = 400 markets, but the results are very similar and we report here only results

for M = 400. For each experiment we use 1000 Monte Carlo simulations to approximate the finite

sample distribution of the estimators. The transition probability of the variable dmt is considered

as known in these experiments.

Entry costs, α2, and the magnitude of strategic interactions, δ, vary over the experiments. We

consider values of α2 between 0 and 4 and values of δ between 0 and 2. To give an idea of the

magnitude of these values, notice that the expected one-period profit of firm i = 5 (i.e., the most

efficient firm) is:

Under monopoly : Pr ofit(firm 5) = α05 + α1E(dmt) = 1.5
Under duopoly : Pr ofit(firm 5) = α05 + α1E(dmt)− δ ln(2) = 1.5− 0.69 δ
With three firms : Pr ofit(firm 5) = α05 + α1E(dmt)− δ ln(3) = 1.5− 1.10 δ

Therefore, δ = 1 implies that profits of this firm decrease by 54% when we go from a monopoly to a

duopoly, and by 73% when we go from monopoly to three firms. With δ = 2, these percentages are

92% and 147%, respectively. An entry cost α2 = 1 implies 67% of firm 5’s profit as a monopolist,

and 124% of its profit as a duopolist (with δ = 1).

Table 1 presents the values of α2 and δ in the different experiments, as well as some descriptive

statistics associated with the Markov perfect equilibrium of each experiment.10 An increase in δ

reduces firms’ profits and therefore it reduces the number of firms in the market and the probability

of entry, and it increases the probability of exit. The effect on the number of exits (or entries) is

ambiguous and depends on the parameters of the model.11 In Table 1, we can see that for larger

values of δ we get fewer active firms but more exits and entries. We can also see that in markets with

higher entry costs we have lower turnover and more persistence in the number of firms. Interestingly,

increasing the cost of entry has different effects on the heterogenous potential entrants. That is, it
9The support of dmt is {1, 2, 3, 4, 5}, and the transition probability matrix is:

0.8 0.2 0.0 0.0 0.0
0.2 0.6 0.2 0.0 0.0
0.0 0.2 0.6 0.2 0.0
0.0 0.0 0.2 0.6 0.2
0.0 0.0 0.0 0.2 0.8


10The descriptive statistics in Table 1 were obtained using a large sample of 50,000 markets where the initial values

of state variables were drawn from their steady-state distribution.
11Notice that the number of exits is equal to the number of active firms times the probability of exit. While a

higher δ increases the probability of exit, it also reduces the number of active firms, and therefore its effect on the
number of exits is ambiguous.
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tends to increase the probability of being active of relatively more efficient firms, and reduces that

probability for the more inefficient firms.

For each of these six experiments we have obtained the two-step PML and the NPL estimators

under the following choices of the initial vector of probabilities: (1) the true vector of equilibrium

probabilities P 0; (2) nonparametric frequency estimates; (3) logit models, one for each firm, with

explanatory variables {am,t−1, dmt}; and (4) random draws from a U(0, 1). The first case is the

unfeasible or PML estimator (which we label ’2-true’) and we will use it as a benchmark for

comparison with the other estimators. The estimator initiated with logit estimates (’2-logit’) is

not consistent but it has lower variance than the estimator initiated with nonparametric frequency

estimates (’2-freq’) and therefore it can have better properties in small samples. The random

values for P̂0 represent an extreme case of inconsistent initial estimates of choice probabilities.

Notice that with 400 observations an a state space with 160 points, the frequency estimator is also

very imprecise, i.e., most estimates are zeros or ones.

Tables 2, 3 and 4 summarize the results from these experiments. Table 2 presents the median

number of iterations it takes the NPL algorithm to obtain a NPL fixed-point. Table 3 shows the

empirical mean and standard deviations of the estimators based on the 1000 replications. Table

4 compares the Mean Squared Error (MSE) of the 2-freq, 2-logit and NPL estimators by showing

the ratio of the MSE of each of them to the MSE of the ’benchmark’ 2-true estimator.

Remark 1: The NPL algorithm always converged and, more importantly, it always converged to

the same estimates regardless of the value of P̂0 (true, nonparametric, logit or random) that we

used to initialize the procedure. This was the case not only for the 6,000 data sets generated in

the six experiments presented here, but also for other similar experiments that we do not report

here (e.g., 6,000 data sets with 200 observations). Of course, this may be a property only specific

of our functional form assumptions (e.g., logit, multiplicative separability of parameters) or of the

equilibria we considered (e.g., stable equilibrium). But it is encouraging to see that, at least for this

particular class of models, the NPL works even when initial probabilities are random. We obtained

the same result when using actual data in the application in section 5.

Remark 2: Table 2 shows that with δ = 1, we need a relatively small number of iterations to obtain

the NPL estimator. With δ = 2, the number of NPL iterations is significantly larger. In general,

the algorithm converges faster when we initialize it with the logit estimates.

Remark 3: The two-freq estimator has a very large bias in all the experiments, though its variance

is similar to, and sometimes even smaller than, the variances of NPL and two-true estimators.

Therefore, it seems that the main limitation of two-freq is not its larger asymptotic variance (relative
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to NPL) but its large bias in small samples.

Remark 4: The NPL estimator performs very well relative to the two-true estimator both in terms

of variance and bias. The square-root MSE of the NPL estimator is never more than 27% larger

than that of the 2-true estimator. In fact, the NPL estimator can have lower MSE than the 2-true

estimator. This was always the case in experiments where the parameter δ is relatively large, as in

experiment 3.

Remark 5: The two-logit performs very well for this simple model. In fact, it has very similar bias

and variance as the NPL estimator. Only in experiment 4, with δ = 2, we find very significant

gains in term of lower bias and variance of using NPL instead of two-logit estimator. In general, the

stronger the strategic interactions the more important the gains of iterating in the NPL procedure.

Remark 6: In all the experiments, the most important gains associated with the NPL estimator

occur for the entry cost parameter, α2

5 An application

5.1 Data and descriptive evidence

This section presents an empirical application of a dynamic game of firm entry and exit in local

retail markets. The data come from a census of Chilean firms created for tax purposes by the

Chilean Servicio de Impuestos Internos (Internal Revenue Service). This census contains the whole

population of Chilean firms paying sales taxes. Sales taxes are mandatory for any firm in Chile

regardless of its size, industry, region, etc. The data set has a panel structure; it has annual

frequency and covers the years 1994 to 1999. The variables in the data set at the firm level are:

(1) firm identification number; (2) firm industry at the 5 digit level; (3) annual sales, discretized in

twelve cells; and (4) the comuna (i.e., county) where the firm is located. We combine these data

with information on population from the 1992 and 2002 censuses at the level of comunas.

We consider five retail industries and estimate a separate model for each of them. The industries

are: restaurants, bookstores, gas stations, shoe shops, and fish shops. Competition in these retail

industries occurs at the local level, and we consider comunas as local markets. There are 342

comunas in Chile. In order to have a sample of independent local markets we exclude those

comunas in the metropolitan areas of the larger towns: Santiago (52 comunas), Valparaiso (9

comunas), Rancagua (17 comunas), Concepcion (11 comunas), Talca (10.comunas) and Temuco

(20.comunas). We also exclude comunas with populations larger than 50, 000 because it is likely

that they have more than one market (34 comunas). Our working sample contains 189 comunas.
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In 1999, the median population of a comuna in our sample was 10, 400, and the first and third

quartiles were 5, 400 and 17, 900, respectively.

Table 5 presents descriptive statistics on the structure and the dynamics of these markets. There

are some significant differences in the structure of the five industries. The number of restaurants

(20 firms per 10,000 people) is much larger than the number of gas stations, bookstores or shoe

shops (between 1 and 4 firms per 10,000 people). Market concentration, measured by the Herfindahl

index, is smaller in the restaurant industry. Firm size (i.e., revenue per firm) is almost four times

larger in gas stations than in restaurants. Turnover rates are very high in all these retail industries.

It is difficult to survive during the first three years after entry. However, survival is more likely in

gas stations than in the other industries.

There are at least three factors that could explain why the number of restaurants is much larger

than the number of gas stations or bookstores. First, differences in economies of scale are potentially

important. The proportion of fixed costs in total operating costs may be smaller for restaurants.

Second, differences in entry sunk costs might also be relevant. While the creation of a new gas

station or a new bookstore requires an important investment in industry-specific capital, this type

of irreversible investment may be less important for restaurants. And third, strategic interactions

could be smaller between restaurants than between other retail businesses. For instance, product

differentiation might be more important among restaurants than among gas stations. To analyze

how these three factors contribute to explain the differences between these industries, we estimate

a model of entry and exit that incorporates these elements.

5.2 Specification

The profit function if the firm operates in the market is:

Π̃imt(1) = α0 + α1 ln (POPmt) + α2 (1− aim,t−1)− δ ln
³
1 +

X
j 6=i ajmt

´
+ ωm + εimt (23)

POPmt is the population in market m and year t. The variable ωm represents time-invariant

market characteristics that are common knowledge to the players but are unobservable to us.

Appendix B describes the NPL estimator for this model with unobserved time-invariant market

characteristics. We assume that ωm is i.i.d. over markets N(0, σ2ω).
12 The economic interpretation

of the parameters is the following: −α0 is a fixed operating cost; α2 is an entry sunk cost; α1
measures how the variable profit of a monopolist increases with market size; and δ captures the

effect of the number of competitors on a firm’s profit, i.e., strategic interactions. We assume that the
12 In fact, both ln(POPmt) and ωm have discrete distributions. For ωm we consider a discretized version of a normal

distribution with zero mean. The support is symmetric around zero with 21 points. We use the method in Tauchen
(1986) to discretize the AR(1) process for ln(POPmt). We consider 10 points in the support of ln(POPmt).
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logarithm of POPmt follows an AR(1) process where the autoregressive parameter is homogeneous

across markets but the mean varies over markets:

ln (POPmt) = ηm + ρ ln (POPm,t−1) + umt (24)

The vector of state variables in this model includes the incumbent indicator of each firm at

the beginning of the year (i.e., aim,t−1 for i = 1, 2, ..., N). The number of states associated with

these state variables is 2N , which is intractable. However, the structure of this model is such that

we can reduce the number of states to 2N . First, notice that all firms are ex-ante identical, and

therefore we consider symmetric Markov perfect equilibria. That is, every incumbent firm has the

same probability of exit, and every potential entrant has the same probability of entry. And second,

a firm’s profit depends on the number of competitors but not on the identity of the competitors.

Taking into account these two features of the model, it is simple to show that the all the information

in {aim,t−1 : i = 1, 2, ..., N} that is relevant to predict a firms’ current and future profits is contained
in just two variables: the firm’s own incumbent status, aim,t−1, and the number of incumbent firms,

nm,t−1. The number of states associated with these two variables is 2N .

5.3 Estimation results

The parameters of the AR(1) process for the logarithm of population are estimated by full maximum

likelihood using data for the period 1990-2003. The estimate of the autoregressive coefficient is

0.9757 (s.e. = 0.0008). Other estimation methods provide very similar estimates.13 To obtain the

matrices of transition probabilities associated with a discretization of these AR(1) processes we use

the method in Tauchen (1986).

The number of potential entrants is constant over time but varies over markets and industries.

We consider the number of potential entrants in each market as parameters to estimate. Our

estimate of the number of potential entrants in market m is:

Nm = max

½
max

t∈(1,2,...,T )
{nm,t−1 + enmt} ; 2

¾
(25)

where nm,t−1 is the number of firms active in market m at period t− 1; enmt is the number of new

entrants at period t; and we assume that there are at least two potential entrants in each market.

It is straightforward to show that this estimator is consistent as T → ∞. Table 6 presents the
distribution of the number of potential entrants for each industry.

13The within-groups (or fixed effects) estimator is 0.9766 (s.e. = 0.0008). OLS in first differences: 0.9739 (s.e. =
0.0032). And the IV in first differences using population at t− 2 as instrument is 0.9706 (s.e. = 0.0128).
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Table 7 presents NPL estimates of this model for the five industries.14 In spite of the parsi-

monious specification of the model, with only five parameters, the measures of goodness of fit are

high. Both for the number of entrants and for the number of exits, the R-square coefficients are

always larger than 0.19. All the parameters have the expected signs. It is important to notice that

in the estimation of a version of the model without unobserved market characteristics we obtained

negative estimates of δ in the gas station and the shoe shop industries.

As it is common in discrete choice models, the parameters in the profit function are identified

only up to scale. Given that the dispersion of the unobservable ε0s may change across industries,

we cannot obtain the relative magnitude of fixed costs, entry costs or strategic interactions by just

comparing the values of α0/σ, α2/σ or δ/σ for different industries. For this reason, we also report

three normalized coefficients at the bottom of Table 7. The coefficient exp (−α0/α1) represents the
minimum market population such that variable profits of a monopolist can cover fixed operating

costs. We can see that fixed operating costs, relative to variable profits, are smaller in restaurants

than in the other four industries. This can be a major factor to explain the relatively large number

of firms in the restaurant industry. Bookstores are the retailers with the larger proportion of

fixed costs in total operating costs. The coefficient exp (α2/α1) represents the minimum market

population such that variable profits of a monopolist can cover entry sunk costs. The estimates

of this coefficient are significantly smaller than for the coefficient exp (−α0/α1) associated with
fixed operating costs. It seems that for these retail industries sunk entry costs are small relative

to fixed operating costs. Gas stations are the retailers with larger sunk costs. However, the inter-

industry differences in sunk costs explain little of the differences in the number of firms. The

importance of strategic interactions can be measured by the coefficient δ ln(2)/α1. It represents the

percentage increase in market population such that profits of a duopolist in the larger market are

equal to profits of a monopolist in the smaller market. According to this coefficient, restaurants and

bookstores are the retailers with the smallest strategic interactions. This might be due to product

differentiation in these two industries.

Based on these estimations the main differences between these retail industries can be sum-

marized as follows. First, economies of scale are very small in the restaurant industry, and this

is a main factor to explain the relatively large number of restaurants. Second, strategic interac-

tions are particularly small among restaurants and among bookstores, what might be due to more

product differentiation in these industries. Third, economies of scale are particularly important in

the bookstore industry. However, the number of bookstores is in fact larger than the number of

14The discount factor is fixed at β = 0.95. As in the case of the Monte Carlo experiments, we initialize the NPL
algorithm with different vectors of probabilities and we always converged to the same NPL fixed point.
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gas stations or the number of shoe shops. The reason is that negative strategic interactions are

very small in this industry. And fourth, industry specific investments, i.e., sunk costs, are small

in all these industries. Gas stations is the industry with larger sunk costs, but the magnitude of

these costs does not explain very much of the small number of firms in this industry. However, it

contributes to explain the higher survival probabilities for gas stations.

6 Conclusions

This paper presents a class of empirical dynamic discrete games and studies the estimation of

structural parameters in these models. We are particularly concerned with two estimation problems:

the computational burden in the solution of the game, and the problem of multiple equilibria. We

proposed two different pseudo maximum likelihood (PML) methods that deal with these issues: two-

step PML and nested PML. We argue that the second method has several potential advantages

relative to the first. These advantages are illustrated in our Monte Carlo experiments and in a

empirical application. In particular, the two-step PML tend to have a larger finite sample bias

than the NPL.
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APPENDIX A: PROOFS OF PROPOSITIONS

Notation: For notational simplicity we consider in this appendix that T = 1, and we omit the time

subindex. We use P 0(a,x) to denote the vector of dimension NJ |X| × 1 with the joint distribution of
am and xm in the population. P̂ 0(a,x) is the sample counterpart of P

0
(a,x), i.e., the frequency estimator

of P 0(a,x). Using this notation, we can write expectations and sample means in matrix form. For

instance,
E
³PN

i=1 lnΨi(aim|xm; θ, P )
´

= lnΨ(θ, P )0P 0(a,x)
(1/M)

PM
m=1

PN
i=1 lnΨi(aim|xm; θ, P ) = lnΨ(θ, P )0P̂ 0(a,x)

(A.1)

We use also∇θΨ(P, θ) and∇PΨ(P, θ) to denote the Jacobian matrices ∂Ψ(P, θ)/∂θ0 and ∂Ψ(P, θ)/∂P 0,

respectively.

Proof of Proposition 1:

Consistency of two-step PML: Define Q∞(P, θ) ≡ E(
P

i lnΨi(aim|xm;P, θ)). Notice that: (a)
Q∞(P, θ) is uniformly continuous; (b) QM(P, θ) converges a.s. and uniformly in (P, θ) to Q∞(P, θ);

and (c) P̂ 0 converges a.s. to P 0. Under (a)-(c), QM(P̂
0, θ) converges a.s. and uniformly in θ to

Q∞(P 0, θ) (Lemma 24.1 in Gourieroux and Monfort). By the identification assumption 5C, θ0 is

the only vector in Θ such that Ψ(θ, P 0) = P 0 Therefore, by the information inequality Q∞(P 0, θ)

has a unique maximum in Θ at θ0. It follows that θ̂2S ≡ argmaxθ∈ΘQM(P̂
0, θ) converges a.s. to

θ0 (Property 24.2 in Gourieroux and Monfort).

Asymptotic distribution of two-step PML: Let ∇θsm and ∇P sm be the pseudo scores (for

observation m) evaluated at the true parameter values, i.e., ∇θsm =
PN

i=1∇θ lnΨi(aim|xm;P 0, θ0)
and∇P sm =

PN
i=1∇P lnΨi(aim|xm;P 0, θ0). Define Ωθθ ≡ E (∇θsm∇θs

0
m) and ΩθP ≡ E (∇θsm∇P s

0
m).

By the generalized information matrix inequality (see McFadden and Newey, 1994, p. 2163) we

have that E
¡¡
qm − P 0

¢∇θs
0
m

¢
= 0 and E

¡¡
qm − P 0

¢∇P s
0
m

¢
= I, where I is the identity matrix.

Therefore,µ
1√
M

XM

m=1
∇θsm

¶
− ΩθP

µ
1√
M

XM

m=1

¡
qm − P 0

¢¶→d N
¡
0,Ωθθ +ΩθPΣΩ

0
θP

¢
(A.2)

The first order conditions that define this estimator are ∇θQM(P̂
0, θ̂FU ) = 0. A mean value

theorem between (θ0, P 0) and (θ̂2S , P̂ 0), together with consistency of (θ̂2S, P̂ 0), implies that:

0 = ∇θQM(P
0, θ0) +∇θθQM(P

0, θ0)
³
θ̂2S − θ0

´
+∇θPQM(P

0, θ0)
³
P̂ 0 − P 0

´
+ op(1) (A.3)

By the CLT and the information matrix inequality, we have that ∇θθQM(P
0, θ0) →p −Ωθθ, and
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∇θPQM(P
0, θ0) →p −ΩθP . Then,

√
M
³
θ̂2S − θ0

´
= Ω−1θθ

n
−ΩθP

³
1√
M

PM
m=1

¡
qm − P 0

¢´
+
³

1√
M

PM
m=1∇θsm

´o
+ op(M

−1/2)

(A.4)

By Mann-Wald Theorem,
√
M
³
θ̂2S − θ0

´
converges in distribution to a vector of normal random

variables with zero means and variance matrix:

V2S = Ω
−1
θθ ( Ωθθ +ΩθP Σ Ω

0
θP )Ω

−1
θθ = Ω

−1
θθ +Ω

−1
θθ ΩθP Σ Ω

0
θP Ω

−1
θθ (A.5)

Proof of Proposition 2:

Consistency of the NPL: The NPL estimator (θ̂NPL, P̂NPL) is defined by conditions: (a) θ̂NPL

maximizes in θ ∈ Θ the pseudo likelihood QM(θ, P̂NPL); (b) P̂NPL = Ψ(θ̂NPL, P̂NPL); and (c)

for any (θ, P ) satisfying conditions (a) and (b), QM(θ̂NPL, P̂NPL) ≥ QM(θ, P ). Since Q∞(θ, P ) is

uniformly continuous and QM(θ, P ) converges a.s. and uniformly in (θ, P ) to Q∞(θ, P ), we have

that (θ̂NPL, P̂NPL) converges a.s. to a point (θ∗, P ∗) such that: (a’) θ∗ maximizes in θ ∈ Θ the

population pseudo likelihood Q∞(θ, P ∗); (b’) P ∗ = Ψ(θ∗, P ∗); and (c’) for any (θ, P ) satisfying

conditions (a’) and (b’), Q∞(θ∗, P ∗) ≥ Q∞(θ, P ). Now, we show that this point (θ∗, P ∗) should be

(θ0, P 0). By the identification assumption 5C, (θ0, P 0) satisfies conditions (a’) and (b’). That is,

P 0 = Ψ(θ0, P 0) and by the Kullback-Leibler information inequality we have that for any θ ∈ Θ,
Q∞(θ, P 0) ≤ Q∞(P 0, θ0). For any other point (θ, P ) that satisfies conditions (a’) and (b’), we

have that P 6= P 0 (again by assumption 5C). Therefore, Kullback-Leibler information inequality

implies that for any (θ, P ) 6= (θ0, P 0) satisfying conditions (a’) and (b’), we have that Q∞(θ, P ) <
Q∞(P 0, θ0). We conclude that (θ0, P 0) is the only pair that satisfies conditions (a’), (b’) and (c’),

and therefore the NPL estimator converges a.s. to θ0.

Asymptotic distribution of the NPL: The marginal conditions that define the NPL estimator

are:
(1/M)

PM
m=1∇θsm(P̂ , θ̂) = 0

P̂ −Ψ(P̂ , θ̂) = 0
(A.6)

A stochastic mean value theorem between (θ0, P 0) and (θ̂, P̂ ), together with consistency of (θ̂, P̂ )

implies that:

(1/
√
M)

PM
m=1∇θsm − Ωθθ

√
M
³
θ̂ − θ0

´
− ΩθP

√
M
³
P̂ − P 0

´
= op(

√
M)

(I −∇PΨ)
√
M
³
P̂ − P 0

´
−∇θΨ

√
M
³
θ̂ − θ0

´
= op(

√
M)

(A.7)

Solving the second set of equations into the first set, we get:h
Ωθθ +ΩθP (I −∇PΨ)

−1∇θΨ
i√

M
³
θ̂ − θ0

´
= (1/

√
M)

PM
m=1∇θsm + op(

√
M) (A.8)
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By Mann-Wald theorem, we have that
√
M
³
θ̂ − θ0

´
−→d N (0, VNPL) where:

VNPL =
h
Ωθθ +ΩθP (I −∇PΨ)

−1∇θΨ
i−1
Ωθθ

h
Ωθθ +∇θΨ

0 ¡I −∇PΨ
0¢−1Ω0θP i−1 (A.9)

Relative efficiency of NPL and Unrestricted PML: The asymptotic variance of θ̂U is Ω−1θθ .

Taking into account that ΩθP = ∇θΨ
0diag(P 0)−1∇PΨ, we can write the variance of the NPL

estimator as:

VNPL =
£¡
I +∇θΨ

0 S ∇θΨ Ω
−1
θθ

¢
Ωθθ

¡
I +Ω−1θθ ∇θΨ

0 S0 ∇θΨ
¢¤−1

(A.10)

where S ≡ (I −∇PΨ
0)−1∇PΨ diag(P 0)−1. Then, Ω−1θθ − VNPL is positive definite if

∆ =
¡
I +∇θΨ

0 S ∇θΨ Ω
−1
θθ

¢
Ωθθ

¡
I +Ω−1θθ ∇θΨ

0 S0 ∇θΨ
¢− Ωθθ (A.11)

is positive definite. Operating in the previous expression we can get that:

∆ = ∇θΨ
0 ¡S + S0

¢ ∇θΨ+
¡∇θΨ

0 S ∇θΨ
¢
Ω−1θθ

¡∇θΨ
0 S ∇θΨ

¢0 (A.12)

It is clear that ∆ is positive definite if S is positive definite. Since diag(P 0)−1 is a positive definite

diagonal matrix, ∆ is positive definite if (I −∇PΨ
0)−1∇PΨ

0 is positive definite. Finally, a sufficient

condition for (I −∇PΨ
0)−1∇PΨ

0 to be positive definite is that all the eigenvalues of ∇PΨ
0 are

between 0 and 1.
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APPENDIX B: MODELWITH PERMANENT UNOBSERVED HETEROGENEITY

Let xmt be the observable state variables, and suppose that there is also a vector of time invariant

common knowledge unobservable market characteristics, ωm. For instance, in the entry-exit model,

we may have a profit function:

Π̃imt(1) = α0 + α1 dmt + α2 (1− aim,t−1)− δ ln

µ
1 +

XN

j=1
ajmt

¶
+ ωm + εimt (B.1)

where ωm represents time-invariant market characteristics affecting firms’ profits, which are com-

mon knowledge to the players but are unobservable to the econometrician. We make the following

assumptions on the distribution of these unobservables.

ASSUMPTION 6: The vector of unobservable variables ωm is such that: (A) it has a discrete

and finite support Ω =
©
ω1, ω2, . . . , ωL

ª
; (B) it is independently and identically distributed over

markets with probability mass function ϕl ≡ Pr(ωm = ωl); and (C) ωm does not enter into the

conditional transition probability of xmt, i.e., Pr(xm,t+1|amt, xmt, ωm) = f(xm,t+1|amt, xmt).

Assumption 6C states that all markets are homogenous with respect to (exogenous) transitions,

and it implies that the transition probability functions f can still be estimated from transition data

without solving the model. The other parameters θ to be estimated now include the support and

the distribution of the unobservables ω.

The vector P now stacks the distributions of players’ actions conditional on all values of ob-

servable and unobservable common knowledge state variables. Pl is the subvector describing the

equilibrium in a market with unobservable ωl (i.e., a ’type l ’market). We adapt assumptions 5AB

on the data generating process as follows:

ASSUMPTION 5’: Let P 0mt ≡ {Pr(amt = a|xmt = x, ωm = ω) : (a, x, ω) ∈ AN ×X × Ω} be the
distributions of amt conditional on xmt and ωm in market m at period t. (A) For every observation

(m, t) in the sample P 0mt = P 0. (B) Players expect P 0 to be played in future (out of sample)

periods.

Assumption 5 still states that only one equilibrium is played in the data conditional on market

type, which is unobservable to the econometrician but not to players. Now, to obtain the pseudo

likelihood function we integrate the best response probabilities over the distribution of unobservable

market characteristics. We have that:

lnPr(Data|θ, P ) =
XM

m=1
lnPr(ãm, x̃m|θ, P ) =

XM

m=1
ln

µXL

l=1
ϕl Pr(ãm, x̃m|ωl; θ, P )

¶
(B.2)

where ãm = {amt : t = 1, 2, ..., T} and x̃m = {xmt : t = 1, 2, ..., T}. Applying the chain rule, the
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Markov structure of the model, and assumption 6C, we get:

Pr(ãm, x̃m|ωl; θ, P ) =

µ
TQ
t=1
Pr(amt|xmt, ω

l; θ, P )

¶µ
TQ
t=2
Pr(xmt|am,t−1, xm,t−1, ωl; θ, P )

¶
Pr(xm1|ωl; θ, P )

=

µ
TQ
t=1

NQ
i=1
Ψi(aimt|xmt, ω

l;Pl, θ)

¶µ
TQ
t=2

f(xmt|am,t−1, xm,t−1; θ)
¶
Pr(xm1|ωl; θ, P )

(B.3)

Therefore,

lnPr(Data|θ, P ) =
PM

m=1 ln

µPL
l=1 ϕl

µ
TQ
t=1

NQ
i=1
Ψi(aimt|xmt, ω

l;Pl, θ)

¶
Pr(xm1|ωl; θ, P )

¶
+

PM
m=1

PT
t=2 ln f(xmt|am,t−1, xm,t−1; θ)

(B.4)

The first component in the right hand side is the pseudo likelihood function QM(θ, P ). The second

component is the part of the likelihood associated with transition data. As we have mentioned

above, the transition probability functions f can still be estimated from transition data without

solving the model.

Given our sampling framework, the observed state vector at the first observation for each

market xm1 is not exogenous with respect to unobserved market type: Pr(xm1|ωm) 6= Pr(xm1).

This is the, so called, initial conditions problem in the estimation of dynamic discrete models

with autocorrelated unobservables (Heckman, 1981). Under the assumption that xm1 is drawn

from the stationary distribution induced by the Markov perfect equilibrium, we may implement a

computationally tractable solution of this problem. Let p∗(x; f, P ) be the steady state probability

of state x under transition probability f and Markov perfect equilibrium P. Therefore, our pseudo

likelihood function is:

QM(θ, P, f) =
1

M

XM

m=1
ln

µXL

l=1
ϕl

µ
TQ
t=1

NQ
i=1
Ψi(aimt|xmt, ω

l;Pl, θ)

¶
p∗(xm1; f, Pl)

¶
(B.5)

Given this pseudo likelihood function, the NPL estimator is defined as in Section 3.4. In order to

obtain consistency the identification condition in assumption 5 is suitably modified:

ASSUMPTION 5’ (C): There is a unique θ0 ∈ Θ such that θ0 = argmaxθQ∞(θ, P 0, f) where

Q∞(P, θ, f) ≡ E

µ
ln

µXL

l=1
ϕl

µ
TQ
t=1

NQ
i=1
Ψi(aimt|xmt, ω

l;Pl, θ)

¶
p∗(xm1; f, Pl)

¶¶
Notice that to start the NPL algorithm we need guesses of all conditional choice probability

vectors {Pl : l = 1, . . . , L}, all of which will be updated at each iteration: bPl,K = Ψ(bθK , bPl,K−1). At
each NPL iteration we also need to re-calculate the steady state distributions p∗(.; f, Pl). However,
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these steady state probabilities are fixed within an NPL iteration, which facilitates very much the

estimation of this model with permanent unobserved heterogeneity.
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Table 1
Monte Carlo Experiments

Parameters(1) and Description of the Markov Perfect Equilibrium
Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6

α2 = 1.0 α2 = 1.0 α2 = 1.0 α2 = 0.0 α2 = 2.0 α2 = 4.0
Descriptive Statistics δ = 0.0 δ = 1.0 δ = 2.0 δ = 1.0 δ = 1.0 δ = 1.0

(1) Number active firms: Average 3.676 2.760 1.979 2.729 2.790 2.801

(2) Number of firms: Std. Dev. 1.551 1.661 1.426 1.515 1.777 1.905

(3) AR(1) for number active firms 0.744 0.709 0.571 0.529 0.818 0.924

(autoregressive parameter)

(4) Number of Entrants 0.520 0.702 0.748 0.991 0.463 0.206

(or Exits) per period

(5) Excess Turnover(2) 0.326 0.470 0.516 0.868 0.211 0.029

(in # of firms per period)

(6) Correlation between -0.015 -0.169 -0.220 -0.225 -0.140 -0.110

entries and exits

(7) Prob. being active: Firm 1 0.699 0.496 0.319 0.508 0.487 0.455

" Firm 2 0.718 0.527 0.356 0.523 0.521 0.501

" Firm 3 0.735 0.548 0.397 0.547 0.556 0.550

" Firm 4 0.753 0.581 0.434 0.564 0.592 0.610

" Firm 5 0.770 0.607 0.475 0.586 0.632 0.686

Note 1: For all these experiments, the values of the rest of the parameters are: N = 5, α01 = −1.9,
α02 = −1.8, α03 = −1.7, α04 = −1.6, α05 = −1.5, α1 = 1.0, σε = 1, and β = 0.95.
Note 2: Excess turnover is defined as (#Entrants + #Exits)-abs(#Entrants - #Exits).
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Table 2
Monte Carlo Experiments

Median Number of Iterations of the NPL Algorithm
Initial Probabilities

Frequencies Logits Random

Experiment 1 8 4 6

Experiment 2 11 7 9

Experiment 3 27 19 23

Experiment 4 16 8 11

Experiment 5 12 7 9

Experiment 6 13 9 10
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Table 3
Monte Carlo Experiments

Empirical Means and Empirical Standard Deviations of Estimators
Estimator Parmeters

α01 α1 α2 δ

Experiment 1 True values -1.900 1.000 1.000 0.000

1-stage (True P 0) -1.915 (0.273) 1.007 (0.152) 1.002 (0.139) 0.002 (0.422)

1-stage (NP freq. P̂ 0) -0.458 (0.289) 0.374 (0.141) 1.135 (0.190) 0.200 (0.364)

1-stage (Logit P̂ 0) -1.929 (0.279) 1.006 (0.153) 0.997 (0.138) -0.009 (0.431)

NPL -1.902 (0.279) 1.018 (0.157) 0.994 (0.139) 0.036 (0.439)

Experiment 2 True values -1.900 1.000 1.000 1.000

1-stage (True P 0) -1.894 (0.212) 1.002 (0.186) 1.007 (0.118) 1.007 (0.583)

1-stage (NP freq. P̂ 0) -0.919 (0.208) 0.351 (0.119) 0.886 (0.123) 0.095 (0.337)

1-stage (Logit P̂ 0) -1.920 (0.226) 0.977 (0.197) 1.000 (0.122) 0.915 (0.597)

NPL -1.893 (0.232) 1.016 (0.220) 0.998 (0.121) 1.050 (0.681)

Experiment 3 True values -1.900 1.000 1.000 2.000

1-stage (True P 0) -1.910 (0.183) 1.006 (0.209) 1.000 (0.112) 2.008 (0.783)

1-stage (NP freq. P̂ 0) -1.126 (0.189) 0.286 (0.094) 0.792 (0.107) 0.027 (0.311)

1-stage (Logit P̂ 0) -1.919 (0.248) 1.022 (0.305) 0.985 (0.145) 2.070 (1.110)

NPL -1.920 (0.232) 0.950 (0.189) 1.007 (0.116) 1.792 (0.667)

Experiment 4 True values -1.900 1.000 0.000 1.000

1-stage (True P 0) -1.890 (0.516) 1.020 (0.329) 0.001 (0.119) 1.063 (1.345)

1-stage (NP freq. P̂ 0) -0.910 (0.243) 0.337 (0.104) 0.239 (0.113) 0.127 (0.354)

1-stage (Logit P̂ 0) -2.070 (0.436) 0.903 (0.262) 0.000 (0.119) 0.571 (1.061)

NPL -1.891 (0.482) 1.014 (0.291) 0.001 (0.115) 1.047 (1.186)

Experiment 5 True values -1.900 1.000 2.000 1.000

1-stage (True P 0) -1.912 (0.178) 1.007 (0.142) 2.008 (0.132) 1.006 (0.359)

1-stage (NP freq. P̂ 0) -0.840 (0.218) 1.379 (0.130) 1.591 (0.143) 0.181 (0.302)

1-stage (Logit P̂ 0) -1.921 (0.204) 0.997 (0.167) 2.002 (0.138) 0.971 (0.405)

NPL -1.924 (0.203) 1.018 (0.178) 2.000 (0.137) 1.027 (0.435)

Experiment 6 True values -1.900 1.000 4.000 1.000

1-stage (True P 0) -1.899 (0.206) 1.003 (0.132) 4.050 (0.203) 1.006 (0.238)

1-stage (NP freq. P̂ 0) -0.558 (0.228) 0.332 (0.128) 2.745 (0.211) 0.206 (0.238)

1-stage (Logit P̂ 0) -1.895 (0.240) 0.996 (0.147) 4.048 (0.208) 0.992 (0.277)

NPL -1.918 (0.239) 1.009 (0.152) 4.044 (0.207) 1.009 (0.285)33



Table 4
Square-root Mean Square Error

Relative to the 1-stage PML with true P0

Estimator Parmeters
α01 α1 α2 δ

Experiment 1 1-stage (NP freq. P̂ 0) 5.380 4.222 1.676 0.983
1-stage (Logit P̂ 0) 1.027 1.006 1.002 1.022

NPL 1.019 1.040 0.996 1.044

Experiment 2 1-stage (NP freq. P̂ 0) 4.736 3.553 1.415 1.655
1-stage (Logit P̂ 0) 1.070 1.066 1.029 1.034

NPL 1.098 1.188 1.020 1.171

Experiment 3 1-stage (NP freq. P̂ 0) 4.347 3.440 2.095 2.549
1-stage (Logit P̂ 0) 1.357 1.462 1.301 1.419

NPL 1.268 0.935 1.038 0.892

Experiment 4 1-stage (NP freq. P̂ 0) 1.977 2.035 2.228 0.699
1-stage (Logit P̂ 0) 0.906 0.848 1.000 0.850

NPL 0.935 0.884 0.969 0.881

Experiment 5 1-stage (NP freq. P̂ 0) 6.054 4.459 3.279 2.429
1-stage (Logit P̂ 0) 1.146 1.176 1.043 1.130

NPL 1.143 1.250 1.037 1.210

Experiment 6 1-stage (NP freq. P̂ 0) 6.591 5.589 6.072 3.487
1-stage (Logit P̂ 0) 1.162 1.209 1.020 1.166

NPL 1.158 1.248 1.010 1.197
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Table 5
Descriptive Statistics

189 markets. Years 1994-1999

Restaurants Gas stations Bookstores Shoe shops Fish shops

Number of firms per 10,000 people 14.6 1.0 1.9 0.9 0.7

Markets with 0 firms 32.2 % 58.6 % 49.5 % 67.1 % 74.1 %
Markets with 1 firm 1.3 % 15.3 % 15.8 % 10.8 % 9.6 %
Markets with 2 firms 1.2 % 7.8 % 8.0 % 6.7 % 5.0 %
Markets with 3 firms 0.5 % 5.2 % 6.9 % 3.8 % 3.4 %
Markets with 4 firms 1.2 % 4.0 % 3.6 % 2.7 % 2.0 %

Markets with more than 4 firms 63.5 % 9.2 % 16.2 % 8.9 % 5.9 %

Herfindahl Index (median) 0.169 0.738 0.663 0.702 0.725

Annual revenue per firm (in thousand $) 17.6 67.7 23.3 67.2 124.8

Regression log(1+# firms) on log(market size)(1) 0.383 0.133 0.127 0.073 0.062
(0.043) (0.019) (0.024) (0.020) (0.018)

Regression log(firm size) on log(market size)(2) -0.019 0.153 -0.066 0.223 0.097
(0.034) (0.082) (0.050) (0.081) (0.111)

Entry rate (%)(3) 9.8 14.6 19.7 12.8 21.3

Exit rate (%)(4) 9.9 7.4 13.5 10.4 14.5

Survival rate (Hazard rate): 1 year (%)(5) 86.2 (13.8) 89.5 (10.5) 84.0 (16.0) 86.8 (13.2) 79.7 (20.3)

Survival rate (Hazard rate): 2 years (%) 69.5 (19.5) 88.5 (1.1) 70.0 (16.6) 71.1 (18.2) 58.1 (27.2)

Survival rate (Hazard rate): 3 years (%) 60.1 (14.9) 84.6 (4.3) 60.0 (14.3) 52.6 (25.1) 44.6 (23.3)

Note 1: Market size = Population. Regression included time dummies. Standard errors in parentheses.

Note 2: Firm size = Revenue per firm. Regression included time dummies. Standard errors in parentheses.

Note 3: Entry rate = Entrants / Incumbents

Note 4: Exit rate = Exits / Incumbents

Note 5: Survival and hazard rates are calculated using the subsample of new entrants in years 1995 and 1996.
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Table 6
Distribution of the estimated number of potential entrants

Restaurants Gas stations Bookstores Shoe shops Fish shops

Nm = 2 63 (33.3 %) 146 (77.3 %) 123 (65.1 %) 153 (81.0 %) 158 (83.6 %)

Nm = 3 1 (0.5 %) 9 (4.8 %) 14 (7.4 %) 6 (3.2 %) 6 (3.2 %)

Nm = 4 3 (1.6 %) 8 (4.2 %) 10 (5.3 %) 8 (4.2 %) 9 (4.8 %)

Nm = 5 1 (0.5 %) 8 (4.2 %) 5 (2.7 %) 5 (2.7 %) 2 (1.1 %)

Nm = 6 1 (0.5 %) 3 (1.6 %) 5 (2.7 %) 4 (2.1 %) 4 (2.1 %)

Maximum Nm 105 17 48 16 20
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Table 7
NPL estimation of Entry-Exit model

Parameters Restaurants Gas stations Bookstores Shoe shops Fish shops

Constant:
α0
σ

-9.519 -12.769 -15.997 -14.497 -6.270

(0.478) (1.251) (0.141) (1.206) (1.233)

ln(Pop):
α1

σ
1.743 1.929 2.029 2.030 0.914

(0.045) (0.127) (0.076) (0.121) (0.125)

Entry cost:
α2
σ

5.756 10.441 5.620 5.839 4.586

(0.030) (0.150) (0.081) (0.145) (0.121)

ln(# firms):
δ

σ
1.643 2.818 1.606 2.724 1.395

(0.176) (0.325) (0.201) (0.316) (0.234)

Std. dev of ωm 1.322 2.029 1.335 2.060 1.880

Number of observations 945 945 945 945 945
R-square: entries 0.298 0.196 0.442 0.386 0.363
R-square: exits 0.414 0.218 0.234 0.221 0.298

Standarized parameters:
(a) exp (−α0 / α1) 235 750 2658 1267 951
(b) exp (α2 / α1) 27 224 16 18 151
(c) δ ln(2) / α1 65.3 % 101.3 % 54.9 % 93.1 % 105.7 %

Note (a): The value exp (−α0/α1) represents the minimum market population size such that variable profits of a monopolist

can cover fixed operating costs.

Note (b): The value exp (α2/α1) represents the minimum market population size such that variable profits of a monopolist

can cover entry sunk costs.

Note (c): The value δ ln(2)/α1 represents the percentage increase in market size such that profits of a duopolist in the
larger market are equal to profits of a monopolist in the smaller market.
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