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1 Introduction

One of the main arguments in the foreclosure literature is that vertical integration may enable to “raise
rival’s costs”. The argument was first put forward by Ordover, Saloner and Salop (1990) (henceforth OSS)
and is as follows. A vertically integrated firm has an incentive to foreclose nonintegrated downstream
firms because this reduction of upstream competition leads to higher input cost for the nonintegrated
downstream rivals. Since the downstream segment of the integrated firm benefits when rivals’ costs are
raised, the integrated firm is better off pursuing such a foreclosure strategy.

Hart and Tirole (1990) and Reiffen (1992) criticized this argument. They pointed out that the result
depends on the assumption that integrated firms can commit not to deliver nonintegrated downstream ri-
vals. Without commitment, vertically integrated firms will compete just like the other upstream firms. In
particular, it is a best reply not to foreclose the nonintegrated downstream firms and so Nash equilibrium
prices are the same with and without vertical merger.

This paper investigates whether foreclosure can be an equilibrium in the infinitely repeated game.
This idea has been proposed by Riordan and Salop (1995), and the intuition is straightforward. Repeated
interaction (Macauley, 1963) can help the integrated firm establishing a reputation for staying out of the
nonintegrated market and this will induce nonintegrated upstream firms to charge higher prices. Since
all upstream firms benefit from vertical foreclosure in the long run, it could be an equilibrium in the
repeated game if firms are sufficiently patient.

The results in this paper show that this intuition is correct. In an oligopoly model similar to the one in
0SS, foreclosure is indeed a subgame perfect Nash equilibrium of the infinitely repeated game, provided
firms’ discount factor is sufficiently high. In a general model, we show that in fact any individual rational
price charged to the nonintegrated downstream firm can be part of a collusive equilibrium. Equilibrium
refinements help reducing the set of plausible prices as they suggest that the non-integrated firm will
be charged a price at least as high as the monopoly price. Using a parametrized model, we further
show that collusive foreclosure with vertical integration often requires a lower minimum discount factor
than collusion under vertical separation. The possibility of a counter merger of the nonintegrated firms
negatively affects the likelihood and profitability of such collusive foreclosure. Finally, we discuss what

happens if collusion at the downstream level is a possibility.



2 The Model and static Nash equilibrium

The market has two upstream firms and two downstream firms, as in OSS. Call the two upstream firms
U1l and U2, and the two downstream firms D1 and D2. Upstream firms have constant marginal cost
which are normalized to zero. For simplicity, the (linear) input prices the upstream firms post constitute
the only cost of the downstream firms.!

At the downstream level, there is differentiated price competition. Denote by Q;(p;,p;), 4, j=1,2,% # j,

the demand function of Di. When D7 pays a price of ¢; per unit of the input, its profits are
7pi = (pi — ¢i)Qi(pisp;)s 4,7 =1,2,4 # j. (1)

We impose the following assumptions on demand. Demand functions @;(pi, p;) are twice continuously
differentiable with 8Q;/8p; < 0, 8Q;/0p; > 0, and 9Q;/0p; — 8Q;/0p; < 0, 4,j = 1,2, i # j. These
assumptions ensure downward sloping demand with substitutes goods. Further, we assume that goods are
strategic complements, that is, 8Q; /0p;0p; > 0. A final assumption is that 62Q;/0p?+8%Q; /9p;Op; < 0.
These assumptions imply that the upward sloping best-reply functions have a slope of less than one and,
hence, they are sufficient to ensure the existence of a unique Nash equilibrium of the stage game.?

Let pf(ci,cy), 4,7=1,2, i # j, denote the static Nash equilibrium prices at the D level. In the static
Nash equilibrium, the input price vector (¢;, ¢;) sufficiently describes downstream competition, and we
will often use Qj(c;,c;) as a shotcut for Q;(pj(ci, c;),p}(cj,¢:)), and wh;(ci, ¢;) for mpi = (pi(cisc;) —
¢:)Qj (cis ¢j)-

Given the above assumptions, it is easy to verify that raising the cost of a downstream rival is
profitable, that is,

O (ciscj)  Omp; Op;

= =L >0, 0,5 =1,2,i#3j,- 2
ae; Op; Be; i J iFj (2)

Note that 97 p;/0p; > 0 follows from 0Q;/0p; > 0, and dp}/dc; > 0 follows from comparative statics of
the first order condition dnp;/0p; = 0.

It is useful to derive the static Nash equilibrium of the game at the upstream level. Without vertical
integration, the two upstream firms compete a la Bertrand for both D:. The upstream firm posting the

lower price for the input in market Di obtains a profit of ¢;Q}(c;, ¢;), ¢,7=1,2, i # j, and, in the case of

1This can be easily be generalized to more complex downstream cost functions. See OSS.

2The assumptions to ensure a unique static Nash equilibrium are merely made to simplify the analysis. Under weaker
assumptions, the stage game has multiple equilibria and one would need to distinguish between stable and unstable equilibria
(see OSS). Note also that somewhat weaker conditions might be sufficient to guarantee existence and uniqueness (see Vives,

1999).



a tie, this profit is split equally between the two upstream firms. In the unique static Nash equilibrium,
both upstream firms charge a price equal to marginal cost, i.e., equal to zero.

Now consider vertical integration and call the integrated firm of U1-D1. When U1 and D1 are inte-
grated, the downstream segment of U1-D1 is delivered internally at marginal cost and the two upstream
firms compete for D2 only. As emphasized by Hart and Tirole (1990) and Reiffen (1992), the unique
static Nash equilibrium is has U1-D1 and U2 charging a price equal to marginal cost, just as in the case

without integration. U2 earns zero profits and U1-D1 earns 7%,,(0,0) in this static Nash equilibrium.?

3 Collusive Foreclosure in the Repeated Game

In this section, we will analyze under which conditions foreclosure emerges as an equilibrium outcome
in the general model. Collusion at the upstream level with vertical integration will be analyzed in this
section—this is the case where foreclosure may occur. Collusion under vertical separation will be discussed
in Section 5, and collusion at the downstream level will be considered in Section 7.

We suppose that firms try to implement the following collusive foreclosure strategy. U2 charges D2 an
input price ¢ > 0 and U1-D1 does not deliver market D2 as part of a collusive strategy in the infinitely
repeated game. Alternatively, U1-D1 could also post a price larger than ¢ as part of the collusion. This
alternative implies minor modifications of the results which we discuss at the end of this section.

The nature of this collusive strategy is different from that of normal oligopoly collusion. When
adhering to the collusive agreement, U1-D1 stays out of the market while, when defecting, it. enters (at a
price smaller than ¢). U2 is simply a monopolist when collusion is successful but ¢ will generally not be
its preferred monopoly price. Many values of ¢ can potentially be part of an equilibrium in the infinitely
repeated game, and only careful application of equilibrium selection criteria can help identifying more
plausible values of ¢. When defecting U2, is still a monopolist and then it will surely charge its monopoly
price.

Before solving the repeated game, it is useful to define three particular levels of ¢. The first is the
one just mentioned where U2 charges the price ¢ which maximizes it’s own profits. Denote this price by
cg°". Formally,

mon —

c°" = argmax cQ3(c,0). (3)

The second benchmark is the one that maximizes U1-D1 profits if it serves the D2 market in addition

3 Also 0SS acknowledge that this is the Nash equilibrium without commitment.



to the D1 market as a monopolist. Define this level formally by

" = argmax (0, ¢) + cQ3 (e, 0). (4)

Note that ¢**" > 5" due to d75,/0c > 0, and that both ¢*°™ and ¢**" are unique. This second
benchmark will be important when we analyze defection by U1-D1. Finally, it is useful to define the level

of ¢ where U2’s output (and profit) becomes zero, denoted by ¢. Formally

2 ={Q2(c,0) = 0}. (5)

Note that ¢ > ¢5*°™ but ¢["°" may be smaller or larger than ¢.

We now analyze collusion in the infinitely repeated game. Time is indexed from ¢ = 0, ..., c0. Firms
discount future profits with a factor §, where 0 < § < 1. When analyzing the repeated game, denote
by 7§ and 7§ the profit U1-D1 and U2 earn when both firms adhere to collusion, respectively. Let ¢
denote the profit when a firm defects, and 7% is the average profit per period when a punishment path is
triggered.

Collusive equilibria should be subgame perfect Nash equilibria. Subgame perfect Nash equilibria

satisfy
Zétﬂ'f > 7rd 4 Zétﬂ'f (6)
t=0 t=1
or
d c
T8¢ — s
d> L—=r =4, 7
o 71'? - ﬂf ¢ (7)

where 7 = 1,2, and §; denotes the minimum discount factor required for firm ¢ to adhere to collusion.
Consider the collusive profits, x¢, first. U;-D1’s collusive profit is 7§ = 7 p1(c, 0) since U;-Dydoes not
make any profit at the upstream level in equilibrium. Us makes a collusive profit of 7§ = ¢Q3(c,0).

Defection from this collusive foreclosure strategy is as follows. If U2 defects, it charges ¢5*°™ no matter

which ¢ is part of the collusive strategy (aside, this implies 7§ = 7§ if ¢ = cJ*°"). If U1-D1 defects it must
undercut U2’s price, ¢, in order to gain the profit in market D2. If ¢ < ¢*°", U1-D1 will simply charge a
price infinitesimally smaller than c. For ¢ > ¢[*°", U1-D1 will defect charging c*°™ by definition of ¢]*°".

Consider now the punishment following a defection. Since there is perfect Bertrand competition at the
upstream level, simple trigger strategies with Nash reversion imply ¢ = 0 and so upstream profits are zero
in the unique static Nash equilibrium. These are also the maximin profits and more severe punishment

strategies do not exist. We obtain 7} = 7%,;(0,0) and 5 = 0 for U1-D1 and U2, respectively.



Collusive equilibria must be individually rational, that is, firms must get at least their maximin profits
in a collusive equilibrium of the repeated game. Maximin profits mqy = 7%,(0,0) and 72 = 0 result when
¢ = 0. U2 also gets zero profits with ¢ = 2. Hence, any positive ¢ < ¢ implies 7§ = mp1(c,0) > 0 (from
(2)) and 7§ = ¢Q2(c,0) > 0 therefore and fulfills the individual rationality requirement.

We are now ready to prove

Proposition 1 Vertical foreclosure is a subgame perfect Nash equilibrium in the repeated game, provided
firms’ discount factor § is sufficiently high. Moreover, any individually rational collusive input price

0 < ¢ < € can be sustained with a high enough discount factor.

Proof. We prove the more general second part by showing that §; < 1 fori=1,2, and forall 0 < ¢ < €.
Now, 6; < 1if 7¢ > 7¢ > 7P, First, recall 7§ = 7%,(0,¢) > 7%,(0,0) = 7} and 7§ = cQ*(c,0) > 0 = 75.
This establishes the strict inequalities. Second, to prove 7¢ > 7§ suppose that first ¢ < ¢[*°" such that,
when defecting, U1-D1 gets ¢ = 7§ + 7§ > 7. If ¢ > ¢*°", U1-D1’s optimal defection is to charge ¢J*°"
and we have 7§ = 7§ + c[*°"Q* (c]*°",0) > w$. To prove 7% > 7§, note that 7§ = cF**"Q*(c§°",0) > 7§

by definition of ¢5**". W

Proposition 1 shows that vertical foreclosure can indeed by sustained as a subgame-perfect Nash
equilibrium in the infinitely repeated game. The result counters the criticism the OSS result received (not
being a Nash equilibrium) whenever there is repeated interaction and the discount factor is sufficiently
high.

Note that for all ¢ < ¢, a strictly positive minimum discount factor is required.* The reason why
foreclosure may not be a subgame-perfect Nash equilibrium for small § is that the firms cannot reduce
max{d1,02} arbitrarily close to zero. This is in contrast to some Cournot oligopoly models and models
with differentiated price competition where a collusive equilibrium always exist since firms can simply
select actions sufficiently close to the static Nash equilibrium actions.

Proposition 1 contains a Folk Theorem-like message on the action domain. All individually rational
collusive input prices can be part of an equilibrium in the repeated game, suggesting a coordination
problem. This raises the question if equilibrium selection criteria help reducing the set of plausible

collusive equilibria.

Proposition 2 Only collusive equilibria with ¢ > ¢5*°™ are Pareto efficient.

4This follows from 7r‘f > 7w > 7\’117 > 0 and therefore §1 > 0 unless ¢ = ¢. Similarly §2 > 0, unless ¢ = ¢5*°™. Hence
max{d1,02} > 0 for all c.



Proof. By definition of ¢§*°", dx§/dc > 0 when ¢ < ¢§**™ and d75/0¢ < 0 when ¢ > §*°". From
(2), 875 /08¢ > 0 for any c. Hence, choices of ¢ < ¢™°™ are not Pareto efficient but those in the interval
[c™e™, ¢) are. W

Pareto efficiency (from the firms’ point of view) suggests that the collusive prices we may expect to
occur will be at least as high as ¢5*°™. The intuition is that, when c is increased beyond c¢5*°", U1-D1 gains
unambiguously while firm U2 loses for either ¢ < ¢5°™ and ¢ > ¢5"°". Hence, the bargaining situation
implicit in the repeated game can plausibly lead to such an outcome. By contrast, in the one-shot game
analyzed in OSS (assuming U1-D1 can commit not to deliver D2), U2 is a monopolist in the D2 market
and would therefore never charge a price other than c§*°".

The characterization of Pareto efficient actions does say not anything whether or not these actions

are likely to meet the incentive constraint (7). To answer this question, the following lemma is helpful.

It states how minimum discount factors d; and 2 as in (7) respond to changes of c.

Lemma 3 Let 61(c) and d2(c) denote the minimum discount factors required by UL-D1 and U2 respec-
tively as functions of the collusive price c.

(1) 861(c)/de z 0 if and only if (On§/8c)(n§ — 7)) — (07§ /De)(7§) z 0.

(1) dd2(c)/Bc z 0 if and only if c z cron,

Proof. Consider part (i). If ¢ < ¢7*°", 7¢ = 7$¢ + 75 and 6,(c) = 7§ /(7§ + 75 — 7}). Hence

88, _ (O3 /00)(s — 78) — (0 /0) ()
e . ®

C C
(7§ + 7§ — 7y

which yields the condition. If ¢ > ¢°", 7¢ = 7§ +c°"Q5(c*°™,0). So, 61 = " Q% /(" Q3 +7¢ —7h)

and
96, —(0ri/Bc)c"" @3
dc (e Q5 +m§ —7Y)?

But in this case ¢ > ¢§*°" so that (9n§/8c)(w§ — n}) — (97§ /0c)(m§) < 0. Therefore, the condition in

< 0. (9)

the lemma gives the correct sign of 86;/8c. Then consider part (ii). Note that 7§ = 7§(c§*°",0) is a
constant, hence, we get 062/8c = —(975/0¢c)/(m$)?. Hence, 832 /0c z 0 if and only if ¢ z cger. i

The next proposition puts the lemma and Proposition 2 together. It characterizes extremal equilibria,
defined as those subgame perfect Nash equilibria which give the highest profit to the firms subject to the

incentive constraint (7).

Proposition 4 Ezxtremal subgame perfect Nash equilibria involve ¢ > ¢5*°", provided (875 /0c)(n§ — =) —

(075 /0c)(m§) < 0.



Proof. Assume ¢ < c§*°". If the condition in the proposition is met, one gets 8§;/8c < 0 and
062/0c < 0 from the lemma. From Proposition 2, 75/0¢ > 0 and 87§/8c > 0. Hence, extremal subgame
perfect Nash equilibrium must involve ¢ > 5", provided (97§/dc)(n§ — #7) — (07§ /c)(w§) < 0. A

Observe that the condition (97§/8c)(w§ — m}) — (97§ /0c)(7§) < 0 does not appear to be particularly
restrictive. It holds, for example, in the model with linear demand (see below). Further 8=$/d¢c > 0, so,
the condition will be met when d75/8c or m§ — n} are small.® The proposition implies that firms are
likely to collude on a price ¢ > ¢§*°™ because any ¢ below ¢§'°" reduces both firms’ profits and makes
collusion more difficult to sustain for both firms.

Figure 1 summarizes the discussion of the general model. It shows minimum discount factors §; and
&2 for values of ¢ between zero and €. Figure 1 is drawn with the help of the lemma and the following
properties of §;. It is straightforward to verify §2(0) = 1. Further, §2(c5*°") = 0 and §2(¢) = 1 follow from
the definitions of cJ**" and ¢. Regarding 61, note 0 < §;(c) < 1 for all ¢ < ¢ due to 7¢ > 7§ > 7% > 0.5

Further 6,(¢) = 0 if, as assumed the figure, ¢*°™ > ¢.” Finally, the figure is based on the assumption that
(075 /0c)(n§ — 7)) — (07§ /dc)(w§) < 0 holds.

[Figure 1 about here.]

The figure illustrates § = min. max{d;(c),d2(c)} > 0, and 84;(c)/Bc < 0, i=1, 2, if ¢ < §**". Foreclo-
sure as a collusive strategy will fail when § < § and will typically involve ¢ > ¢§*°™ otherwise.

Finally, we need to discuss what happens if U1-D1 does not completely withdraw from the D2 market
but posts a price ¢+ ¢, € being small, as part of the collusion instead. The only thing that would change
in this case is that U2 could not defect profitably any more when ¢ < ¢§*°". To see this, note that U2
wants to defect by charging the price ¢5’°", but since U1-D1 charges ¢ + & < ¢§*°", this is not possible.
This implies 7§ = 7§ and so §2 = 0 if ¢ < ¢J’°". Everything else and in paricular the results in this section

remain unchanged.

5Note that 881/8¢ < 0 if ¢ > . If ¢ < c*°", sign[851/0¢] is ambiguous.
6We cannot directly determine §1(0) since §1(c) = 75/(n§ + w§ — #7) but 75(0) = 0 and «$(0,0) — 7} = 0. L’Hépital’s
rule yields
lim 61(c) = lim 75(0)/(w5(c) + 7(c)) < 1
from w5{c)’ = Q2 and =§(c)’ > 0.
"This follows from 7§(¢) = 0 and so ¢ = n§ > 7f. If <™ < ¢, §1(€) > 0 follows from n¢ = 7§ + " Q3(c*°",0) so

1
that &1 = ¢™°nQ3/(<PomQj + 78 — 7)) > 0.



4 A Parametrized Model

In this section, we will develop a parametrized version of the model which is useful to derive further

results. The market model is similar to the one in OSS (Appendix) and has linear demand. Demand is

symmetric and the demand intercept is, without loss of generality, normalized to one

(10)

where &k > d > 0. Products are entirely heterogenous if d = 0 while d = &k would imply perfectly

homogenous goods. Di’s profit is

Myopic maximization at the downstream level yields Nash equilibrium prices

. 2k +d + k?c; + kdc;
b, (ci’ Cj) = 4k2 _ d2

and equilibrium outputs

. 2k +d— (2k% — d?)c; + kdc;
Q; (Ciicj) =k (4k2 _ d2) o

Downstream profits are m};(c;, c;) = (QF)?/k.

(11)

(12)

(13)

Consider the infinitely repeated game with integration. As above, U;-Dy forecloses D3, and Us delivers

D at a collusive price c. The integrated firm delivers its downstream unit at zero cost. From (13), Uy-D,

and D> will sell the following quantities

Q 0,¢) — k2k4%];2d_—|-dl:dc’
Qi(c,0) = k2k + d4;2(ik;— d2)c.
U1-Dy’s downstream profit is
w0 (0,) = k (W)2

while D2’s profit is

. % +d — (2k% — d?)c\’
7"-DZ(CﬂO)_k( 4]{72(— d2 ) ) :

U;-D; does not make any profit at the upstream level. Us makes a profit of cQ or

% +d — (2k2 — d?)c
k% — &

*
Trre = ck

(18)



For U;-D; punishment profits are

. k
7} =7p1(0,0) = m (19)
while 75 = 0.
The benchmark prices can easily be obtained as
2k+d
mon — . 2
©2 2(2k2 — d2) (20)

and
mon (2K + d) (4k2 + 2kd — d?)
o = . (21)
2(8k* — Tk2d2 + d4)

The third benchmark is

_ 2k+d
= 22)

Note ¢ =2 ¢5*°™ but ¢ z c*°" is ambiguous.
First, consider Uq-D+’s incentives to collude. If ¢ < ", Uq-D1’s defection profit is the sum of
mye as in (18) and 7%, its own equilibrium profit as in (16). If ¢ > ", Uy-Dy’s defection profit

is the sum of ¢*"Q3(c7*™,0) and 7%, (c[*°",0). The trigger-strategy implies a punishment profit of

7%,(0,0) = k/ (2k — d)*. The minimum discount factor required for U1-D1 to adhere to collusion is

(4K — d2)(2k + d — c(2k? — d?))
8k2(k + d) — d® — c(8k* — Tk2d2 + d%)

if ¢ < ef*on
81 =
(8K (K + d) — d®)epom — (8k* — TR*d? 4 d*)(c"")? — 2¢kd(2k + d) — Pk d?
8k2(k + d) — d®)cen — (8k4 — Th2d2 + d*)(cpom)?

, if ¢ > o

(23)
where ¢§"°" is defined as in (21). In the general model, when ¢ < ", 3§1/0¢ < 0 if and only if a

regularity condition holds. For the parametrized model, the condition is met since

%] (4K + kd — 2d%)ckPd

b (42 — )2 (2k — d) (24)

sign [

When ¢ > ", we know 861/0c < 0 from the general model.
Now turn to Uz’s incentives to collude. Uj’s collusive profit is wya(c), and Uz’s defection profit is

wyz(c™™). The punishment profit is 772(0) = 0. Plugging these expressions into (7), one obtains

d+2cd? + 2k — 4ck?\?
52—(+c + ¢ ) (25)

2k +d

We know 9d2/8¢ from the general model.

10



5 Does Vertical Integration Facilitate Collusion?

The result that vertical foreclosure can emerge as an equilibrium outcome of the repeated game is an
important one. However, it does not necessarily suggest a policy against vertical integration. The make
a point against vertical integration, one needs to show that the industry is more prone to collusion with
integration than without, that is, one needs to show that integration facilitates collusion. In an infinitely
repeated game, an industrial policy can be said to facilitate collusion if the industry requires a lower
minimum discount factor than without the policy. To investigate this, we now compare the required
minimum discount factors with and without vertical integration.

Without integration, it is straightforward to solve for the minimum discount factor. There are now
two independent U firms competing in both downstream markets, D1 and D2. Suppose the firms collude
on arbitrary collusive prices ¢; and c2 in markets D1 and D2 respectively. Let n° denote the sum of
profits made in the two markets by a firm and denote the defection profit by 7%. If a firm defects, it will
do so in both markets (Bernheim and Whinston, 1990). Hence, 7¢ = 27°. Finally, already simple Nash
reversions yield #7 = 0. It follows that the collusive prices ¢; and ¢o can be supported as a subgame
perfect Nash equilibrium if and only if § > 1/2. This minimum discount factor does not depend on ¢;
and ¢o or any functional forms. Further, the fact that firms collude in two markets here does not affect
to propensity to collude (Bernheim and Whinston, 1990).

Now we compare this to the minimum discount factor required for collusion under vertical integration.

Proposition 5 In the parametrized model, vertical integration facilitates collusion if and only if d/k >

0.380.

Proof. To prove that vertical integration facilitates collusion, we need to show that max{d1(c),d2(c)} <
1/2 for some ¢. To do this, we solve for §;(c) = 1/2, 1=1,2, and then search for ¢ values such that both
8;(c) are below the threshold.

First, we look for solutions to da(c) = 1/2. It is straightforward to verify that da(c) < 1/2 if and only
if (1 —/1/2) < e < e (14 4/1/2).

Next, we look for solutions to d1(c) = 1/2. Consider ¢ < ¢**™ and define ¢ = {J1(c) = 1/2|c < c[*"}.
We obtain a unique solution,

8k% — 4kd? — d®

= M BREE T (26)

Then consider ¢ > ¢*™ and define ¢ = {41(c) = 1/2|c > ¢**™} here. Solving §1(c) = 1/2 for ¢ yields two

11



solutions. The negative root can be dismissed as it implies ¢ < 0. The positive root is

—2(2k+d) + /m
2kd

c=

(27)

where m = 2(8k? + 8dk + 2d? + " ((8k2(k + d) — d®) — " (8k* — Tk?d? + d*))). From 86,/8c < 0, it
follows that all ¢ > ¢, ¢ yield §;(c) < 1/2.

We need to ensure ¢ < "™ and ¢ > ¢*°". There are two unknown variables, d and k, but we can
express the solution in terms of d/k, the ratio of the slope parameters indicating the degree of product
differentiation. Note that 0 < d/k < 1. Now, solving for ¢ = ¢ = ¢{*°", it turns out ¢ < ¢*°" if and only
if d/k > 0.541, and ¢ > ¢*" if and only if d/k < 0.541.

We can now compare ¢ and ¢ to the ¢ values for which d2(¢) < 1/2. To do this, it is useful to express
C and ¢ in terms of ¢§**". First, we analyze ¢ for 0.541 < d/k < 1. If d/k = 0.541, we get ¢ = 1.354c5"".
If d =k, ¢ = c§**" /2. Further ¢/c5**™ monotonically decreases in d. This implies 1.354¢5*°™ > € > ¢§*"/2
and 50 ¢ (1 — 1/1/2) < €< e**(1 + 4/1/2). Second, we check € for 0.541 > d/k > 0. If d/k = 0.541,
then ¢ = 1. 354¢5*™ as above, but limy .o ¢ = +00. Because ¢/¢5**™ decreases monotonically in d, we need
to find the minimum d/k such that & < ¢§*°*(1 + /1/2). This threshold is d/k > 0.380 as stated in the
proposition. If this condition is met, c°*(1 — 1/1/2) < & < c"(1 + +/1/2).

To conclude, if 0 < d/k < 0.380, max{di(c),d2(c)} > 1/2. If 0.380 < d/k < 0.541, there are c
satisfying ¢ < ¢ < ¢5**"(1 + 4/1/2) such that max{d;(c),d2(c)} < 1/2. If 0.541 < d/k < 1, there are c
satisfying ¢ < ¢ < ¢§*°"(1 + 1/1/2) such that max{d;(c),d2(c)} < 1/2. A

The proposition shows that the collusive foreclosure strategy can be sustained with a discount factor
lower than 1/2 if there is not too much product differentiation. The proof of the proposition gives
a complete characterization of the range of ¢ values for which the result holds. The interval includes
¢ > c5'°", that is, some of the Pareto efficient extremal equilibria prices.

Drawing policy conclusions from this result, one has to be cautious. Note that the proposition does
not imply that vertical separation is always preferable from a policy point of view even if the condition
on product differentiation is met. For § < § = min. max{d;(c),d2(c)}, neither the integrated nor the
separated industry are collusive and market outcomes are the same. For discount factors between § and
0.5, only the integrated industry is collusive (provided d/k > 0.380), and this is the case an active policy
would want to prevent. Finally, for § > 0.5, both industries are collusive but note that both downstream
markets are supplied at ¢ > 0 under separation, while this is the case only for the D2 market with

integration (D1 is delivered at marginal cost). This suggests the possibility that vertical integration is
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preferable from a policy point of view if § > 0.5, although this depends on the specific collusive prices

charged by firms.

6 The Possibility of a U2-D2 Merger

One of the key results in OSS is to show that U1-D1 has an incentive to commit to a price lower than
c5*°™ to prevent U2 and D2 from merging. The logic is that, for some values of ¢, the joint profits of U2
and D2 can be increased by vertically integrating and thus supplying D2 internally at marginal cost. This

menr

level of ¢ is called ¢ and is obtained by solving 7 p2(c) + m72(c) = mp2(0) for c. For the parametrized

model, the solution is
(2k + d)d?

S Sk - e (28)

(see also OSS, Appendix). This upper bound on ¢ is also relevant in the repeated game. We obtain

menr

Proposition 6 IfU2 and D2 can merge, firms will collude on a pricec < ¢ < 5*°" in the parametrized

model. In the extremal subgame perfect Nash equilibrium, ¢ = ¢™" < c5*°".

Proof. If U2 and D2 can merge, ¢ < ¢™" is binding. In the parametrized model, ¢™¢" = c§**"d? /k? <
c°™. From the lemma and the proof of Proposition 2, ¢ = ¢™¢" is the extremal equilibrium as ¢ < ¢™¢”
lowers both firms’ profits and requires a higher discount factor. W

The possibility of a U2-D2 merger forces firms to collude on a price ¢ < ¢§*°", that is, a Pareto
inferior outcome. Therefore, collusion is generally less likely as a higher § is required, and less damaging

for welfare as a lower ¢ will occur. This possibility will also reduce the scope for which vertical integration

facilitates collusion. Generally, the threat of a U2-D2 merger is beneficial from a policy perspective.

7 Collusion at the downstream level

We finally discuss what happens if collusion at the downstream level is possible. Generally, downstream
collusion might affect the desirability of the collusive foreclosure strategy, so we need to discuss this
possibility. We do not provide a complete analysis here. Instead, only the most important points which
relate to foreclosure will be discussed.

Consider the vertically integrated industry and suppose that the discount factor is sufficiently high to
support collusion at both levels of the industry. Where will collusion most likely occur? At the U level

or at the D level? Or even at both levels?
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We discard the possibility of collusion at both levels in two steps. The first step is to note that U1-D1
can choose at which level to collude since it operates at both levels of the industry. It can simply decide
to price competitively at one level of the industry even if the discount factor would allow collusion at
both levels. The second step is the observation that collusion at both levels is Pareto inferior. Assume
there is collusion at both levels. U-level (foreclosure-type) collusion benefits U1-D1 and U2 but hurts
D2, while D-level collusion benefits U1-D1 and D2 but hurts U2. In other words, collusion at both levels
imposes a negative externality on both U2 and D2. By contrast, collusion at only one level deletes one
of these externalities and is therefore Pareto superior (for the two remaining colluding firms). It follows
that collusion at both levels will not occur as U1-D1 can increase it profits by pricing competetively at
one level of the industry.

The question remains whether U1-D1 prefers to collude upstream or downstream.® An answer to
this question is difficult as the outcomes of the collusive foreclosure strategy and downstream collusion
are usually rather different in nature and not easy to compare. We can, however, compare discount
factors when the outcomes of upstream and downstream collusion coincide. We will do this here for the
parametrized model.

For a given ¢, upstream (foreclosure-type) collusion yields a unique outcome. The collusive foreclosure
strategy implies downstream prices of p3(0, ¢) and p3(c,0) for U1-D1 and D2 respectively. Now assume
that the same outcome occurs as a result of downstream collusion. There is upstream competition in this
case, so ¢ = 0. Downstream firms implement collusive prices of p$(0,0), :=1,2, identical to those which
occur with foreclosure, that is, p$(0,0) = p(0,¢) and p5(0,0) = p3(c,0). Clearly, U1-D1 benefits from
this (exactly as much as with upstream collusion) but D2 also benefits since ¢ = 0 now and its profits
p5Q35 accordingly.

The Appendix contains the derivation of the relevant minimum discount factor required for down-
stream collusion. Here, we discuss the most important results qualitatively. A first observation is that,
by choosing a sufficiently low ¢, the two D firms can lower the minimum discount factor required for
collusion arbitrarily close to zero. Intuitively, colluding on a low ¢ yields prices close to the static Nash
equilibrium where incentives to deviate are small. This is an advantage of collusion at the D level. Above,
we saw that foreclosue-type collusion requires § = min. max{d1(c),d2(c)} > 0. Here, for § < §, collusion

at the D level is still feasible.

8Note that thc integrated firm docs not have a preference for upstream or downstrcam collusion per se. Its profit
is ultimately affected only by the prices at the downstream level and whether downstream prices are higher because of
foreclosure or because of downstream collusion is immaterial.
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However, collusion at the D level as specified also has disadvantages. The minimum discount factor
required increases monotonically in ¢, and it is smaller than 1 if only if ¢ < cJ**"d?/k? < ™. In
words, the Pareto efficient collusive prices ¢ > ¢5'°™ cannot be sustained with downstream collusion at
all. By contrast, we know that these prices were an equilibirum of the repeated game with the collusive
foreclosure strategy, sometimes even when the discount factor was less than 1/2. Since higher ¢ raise
U1-D1’s profit, it will go for upstream rather than downstream collusion whenver the constraint on &
allows to do so. The conclusion is that the collusive foreclosure strategy is not always less attractive and
certainly not redundant. By contrast, it is a very profitable strategy whenever the incentive constraint
is met.

There are, of course, plausible forms of collusion at the D level other than p$(0,0) = p%(0,¢) and
p5(0,0) = p3(c,0). But note that in the implicit bargaining situation with D2, U1-D1 can credibly
threat to switch to upstream (foreclosure-type) collusion. That is, collusion at the D level should give

U1-D1 no less than it would get in the foreclosure outcome and so collusion on p$(0,0) = p3(0,c) and

p5(0,0) = p3(c,0) is focal.
8 Conclusions

This paper shows that vertical foreclosure can by sustained as the outcome of a subgame-perfect Nash
equilibrium of an infinitely repeated game where the market model has a raising rival’s cost effect. The
result counters the criticism that foreclosure is not a Nash equilibrium of the static game analyzed by OSS.
The results also indicate that this collusive foreclosure strategy, if successful, can be very damaging from
a policy perspective as equilibrium selection criteria suggest that non-integrated firms will be charged
at least the monopoly price for the input good. Comparing the industry with and without vertical
integration, the paper shows that the minimum discount factor required for collusion is lower with vertical
integration unless products are very differentiated, so, vertical integration often facilitates collusion. As
already observed by OSS for the static game, the possibility of a counter merger weakens or even reverses
these results. Collusive foreclosure is generally less likely as a higher discount factor is required, and less
worrisome as a lower input prices will occur. Finally, the paper shows that vertical foreclosure can be
preferrable to downstream collusion.

Following OSS and the critique by Hart and Tirole (1990) and Reiffen (1992), various papers have
shown that a raising rivals’ costs effect of vertical integration can be rigorously derived from game-

theoretic models. Ordover, Saloner and Salop (1992) re-establish their result in a descending-price auc-
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tion. Riordan (1998) analyses backward integration by a dominant firm with a cost advantage. Choi and
Yi (2000) and Church and Gandal (2000) show the result if upstream firms can commit to a technology
which makes the input incompatible to nonintegrated downstream firms. In Chen (2001) downstream
firms strategically choose upstream suppliers, and Riordan and Chen (2003) investigate the connection
between vertical integration and exclusive dealing contracts. This paper contributes to this literature by

showing the foreclosure result in the repeated game of the original OSS setting.

Appendix

Here, we want to analyze collusion at the D level. Collusive prices p§, i=1,2, are as if D2 pays ¢ with

noncooperative pricing. D1 is gets the input at marginal cost, as above. The collusive downstream prices

are
B o= pi0e)= 2N (29)
v = pie0)= At (30)

Collusive quantities and profits are immediate
" k% (31)
The = k(2k+d—2k%c+d%c) %. (32)

Note that 7%, = 7}, as in (16). Further, recall that ¢ = 0 so that 7%, = p$Q3.
When analyzing defection, we need to solve for best-reply prices. Now, p§ = p}(0, ¢) is a already best
reply to p$ = p3(c,0). This implies 7%, = 7%, and hence §p; = 0. Therefore, we can henceforth focus

on D2. D2’s best reply is
¢ l+dp  4k+2d+ cd®

= , 33
P2= "op 2(4k? — d?) (33)
which imply a defection profit of
k (4k + 2d + cd?\”
d __
”2_1( 4k — &2 ) (34)

We know the static Nash equilibrium profit is mp3(0,0) = 78, = k/ (2k — d)* as above. Plugging 75%,,
7%, and 7}, into (7), we obtain

c (4k? — d?)?
(8k + cd? + 4d) d?”
8p2(0) and 83 pa(c)/Bc > 0 are immediate. Further 6 pa(c) < 1 if and only if ¢ < eJond? k2 = cmer.9

5D2 (C) = (35)

9The condition §ps{c) < 1 if and only if ¢ < ¢™®" is intuitve since 7%, exactly equals the profit U2 and D2 could make
if they were integrated.
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Figure 1. Critical discount factors as functions of c.



