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1 Introduction
The paper tries to give some insights on the economic reasons that can entail
a blackout, and, as a consequence, on the extent to which there is room for a
regualator in the sector.
A variety of countries have recently been hit by a blackout, including the

United States and Italy.
If it is true that a large fraction of the blackout-related studies are performed

by engineers, it is also true that there is some economics involved.
This works focuses on one economic aspect of the blackout that I think is

relevant and worth analyzing.
One of the real problems that the energy industry faces is uncertainty over

demand. It can show up in two ways. At first, energy is a just-in-time industry,
in which the product is released under consumers’ request. With respect to
other just-in-time products, however, the energy market has a difference that,
in my view, bears significant economic implications. That is, the energy is to be
delivered promptly, contextually to the time consumer requires it. Demand for
energy fluctuates at every moment, and every firm has to sustain positive costs,
such as keeping multiple energy plants ready to produce, in order to make sure
to fulfil the whole demand. Another problem is uncertainty over demand in the
long run. However, long run uncertainty over demand is a common problem
that many firms face, and that does not require a specific analysis.
Therefore, the present paper is centered on the specific issue wih energy

firms, that is the impossibility of forecasting the demand in the short run, and
the consequent trade-off between sure fulfillment of the whole demand, with
likely dispersion of valuable resources, and chance of not serving the totality of
consumers, being it less likely to waste resources.
The model is supposed to capture this short run uncertainty. It is supposed

to do it in a stylized way, assuming a discrete lenght period, uncertainty over
the demand, and decision on the quantity produced - and as a consequence of
the cost paid by the firm - before the demand is revealed.
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As a first approximation, each firm in an area is a monopolist, which can be
justified by the presence of huge fixed costs in connecting users to the network.
The option for local monopolists to buy a fraction of their supply from other
producers is available, and will be considered in what follows.
To synthetize, the paper examines the three following issues connected to

the energy market:

1. Uncertainty ex ante over demand, and the consequent choice of risking to
either overproduce, or to underserve the market.

2. Capacity constraints for the energy firms, with the consequence that pro-
duction is shared by a number of plants.

3. High fixed costs of setting up the distribution procedure, which make it
likely to have regional monopolies in the retail market.

The questions that the paper tries to answer are the following:
1) Will the energy firms be willing to connect in order to avoid blackouts?

The answer in the paper is yes, but we did not consider the fixed cost of estab-
lishing the connection, very important indeed
2) What is the optimal structure of the market, i.e., what would the outcome

of an unregulated process be? Would this outcome avoid blackouts?
I believe the questions are important, as the energy market is subject to a

lot of regulations that ASSUME to be inspired to a competitive outcome. But
the question is: are we sure the competitive outcome regulators inspire to is the
true competitive outcome?
And more, are we sure that the true competitive outcome wouldn’t be welfare

enhancing also for consumers with respect to the regulation outcome?
The model is by now far too complicated to answer these questions satisfac-

torily. I hope I’ll manga to simplify it.

2 The model

2.1 Version A: the basic framework, static and without
interconnection

The most basic setup has the following assumptions:

1. The market is monopolistic, and the same firm is produces and distributing
the good.

2. All consumers attribute an identical value ν to the product, when they
need it, whereas their value is 0 when they do not need the product.

3. The consumers are a represented by a set of measure one. Only a fraction
of them needs the good in a given period. The demand q is uncertain
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at the time in which the monopolist takes the production decision. That
implies that the firm is paying the cost for the units it decides to produce,
regardless of whether or not it will actually sell them.

4. The marginal cost for each produced unit is c

5. The environment is static. Equivalently, with a dynamic environment,
consumers’ behavior in the dynamic environment does not depend on the
production decisions of the firm in the previous periods. In other words,
no punishment is put in place by consumers when they are not served.

6. v > c > 0. v > c basically guarantees the existence of the firm, that
otherwise wouldn’t even be willing to produce. c > 0 guarantees that the
problem is not trivial. Indeed if c = 0, firms would always decide to serve
the whole market, whatever the dimension of the market turns out to be.

7. The environment is static, i.e., firms make a one-period decision regarding
their production level.

Example 1 I start with an example that I think is useful to clarify the problem.
It concerns the solution of the problem when the demand is uniformly distributed
between 0 and 1. Denote q∗ the quantity produced and q the quantity demanded.
The firm then faces the following problem:

max
q∗

E (vq − cq∗|q ≤ q∗) Pr (q ≤ q∗) +E (vq∗ − cq∗|q > q∗) Pr (q > q∗) =

= max
q∗

µ
v
q∗

2
− cq∗

¶
q∗ + (vq∗ − cq∗) (1− q∗)

The first derivative yields:

v
q∗

2
− 2cq∗ + v

q∗

2
− [vq∗ − cq∗ + (−v + c) (1− q∗)]⇔ −vq∗ + v − c

The second order condition yields:

−v < 0

The problem is concave. Therefore, the solution to the first order condition
yields the optimal point:

vq∗ = v − c⇔ q∗ =
v − c

v

Given the assumptions on v, c, the quantity is always positive. A bit of simple
comparative statics may help make the result clearer:

dq∗

dc
=
−1
v

< 0

dq∗

dv
=

c

v2
> 0
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As intuitively plausible, the quantity produced decreases with the marginal cost,
while it increases with the value for consumers.
The profit is given by:µ

v
v−c
v

2
− c

v − c

v

¶
v − c

v
+

µ
v
v − c

v
− c

v − c

v

¶µ
1− v − c

v

¶
=

v

2
+

c

2
− vc+ c2 + c+

c3

v2
− 2c

2

v

The next step is to try and generalize a bit the result, not assuming any
specific form for the utility function.
The result, albeit obvious, is worth to be stated and proved.

Proposition 2 When a monopolist faces uncertainty over demand, his produc-
tion decision is strictly increasing with the value of the product to the consumer,
if we assume homogeneity of all consumers except for the decision of whether
or not to buy, and strictly decreasing with its marginal production cost.

Proof. (to be completed) It follows form the fact that we are simply performing
a monotonic transformation.
The firm now solves an analogous problem with respect to the previous one:

max
q∗

E (vq − cq∗|q ≤ q∗) Pr (q ≤ q∗) +E (vq∗ − cq∗|q > q∗) Pr (q > q∗)

In this case,

Pr (q ≤ q∗) =

q∗Z
qmin

f (q) dq = F (q∗)

Pr (q > q∗) =

qmaxZ
q∗

f (q) dq = 1− F (q∗)

E (q|q ≤ q∗) =

q∗Z
qmin

q (f (q) |q ≤ q∗) dq =

q∗Z
qmin

qdF (q|q ≤ q∗)

E (q|q > q∗) =

qmaxZ
q∗

q (f (q) |q > q∗) dq =

qmaxZ
q∗

qdF (q|q > q∗)
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It therefore follows that:

max
q∗

E (vq − cq∗|q ≤ q∗) Pr (q ≤ q∗) +E (vq∗ − cq∗|q > q∗) Pr (q > q∗) =

=

⎛⎜⎝v

⎛⎜⎝ q∗Z
qmin

qdF (q|q ≤ q∗)

⎞⎟⎠− cq∗

⎞⎟⎠F (q∗) + (vq∗ − cq∗) (1− F (q∗)) =

=

⎛⎜⎝v

⎛⎜⎝ q∗Z
qmin

qdF (q|q ≤ q∗)− q∗

⎞⎟⎠
⎞⎟⎠F (q∗) + (vq∗ − cq∗) =

At the optimum, we have:

v (q∗ (f (q∗|q ≤ q∗))− 1)F (q∗)+F 0 (q∗)

⎛⎜⎝v

⎛⎜⎝ q∗Z
qmin

qdF (q|q ≤ q∗)− q∗

⎞⎟⎠
⎞⎟⎠+(v − c) = 0

Now, we can proceed in two ways, either to prove that the first order condition
is supermodular in q∗ and v, and also in q∗ and −c, which I have not been
able to do, or, on the other hand, to use the brute force approach, and totally
differentiate. The latter is the chosen.

[v (f (q∗|q ≤ q∗))F (q∗) + vf 0 (q∗|q ≤ q∗) q∗F (q∗) + F 0 (q∗) v (q∗ (f (q∗|q ≤ q∗))− 1)] dq∗+⎡⎢⎣f 0 (q∗)
⎛⎜⎝v

⎛⎜⎝ q∗Z
qmin

qdF (q|q ≤ q∗)

⎞⎟⎠− q∗

⎞⎟⎠+ F 0 (q∗) (vq∗ (f (q∗|q ≤ q∗))− 1)

⎤⎥⎦ dq∗ − 1dc = 0
The results are the following:

v (f (q∗|q ≤ q∗))F (q∗) + vf 0 (q∗|q ≤ q∗) q∗F (q∗) + F 0 (q∗) v (q∗ (f (q∗|q ≤ q∗))− 1)+

f 0 (q∗)

⎛⎜⎝v

⎛⎜⎝ q∗Z
qmin

qdF (q|q ≤ q∗)

⎞⎟⎠− q∗

⎞⎟⎠+ F 0 (q∗) (vq∗ (f (q∗|q ≤ q∗))− 1) = dc

dq∗

The result is fairly simple and intuitive, and it tells us that in the presence
of uncertainty over demand, the firm will bear a positive probability of leaving
some potential consumers unserved.
This first result can be significant, as it may somehow illustrate the economic

dynamics of a blackout.
The next attempt is to make the problem dynamic, through the introduction

of multiple periods. I will here establish the framework, without actually solving
the problem.
It is clear that, as stated before, if consumers do not react to the monopolist’s

decisions, the string of decisions in a dynamic context is simply the replication
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of the one period decision, with the average per period payoff for the firm that
approaches the expected per period profit, invoking the the law of large numbers.
Something changes, on the other hand, if we assume that consumers are

reacting to the decisions of the monopolist. For example, we can say that if a
consumer is left unserved, i.e., if a blackout happens, he punishes the monopolist,
and stop being supplied by him. The consumer left unserved can, for example,
construct his own energy generation system, which, in spite of being more costly,
will guarantee him from any future blackout. Consumers are drastic, and the
monopolist has to react to this drastic form of punishment. The company has
indeed the option of blocking the supply of energy for a fraction of customers. In
this reduced form model, it is hard to establish whether the punishment by the
consumer is actually an equilibrium punishment. Therefore, I will just assume
so, and stick to the assumption throughout the paper.

2.2 Version B: dynamic aspects without interconnection

Besides assumptions 1 through 6, a set of additional assumptions has to be
made:

7b. Consumers do not know ex ante the firm’ cost, and ex ante they think they
will be served with reasonably high probability by the energy supplier

8. Ex post, consumers who are not served once stop buying from the supplier.
They construct their own system of energy generation, and operate it.

9. Demand is uniformly distributed between 0 and 1 in the first period, then
the upper bound of demand declines according to the above specified rule
in the following periods. In any period, demand is uniformly distributed
between 0 and its upper bound. This assumption has already been used
in example 1.

Assumption 7b, which replaces assumption 7, is purposedly capturing the
punishment that consumers give to the firm. In otder for the punishment to be
reasonable, it has to be an equilibrium punishment which cannot be checked in
the present framework, owing to the reduced form representation of consumers’
preferences. Future extensions, hopefully, will take care of that problem.
Denote γ as the measure of consumers that have always been served in the

previous periods, whenever they have requested the product. In other words,
γt represents the upper bound of the distribution of potential consumer in period
t

Proposition 3 A firm facing uncertainty over demand and the punishment rule
put in place by unserved consumers described above solves the following dynamic
problem:

max
q1,E{qt}t=2,...,∞

E
∞P
t=1

δt
∙µ

v
q∗t
2
− cq∗t

¶
q∗t
γt
+ (vq∗t − cq∗t )

µ
1− q∗t

γt

¶¸
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subject to the following law of motion for γt :

γ1 = 1

E (γt) = E
¡
γt−1

¢
−
Ã
E
¡
γt−1

¢
− q∗t−1

2

!¡
1− q∗t−1

¢
Proof. The problem can be expressed in the following form:

max
q1,E{qt}t=2,...,∞

∞P
t=1

δt [E (vqt − cq∗t |qt ≤ q∗t ) Pr (qt ≤ q∗t ) +E (vq∗t − cq∗t |qt > q∗t ) Pr (qt > q∗t )]

Solving term by term, we have:

Pr (qt ≤ q∗t ) =
q∗t
γ

E (vqt − cq∗t |qt ≤ q∗t ) = v
q∗t
2
− cq∗t

Pr (qt > q∗t ) = 1−
q∗t
γ

E (vq∗t − cq∗t |qt > q∗t ) = vq∗t − cq∗t

The value of γ - representing the expected measure of consumers that the
firm never ’disappointed’, and thus the upper bound of the density of potential
buyers, follows the evolution rule now presented:

γ1 = 1

E (γt) = E
¡
γt−1

¢
−E

¡
qt−1 − q∗t−1

¢
=

= E
¡
γt−1

¢
−
¡
E
¡
E
¡
qt−1

¢
− q∗t−1

¢
|q∗t−1 < qt−1

¢
Pr
¡
q∗t−1 < qt−1

¢
=

= E
¡
γt−1

¢
−
Ã
E
¡
γt−1

¢
− q∗t−1

2

!¡
1− q∗t−1

¢
=

= E
¡
γt−1

¢
Pr
¡
q∗t−1 > qt−1

¢
+

Ã
E
¡
γt−1

¢
+ q∗t−1

2

!
Pr
¡
q∗t−1 < qt−1

¢
=

E
¡
γt−1

¢
q∗t−1 +

Ã
E
¡
γt−1

¢
+ q∗t−1

2

!¡
1− q∗t−1

¢
It is natural that the firm will have an incentive to update its production

at every period, after uncertainty over the demand in the previous period has
been resolved
The solution to the previous problem requires a huge computational burden,

and I am not sure if it is worth performing it by now. I followed the old rule ’in
dubio abstine’, and to be safe I did not do it!
A couple of interesting results can still be stated.
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Claim 4 As the discount factor approaches 0, the solution to the maximization
problem approaches the solution to the single period problem

Proof. . When δ = 0, the firm does not value the future, and therefore
the dynamic problem converges to the static one-shot game. Intuitively, as the
value of the future for the firm disappears, the incentive to raise production with
respect to the one shot game in order to gain future profits becomes weaker

Claim 5 As the discount factor approaches 1, the firm will serve the whole
market with probability one if in the single shot game the expected value of
profits from producing 1 exceeds its cost, i.e., if v > 2c

Proof. The firm is now facing an infinite stream of equally valuable profit.
Therefore, the benefit of serving the whole market forever offsets any other
finite-periods gain. The only point to check is whether this strategy entails a
positive average payoff per period, that implies an infinte payoff in the dynamic
game. This happens if

v
q∗

2
> cq∗ ⇔ v > 2c

Suppose v > 2c, and the firm decides to leave some consumers unserved in the
first period. Then, (1− q∗) is positive. Suppose also (1− q∗) is very small - a
conservative assumption. Then, the firm’s strategy entails a positive expected
one-period earning equal to

cq∗ − (1− q∗)2

2

On the other hand, the firm’s losses are given by the infinite stream of losses.
Therefore, the deviation is not profitable.
I will solve, however, a two period model, satisfying assumptions 1 through

6, and 7b through 9. The discount factor is assumed to be1.

Proposition 6 In a two periods model satisfying assumptions 1 through 9, in
which profits in the two periods have equal weight in the firm’s decision, the
monopolist produces in the first period a higher quantity than in the one-shot
game
Proof. The monopolist solves the following problem

max
q∗i , i=1,2,3

E (vq1 − cq∗1 |q1 ≤ q∗1) Pr (q1 ≤ q∗1) +E (vq∗1 − cq∗1 |q1 > q∗1) Pr (q1 > q∗1) +

+E (vq2 − cq∗2 |q2 ≤ q∗2) Pr (q2 ≤ q∗2) +E (vq∗2 − cq∗2 |q2 > q∗2) Pr (q2 > q∗2)
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It can be rewritten as

max
q∗i ,i=1,2

µ
v
q∗1
2
− cq∗1

¶
q∗1 + (vq

∗
1 − cq∗1) (1− q∗1)+

+

µ
v
q∗2
2
− cq∗2

¶
q∗2

Pr (q1 < q∗1) + E (q1 − q∗1 |q1 > q∗1) Pr (q1 > q∗1)
+

+ (vq∗2 − cq∗2)

µ
1− q∗2

Pr (q1 < q∗1) +E (q1 − q∗1 |q1 > q∗1) Pr (q1 > q∗1)

¶
=

= max
q∗1 ,E(q∗2)

µ
v
q∗1
2
− cq∗1

¶
q∗1 + (vq

∗
1 − cq∗1) (1− q∗1)+

+

µ
v
q∗2
2
− cq∗2

¶
q∗2

q∗1 +
1
2 −

q∗21
2

+

+(vq∗2 − cq∗2)

Ã
1− q∗2

q∗1 +
1
2 −

q∗21
2

!

At the optimum, we have

q∗1 =
3v2 + c2 − 4cv
−2cv + 3v2 + c2

, q∗2 =
−21v4c+ 20c2v3 − 12c3v2 + 5vc4 + 9v5 − c5

v (−2cv + 3v2 + c2)2

The function at the optimum attains½
1

2v

6v4 − 16v3c+ 15c2v2 − 6c3v + c4

−2cv + 3v2 + c2

¾
It is easily possible to prove that the optimal quantity is positive for any values
satisfying our initial assumption, that v > c > 0.To do that, it is sufficient
to just solve the following inequality and check that it holds for all values that
satisfy our assumptions.

3v2 + c2 − 4cv
−2cv + 3v2 + c2

> 0

Also, it is possible to show that 0 < q∗1 < 1.
Now, we compare q∗1 in the two cases, i.e., when the monopolist has a 1

period horizon, and when it has a two period horizon. In order to do that, we
normalize the cost to 1, in order to have the results more easily understandable.

q∗1 two period > q∗1 one period⇐⇒
3v2 + c2 − 4cv
−2cv + 3v2 + c2

>
v − 1
v
⇐⇒ (given that c = 1)

3v2 + 1− 4v
−2v + 3v2 + 1 −

v − 1
v

> 0

The inequality always holds.
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Once more, the result is intuitively plausible; if the firm produces in two
periods, its production in the first period will be higher, due to the threat of
consumers not buying from he firm in the next period.
Essentially, the presence of multiple periods enhances the consumer welfare,

in the sense that a greater production is carried out with respect to the static
game. No meaningful comparison can be performed on the firm’s profit, since
in this last case, the firm’s profit is spread across multiple periods. The first
periodprofit for the firm, however, is lower under this circumstance than in the
basic one.

2.3 Version C: static game with interconnection

Consider now an alternative situation, in which the regional monopolist can buy
some energy from another firm, with respect to which the monopolist is a price-
taker. There is no limit to the quantity the other firm offers, so the monopolist
can always choose ex post to buy from its supplier, of which he knows the price
ex ante. This is a first simplified form of interconnection between firms, just to
get introduced to the -maybe- more interesting next scenarios.
Formally, the new assumptions are:

10. In order to satisfy its demand, the monopolist can buy an unlimited
amount of energy from a supplier.

11. The monopolist is a price-taker with respect to the supplier, and the price
p charged by the supplier is known by the monopolist ex ante, i.e., before
the monopolist takes its production decisions.

12. v > p > c

Proposition 7 If assumptions 1 through 12 hold, the quanity produced by the
monopolist is the following:the market is completely served, and the quantity
produced by the monopolist is decreasing with respect to the situation of unavail-
ability of the supplier, and its expected profit is increasing

Proof. The monopolist solves now the following problem:

max
q∗

E (π|q ≤ q∗) Pr (q ≤ q∗) +E (π|q > q∗) Pr (q > q∗) =

= E (vq − cq∗|q ≤ q∗) Pr (q ≤ q∗) +E (vq∗ − cq∗ + (v − p) (q − q∗) |q > q∗) Pr (q > q∗) =

max
q∗

(vq∗ − cq∗) (1− q∗) +

µ
vq∗

2
− cq∗

¶
q∗ +

µ
(v − p)

µ
1− q∗

2

¶¶
(1− q∗)

The first order conditions are the following:

−q∗v + v − c− (1− q∗) (v − p) = 0⇔ −q∗v + v − c− v + p+ q∗v − q∗p = 0

They imply

q∗ =
p− c

p
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The previous results show that the quantity produced is decreasing if the option
of buying it is available.
To check it formally,

q∗ without supplier > q∗ with supplier⇐⇒
v − c

v
<

p− c

p
⇔ p < v

As usual, we verify that the second order conditions hold:

∂π

∂q∗
= −q∗v + v − c− v + p+ q∗v − q∗p

∂π

∂q∗q∗
= −p < 0

Now, we provide some comparative statics:

dq∗

dp
=

c

p2
> 0

It arises because the firm fears the high prices of its alternative supplier

dq∗

dc
= −1

p
< 0

As intuitively plausible, the quantity increases with the cost.
Now, let us consider the problem of the selling firm. The selling firm sets

prices, in order to maximize profits. If we are willing to assume that risks are
uncorrelated, i.e., that the firm sells to many local monopolist, so something
similar to the law of large number applies, the energy supplier will be maximiz-
ing its price without aggregate uncertainty, i.e., without dispersion of unused
resources.

max
p

Eπ = E (π|π > 0)Pr (π > 0)

max
p
(p− c)

µ
c

2p

¶µ
c

p

¶
From the first order condition, we get the solution to the problem, actually

concave:

p = 2c

For the firm to be willing to produce at this prices, it has to make positive
profit, so p = 2c < v. Otherwise, the constraint p = 2v becomes binding and
the firm sets p = v.
Overall, the pricing structure is the following:
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q∗ =

⎧⎨⎩
1
2 if v > 2c

v−c
v if 2c > v > c
0 if c > v

Now, there are two firms, both vertically integrated. Each of them still
has the exclusive for serving the consumers in its area, due to the extremely
high costs of duplicating the retail network. However, now, the firms can trade
energy with each ther, being interconnected. That means that, if one is in excess
supply, and the other is in excess demand, a gainful trade will take place.
Formally, I introduce three new assumptions, bound to replace 10, 11, and

12. They are the following:

13. There are two regional monopolist

14. Each of them can buy some energy from the other, if that energy is avail-
able.Specifically, as a simplifying assumption, a firm will buy some energy
if and only if its excess demand is lower than the excess supply of the
other firm. In other words, firm i will buy energy from firm j if and only
if the following conditions are satisfied:

• Firm i has underproduced with respect to the demand

• Firm j has overproduced with respect to the demand

• The overproduction of firm j outweighs the underproduction of firm i, i.e.,
firm i serves all of its consumers after buying from firm j

15. The two regional monopolists simultaneously set prices and quantites

16. Quantities are assumed to be equal for the two firms, i.e., we are restricting
attention to pure strategy symeetric Bayesian nash equilibria.

Proposition 8 In the game described by assumption 1-6, 7b-9, 13-16, the quan-
tity produced and the price charged in any symmetric Bayesian Nash equilibrium
in quantities and prices are the following:

p = −87
16
+
67

16
v, x =

1

2

Proof. At first, I sketch the maximization problem, which takes the following
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form:

max
p1,q∗1

Eπ =

1)E (π|q∗1 > q1, q
∗
2 > q2, q

∗
1 − q1 < q2 − q∗2) 2)Pr ( q

∗
1 > q1, q

∗
2 > q2, q

∗
1 − q1 < q2 − q∗2)+

3)E (π|q∗1 > q1, q
∗
2 < q2, q

∗
1 − q1 < q2 − q∗2) 4)Pr ( q

∗
1 > q1, q

∗
2 < q2, q

∗
1 − q1 < q2 − q∗2)+

5)E (π|q∗1 > q1, q
∗
2 > q2, q

∗
1 − q1 > q2 − q∗2) 6)Pr ( q

∗
1 > q1, q

∗
2 > q2, q

∗
1 − q1 > q2 − q∗2)+

7)E (π|q∗1 > q1, q
∗
2 < q2, q

∗
1 − q1 > q2 − q∗2) 8)Pr ( q

∗
1 > q1, q

∗
2 < q2, q

∗
1 − q1 > q2 − q∗2)+

9)E (π|q∗1 < q1, q
∗
2 > q2, q1 − q∗1 < q∗2 − q2) 10)Pr (q

∗
1 < q1, q

∗
2 > q2, q1 − q∗1 < q∗2 − q2)+

11)E (π|q∗1 < q1, q
∗
2 < q2, q1 − q∗1 < q∗2 − q2) 12)Pr (q

∗
1 < q1, q

∗
2 < q2, q1 − q∗1 < q∗2 − q2)+

13)E (π|q∗1 < q1, q
∗
2 > q2, q1 − q∗1 > q∗2 − q2) 14)Pr (q

∗
1 < q1, q

∗
2 > q2, q1 − q∗1 > q∗2 − q2)+

15)E (π|q∗1 < q1, q
∗
2 < q2, q1 − q∗1 > q∗2 − q2) 16)Pr (q

∗
1 < q1, q

∗
2 < q2, q1 − q∗1 > q∗2 − q2)

Now, we are giving the expressions for the terms in the previous big equation:

1)E (vq1 − cq∗1) | (q∗1 > q1, q
∗
2 > q2, q

∗
1 − q1 < q2 − q∗2)

3)E (vq1 − cq∗1) | (q∗1 > q1, q
∗
2 < q2, q

∗
1 − q1 < q2 − q∗2)

5)E (vq1 − cq∗1) | (q∗1 > q1, q
∗
2 > q2, q

∗
1 − q1 > q2 − q∗2)

7)E (vq1 − cq∗1) + p1
E (q2)− q∗2

2
| (q∗1 > q1, q

∗
2 < q2, q

∗
1 − q1 > q2 − q∗2)

9) (vq∗1 − cq∗1) + (v − p2)E (q1 − q∗1) | (q∗1 < q1, q
∗
2 > q2, q1 − q∗1 < q∗2 − q2)

11) (vq∗1 − cq∗1)

13) (vq∗1 − cq∗1)

15) (vq∗1 − cq∗1)

Now, it is clear that

Pr (q∗1 > q1, q
∗
2 > q2, q

∗
1 − q1 < q2 − q∗2) =

= Pr (q∗1 > q1 > q∗1 − q2 + q∗2 , q
∗
2 > q2)

= Pr (q2 − q∗2 > 0, q
∗
2 > q2) = 0

It therefore follows that
2) = 0

Also,

Pr (q∗1 < q1, q
∗
2 < q2, q1 − q∗1 < q∗2 − q2) =

Pr (q∗1 < q1 < q∗2 − q2 + q∗1 , q
∗
2 < q2) =

Pr ( q∗2 − q2 > 0, q
∗
2 < q2) = 0

It therefore follows that
12) = 0

13



Now, we can go a step further and establish another result. We know that
2) = 0, hence it follows that

Pr ( q∗1 > q1, q
∗
2 > q2, q

∗
1 − q1 > q2 − q∗2) =

Pr ( q∗1 > q1, q
∗
2 > q2) = q∗1 q∗2

Hence, it follows that
6) = q∗1 q∗2

Analogously, since we know that 12) = 0, it follows that

Pr (q∗1 < q1, q
∗
2 < q2, q1 − q∗1 > q∗2 − q2) =

Pr (q∗1 < q1, q
∗
2 < q2) = (1− q∗1) (1− q∗2)

It follows that
16) = (1− q∗1) (1− q∗2)

The computation of 6) and 8) becomes slightly more complicated. Basically, we
have to establish Pr (q1 − q∗1 > q∗2 − q2) . In order to do that, it is necessary to
remeber that the joint probability of

Pr (q1 + q2 > q∗2 + q∗1)

is given by the triangular distribution.
Now, it is clear that there is not an unique expression that defines the

probability; instead, the definition crucially depends on the relation between
q∗1 + q∗2 and

1
2 . We need at this point a guess about the value of q

∗
1 + q∗2 , solve

the problem assuming the guess is correct, then verify the guess eventually. Our
guess is that q∗1 + q∗2 ≥ 1

2 .
Looking at the picture, and computing areas (the result can be more for-

mally derived through the standard integration procedure, but this simplifi-
cation helps, maybe, to give more intuition for the result). The result is the
following - note that from now, I’ll always behave as such my guess is correct,
even when this is not clearly stated in the paper.

Pr (q1 + q2 < q∗2 + q∗1) =
1

2
+
(q∗2 + q∗1 − 1)

2
(3− q∗2 − q∗1)

It then follows that

Pr (q1 + q2 < q∗2 + q∗1) =
1

2
+
(q∗2 + q∗1 − 1)

2
(3− q∗2 − q∗1)

At this point, it follows that

Pr ( q1 + q2 < q∗1 + q∗2 |q∗1 > q1, q
∗
2 < q2) =

=

³
1−q∗2
2

´
(1 + q∗2) +

(q∗2+q
∗
1−1)
2 (3− q∗2 − q∗1)³

1−q∗2
2

´
(1 + q∗2) +

³
q∗1
2

´
(2− q∗1)

14



As a consequence,

Pr ( q∗1 > q1, q
∗
2 < q2, q

∗
1 − q1 > q2 − q∗2) =

Pr ( q∗1 > q1, q
∗
2 < q2, q

∗
1 + q∗2 > q2 + q1) =

=

³
1−q∗2
2

´
(1 + q∗2) +

(q∗2+q
∗
1−1)
2 (3− q∗2 − q∗1)³

1−q∗2
2

´
(1 + q∗2) +

³
q∗1
2

´
(2− q∗1)

q∗1 (1− q∗2)

This implies that

8) =

³
1−q∗2
2

´
(1 + q∗2) +

(q∗2+q
∗
1−1)
2 (3− q∗2 − q∗1)³

1−q∗2
2

´
(1 + q∗2) +

³
q∗1
2

´
(2− q∗1)

q∗1 (1− q∗2)

It also follows that:

Pr ( q∗1 > q1, q
∗
2 < q2, q

∗
1 − q1 < q2 − q∗2) =

= Pr ( q∗1 > q1, q
∗
2 < q2, q

∗
1 + q∗2 < q2 + q1) =

=

³
1− q∗2

2

´
(3− 2q∗1 − q∗2)³

1−q∗2
2

´
(1 + q∗2) +

³
q∗1
2

´
(2− q∗1)

q∗1 (1− q∗2)

Therefore,

4) =

³
1− q∗2

2

´
(3− 2q∗1 − q∗2)³

1−q∗2
2

´
(1 + q∗2) +

³
q∗1
2

´
(2− q∗1)

q∗1 (1− q∗2)

Now, we compute:

Pr (q∗1 < q1, q
∗
2 > q2, q1 − q∗1 < q∗2 − q2) =

= Pr (q∗1 < q1, q
∗
2 > q2, q1 + q2 < q∗2 + q∗1) =

=

(q∗2+q
∗
1−1)
2 (3− q∗2 − q∗1) +

³
1− q∗1

2

´
(1 + q∗1)³

1−q∗1
2

´
(1 + q∗1) +

³
q∗2
2

´
(2− q∗2)

(1− q∗1) q
∗
2

That implies that

10) =

(q∗2+q
∗
1−1)
2 (3− q∗2 − q∗1) +

³
1− q∗1

2

´
(1 + q∗1)³

1−q∗1
2

´
(1 + q∗1) +

³
q∗2
2

´
(2− q∗2)

(1− q∗1) q
∗
2

Finally,

Pr (q∗1 < q1, q
∗
2 > q2, q1 − q∗1 > q∗2 − q2) =

= Pr (q∗1 < q1, q
∗
2 > q2, q1 + q2 > q∗1 + q∗2) =

=

³
1− q∗1

2

´
(3− 2q∗2 − q∗1)³

1−q∗1
2

´
(1 + q∗1) +

³
q∗2
2

´
(2− q∗2)

q∗2 (1− q∗1)

15



It thus follows that:

14) =

³
1− q∗1

2

´
(3− 2q∗2 − q∗1)³

1−q∗1
2

´
(1 + q∗1) +

³
q∗2
2

´
(2− q∗2)

q∗2 (1− q∗1)

Now, we compute

E (vq1 − cq∗1) | (q∗1 > q1, q
∗
2 < q2, q

∗
1 − q1 < q2 − q∗2) =

E (vq1 − cq∗1) | (q∗1 > q1 > q∗1 + q∗2 − q2, q2 > q∗1 − q1 + q∗2)

This implies that

E (q1) | (q∗1 > q1, q
∗
2 < q2, q

∗
1 − q1 < q2 − q∗2) =

=
2q∗1 + q∗2 −E (q2)

2

E (q2) | (q∗1 > q1, q
∗
2 < q2, q

∗
1 − q1 < q2 − q∗2) =

=
q∗1 + q∗2 −E (q1) + 1

2

Finally, we obtain:

E (q1) | (q∗1 > q1, q
∗
2 < q2, q

∗
1 − q1 < q2 − q∗2) = q∗1 +

1

3
q∗2 −

1

3

E (q2) | (q∗1 > q1, q
∗
2 < q2, q

∗
1 − q1 < q2 − q∗2) =

1

3
q∗2 +

2

3

Finally, we have that

E (vq1 − cq∗1) | (q∗1 > q1, q
∗
2 < q2, q

∗
1 − q1 < q2 − q∗2) =

v

µ
q∗1 +

1

3
q∗2 −

1

3

¶
− cq∗1

As a result

3) = v

µ
q∗1 +

1

3
q∗2 −

1

3

¶
− cq∗1

Finally, let us compute

E (π|q∗1 > q1, q
∗
2 > q2, q

∗
1 − q1 > q2 − q∗2) =

E ((vq1 − cq∗1) |q∗1 > q1, q
∗
2 > q2, q

∗
1 − q1 > q2 − q∗2) = v

q∗1
2
− cq∗1

Thus, we have

5) = v
q∗1
2
− cq∗1

We have by now established the following results:
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1) irrelevant

2) = 0

3) = v

µ
q∗1 +

1

3
q∗2 −

1

3

¶
− cq∗1

4) =

³
1− q∗2

2

´
(3− 2q∗1 − q∗2)³

1−q∗2
2

´
(1 + q∗2) +

³
q∗1
2

´
(2− q∗1)

q∗1 (1− q∗2)

5) = v
q∗1
2
− cq∗1

6) = q∗1 q∗2

7) =
vq∗1
3
− cq∗1 + p1

q∗1
3

8) =

³
1−q∗2
2

´
(1 + q∗2) +

(q∗2+q
∗
1−1)
2 (3− q∗2 − q∗1)³

1−q∗2
2

´
(1 + q∗2) +

³
q∗1
2

´
(2− q∗1)

q∗1 (1− q∗2)

9) (vq∗1 − cq∗1) + (v − p2)
q∗2
3

10) =

(q∗2+q
∗
1−1)
2 (3− q∗2 − q∗1) +

³
1− q∗1

2

´
(1 + q∗1)³

1−q∗1
2

´
(1 + q∗1) +

³
q∗2
2

´
(2− q∗2)

(1− q∗1) q
∗
2

11) irrelevant

12) = 0

13) (vq∗1 − cq∗1)

14) =

³
1− q∗1

2

´
(3− 2q∗2 − q∗1)³

1−q∗1
2

´
(1 + q∗1) +

³
q∗2
2

´
(2− q∗2)

q∗2 (1− q∗1)

15) (vq∗1 − cq∗1)

16) = (1− q∗1) (1− q∗2)

Now, we are ready to state and solve the maximization problem that each firm
faces, when it has choose the quantity to produce and the price to charge to the
other firm, taking the price it is charged by the other firm, and the quantity
produced by the rival, as given. The two firms are ex ante equal, and the only
difference is introduced ex post, when the demand is revealed.
Firm 1 solves the following problem:
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Max
q∗1 , p1

v

µ
q∗1 +

1

3
q∗2 −

1

3

¶
− cq∗1

+

³
1− q∗2

2

´
(3− 2q∗1 − q∗2)³

1−q∗2
2

´
(1 + q∗2) +

³
q∗1
2

´
(2− q∗1)

q∗1 (1− q∗2)

+v
q∗1
2
− cq∗1

+q∗1 q∗2

+
vq∗1
3
− cq∗1 + p1

q∗1
3

+

³
1−q∗2
2

´
(1 + q∗2) +

(q∗2+q
∗
1−1)
2 (3− q∗2 − q∗1)³

1−q∗2
2

´
(1 + q∗2) +

³
q∗1
2

´
(2− q∗1)

q∗1 (1− q∗2)

+ (vq∗1 − cq∗1) + (v − p2)
q∗2
3

+

(q∗2+q
∗
1−1)
2 (3− q∗2 − q∗1) +

³
1− q∗1

2

´
(1 + q∗1)³

1−q∗1
2

´
(1 + q∗1) +

³
q∗2
2

´
(2− q∗2)

(1− q∗1) q
∗
2

(vq∗1 − cq∗1)

+

³
1− q∗1

2

´
(3− 2q∗2 − q∗1)³

1−q∗1
2

´
(1 + q∗1) +

³
q∗2
2

´
(2− q∗2)

q∗2 (1− q∗1)

+ (vq∗1 − cq∗1)

+ (1− q∗1) (1− q∗2)

To make the previous equation a bit more tractable, assume c = 1. The optimal
point is the following:

p = −87
16
+
67

16
v, x =

1

2

The quantity produced in this case is higher than in the case of lack of inter-
connession, and so is the profit for each firm. Indeed, the following inequality

v

2
+
1

2
− v + 1 + 1 +

1

v2
− 2

v
<
91

192
v − 37

64

is verified for all values of v. The previous thread of argument is valid only for
29
17 < v < 103

67 , given our assumptions on v and c
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3 Version D: interconnection, intermediation, dy-
namic (incomplete)

Now, let us see the final case. The two firms sell their energy to a monopolistic
retailer of energy, that is, an intermediary between the two firms and the con-
sumer. Suppose that the intermediary does not have to compete with anyone,
i.e., the firms are selling their products to him. The intermediary takes the risk
of uncertainty over quantity. We have now two possible cases. In the first case,
the intermediary takes the whole burden of risk on himself
Formally, there are new assumptions besides 1-6, 7b-9, and they are:

14. There is a monopolistic intermediary to which the two energy firms sell
their product

15. The intermediary bears the aggregate uncertainty, and maximizes the ex-
pected ask-bid spread

16. In a two stage game, at first the intermediary sets a price, as a function
of the demand, and then the two monopolists solve their problem with
certainty

17. The two regional monopolists still behave monopolistically (it would make
more sense to assume they play Cournot with capacity constraints. I’ll do
it later)

Proposition 9 The retailer sells 2
¡
28
17 +

1
51

√
6
¡
17
2

√
6
¡
1
102c
√
6− 14

17

¢¢¢
Proof. Now, the intermediary does the following:

maxE (vq∗ − cq∗|q∗ < q) Pr (q∗ < q) +E (vq − cq∗|q∗ > q) Pr (q∗ > q)

Now, as we did previously, we try to solve th previous equation term by term,
and get the following:

Pr (q∗ < q) =
(2− q∗)2

2

Pr (q∗ > q) = 1− (2− q∗)2

2

E (q) =
2

r
2q∗ − q∗2

2
− 1

E (vq − wq∗) = v

Ã
2

r
2q∗ − q∗2

2
− 1
!
− cq∗

Now, the problem is the following:

(x− wx)
(2− x)

2

2
+

ÃÃ
2

r
2x− x2

2
− 1
!
− wx

!Ã
1− (2− x)

2

2

!
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At the optimum, x = 28
17 +

1
51

√
6w.

The monopolists maximize their production knowing the level of demand
by the intermediary, who assumes on himself the whole risk. Therefore, they
solve a standard optimization problem, not involving any uncertainty. Each
monopolist maximizes:

max
w

q (w)

2
(w − c)µ

28

34
+

1

102

√
6w

¶
(w − c)

At the optimum, the profit of the intermediary is given by
©¡

1
204c
√
6 + 7

17

¢ ¡
17
2

√
6
¡
1
102c
√
6− 14

17

¢
− c
¢ª

,
at [w =], supposing the two firms can collude to a monopoly price.
The total quantity produced is then

2

µ
28

17
+
1

51

√
6

µ
17

2

√
6

µ
1

102
c
√
6− 14

17

¶¶¶
> 2

In conclusion, the intermediary bears the risk, increases the firms’ profit,
and

4 Conclusion
It is obviously better for consumers to be served always, and not to be hit by a
blackout. However, blackouts arise. In the model, and proably in the industry
too, they arise because of uncertainty in demand. Connecting wires can share
the risk. The question that is in my mind, and that I hope this paper will
address when it will be completed, are the following:
1) Will the energy firms be willing to connect in order to avoid blackouts?

The answer in the paper is yes, but we did not consider the fixed cost of estab-
lishing the connection, very important indeed
2) What is the optimal structure of the market, i.e., what would the outcome

of an unregulated process be? Would this outcome avoid blackouts?
I believe the questions are important, as the energy market is subject to a

lot of regulations that ASSUME to be inspired to a competitive outcome. But
the question is: are we sure the competitive outcome regulators inspire to is the
true competitive outcome?
And more, are we sure that the true competitive outcome wouldn’t be welfare

enhancing also for consumers with respect to the regulation outcome?
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