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ABSTRACT: There is increasing evidence that aggregate housing price are predictable.  Despite 
this, a random walk in time and independence in space are two maintained hypotheses in the 
empirical models for housing price measurement used by government agencies and by 
commercial companies as well.  This paper examines the price discovery process in individual 
dwellings over time and space by relaxing both assumptions, using a unique body of data from 
the Singapore private condominium market.  We develop a model that tests directly the 
hypotheses that the prices of individual dwellings follow a random walk over time and that the 
price of an individual dwelling is independent of the price of a neighboring dwelling.  The model 
is general enough to include other widely used models of housing price determination, such as 
Bailey, Muth, and Nourse (1963), Case and Shiller (1987) and Redfearn and Quigley (2000), as 
special cases.  The empirical results clearly support mean reversion in housing prices and also 
diffusion of innovations over space.  Our estimates of the level of housing prices, derived from a 
generalized repeat sales model, suggest that serial and spatial correlation matters in the 
computation of price indices and the estimation of price levels.  The finding of mean reversion 
may suggest that housing prices are forecastable and that excess returns are possible for 
investors.  We use the monthly price series derived from condominium sales to investigate this 
issue.  We compute gross unleveraged real returns monthly.  When returns are computed from 
models which assume a random walk without spatial autocorrelation, we find that they are 
strongly autocorrelated.  When returns are calculated from more general models that permit 
mean reversion, the estimated autocorrelation in investment returns is reduced.  Finally, when 
they are calculated from models permitting mean reversion and spatial autocorrelation, 
predictability in aggregate investment returns is completely absent.   
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 I.  Introduction 

 The durability, fixity and heterogeneity of dwellings imply that transaction costs are 

significant in the housing market.  Certainly in comparison to financial markets, and in 

comparison to the markets for most consumer goods, housing purchases require costly search to 

uncover the prices and attributes of commodities.  Given the many frictions associated with the 

purchase of housing, it is hardly surprising that price behavior deviates from that predicted by 

simple models of economic markets. 

 Case and Shiller (1990) report that both real and excess returns in the housing market 

were forecastable; subsequently several other researchers (for example, Guntermann and 

Norrbin, 1991; Gatzlaff, 1994; and Malpezzi, 1999) have documented predictable returns in 

housing markets by demonstrating that aggregate price series exhibit inertia in percentage 

changes.  Less is known about the dynamics of house prices at the individual level.  Englund, 

Gordon, and Quigley (1999) and Quigley and Redfearn (2000), using very different techniques, 

rejected a random walk in individual housing prices by examining repeat sales of single family 

dwellings.  This suggests that the inertia reported in the aggregate may also characterize micro 

behavior. 

 But in this geographical market, price signals exist in space as well as time.  Many of the 

features which can lead to autocorrelation in the time domain could have analogous effects over 

space.  Price information diffuses over space as well as time, and information costs alone can 

cause prices to deviate from random fluctuations. 

 This paper examines price discovery over time in a spatial market using a body of data 

almost uniquely suited to the problem.  We examine the prices of condominium dwellings in 

Singapore using all sales reported in the country during an eleven-year period.  Multiple sales of 
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the same condominium unit are observed, and all dwellings with market transactions are 

geocoded.  We develop a model of housing prices that more faithfully represents the temporal 

and spatial features unique to housing markets, and we incorporate a more general and more 

appropriate structure of prices at the level of the individual dwelling. 

 The model and the data support a direct test of the hypotheses that the prices of individual 

dwellings follow a random walk over time and that the price of an individual dwelling is 

independent of the price of a neighboring dwelling.  We link these results to movements in 

aggregate measures of housing prices and their spatial and temporal properties. 

 The model is more general than other widely used methods of measuring aggregate 

housing prices.  Indeed, the method used by government agencies (e.g., OFHEO) and 

commercial firms (e.g., MRAC, Inc.) to estimate the course of house prices is a special case of 

the model developed below.  The framework presented supports tests of the assumptions implicit 

in more conventional models. 

There are a few studies that use spatial econometric methods in analyzing housing prices, 

but none of them are based on a theory of price diffusion.  For example, Can and Megbolugbe 

(1997) estimated hedonic house price models incorporating lagged values of neighborhood house 

prices to reflect spatial dependencies in prices.  Goetzmann and Spiegel (1997) developed a 

“distance-weighted-repeat-sales procedure,” where distance is defined in terms of geographical 

and socio-economic factors (such as neighborhood income, education attainment and racial 

composition) and where “distance weights” are estimated using an ad hoc procedure.  Dubin 

(1998) postulated a specific form for a correlogram relating the correlation between housing 

prices as a function of distance.  The estimates of an empirical correlogram were used to in 
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hedonic models of housing prices to reflect spatial dependencies.  A more sophiscated hedonic 

model relying upon empirical semivariograms was estimated by Basu and Thibodeau (1998). 

Pace et al (1998) developed an empirical model for house prices which evolves thorough 

time and space.  Their model specified an autoregressive structure of house prices and a spatial 

dependency among prices.  Given an irregular panel of house prices (in which there are few 

transactions in any period), ad hoc procedures were used to filter house price sales by time and 

location.  (Indeed, different results are obtained depending upon the ordering of filtering 

process.)   

Reliance upon ad hoc procedures to analyze the spatial and temporal pattern of housing 

prices is understandable, given the infrequency of transactions on dwellings.  This means that a 

panel of houses typically contains a relatively small and irregular number of observations on the 

sales prices of these houses.  The temporal correlation in prices depends upon the time interval 

between sales, and with irregular intervals, inference in a model which also accounts for spatial 

dependence may be quite difficult.  (See, for example, Pace et al, 1998: 18-22.) 

The model developed in this paper employs an explicit model of the spatial and temporal 

dependence of housing prices, and estimates the importance of spatial and temporal factors in the 

estimation of the course of housing prices.  We do this using a repeat sales model of price 

determination, not a hedonic model.  Not surprisingly, the introduction of an explicit micro 

model presents certain computational difficulties in estimation.   

We devote considerable attention to the implications of our statistical findings for investment 

in the housing markets.  In particular we demonstrate the importance of these findings for 

investor returns using a variety of investment rules.  We also investigate the link between spatial 

and temporal dependence in prices and aggregate indices of house prices. 
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 Section II develops a general model of housing prices that supports explicit tests for the 

spatial and temporal pattern of price movements.  This section links our model to the widely 

employed method for measuring housing prices proposed almost forty years ago by Bailey, 

Muth, and Nourse (1963), as well as its subsequent extensions (e.g., Case and Shiller, 1987).  

The data are described tersely in Section III.  Our empirical results are presented in Sections IV 

and V. We test for random walks in space and time, against the alternative of mean reversion, 

and we examine the link between pricing deviations at the individual level and aggregate price 

movements.  We also investigate investor behavior in some detail.  Section VI is a brief 

conclusion. 

 

 II. A Micro Model of House Prices 

 The objects of exchange in the housing market are imperfect substitutes for one another.  

Indeed, the fixity of housing implies that dwellings with identical physical attributes may differ 

in price simply because the price incorporates a complex set of site-specific amenities and access  

costs.  But few dwellings have identical physical characteristics; thus comparison shopping is 

more difficult and more expensive than in most other markets. 

 Moreover, housing transactions are made only infrequently, so households must 

consciously invest in information to participate in this market.  As a result, the market is 

characterized by a costly matching process.  Market agents, buyers and sellers, are heterogeneous 

and differ in information and motivation; commodities are themselves heterogeneous.  

Consequently an observed transaction price for a specific unit may deviate from the price 

ordained in the fully informed perfect market of the intermediate micro textbook. 
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 Buyers, sellers, appraisers, and real estate agents estimate the “market price” of a 

dwelling by utilizing the information embodied in the set of previously sold dwellings.  The 

usefulness of these sales as a reference depends upon their similarity across several dimensions: 

physical, spatial, and temporal.  Inferences about the “market price” of the dwelling can be 

drawn only imperfectly from the set of past sales, because dwellings differ structurally, enjoy 

different locational attributes, and are valued under different market conditions by different 

actors over time.  Because housing trades infrequently, the arrival of new information about 

market values is slow.  From an informational standpoint, the closest comparable sale across 

these various  dimensions may be the last sale of the same dwelling.  Alternatively, the closest 

comparable sale may be the contemporaneous selling price of another dwelling in close physical 

proximity.    

 An attempt to uncover the market value of a dwelling is further complicated by the fact 

that an observed sales price is not only a function of observable physical characteristics, but also 

of unobserved buyer and seller characteristics such as their urgency to conclude a transaction 

(Quan and Quigley, 1991).  For any given sale, all that is known is that an offer was made by a 

specific buyer that was higher than a specific seller’s reservation price.  

We develop a model with spatially and temporally correlated errors in a repeat sales 

framework.  Innovation processes over time are assumed to be continuous, but sales are obtained 

at irregular intervals.  At any point in time, the prices of houses are dependent over space.  In the 

determination of the price of a house, the weights attributable to neighboring houses are fixed 

and depend upon their distances from that house.  Again, the prices of neighboring houses are 

observed infrequently. 

Let the log sale price of dwelling i at time t be  
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(1)        itittit eQPV ++= ititt eXP +β+= , 

where Vit is the log of the observed sales price of dwelling i at t, and Pt is the log of aggregate 

housing prices.  Qit is the log of housing quality, and can be parameterized by itX , the set of 

housing attributes and by a set of coefficients, β , which price those attributes.  If a sale is 

observed at two points in time, t  and τ , and if the quality of the dwelling remains constant 

during the interval, then 

(2)        ( ) ττττ −+β−+−=− iitiittiit eeXXPPVV  

                          ττ −+−= iitiit eePP . 

With constant quality, (2) identifies price change in the market. 

Let the error term, eit, consist of two components that are realized for each individual 

dwelling at the time of sale: itη , an idiosyncratic innovation without persistence, and itε , an 

idiosyncratic innovation with persistence, ittiit µ+λε=ε −1, .  In addition, assume that the value of 

any particular dwelling depends also on innovations that occur to other dwellings 

contemporaneously.  We assume this spatial correlation depends on the distance between units.  

(3)     it

N

j
jtijit ewe ξ+ρ= �

=1
itit

N

j
jtij ew η+ε+ρ= �

=1
itittijt

N

j
ij ew µ+η+λε+ρ= −

=
� 1,

1

 

where ijw  is some function of the distance between unit i and j and N is the number of dwellings 

in the economy.  Let ( ) 0=ηη jtitE  and ( ) 0=εε jtitE , ( ) 22
ησ=η itE , ( ) 22

µσ=µ itE . 

The value of a particular dwelling depends, not only on its own past and 

contemporaneous innovations, but also on innovations of other dwellings, past and 

contemporaneous.  Note that the model of housing prices in (2) and (3) specializes to that of 
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Bailey, Muth and Nourse (1963) when 0=ρ=λ , and to that of Case and Schiller (1987) when 

1=λ , 0=ρ , and to that of Quigley and Redfearn (2000) when 0=ρ . 

In vector notation, expression (3) is   

 (4)      ttt Wee ξ+ρ= ,  

where te is a vector of ite  for all the dwellings, W is a weight matrix, some measure of the 

distance between dwellings, and tξ  a vector of itittiit µ+η+λε=ξ −1, , for all the dwellings.  By 

solving for te  and taking the difference between two sales at times t and s, we have 

(5)       ( ) ( )st
1

st WIee ξ−ξρ−=− − . 

The variance-covariance matrix of (5) is  

(6)        ( )( ) ( ) ( )( ) ( ) 11 −− ρ−
��
�

��
� ′−−ρ−=

��
�

��
� ′−− WIξξξξWIeeee stststst EE   

Transactions on dwellings occur only irregualrly.  Consider the covariance in errors 

between a dwelling i sold at t and s and another dwelling k sold at τ  and ς , 

( )( )[ ]ςτ −− kkisit eeeeE .  Let ( )( )
��
�

��
� ′−−= ςτ ξξξξΨ stE  and ( ) 1−ρ−= WIΠ .  Thus,     

(7)       ( )( )
��
�

��
� ′−− ςτ eeee stE ΠΨΠ= [ ][ ]NN

N

πππψψψ

π

π
π

��
�

2121
2

1

�
�
�
�

�

�

�
�
�
�

�

�

′

′
′

= .   

The elements of this expression are, 

(8)        ( )( )[ ] kikkisit eeeeE πΨπ′=−− ςτ . 

Now consider an element of the covariance matrix, Ψ .  Note that 

(9)        ( ) ( ) 2
2

2

1 η
µτ−

τ στ=+
�
�

�

�

�
�

�

�

λ−
σ

λ=ξξ tIE t
jit ,  if ji =  
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                0=                                        , otherwise. 

where ( )•I  is an indicator function.  For sales of a given dwelling at time t, s, τ  and ς , 

(10)      ( )( )[ ] ( )
�
�

�

�

�
�

�

�

λ−
σ

λ+λ−λ−λ=ξ−ξξ−ξ µς−τ−ς−τ−
ςτ 2

2

1
sstt

iiisitE  

                                   ( ) ( ) ( ) ( )( ) 2
ησς=+τ=−ς=−τ=+ sIsItItI . 

Therefore, the variance-covariance matrix is  

(11)      ( )( )
��
�

��
� ′−−= ςτ ξξξξΨ stE ( )( )[ ] I×ξ−ξξ−ξ= ςτ iiisitE . 

Finally, the variance-covariance matrix of innovations between a dwelling i sold at t and s and 

another dwelling k sold at τ and ς  is,  

(12)      ( )( )[ ] kikkisit eeeeE πΨπ′=−− ςτ ( )( )[ ]{ } kiiisiti E πIπ ×ξ−ξξ−ξ′= ςτ  

                                    ( ) +
��

�
	



�
�

�



�
�

�

�

λ−
σ

λ+λ−λ−λ= µς−τ−ς−τ−
2

2

1
sstt  

                                        ( ) ( ) ( ) ( )[ ] } kisIsItItI ππ′σς=+τ=−ς=−τ= η
2 . 

Equation (12) indicates how the variance-covariance matrix of residuals from the regression 

specified in (2) can be used to identify the temporal and spatial components of house price 

persistence, λ  and ρ , respectively.  Identification requires observing at least two transactions for 

each dwelling and observing the distance of each dwelling from all others in the market. 

 

III. Data 

The data uitilized in this paper have been compiled by the Singapore Institute of 

Surveyors and Valuers (SISV) and consist of all transactions involving dwellings in multifamily 

housing during the period from Jan 1, 1990 to Dec 31, 2000.  SISV gathers transactions data 
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from a variety of sources including legal registration records and developers’ sales records. The 

dataset is complete – each condominium sale in the entire country is recorded.  In addition, an 

extensive set of physical characteristics of dwellings is recorded.  The date of the sale is recorded 

as well as the date of occupancy.  In addition, the address, including the postal code, is reported.  

The postal code identifies the physical location, often the specific building.  A matrix of 

distances among Singapore’s fifteen hundred postal codes permits each dwelling to be located 

spatially.  The data set includes transactions among dwellings in the standing stock, sales of 

newly constructed dwellings, and presales of dwellings under construction (where the contract 

date may be several months before the date construction is completed). 

The panel nature of the data permits us to distinguish dwellings sold more than once, and 

the multiple sales feature of the data identifies the models specified in section II.  By confining 

the sample to dwellings in multifamily properties, we eliminate types of dwellings for which 

additions and major renovations are feasible.  The sample of multifamily dwellings is thus less 

likely to include those for which the assumption of constant quality between sales is seriously 

violated. 

Singapore data offer another advantage in estimating the model of housing prices, 

namely a spatial homogeneity of local public services (e.g., police protection, neighborhood 

schools), especially when compared to cities of comparable size in North America.  During the 

decade of the 1990s, there was no discernible trend in the quality of neighborhood attributes of 

the bundle of housing services.1 

Table 1 presents a summary of the repeat sales data used in the empirical analysis 

reported below.   There are several points worth noting in the table.  First, confirming the 

                                                 
1 One possible exception to this may be accessibility, where improvement in the transport system and its pricing may 
have altered the workplace access of various neighborhoods. 
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infrequency of housing transactions, the number of dwellings sold more than once is less than 

twenty percent of the population of the dwellings sold during the eleven year period.  Only three 

percent of the 52,337 dwellings were sold more than twice in the eleven year period.  

Second, the average selling prices tend to be higher for dwellings sold more frequently.  

The rate of appreciation is also higher.  On average, dwellings sold five times appreciate almost 

twice as fast as dwellings sold only twice.  For the dwellings sold more frequently, price 

appreciation tends to be more volatile.  Transactions involving high-turnover dwellings are 

apparently riskier, but this risk is compensated by higher returns. 

Third, the intervals between sales are longer for dwellings sold infrequently.  In part, this 

is an artifact of the fixed sampling framework.  For presold dwellings, the average length of time 

between sale and completion of construction is highest for those sold least frequently, which is 

not consistent with popular belief that presales are associated with speculation in the housing 

market. 

Fourth, there are some differences in the characteristics of dwellings sold more frequently.  

They tend to be larger in area, containing more rooms, and they are more centrally located to the 

CBD, but their transit access is similar to the dwellings sold less frequently. 

The data on condominium sales supports a regression model of the form 

(13)     isitisitissittisit eeDPDPVV −+γκ−γκ+−=− , 

where itD  is a variable with a value of 1 for the month t in which condominium i is sold and 

zero in other months and tP  is the estimated coefficient for this variable.  There are 132 of these 

time variables, one for each month between 1990 and 2000.  If dwelling i has been presold, itκ  

is the time interval between the transaction and the completion of construction.  For dwellings 

sold after completion of construction, itκ  is set to zero.  Thus, γ , the estimated coefficient for 
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itκ , measures the monthly discount rate for presold dwellings, i.e., the discount for unrealized 

service flows from presold dwellings.  The purchase of a dwelling before completion, or even 

before construction, is not uncommon in Singapore.  One aspect of this institution may, however, 

be uncommon – namely that the entire purchase price is paid at the time the contract is signed, 

not at the time the dwelling is first occupied. 

Of the 11,883 pairs of transactions noted in Table 1, 305 consist of presale pairs.  For another 

5,024 pairs, the first sale was made before the property was completed. 

 

IV. The Diffusion of House Price Innovations 

The model can be estimated by maximum likelihood methods.  In particular, if we 

assume the error terms in equation (3), itη  and itµ , are normally distributed, the log likelihood 

function for the observed sample of condominium sales is 

(14)     ( ) ( ) ( )δ′δ−−=σσρλγ −
µη

122 log,,,,,log ΣΣPL ,  

where [ ]ki πΨπΣ ′=   and isitissittisit DPDPVV γκ+γκ−+−−=δ . 

Note that the parameters in the ΣΣΣΣ matrix are λ, ρ, 2
µσ  and 2

ησ .  Conditional on values for 

λ  and ρ , the consistent estimates of the error variances, 2
µσ  and 2

ησ , can be obtained from the 

regression 

(15)      ( ) =− 2ˆˆ isit ee ( ) 2
2

2

2
1

12 η
µ− σ+

�
�

�

�

�
�

�

�

λ−
σ

λ− st , 

where the vector ( )isit ee ˆˆ −  is the set of residuals from a first-stage regression.  Then, the 

remaining parameters of the repeat sales model, equation (13), can be estimated by generalized 

least squares.  The vector of residuals, δ, and the matrix ΣΣΣΣ, computed from λ  and ρ , are 
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sufficient to compute the values of the log likelihood function.  The function can be maximized 

by a grid search over λ  and ρ . 

Consider the matrix ΣΣΣΣ.  It is the product of three submatrices, iπ′ ,Ψ  and kπ .  The matrix 

Ψ  is large, with rows and columns equal to the number of dwellings in the sample, but it is 

diagonal.    The elements of the matrix are computed from the time intervals between sales, 

given λ, according to Equation (10).  Absent spatial correlation, i.e., when 0=ρ , the matrix 

iπ is the i-th vector of the identity matrix.    So is kπ .  Thus the matrix ΣΣΣΣ is block diagonal.  The 

size of each block is determined by the number of paired sales for a given house.  Using a variety 

of techniques for large sparse matrices, the inverse, ΣΣΣΣ-1, can be computed. 

As noted in Section I, there is ample reason to expect mean reversion in house prices.  

We begin by assuming no spatial dependence and analyze antocorrelation.  Figure 1A presents 

the maximized value of log likelihood function, equation (14), assuming 0=ρ , and hence the 

matrix ΣΣΣΣ is block diagonal and sparse.  The estimation is based on 11,883 observations on repeat 

sales on 10,288 dwellings sold two or more times.  The likelihood function is well behaved with 

a maximum at 72.0=λ .  Likelihood ratio tests reject a random walk in house prices ( 1=λ ) and 

serially uncorrelated house prices ( 0=λ ) by a wide margin, =χ 2 2,489.68, and =χ 2 32,129 

respectively.  The estimated value of λ suggests that the half life of a one unit shock to housing 

prices is about 33 days.2 

We now estimate the parameters of spatial and temporal autocorrelation simultaneously.  

As noted above, when ρ ≠ 0, the ΣΣΣΣ matrix is no longer block diagonal.  The appendix illustrates 

the nature of the numerical problems encountered.  One way of addressing these problems is to 

                                                 
2  This half life is considerably shorter than the values reported by Quigley and Redfearn (2000) in analogous 
quarterly models of the price movements of single family housing in eight Swedish housing markets. 



 13  

note that iπ  is the i-th row of ( ) 1−ρ− WI , and when W  is sparse, most of elements of iπ will be 

zeros.  This, in turn, will make ΣΣΣΣ matrix sparse, since [ ]ki πΨπΣ ′= .  One inconsequential way of 

making W  sparse is to set small values of weights to zero, implying that when two dwellings are 

sufficiently far apart, then there is no spatial correlation between them.  In the following, we 

assume that the elements of the weight matrix are the reciprocals of the distance between 

dwellings and that dwellings further than 250 meters apart are not spatially correlated.   

Figure 1B presents the ML estimates of the likelihood values for different values of � and 

�.    The values of � and � that maximize the log-likelihood values are 0.78 and 0.55, 

respectively.  The ML estimate of the serial correlation coefficient, �, is rather similar to that 

reported in Figure 1A, but the half life of a unit shock is now estimated to be 53 days, more than 

60 per cent longer.  The value of 0.55 for the spatial correlation coefficient, �, is quite modest.  

Figure 2 shows the contemporaneous impact of a unit shock over a grid where the distance 

between  houses is 30 meters, when the spatial correlation coefficient is 0.55.  This illustrates 

how a unit shock at point 0 diffuses over the grid.  The impulse quickly dissipates over the space; 

most of the impulse completely dissipates within 100 meters. 

Appendix Table 1 presents estimates of the price index, Equation (13), under different 

assumptions on the error structure.  Price index estimates for early years tend to be 

insignificantly different from each other while those for later years are significant.  In part, this 

arises from the sampling design: there are more observations for later years, which allows more 

precise estimation of coefficients for later years.  Among three indices, the two that allow 

stationary processes for error terms tend to move more closely.  Figure 3A, B and C report the 

estimated price indices with January of 1990 as a basis year.  The three indices generate a similar 

course of aggregate prices for private condominiums in Singapore during the period.   
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The estimated coefficients in Appendix Table 1 for the period between sale and dwelling 

completion (for presold units) are around 11 basis points; this is between a 1.2 percent and 1.5 

percent discount for an incomplete dwelling unit sold today for occupancy a year hence.  The 

magnitude of the discount is not trivial: aggregate housing prices rise, on average, by 0.3 percent 

monthly and the presales discount reduces monthly increases by one third.  

 

V. The course of Condominium Prices and Investment Returns 

Figure 3A through 3C present apparently similar patterns for the course of housing prices 

for Singapore dwellings during the period 1990-2000.  However, a closer examination of returns 

implied by these housing indices reveals substantial differences among them.  In other words, 

while the different assumptions about the error structure do not yield substantial differences in 

estimated prices, the real return series implied by the estimates are quite different.   

The economic returns from investment in housing depend upon the course of real prices 

and rents.  In particular, ignoring transaction costs and leverage, the real return in any period, tR , 

is the change in the value plus the dividend (i.e. the rental stream, tr , enjoyed during the period) 

(16)       ��
�

�
��
�

�
��
�

�
��
�

� +
= −

− t

t

t

tt
t I

I
P

rP
R 1

1

, 

where tI  is an index of the cost of living, less housing. 

Figure 4 uses the estimates presented in Figure 3 and the monthly CPI in Singapore to 

chart the course of investment returns during the eleven-year period.  The estimated returns are 

strikingly different.  Table 2 reports the forecastability of investment returns.  There is no 

apparent trend in the data.  Tables 2A, B and C report more explicit information on trends in real 
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gross returns.  The table reports the forecastability of monthly returns based upon lags of returns 

of one, two, three and four months. 

As reported in the table, there is considerable disparity in the forecastibility of returns 

estimated by the three procedures.  With a random walk and no spatial correlation (Table 2C), 

there is a considerable evidence of overshooting in monthly returns, so a contrarian investment 

policy would maximize investment returns: sell on price increases, buy on price decreases.  

There is no evidence that a more complicated lag structure improves the forecastibility of 

investment returns.  With mean reversion but no spatial autocorrelation, there is again evidence 

of overshooting, and also weaker evidence that a more complicated lag structure improves 

forecastability.  Using the maximum likelihood estimates, ( λ=0.78; ρ=0.55 ) there is no 

evidence of forecastability in aggregate house prices at all.  There is no predictability in 

aggregate returns. 

 

V.        Investment performance 

These results may have significant implications for investment in the housing market.  

Consider an investment decision in housing based on housing price determination models such 

as (1).  In this context, a better specification of error structure can lead to superior investment 

decisions in two ways.  First, improvement comes through better estimates of aggregate housing 

price trends.  In the regression models graphed in Figure 3, different assumptions about error 

structure have relatively small effects on the large sample properties of slope coefficients, but 

they do have large effects on efficiency of those parameters.  Therefore, investment decisions 

based on the correct error structure are more important when investment horizons are relatively 

short.  Second, additional improvement comes from basing the investment decision on more 
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complete information.  In other words, when errors are spatially correlated, knowledge of past 

and present innovations in neighboring dwellings may provide valuable information, useful for 

predicting the future course of prices for other dwellings.  If one assumes there is no spatial 

correlation and does not use information from housing transactions in neighborhood, the investor 

may lose important information in making price forecasts.  

This section highlights the consequences of different assumptions on error structures on 

measured investment performance in housing market.  We use investment rules which depend 

upon forecasts of future housing returns.  These forecasts depend on investor’s assumptions 

about the underlying housing price generating processes.   

The investment rule applied in this section is quite simple.  Given assumptions on error 

structures and the consequent parameter values for underlying house price processes, we make 

forecasts for housing returns using all the available current information. The investor is 

instructed to “Buy” if the expected return is greater than some preset threshold.  The threshold 

may be interpreted to as the known transaction costs in the housing market.   

The sizes of actual transaction costs vary with housing market characteristics, financial 

market characteristics and tax systems and it is difficult to present a particular number as a 

universal estimate for the cost.  We use 0 percent , 5 percent and 10 percent thresholds, 

comparable with a range of plausible transaction costs3. 

The investment holding period is set arbitrarily at 24 months.   

When spatial correlations exist among dwellings, error distributions of individual 

dwelling prices are heterosckedastic since dwellings have different neighborhoods. Further, the 

variance-covariance matrix of error terms depends on distances to neighbors, so this varies 

across dwellings.  In this exercise, we consider a housing development, where each dwelling is 
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located at a point on a 51 by 51 grid, and each house is 30 meters away from its nearest 

neighbors.  It is possible to consider the investment performance all 2601 dwellings, but for 

convenience, we chose the dwelling at the center of the town. 

In the simulation, the time series prices of each individual dwelling are generated twice 

for 24 months by using the parameter values obtained in the maximum likelihood estimation 

along with an appropriate weight matrix.  The first set of prices is assumed to be observed by the 

investor, who uses this information together with his estimates of parameter values to make a 

precise forecast for next 24 months.  If the forecasted return is greater than the threshold, then he 

will buy the house.  The second set of prices is then used to evaluate the performance of  

investment. 

We consider three investors with differing amounts of information.  Investor A is armed 

with the ML estimates that ρ = 0.55 and λ = 0.78 reported in Figure 1B.  She uses this 

information together with 24 months of history on housing prices to generate a price forecast for 

the given house at the end of the next 24 months.  Figure 5A through D report the probability 

distribution of the investor’s returns.  Part A reports the returns from the naïve rule: always 

invest.  Part B reports the distribution of returns for the same investor using the rule: invest if the 

expected return exceeds zero.  Part C reports the distribution under a more stringent five percent 

rule, and part D imposes a ten percent rule. 

Investor B is armed with less complete information.  Based upon the results reported in 

Figure 1A, she assumes ρ = 0 and λ = 0.72.  Figure 6A through C report the distribution of 

returns to this investor using the 0, 5 and 10 percent rules respectively. 

                                                                                                                                                             
3 For more thorough examination of such costs, see Söderberg (1995). 
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Finally, Figures 7A and B report the distribution of returns for an investor who assumes 

no spatial correlation and a random walk in house prices, i.e, ρ = 0 and λ = 1.  The performance 

of this investor is almost as bad as that of the person who always invests. 

It is quite clear that the best econometrician is the richest investor. 

 

VI.  Conclusions 

Because of the special features of the housing market, we may anticipate that price 

discovery and the diffusion of price information is more complicated than in many other 

markets.  In this paper, we test the departures from instantaneous diffusion of price information 

over time and space.  Using information on all condominium sales in Singapore during an eleven 

year period, we test for random walks, mean reversion and serial correlation in house prices.  We 

rely upon multiple sales of more than ten thousand dwellings over the period to analyze the 

structure of pricing errors. 

Our empirical results quite clearly support mean reversion in house prices.  Our statistical 

tests reject the hypothesis of a random walk and they also reject the hypothesis of no serial 

correlation against the alternative hypothesis of mean reversion.  We also find significant spatial 

dependence in prices. 

The maximum likelihood estimate of serial correlation, 0.78 per month, suggests rapid 

dissipation of any innovation in housing prices.  After two months, about 39 percent of any 

mispricing error is dissipated (i.e., 1-.782).  After six months, 77 percent  is dissipated, and after a 

year 98 percent is dissipated. 

Our estimates of the level of housing prices, derived from the repeat sales model, do 

suggest that there are only small differences in the house price levels estimated when serial and 
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spatial correlation is recognized.  However, there are substantial differences in the estimated 

returns to housing investment. 

The  finding of mean reversion may suggest that housing prices are forecastable and that 

excess returns are possible for investors in this market.  We use the monthly price series derived 

from condominium sales to investigate this issue.  We compute gross unleveraged real returns 

monthly.  In misspecified models, we do find evidence of a one period lag in real returns, i.e., 

real returns today are negatively related to real returns last month.  When aggregate house prices 

are calculated from micro models that permit mean reversion and spatial autocorrelation, 

predictability in investment returns is completely absent.  

Finally, we investigate the economic value of information about the spatial and temporal 

autocorrelation in house prices in affecting investment returns in the housing market.  Our 

analysis suggests that recognition of spatial and temporal factors can substantially increase the 

returns to investment in the housing market. 
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Table 1. Summary of Sales Data on Singapore Condominiums 

Number 
of Sales 

Number 
of Units 

Average 
Selling 
Price* 

Interval 
between 
Sales** 

Average Price 
Appreciation+ 

Std of Price 
Appreciation++ 

Average 
Presale 

Interval♦  

Average 
Size� 

Number 
of Rooms 

Distance 
to the 

nearest 
MRT 

stations� 

Distance 
to CBD� 

           
1 42,169    861    31.98 129.93 2.77 1.421 9.239 

2  8,791    913 47.77 0.52% 0.71%   8.48 137.44 2.74 1.437 8.577 

3 1,195 1,030 28.33 0.68% 1.13%   2.51 154.42 2.76 1.500 7.464 

4   190 1,087 20.88 0.73% 1.29%   1.53 159.51 2.63 1.383 6.838 

5    28 1,418 15.23 0.92% 1.53%   2.06 208.90 2.90 1.427 4.633 

6     4 1,129 15.85 0.86% 1.60%   0.00 187.40 2.80 1.362 6.296 

*    Thousands of Singapore Dollars 
**  Number of months 
+    Average price appreciation between sales divided by average interval between sales  

in months. 
++  Standard deviation of price appreciation between sales divided by average interval  

between sales in months. 
♦    Average number of months from sales to completion of construction of dwellings. 
�     Average size of dwellings in square meters. 
�    Average distance in kilometers. 
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Table 2A.  Forecastability of Investment Returns,  
Singapore Condominiums, 1990-2000 

(� = 0.78 and � = 0.55) 
 

R

n

i
itit RR ε+α+α= � −0  

 
0.00183 0.00162 0.00168 0.00111 Constant (0.5892) (0.5151) (0.5426) (0.3579) 

     
-0.12501 -0.09863 -0.11468 -0.12307 Rt-1 (1.5106) (1.0991) (1.2959) (1.3603) 

     
 0.08302 0.16707 0.15579 Rt-2  (0.9866) (1.8771) (1.7469) 

     
  0.10402 0.11251 Rt-3   (1.2529) (1.2511) 

     
   0.13853 Rt-4    (1.6644) 

     
�R 0.001245 0.001253 0.001209 0.001199 

2R  0.00984 0.00427 0.0272 0.036564 
DW statistics 1.925854 1.978786 1.994373 1.972382 

F test 2.299821 1.29469 2.23648 2.267443 
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Table 2B.  Forecastability of Investment Returns,  
Singapore Condominiums, 1990-2000 

(� = 0.72 and � = 0) 
 

R

n

i
itit RR ε+α+α= � −0  

 
0.00205 0.00224 0.00238 0.00183 Constant (0.5616) (0.6090) (0.6590) (0.5026) 

     
-0.19596 -0.20156 -0.19813 -0.21006 Rt-1 (2.4396) (2.2651) (2.2785) (2.3438) 

     
 -0.04686 0.05924 0.06439 Rt-2  (0.5654) (0.6666) (0.7249) 

     
  0.12224 0.14232 Rt-3   (1.5063) (1.5981) 

     
   0.12797 Rt-4    (1.5651) 

     
�R 0.001718 0.001741 0.001658 0.00165 

2R  0.036965 0.023941 0.041281 0.04117 
DW statistics 2.010751 1.953312 2.022047 1.984458 

F test 5.998046 2.610564 2.891094 2.429682 
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Table 2C.  Forecastability of Investment Returns,  
Singapore Condominiums, 1990-2000 

(� = 1 and � = 0) 
 

R

n

i
itit RR ε+α+α= � −0  

 
0.00257 0.00297 0.00352 0.00239 Constant (0.5350) (0.6204) (0.7289) (0.5022) 

     
-0.33200 -0.39925 -0.39656 -0.38875 Rt-1 (4.1575) (4.5480) (4.4443) (4.4217) 

     
 -0.16017 -0.13323 -0.10233 Rt-2  (1.8958) (1.3938) (1.0854) 

     
  -0.01123 0.04448 Rt-3   (0.1241) (0.4633) 

     
   0.24902 Rt-4    (2.6255) 

     
�R 0.002989 0.002947 0.002952 0.002826 

2R  0.112091 0.128102 0.119128 0.15169 
DW statistics 2.132955 1.979492 1.974094 1.983217 

F test 17.42017 10.56818 6.887789 6.850136 
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 Figure 1A.  Values of Log Likelihood Function at various values of λλλλ  

assuming ρρρρ=0. 
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Figure 1B. Loglikelihood Surface at various values of  � and � 
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Figure 2.  Illustration of a unit shock in house prices over a neighborhood 
 

(for λλλλ = 0.78; ρρρρ = 0.55) 
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Figure 3A.  Price Index Estimate for Singapore Condominiums 
(� = 0.78 and � = 0.55) 
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Figure 3B.  Price Index Estimate for Singapore Condominiums 
(� = 0.72 and � = 0) 
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Figure 3C.  Price Index Estimate for Singapore Condominiums 
(� = 1 and � = 0) 
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Figure 4A.  Estimated Monthly Investment Returns of Condominium Housing  

in Singapore, 1990 � 2000. 

 (� = 0.78 and � = 0.55) 
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Figure 4B.  Estimated Monthly Investment Returns of Condominium Housing  

in Singapore, 1990 � 2000. 

 (� = 0.72 and � = 0) 
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Figure 4C.  Estimated Monthly Investment Returns of Condominium Housing  

in Singapore, 1990 � 2000. 

 (� = 1 and � = 0) 
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Figure 5A.  
Distribution of Returns for Investor who knows λλλλ = 0.78 and ρρρρ = 0.55. 

Investment Rule :  Always Invest 
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Mean Return  :           -1.28 % 
Standard Deviation:    27.24 % 
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Figure 5B.  
Distribution of Returns for Investor who knows λλλλ = 0.78 and ρρρρ = 0.55. 

Investment Rule :  0% 
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Mean Return  :            13.69 % 
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Figure 5C.  
Distribution of Returns for Investor who knows λλλλ = 0.78 and ρρρρ = 0.55. 

Investment Rule :  5% 
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Mean Return  :            20.22 % 
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Figure 5D.  

Distribution of Returns for Investor who knows λλλλ = 0.78 and ρρρρ = 0.55. 
Investment Rule :  10% 
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Figure 6A.  
Distribution of Returns for Investor who estimates λλλλ = 0.72 and ρρρρ = 0.  

Investment Rule :  0% 
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Figure 6B.  

Distribution of Returns for Investor who estimates λλλλ = 0.72 and ρρρρ = 0.  
Investment Rule :  5% 
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Mean Return  :            12.53 % 
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Figure 6C.  

Distribution of Returns for Investor who estimates λλλλ = 0.72 and ρρρρ = 0.  
Investment Rule :  10% 
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Mean Return  :            15.41 % 
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Figure 7A.  
Distribution of Returns for Investor who assumes λλλλ = 1 and ρρρρ = 0. 

Investment Rule :  0% 
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Figure 7B.  

Distribution of Returns for Investor who assumes λλλλ = 1 and ρρρρ = 0. 
Investment Rule :  5% 
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Appendix 

 
Difficulties of ML Estimation when ρρρρ ≠≠≠≠ 0: 

An Illustration 
 

This appendix illustrates the difficulties encountered in maximizing the likelihood function in 

equation (14) in the presence of spatial as well as temporal autocorrelation.  We consider a 

simple example.  Suppose there are three houses in the sample; house A has been sold twice at t 

= t1, t2, B three times at t = t1, t2, t3 and C four times at t = t1, t2, t3, t4.  Let 5.0=λ , 5.0=ρ , 

06.02 =σµ , 1.02 =ση , 01 =t , 12 =t , 33 =t  and 54 =t .  Also let the distance between house A and 

house B be 1, between house B and house C be 2 and between house A and house C be 3.  

 
To compute ( )( )[ ]ςτ −− kkisit eeeeE , the elements of the matrix ΣΣΣΣ, we need ( )( )[ ]ςτ ξ−ξξ−ξ iiisitE  
and kiππ′ . 
First, the values of ( )( )[ ]ςτ ξ−ξξ−ξ iiisitE  using above numbers, are, from Equation (10): 

( )[ ] ( ) 28.02
1

12 2
2

2
2

12
12 =σ+

�
�

�

�

�
�

�

�
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σ

λ−=ξ−ξ η
µ−ttAAE . 
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( )( )[ ] ( ) 145.0
1

1 2
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3423
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Let the weight on a neighboring house be the inverses of distance, i.e., 
  

�
�
�

�

�

�
�
�

�

�

=
02131
2101
3110

W .  Thus, ( )
�
�
�

�

�

�
�
�

�

�

=ρ− −

2135.05393.04719.0
5393.05736.18764.0
4719.08764.05169.1

1WI . 

 
For jiππ′ ’s, we have 

2916.3=′ AAππ , 
9625.2=′ BAππ , 
7611.1=′ CAππ , 
5334.3=′ BBππ , 
9164.1=′ CBππ  and 
9861.1=′ CCππ . 

 

Now when there is no spatial dependency, 0=ρ , 

( ) IWIΠ =ρ−= −1 , which implies  

1=′ kiππ , when i = k and 0, otherwise. 

Then, 

( )( )[ ]ςτ −− kkisit eeeeE ( )( )[ ]{ } kiiisiti E πIπ ×ξ−ξξ−ξ′= ςτ  

                                   ( )( )[ ]ςτ ξ−ξξ−ξ= iiisitE  , when i = k and 0, otherwise. 

When ρ=0, innovations among houses are uncorrelated. 

The block diagonal elements of ΣΣΣΣ are 
 
      ( )[ ]2

12
AA

A E ξ−ξ=V ,  
 

( )[ ] ( )( )[ ]
( )( )[ ] ( )[ ] �

�
�

�

�
�
�

�

ξ−ξξ−ξξ−ξ
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B
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EEV , and 
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( )[ ] ( )( )[ ] ( )( )[ ]
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(1)  ΣΣΣΣ 
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�

�
�
�
�
�
�
�
�

�

�

−−
−−
−−

−
−

=

32.0145.00075.0000
145.032.013.0000
0075.013.028.0000
00032.013.00
00013.028.00
0000028.0

. 

 
 

When there is spatial dependency, i.e., 0≠ρ , then innovations in houses are all correlated, and 

Σ  is no longer block diagonal.  Indeed, we have, 
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�

�
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�
�
�
�
�
�

�

�

′′−′−′−′−′−
′−′′−′′−′−
′−′−′′−′′
′−′′−′′−′−
′−′−′′−′′
′−′−′′−′′

=

CCCCCCBCBCAC

CCCCCCBCBCAC

CCCCCCBCBCAC

CBCBCBBBBBAB

CBCBCBBBBBAB

CACACABABAAA

ππππππππππππ
ππππππππππππ
ππππππππππππ
ππππππππππππ
ππππππππππππ
ππππππππππππ

Σ

32.0145.00075.0145.00075.00075.0
145.032.013.032.013.013.0

0075.013.028.013.028.028.0
145.032.013.032.013.013.0
0075.013.028.013.028.028.0
0075.013.028.013.028.028.0

 

(2) ΣΣΣΣ 

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

−−−−−
−−−−
−−−
−−−−
−−−
−−−

=

64.029.001.028.001.001.0
29.064.026.061.025.023.0
01.026.056.025.054.049.0
28.061.025.013.146.039.0
01.025.054.046.099.083.0
01.023.049.039.083.092.0
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The inverse of the sparse block diagonal matrix, illustrated in (1), can be computed rather easily, 

even when ΣΣΣΣ is large.  The inverse of the general matrix, illustrated in (2), can be 

computationally burdensome. 
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Appendix Table A1. 
Generalized Least Squares Estimates of Price Index  

Equation (13) 
 

 

 

Spatially Correlated 

 and Mean Reversion Mean Reversion Random Walk 

Constant 0.0723 0.0885 0.0783 

 (20.2685) (24.0443) (29.8365) 

Feb,1990 0.1558 0.1951 0.1903 

 (1.0329) (1.4461) (0.7027) 

Mar,1990 0.1209 0.1502 0.1501 

 (0.8252) (1.1889) (0.5804) 

Apr,1990 0.0713 0.0647 0.0732 

 (0.5057) (0.5397) (0.2912) 

May,1990 0.1063 0.1219 0.1534 

 (0.7670) (1.0476) (0.6255) 

Jun,1990 0.1078 0.0952 0.1007 

 (0.7579) (0.7824) (0.3975) 

Jul,1990 0.0549 0.0333 0.0221 

 (0.3770) (0.2651) (0.0841) 

Aug,1990 0.0971 0.0592 0.0235 

 (0.6488) (0.4568) (0.0882) 

Sep,1990 0.0787 -0.0286 -0.0308 

 (0.5245) (0.2327) (0.1197) 

Oct,1990 0.0922 0.0127 0.0003 

 (0.6301) (0.1034) (0.0012) 

Nov,1990 0.0498 0.0355 0.0127 

 (0.3309) (0.2742) (0.0477) 

Dec,1990 -0.0107 -0.0185 0.0129 

 (0.0745) (0.1546) (0.0513) 

Jan,1991 0.0256 -0.0048 -0.0341 

 (0.1662) (0.0360) (0.1257) 

Feb,1991 0.0451 0.0154 -0.0012 

 (0.3126) (0.1258) (0.0048) 

Mar,1991 0.0606 0.0605 0.0793 

 (0.4353) (0.5163) (0.3228) 

Apr,1991 0.0979 0.0879 0.0779 
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 (0.7135) (0.7690) (0.3229) 

May,1991 0.0851 0.1380 0.1540 

 (0.6160) (1.1978) (0.6336) 

Jun,1991 0.0866 0.1258 0.1131 

 (0.6260) (1.0934) (0.4689) 

Jul,1991 0.0635 0.0956 0.0690 

 (0.4563) (0.8233) (0.2856) 

Aug,1991 0.0576 0.1110 0.0562 

 (0.4118) (0.9482) (0.2301) 

Sep,1991 0.1152 0.1448 0.0982 

 (0.8251) (1.2364) (0.4003) 

Oct,1991 0.0402 0.0895 0.0313 

 (0.2874) (0.7597) (0.1276) 

Nov,1991 0.0922 0.1114 0.0974 

 (0.6649) (0.9552) (0.3994) 

Dec,1991 0.1292 0.1741 0.1016 

 (0.9205) (1.4721) (0.4149) 

Jan,1992 0.1140 0.1077 0.0585 

 (0.8000) (0.8965) (0.2364) 

Feb,1992 0.0888 0.1028 0.0592 

 (0.6337) (0.8692) (0.2394) 

Mar,1992 0.1637 0.1610 0.1419 

 (1.1530) (1.3559) (0.5726) 

Apr,1992 0.1323 0.1128 0.0714 

 (0.9497) (0.9653) (0.2921) 

May,1992 0.1975 0.1861 0.1522 

 (1.4453) (1.6271) (0.6310) 

Jun,1992 0.2065 0.2154 0.1430 

 (1.5159) (1.8875) (0.5954) 

Jul,1992 0.2251 0.2323 0.2091 

 (1.6548) (2.0379) (0.8695) 

Aug,1992 0.2325 0.2529 0.1822 

 (1.7074) (2.2157) (0.7585) 

Sep,1992 0.2328 0.2342 0.2371 

 (1.7160) (2.0608) (0.9908) 

Oct,1992 0.2574 0.2616 0.2457 

 (1.9007) (2.3065) (1.0279) 
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Nov,1992 0.2562 0.2602 0.2438 

 (1.8904) (2.2918) (1.0197) 

Dec,1992 0.2791 0.2842 0.2801 

 (2.0575) (2.4990) (1.1714) 

Jan,1993 0.2819 0.2863 0.2415 

 (2.0776) (2.5166) (1.0103) 

Feb,1993 0.2889 0.3026 0.2952 

 (2.1311) (2.6637) (1.2357) 

Mar,1993 0.3233 0.3378 0.3305 

 (2.3950) (2.9889) (1.3842) 

Apr,1993 0.3376 0.3589 0.3399 

 (2.5014) (3.1782) (1.4239) 

May,1993 0.3318 0.3445 0.3500 

 (2.4590) (3.0512) (1.4663) 

Jun,1993 0.3777 0.3978 0.3825 

 (2.7987) (3.5245) (1.6025) 

Jul,1993 0.3657 0.3636 0.3595 

 (2.7068) (3.2151) (1.5059) 

Aug,1993 0.3945 0.4094 0.3912 

 (2.9205) (3.6196) (1.6379) 

Sep,1993 0.3830 0.3795 0.3775 

 (2.8342) (3.3547) (1.5810) 

Oct,1993 0.4218 0.4256 0.4251 

 (3.1221) (3.7618) (1.7804) 

Nov,1993 0.4328 0.4413 0.4360 

 (3.2014) (3.8999) (1.8260) 

Dec,1993 0.4460 0.4507 0.4346 

 (3.2970) (3.9801) (1.8200) 

Jan,1994 0.4185 0.4209 0.4130 

 (3.0941) (3.7171) (1.7293) 

Feb,1994 0.4345 0.4335 0.4449 

 (3.2099) (3.8250) (1.8630) 

Mar,1994 0.4671 0.4734 0.4690 

 (3.4597) (4.1892) (1.9649) 

Apr,1994 0.5101 0.5121 0.5358 

 (3.7785) (4.5339) (2.2449) 

May,1994 0.5586 0.5687 0.5398 
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 (4.1432) (5.0423) (2.2619) 

Jun,1994 0.5590 0.5525 0.5596 

 (4.1409) (4.8913) (2.3445) 

Jul,1994 0.5671 0.5683 0.5756 

 (4.2007) (5.0288) (2.4114) 

Aug,1994 0.5489 0.5454 0.5479 

 (4.0663) (4.8276) (2.2956) 

Sep,1994 0.5732 0.5746 0.5768 

 (4.2448) (5.0857) (2.4163) 

Oct,1994 0.5910 0.5984 0.6327 

 (4.3742) (5.2896) (2.6499) 

Nov,1994 0.6011 0.6107 0.6156 

 (4.4524) (5.4064) (2.5792) 

Dec,1994 0.6528 0.6602 0.6721 

 (4.8308) (5.8353) (2.8154) 

Jan,1995 0.6076 0.6040 0.6571 

 (4.4900) (5.3301) (2.7521) 

Feb,1995 0.6137 0.6096 0.6462 

 (4.5219) (5.3602) (2.7053) 

Mar,1995 0.6394 0.6437 0.6337 

 (4.7338) (5.7066) (2.6557) 

Apr,1995 0.7110 0.7134 0.6945 

 (5.2592) (6.3037) (2.9086) 

May,1995 0.6854 0.6679 0.6552 

 (5.0720) (5.9184) (2.7451) 

Jun,1995 0.6780 0.6880 0.7327 

 (5.0134) (6.0811) (3.0690) 

Jul,1995 0.6978 0.6919 0.7352 

 (5.1572) (6.1082) (3.0790) 

Aug,1995 0.6941 0.6859 0.7085 

 (5.1364) (6.0623) (2.9673) 

Sep,1995 0.7189 0.7107 0.7105 

 (5.3085) (6.2658) (2.9737) 

Oct,1995 0.6993 0.6899 0.7134 

 (5.1713) (6.0904) (2.9871) 

Nov,1995 0.7206 0.7010 0.7343 

 (5.3237) (6.1835) (3.0742) 
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Dec,1995 0.7027 0.6778 0.7253 

 (5.1972) (5.9881) (3.0372) 

Jan,1996 0.7360 0.7458 0.7737 

 (5.4448) (6.5930) (3.2396) 

Feb,1996 0.7720 0.7750 0.7839 

 (5.7070) (6.8448) (3.2828) 

Mar,1996 0.7654 0.7606 0.7922 

 (5.6618) (6.7207) (3.3174) 

Apr,1996 0.7904 0.7854 0.7922 

 (5.8594) (6.9563) (3.3185) 

May,1996 0.8211 0.8034 0.8044 

 (6.0808) (7.1100) (3.3687) 

Jun,1996 0.7718 0.7466 0.7678 

 (5.6650) (6.5290) (3.2046) 

Jul,1996 0.7267 0.7025 0.7386 

 (5.3541) (6.1729) (3.0833) 

Aug,1996 0.8052 0.7931 0.7982 

 (5.9092) (6.9342) (3.3272) 

Sep,1996 0.7960 0.7977 0.7950 

 (5.8311) (6.9524) (3.3125) 

Oct,1996 0.8109 0.8351 0.8471 

 (5.9378) (7.2746) (3.5233) 

Nov,1996 0.8323 0.8263 0.8449 

 (6.0937) (7.1921) (3.5162) 

Dec,1996 0.8234 0.8265 0.8216 

 (6.0273) (7.2052) (3.4217) 

Jan,1997 0.8294 0.8244 0.8342 

 (6.0645) (7.1604) (3.4711) 

Feb,1997 0.7814 0.7749 0.7928 

 (5.7195) (6.7468) (3.2998) 

Mar,1997 0.8192 0.8300 0.8522 

 (6.0178) (7.2674) (3.5523) 

Apr,1997 0.8267 0.8233 0.8377 

 (6.0753) (7.2133) (3.4920) 

May,1997 0.8430 0.8347 0.8581 

 (6.2181) (7.3594) (3.5849) 

Jun,1997 0.8249 0.8086 0.8208 
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 (6.0618) (7.0740) (3.4205) 

Jul,1997 0.8150 0.7962 0.8350 

 (6.0277) (7.0124) (3.4871) 

Aug,1997 0.8123 0.8022 0.8281 

 (5.9580) (7.0087) (3.4502) 

Sep,1997 0.7973 0.7862 0.8038 

 (5.8366) (6.8454) (3.3434) 

Oct,1997 0.7525 0.7490 0.7653 

 (5.5050) (6.5162) (3.1824) 

Nov,1997 0.8333 0.8238 0.8049 

 (6.0622) (7.1098) (3.3305) 

Dec,1997 0.7338 0.7235 0.7599 

 (5.3464) (6.2632) (3.1583) 

Jan,1998 0.6894 0.6579 0.6879 

 (4.9434) (5.5769) (2.8396) 

Feb,1998 0.6089 0.5977 0.6346 

 (4.4021) (5.1125) (2.6186) 

Mar,1998 0.6070 0.6158 0.6404 

 (4.4081) (5.3063) (2.6553) 

Apr,1998 0.5562 0.5361 0.5332 

 (4.0845) (4.6896) (2.2219) 

May,1998 0.6077 0.6102 0.5963 

 (4.4521) (5.3231) (2.4830) 

Jun,1998 0.5513 0.5462 0.5893 

 (4.0406) (4.7686) (2.4565) 

Jul,1998 0.5016 0.4852 0.4900 

 (3.6672) (4.2231) (2.0423) 

Aug,1998 0.4324 0.4433 0.4544 

 (3.1531) (3.8505) (1.8870) 

Sep,1998 0.4279 0.4173 0.4548 

 (3.1124) (3.6074) (1.8873) 

Oct,1998 0.3843 0.3754 0.3837 

 (2.8180) (3.2943) (1.5995) 

Nov,1998 0.4056 0.3871 0.4386 

 (2.9822) (3.3957) (1.8309) 

Dec,1998 0.4267 0.4304 0.4662 

 (3.1459) (3.7891) (1.9480) 
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Jan,1999 0.4441 0.4341 0.4804 

 (3.2724) (3.8169) (2.0048) 

Feb,1999 0.4647 0.4674 0.5177 

 (3.4311) (4.1186) (2.1627) 

Mar,1999 0.4715 0.4651 0.4311 

 (3.4818) (4.1004) (1.8023) 

Apr,1999 0.5208 0.5135 0.5649 

 (3.8550) (4.5412) (2.3637) 

May,1999 0.5865 0.5849 0.6322 

 (4.3449) (5.1773) (2.6460) 

Jun,1999 0.6364 0.6299 0.6414 

 (4.7103) (5.5679) (2.6832) 

Jul,1999 0.6522 0.6442 0.6526 

 (4.8237) (5.6924) (2.7291) 

Aug,1999 0.6785 0.6601 0.6705 

 (5.0168) (5.8284) (2.8037) 

Sep,1999 0.7098 0.6989 0.7720 

 (5.2428) (6.1627) (3.2269) 

Oct,1999 0.6892 0.6702 0.6753 

 (5.0844) (5.8988) (2.8215) 

Nov,1999 0.6741 0.6609 0.6578 

 (4.9755) (5.8231) (2.7504) 

Dec,1999 0.7126 0.6892 0.6564 

 (5.2601) (6.0719) (2.7431) 

Jan,2000 0.7398 0.7964 0.8203 

 (5.4596) (7.0242) (3.4278) 

Feb,2000 0.6888 0.6739 0.6945 

 (5.0800) (5.9308) (2.8994) 

Mar,2000 0.6989 0.6741 0.6833 

 (5.1530) (5.9307) (2.8506) 

Apr,2000 0.6763 0.6530 0.6605 

 (4.9850) (5.7416) (2.7525) 

May,2000 0.6927 0.6864 0.7060 

 (5.1093) (6.0394) (2.9456) 

Jun,2000 0.6436 0.6261 0.6414 

 (4.7392) (5.4978) (2.6707) 

Jul,2000 0.6122 0.6027 0.5442 
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 (4.5082) (5.2867) (2.2664) 

Aug,2000 0.6352 0.6191 0.4823 

 (4.6749) (5.4318) (2.0103) 

Sep,2000 0.6253 0.6112 0.7734 

 (4.6049) (5.3657) (3.2213) 

Oct,2000 0.6148 0.5902 0.5754 

 (4.5153) (5.1643) (2.3908) 

Nov,2000 0.5879 0.5592 0.5738 

 (4.1855) (4.6844) (2.3322) 

Dec,2000 0.5345 0.5794 0.5876 

 (2.9333) (3.6423) (1.8693) 

Presale -0.0012 -0.0011 -0.0010 

 (6.7099) (7.5041) (4.2092) 

    

� 0.78 0.72 1 

� 0.55 - - 
2
µσ  0.0077 0.0133 0.0009 
2
ησ  0.0054 0.0016 - 

Log Likelihood 23743.95 22498.75 7678.98 

 
Note: The numbers in parentheses are t-statistics.  
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