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Abstract

We investigate the role of labor-supply shifts in economic fluctuations. A

new VAR identification scheme for labor supply shocks is proposed. Our

method provides an alternative identification scheme, which does not rely on

“zero-restrictions”. According to our VAR analysis of post-war U.S. data, labor-

supply shifts account for about half the variation in hours and less than one-

fifth of variation in output. To assess the role of labor-supply shifts in a more

structural framework, estimates from a dynamic stochastic general equilibrium

model with stochastic variation in home production technology are compared

to those from the VAR.

JEL CLASSIFICATION: E32, C52, J22

KEY WORDS: Fluctuation of Hours, VAR Identification,

Home Production, Bayesian Econometrics
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1 Introduction

A leading question in macroeconomics is the identification of forces that cause the

cyclical allocation of time. Modern dynamic stochastic general equilibrium analysis

emphasizes random shifts in labor demand due to technological progress. Empirical

studies on the decomposition of working hours, e.g., Shapiro and Watson (1988) and

Hall (1997), have called for an attention to labor-supply movements. For example,

Hall (1997) finds a predominant role of labor-supply shifts for fluctuations in hours

worked. He suggests non-market activities such as job-search or home production

as possible causes for labor-supply shifts.

This paper examines the importance of labor-supply shifts as a source of eco-

nomic fluctuations. First, we develop and apply a new identification procedure for

vector autoregressions (VAR) to decompose the fluctuation of aggregate hours and

output into movements along the short-run labor demand schedule and shifts of

the demand curve itself. The former is interpreted broadly as response to a labor

supply shock. Our identifying restrictions are based on the notion that in reaction

to a temporary labor supply shock hours will rise and labor productivity will fall,

as the production capacity is fixed in the short-run and the economy operates along

the decreasing marginal-product-of-labor schedule. Second, we impose additional

restrictions by estimating a fully-specified dynamic stochastic general equilibrium

(DSGE) model. The DSGE model potentially yields a more precise estimate of the

relative importance of labor supply shifts. We consider a model in which labor-

supply shifts are caused by changes in home production activities. This model was

developed by Benhabib, Rogerson, andWright (1991) and Greenwood and Hercowitz

(1991).1

The main empirical findings can be summarized as follows. According to the

1The Beckerian home production models are motivated by the fact that, in any economy, agents

spend a significant amount of time on non-market activities. For example, according to the Michigan

Time-Use Survey, a typical married couple in the U.S. allocates about 25 percent of its discretionary

time to home production activities, while the couple spends about 33 percent of its time for paid

compensation (see Hill (1984), or Juster and Stafford (1991)).
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VAR variance decomposition, labor-supply shocks play an important role as a source

of fluctuations of hours. Temporary shifts in labor supply account for about half of

the cyclical variation of working hours. This finding is consistent with the results

reported in Shapiro and Watson (1988) and Hall (1997). Labor-supply shocks are

less important for output fluctuations as they explain not more than 15 percent of

the variation in output. The DSGE model analysis yields similar results. While

more than 50 percent of the variation of hours is attributed to temporary labor

supply shifts, only 13 percent of the output fluctuations are due to labor supply

movements.

The DSGE model also provides estimates of the evolution of market and home

technology over time. The latter measures the attractiveness of non-market ac-

tivities. According to the home production model, recessions may occur because

agents find it optimal to spend more time in non-market activities. While there are

alternative explanations for recessions that are not captured by the simple DSGE

model, we find it interesting to compare the estimates of the latent technologies

to the NBER business cycle dates. Taken at face value, two out of six business

cycle troughs during the period from 1960:I to 1997:IV, namely March 1975 and

November 1982, coincide with unusually high productivity of non-market activity.

The proposed VAR identification procedure differs from previous approaches.

Shapiro and Watson (1988) assume that both hours and aggregate output are non-

stationary. Their identification is based on a long-run restriction: labor-supply

shocks have a permanent effect on both hours and output, whereas technology shocks

only affect output in the long-run. However, the evidence on the non-stationarity

of hours is inconclusive. A researcher who believes that hours follow a stationary

process will find the data consistent with his belief. Vice versa, there is not much

evidence in hours data that would contradict that hours are (locally) nonstationary.

Our investigation treats hours as a stationary process. This assumption is consistent

with a large class of theoretical DSGE models, including the one presented in this

paper, in which stochastic growth is induced by a nonstationary labor augmenting

technology process and the economy evolves along a balanced growth path.
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Hall (1997) identifies the labor-supply or preference shocks by deriving short-run

labor supply and demand functions based on assumptions on consumer preferences

and the firms’ production technology. He expresses the equilibrium hours as a func-

tion of the labor-supply shock and several observable variables contained in the

first-order condition of utility maximization of households. Based on the labor-

market equilibrium the labor supply shocks are calculated as residuals from the

first-order conditions of household labor supply decision.2 Similar to Hall’s analy-

sis, we also exploit the short-run labor market equilibrium to identify the supply

shocks. However, our VAR identification scheme does not rely on a specific form of

households’ preferences.

Unlike many VAR identification schemes that have been used in the literature,

our scheme cannot be implemented solely based on zero-restrictions on the long-run

multiplier matrix and the contemporaneous impact matrix of the structural shocks.

The structural disturbances are recovered conditional on the slope of the short-run

labor demand schedule. We place a prior distribution on this slope and on the

reduced form VAR parameters and conduct Bayesian inference. Since the distri-

bution of the reduced form parameters is updated through the sample information,

the implied distributions of variance decompositions and impulse response functions

are updated with every observation. The VAR identification scheme is consistent

with the DSGE model. Based on a long sample of observations generated from

the log-linearized DSGE model the structural VAR can approximately recover the

exogenous shocks that were used to generate the artificial data.

The paper is organized as follows. Section 2 develops the VAR identification

scheme. The home production model is presented in Section 3. Section 4 discusses

the econometric estimation and inference. Our VAR approach is compared to re-

cently proposed identification schemes that are based on inequality restrictions for

the impulse response functions. The empirical findings are summarized in Section 5,

while the last section concludes. Data definitions and computational details are col-

2The same strategy to identify preference shocks is used in Hall (1986), Parkin (1988) and Baxter

and King (1991).
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lected in the Appendix.

2 A VAR Model of Labor Market Fluctuations

In this paper labor market fluctuations are viewed as a series of equilibria generated

by competitive households and firms whose tastes and technologies are perturbed

by stochastic disturbances. To identify sources of labor market fluctuations we will

fit a VAR and a DSGE model to three macroeconomic time series: Hours worked

in the market Lm,t, labor productivity Pt, and expenditures on consumer durables

Ih,t. As we discuss in detail below, we also identify permanent shocks that shift

both labor demand and supply. Expenditures on consumer durables serve as a

proxy for the households’ permanent income. In the context of the DSGE model

these expenditures are interpreted as investments in the home capital stock.3 The

remainder of this section describes our identification scheme for the VAR. The VAR

innovations are decomposed into three orthogonal shocks, denoted by εa,t, εb,t, and

εz,t.

2.1 Identifying Assumptions

During the past four decades, labor productivity, spending on consumer durables,

and aggregate output exhibited a pronounced trend, whereas aggregate hours and

the consumption share did not show an apparent trend. Based on this observa-

tion, many dynamic macroeconomic models have been designed to evolve along a

balanced growth path. A common stochastic trend in output, consumption, invest-

ment, capital, and wages is typically induced by a labor augmenting technology

process. Hours worked, however, are stationary on this path as both labor demand

and supply – via wealth effect in a conventional utility and via accumulation of

consumer durable goods in home production models – shift in the long-run.

3Hours worked are denoted by Lm,t because the DSGE model introduced in Section 3 dis-

tinguishes between market (subscript m) and home (subscript h) production. Expenditures on

consumer durables will be interpreted as home investment.
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Assumption 1 The shocks εa,t and εb,t have transitory effects on hours, labor pro-

ductivity, and consumer durables. The shock εz,t has a permanent effect on labor

productivity and consumer durables. It has no effect on hours in the long run. ¤

The shock εz,t induces a common stochastic trend in productivity and consumer

durables. It will subsequently be interpreted as permanent technology shock.

We characterize the labor market equilibrium in terms of demand and supply

curves. At time t the inverse labor demand of a competitive profit maximizing firm

can be written in terms of its capital stock Km,t and the state of market technology

St:

Wt =MPLt = ϕD(Lm,t|Km,t, St), (1)

where Wt represents the real wage rate, MPLt the marginal product of labor, and

Lm,t hours employed at time t. Similarly, the inverse labor supply of the represen-

tative household can be written in generic form as

Wt = ϕS(Lm,t|Ω(St, Tt)). (2)

Ωt represents endogenous variables that influence the labor supply of the household,

such as the real interest rate, consumption, wealth and the preference of households.

Tt represents state variables that reflect the taste of households or the productivity

of non-market activities.

Assumption 2 The shock εb,t has only a contemporaneous impact on Tt, but not

on St and Km,t. Thus, upon impact the shock shifts the labor supply curve, but not

the labor demand curve (marginal-product-of-labor schedule). ¤

We will interpret the shock εb,t broadly as a labor supply shock, such as an

unanticipated shift of the preference for leisure or the productivity of non-market

activities. The capital stock Km,t is inherited from the previous period and there-

fore not affected by current period shocks. Although the production capacity is

fixed in the short-run, labor demand may shift due to varying utilization of capital.
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However, we show in Appendix A that Assumption 2 is still valid provided the cost

of utilization is reflected in the depreciation rate of capital.

The responses of the marginal product of labor and hours worked (both in logs)

to a labor supply shock εb,t have to satisfy the following relationship

∂ lnMPLt

∂εb,t
=

(

1

ϕD
·

∂ϕD

∂ lnLm,t

)

·
∂ lnLm,t

∂εb,t
(3)

where the factor in parentheses is the slope of the inverse labor demand function.

Under a Cobb-Douglas production technology with labor share parameter α one

obtains
∂ lnPt

∂εb,t
= (α− 1)

∂ lnLm,t

∂εb,t
. (4)

Roughly speaking, conditional on the slope of the labor demand function, it is

possible to identify εb,t through its joint effect on hours and productivity.
4

2.2 VAR Specification

Define the vector of stationary variables ∆yt = [∆ lnPt,∆ln Ih,t, lnLm,t]
′. Moreover,

let εt = [εz,t, εa,t, εb,t]
′. The VAR can be expressed in vector error correction form as

∆yt = Φ0 +Φvecyt−1 +

p−1
∑

i=1

Φi∆yt−i + ut, ut ∼ iid N (0,Σu). (5)

The reduced form disturbances ut are related to the structural disturbances εt by

ut = Φ∗ε̃t, where ε̃t is a standardized version of εt with unit variance.

According to Assumption 1, the shock εz,t generates a stochastic trend in pro-

ductivity and expenditures on consumer durables. The two series are cointegrated

with cointegration vector λ = [1,−λ21, 0]
′. Instead of restricting λ21 to one we

4Our analysis does not consider other disturbances such as monetary and fiscal policy shocks. For

post-war U.S. data, government policy shocks are often considered to be of secondary importance

in business-cycle analysis. For example, according to King, Plosser, Stock and Watson (1991),

permanent nominal shocks identified by imposing long-run neutrality explain little of the variability

in real variables. The cyclical components of government spending is not highly correlated with

output measures – it is less than 0.2 for Hodrick-Prescott filtered data. Also, expanding the list of

shocks often invites arbitrary identifying restrictions in the VAR analysis.
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estimate the parameter in the VAR analysis to allow for a possibly steeper Engle

curve for expenditures on durable goods. We do not impose a cointegration rela-

tionship between the cumulative hours-worked process
∑t

τ=0 Lm,t and productivity

or consumer durables. Hence, the rank of Φvec = µλ′ is chosen to be one. This

rank order was confirmed by a formal selection based on Bayesian posterior odds.

The stochastic trend of yt has the form CLRΦ∗
∑t

τ=0 ε̃t. Since productivity and

consumption expenditures have a common trend, the first two rows of the 3 × 3

long-run multiplier matrix CLR are proportional.

The structural shocks ε̃t are identifiable, if the elements of the 3× 3 matrix Φ∗

can be uniquely determined based on Φ0, . . . ,Φp, Φvec, and Σu. Let Ψ∗ denote the

unique lower triangular Cholesky factor of Σu. Any matrix Φ∗ such that Φ∗Φ
′
∗ = Σu

is an orthonormal transformation of Ψ∗, that is, Φ∗ = Ψ∗B for some orthonormal

matrix B. Let [A]ij denote the i’th row and j’th column of a matrix A. According to

Assumption 1, the shocks εa,t and εb,t only have transitory effects on productivity and

consumer expenditures. Thus, the elements [(CLRΨ∗)B]12 and [(CLRΨ∗)B]13 have

to be zero. The contemporary effects of the labor supply shock εb,t on productivity

and hours worked are given by ∂Pt/∂εb,t = [Φ∗]13 and ∂Lm,t/∂εb,t = [Φ∗]33. Define

C∗ = [1, 0,−(α − 1)]. According to Assumption 2 and Equation (4) the value of

[(C∗Ψ∗)B]13 has to be zero. These three orthogonality conditions uniquely determine

the orthonormal transformation B.

Conditional on the slope of the labor demand schedule, it is possible to uniquely

determine the structural shocks ε̃t.
5 The slope of the labor demand schedule itself,

however, is not identifiable. Our approach to econometric inference in the presence

of a nonidentifiable parameter is discussed in Section 4.

3 A Fully Specified Model Economy

The DSGE model presented subsequently provides a more specific interpretation of

the three structural shocks and their propagation. It also assists the understand-

5The parameter α can be interpreted as an index for a set of identification schemes.
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ing of the economic intuition behind our VAR identification scheme in Section 2.

The DSGE model imposes further restrictions, in addition to the ones used in the

VAR analysis, to identify the vector of structural shocks ε̃t. If these restrictions are

well specified, the DSGE model will yield precise estimates of variance decompo-

sitions and impulse response functions. On the other hand, if the restrictions are

inadequate, they could lead to misspecification bias.

The model economy consists of identical infinitely lived households who max-

imize the expected discounted lifetime utility U defined over consumption Ct and

pure leisure 1− Lm,t − Lh,t where Lm,t is the fraction of time supplied to the labor

market and Lh,t is the fraction of hours spent on home production activities (e.g.,

lawn-mowing, dish-washing, or cooking).

U = IEt

[

∞
∑

s=t

βs−t(logCs + κ log(1− Lm,s − Lh,s))

]

(6)

IEt is the expectation operator conditional on information available at time t and

β is the discount factor. Consumption is an aggregate of market consumption Cm,t

and the consumption of home produced goods Ch,t :

C(Cm,t, Ch,t) = [χC
υ−1
υ

m,t + (1− χ)C
υ−1
υ

h,t ]
υ

υ−1 , (7)

where υ is the substitution elasticity, reflecting the household’s willingness to sub-

stitute market and home-produced goods. Output from home production depends

on the state of technology and capital stock at home. It is produced according to a

constant-returns-to-scale technology with inputs home capital Kht and labor Lht

Ch,t = [ψ(Xh,tLh,t)
τ−1
τ + (1− ψ)K

τ−1
τ

h,t ]
τ

τ−1 , (8)

where τ is the substitution elasticity between labor and capital in home production.

Xh,t is a labor augmenting productivity process that will be specified below. It is

important to note that this specification of home production is much more general

than the conventional utility with leisure only. In fact, the commonly used separable-

in-log utility can be obtained by simply setting υ = τ = 1.
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The household owns the market capital stock and rents it to the representative

firm. The budget constraint is of the form

Cm,t + Im,t + Ih,t =WtLm,t +RtKm,t, (9)

where Im,t and Ih,t are investments in the capital stock in the market Km,t, and at

home Kh,t. In each period t, the household chooses Cm,t, Ch,t, Im,t, Ih,t, Lm,t, and

Lh,t. Market capital and home capital accumulate according to:

Km,t+1 = φ(Im,t/Km,t)Km,t + (1− δ)Km,t (10)

Kh,t+1 = φ(Ih,t/Kh,t)Kh,t + (1− δ)Kh,t,

where δ is the depreciation rate of capital. The capital accumulation is subject to

convex adjustment cost: φ′ > 0, φ′′ ≤ 0.6

Output Yt is produced by a representative firm that operates a Cobb-Douglas

technology with the inputs capital Km,t and labor Lm,t

Yt = K1−α
m,t (Xm,tLm,t)

α. (11)

Xm,t represents a labor augmenting technology process. The firm solves the one-

period problem

max
Lm,t,Km,t

K1−α
m,t (Xm,tLm,t)

α −WtLm,t −RtKm,t, (12)

which leads to an inverse demand function of the form (1). In equilibrium the output

produced by the representative firm is equal to the consumption of market goods

and the investment in home and market capital:

Yt = Cm,t + Im,t + Ih,t. (13)

6Unlike one-sector models, in a multi-sector model, the investment in one sector can increase

enormously at the price of the investment in the other sector, without affecting consumption sig-

nificantly, resulting in unreasonably volatile investments over time. Adjustment costs of capital

accumulation generate a more reasonable behavior of sectoral investment (e.g., Baxter (1996) and

Fisher (1997)).
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The labor augmenting productivity of the market and home technology are of

the form Xm,t = exp[zt+at] and Xh,t = exp[zt+ bt], respectively. Here zt represents

a common technology process that follows a random walk with drift:

zt = γ + zt−1 + εz,t. (14)

The processes at and bt capture temporary productivity movements that are modeled

as stationary first-order autoregressions:

at = ρaat−1 + εa,t (15)

bt = ρbbt−1 + εb,t. (16)

Define εt = [εz,t, εa,t, εb,t]
′. We assume that εt is serially uncorrelated with diagonal

covariance matrix Σε. Its elements will be denoted by σ
2
z , σ

2
a, and σ

2
b , respectively.

Due to the labor augmenting random walk technology process zt, the model

economy evolves along a balanced stochastic growth path. Except for Rt, Lm,t, and

Lh,t all endogenous variables grow at the rate zt. The stochastic trend shifts both

the labor supply and demand curves, such that in the long-run a unit shock εz,t

raises the equilibrium wage rate by one percent but does not affect hours worked.

A state-space model for hours worked lnLm,t and the growth rates of labor pro-

ductivity ∆ lnPt = ∆ ln(Yt/Lm,t) and home investment ∆ ln Ih,t is derived from the

log-linearized DSGE model. We regard the expenditures on consumer durable goods

as a measure of home investment. Hence, as the VAR in Section 2, the DSGE model

provides a probabilistic representation for ∆yt = [∆ lnPt,∆ln Ih,t, Lm,t]
′. Since the

market production function in the DSGE model is Cobb-Douglas, responses of the

model economy to a labor supply shock εb,t, i.e. a temporary home productivity

shock, satisfy the relationship in Equation (4). The VAR identification scheme pro-

posed in Section 2 is consistent with the DSGE model in the following sense. Let

ỸT be a sample of (artificial) observations generated from the log-linearized DSGE

model. Based on ỸT and the correct labor share parameter α it is possible to consis-

tently estimate the standardized shocks ε̃t with the structural VAR, provided that

the lag-length is increased appropriately as the size of the sample grows.
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4 Econometric Approach

The goal of the econometric analysis is to assess the relative importance of labor

supply shocks for the cyclical variation of output and hours worked based on esti-

mates of the VAR and the DSGE model. To describe our estimation and inference

procedure the following additional notation is introduced. The VAR is denoted by

M0 and the overidentified log-linearized DSGE model byM1. To be consistent with

the Cobb-Douglas production technology used in the DSGE model, we will assume

that under the VAR specification the slope of the inverse labor demand function

is also α − 1. Hence, the parameter α is shared by M0 and M1. The parameters

of model Mi except for α are stacked in the vector θ(i), i = 0, 1. θ(0) contains the

cointegration parameter λ12 and the non-redundant elements of the reduced-form

matrices Φ0, . . . ,Φp,Σu in Equation (5).

4.1 Variance Decompositions and Impulse Response Functions

Variance decompositions and impulse response functions are transformations of the

parameters θ(i) and α. Under both M0 and M1 the vector process ∆yt has a

moving-average (MA) representation in terms of the standardized structural shocks

ε̃t:

∆yt = µ(θ(i), α) +
∞
∑

j=0

Cj(θ(i), α)ε̃t−j . (17)

The population mean µ and the moving average coefficients Cj are model-specific

functions of θ(i) and α. Define the vectors Mz = [1, 0, 0]′, Ma = [0, 1, 0]′, and

Mb = [0, 0, 1]
′. The impulse responses to the shock ε̃s,t are given by

∂∆yt+j

∂ε̃s,t
= CjMs, j = 0, 1, . . . , s ∈ {z, a, b}. (18)

The h-th order autocovariance matrix of ∆yt can be decomposed into the con-

tributions of the three structural shocks:

Γ∆y(h) = Γ
(z)
∆y(h) + Γ

(a)
∆y(h) + Γ

(b)
∆y(h), (19)
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where

Γ
(s)
∆y(h) =

∞
∑

j=max{0,−h}

CjMkM
′
kC

′
j+h, s ∈ {z, a, b}.

The relative contribution of shock s to the unconditional variance of the j’th element

of ∆yt is given by the ratio [Γ
(s)
∆y(0)]jj/[Γ∆y(0)]jj . The spectrum of the stationary

process ∆yt is

S∆y(ω) =

∞
∑

h=−∞

Γ∆y(h)e
−ihω (20)

and represents the contribution of frequency ω to the variance of ∆yt. Just as

the autocovariances Γ∆y(h), for each ω the spectrum can be decomposed into the

relative contribution of the three shocks.7

In the remainder of Section 4 we will generically represent the variance decompo-

sitions and truncated impulse response functions by an m×1 vector ϕ = ϕ̃i(θ(i), α).

4.2 Estimation and Inference

The likelihood functions are denoted by p(YT |θ(i), α,Mi). We adopt a Bayesian

approach and place prior distributions of the form

p(θ(i), α|Mi) = p(θ(i)|Mi)p(α), i = 0, 1 (22)

on the parameters. Equation (22) incorporates the assumption that α is a priori

independent of θ(0) and θ(1). Moreover, the prior distribution of α is the same for

both models. Since the population characteristics ϕ are functions of the parameters

θ(i) and α, Equation (22) implicitly determines its prior distribution p(ϕ|Mi).

7According toM0 andM1 the level of output is integrated of order one and its autocovariances

do not exist. Let S
(s)
∆ lnY (ω) denote the three components of the spectrum of output growth. We

define the spectrum of the level of output at frequencies ω > 0 as

S
(s)
lnY (ω) = lim

φ→1

S
(s)
∆ lnY (ω)

1 + φ2 − 2φcos(ω)
. (21)

The term 1/[1+φ2− 2φcos(ω)] is the power transfer function of the AR(1) filter [1−φL]−1, where

L denotes the temporal lag operator. Equation (21) implies that the relative importance of the

shocks is not affected by the filter that cumulates the growth rates of output.
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The data YT are used to update the prior distribution by means of the likelihood

function. Conditional on modelMi, inference is based on the posterior distribution

p(θ(i), α|YT ,Mi) ∝ p(YT |θ(i), α,Mi)p(θ(i)|Mi)p(α), (23)

where ∝ signifies proportionality. Draws from this posterior distribution can be

generated through Bayesian simulation techniques described in the Appendix C

and in Schorfheide (2000). The posterior distribution of population characteris-

tics p(ϕ|YT ,Mi) can be simulated by transforming the [θ
′
(i), α]

′-draws according

to ϕ̃i(θ(i), α). If prior probabilities πi,0 are placed on the two models, the overall

posterior distribution of ϕ is given by the mixture

p(ϕ|YT ) = π0,T p(ϕ|YT ,M0) + π1,T p(ϕ|YT ,M1). (24)

πi,T denotes the posterior probability of modelMi.

While the posterior inference for the DSGE model is conceptually straightfor-

ward, it is worthwhile to examine the VAR-based inference more carefully. As

pointed out in Section 2, the structural shocks can only be determined if the slope

α − 1 of the inverse-labor-demand schedule is given. However, the likelihood func-

tion is uninformative with respect to α as it only depends on the reduced-form

parameters θ(0), that is,

p(YT |θ(0), α,M0) = p̃(YT |θ(0),M0). (25)

The joint posterior density of θ(0) and α can be expressed as

p(θ(0), α|YT ,M0) =
p̃(YT |θ(0),M0)p(θ(0)|M0)p(α)

∫

[

p̃(YT |θ(0),M0)p(θ(0)|M0)[
∫

p(α)dα]

]

dθ(0)

= p̃(θ(0)|YT ,M0)p(α). (26)

Thus, p(θ(0), α|YT ,M0) is the product of the posterior density of the (identifiable)

reduced form parameters and the prior density of α. According to the VAR the data

YT convey no information about α. Hence, the prior density p(α) is not updated

after observing YT .
8

8SupposeM0 andM1 are analyzed jointly by placing prior probabilities πi,0 on the two models.
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4.3 Discussion

Our VAR based inference is a specific example of Bayesian analysis of a nonidenti-

fied econometric model. Poirier (1998) provides a comprehensive survey and many

additional examples. The basic insight from this literature is the following. If the

joint prior distribution for all the model parameters is proper, one obtains a proper

posterior distribution. However, the prior is not updated in the directions of the

parameter space in which the likelihood function is flat, that is, the directions in

which the model is not identified.

Gordon and Boccanfuso (2001) propose to specify a prior distribution on the

coefficient matrices of the moving-average representation of a vector time series.

This prior is then projected onto the restricted set of MA coefficients that are

consistent with a finite-order VAR representation. Although their structural VAR

is not identifiable in a classical sense, they obtain a proper posterior distribution

for the impulse response functions. However, in general the direct specification of a

proper prior distribution for impulse response functions with a reasonable covariance

structure is very demanding and their bivariate example is difficult to generalize.

Rather than attempting to specify a prior directly, we use economic intuition

developed from assumptions on aggregate preferences, production technologies, and

equilibrium relationships to specify a prior for ϕ indirectly by means of a prior

for θ(0) and α and the mapping ϕ̃i(θ(0), α). Since the distribution of reduced-form

parameters θ(0) is updated based on the sample information YT , the implied dis-

tribution of ϕ is updated with every observation and we learn about the relative

importance of structural shocks and the response of the economy. To illustrate

the extent of learning, we will report both prior and posterior distributions for the

variance decompositions in Section 5.

Despite the presence of the DSGE model M1 and the informative posterior p(α|YT ,M1) that it

generates, it is still true that the VAR impulse responses have to be identified through the prior

p(α), not the DSGE model posterior p(α|YT ,M1), or the overall marginal posterior p(α|YT ) =

π0,T p(α) + π1,T p(α|YT ,M1).
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Asymptotically the posterior distribution of ϕ does not degenerate to a point

mass. Even with infinitely many observations there will remain uncertainty about

ϕ = ϕ̃0(θ(0), α) since the uncertainty with respect to α never vanishes. Unlike the

approach taken by Gordon and Boccanfuso (2001), our method is explicit about the

direction of the parameter space in which learning does not occur. If the dimension of

the nonidentifiable component of the parameter vector is low, as in our application,

we can assess the robustness of our conclusion by tracing out, for instance, the

relative importance of the labor supply shock as a function of α. A similar approach

was used by King and Watson (1992) who plotted their statistics of interest against

a one-dimensional variable indexing the identification scheme of the VAR. If the

dimension of the nonidentifiable component is large, robustness can be examined by

the comparison of posteriors obtained from different prior distributions.

The VAR identification proposed in this paper is based on the notion that pro-

ductivity and hours worked move in opposite directions in response to a labor supply

shock. Equation (4) can be qualitatively interpreted as an inequality restriction on

the impulse responses:

∂ lnPt

∂εb,t
> 0 and

∂ lnLm,t

∂εb,t
< 0 (27)

Canova and DeNicolo (1998), Faust (1998), and Uhlig (1997) develop identification

and inference procedures based on such inequality constraints. For instance, Uh-

lig (1997) considers a large set of inequalities for initial and subsequent responses

to a monetary shock. He uses a loss function to map the reduced-form parameter

estimates into structural parameter estimates. The loss function imposes a strong

penalty onto the violation of the inequality constraints. Faust (1998) computes

bounds for the relative importance of a money supply shock by searching over all

possible identification schemes that are consistent with a pre-specified set of con-

straints. Our approach places a prior distribution on the identification schemes

that are consistent with (27) and averages the posterior distribution of population

characteristics ϕ over a priori likely values of the unidentifiable parameter α that

indexes the identification schemes.
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5 Empirical Analysis

Both VAR and DSGE models are fitted to post-war quarterly U.S. data on labor

productivity, expenditure on consumer durables and hours worked. The construc-

tion of the data set is described in Appendix B. The sample period ranges from

1955:I to 1997:IV. The overall sample size is T = 172 and the first T∗ = 20 ob-

servations are used as training sample to initialize lags and parameterize the prior

distributions. The data are plotted in Figure 1. Solid vertical lines correspond to the

NBER business-cycle peaks, while dashed lines denote troughs. The peaks coincide

with periods in which aggregate hours is high, and troughs coincide with periods in

which hours and expenditure on consumer durable goods were at a low. The hours

series has no apparent trend, yet its movement is quite persistent.

5.1 Priors

The prior distribution used in the estimation of DSGE model is summarized in

columns 3 to 5 of Table 1. The shapes of the densities are chosen to match the

domain of the structural parameters. We use informative priors for parameters that

can be easily inferred, e.g. labor share, average growth rate of productivity, whereas

uninformative priors are used for those that cannot be easily observed, e.g., home

production technology.

The prior means for labor share, discount rate, productivity growth, and capital

depreciation are α = 0.666, β = 0.993, γ = 0.004, and δ = 0.025. These values are

commonly used in the literature and can be justified based on a training sample

that ranges from 1955:I to 1959:IV. Prior means for the steady state hours spent for

market work Lm and home work Lh are 0.33 and 0.25, respectively, from the Time

Use Survey. A larger standard deviation is allowed for Lh, as hours spent on home

work may be measured with a greater uncertainty. The prior mean and standard

deviation for the steady-state ratio of home investment to market investment (non-

residential fixed investment) Ih/Im are obtained from the training sample.
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We allow for large standard deviations in the prior distributions of home tech-

nology parameters as they are not easy to observe. Prior means we use are υ = 1

and τ = 1. This case is essentially identical to one-sector model with separable-in-

logs in consumption and leisure as the the market consumption and labor supply

are not affected by home technology shocks. The prior mean of the labor share ψ

in the home production function is also set to 0.666. The weight on leisure χ in the

utility is determined by other parameters. For the stochastic process of structural

shocks, ρa, ρb, σz, σa, and σb, we use very diffuse priors. Prior means of persistence

parameters for temporary shocks are set to 0.8.

There is no adjustment cost at the steady state: φ′(I∗/K∗) = 1 and φ(I∗/K∗) =

I∗/K∗. The elasticity of the investment/capital ratio with respect to Tobin’s q,

η = (|(I∗/K∗)φ′′/φ′|−1) is to be estimated. The prior mean is set to 100 implying

small adjustment costs, with a large standard deviation of 100. Finally, we introduce

two additional parameters ξ1 and ξ2 to adjust the normalization of total hours to

one and to capture the average growth rate differential between labor productivity

and home investment in the data. The structural parameters are assumed a priori

independent of each other.

We now describe the prior distribution of the VAR parameters.9 The DSGE

model implies that the cointegration parameter λ21 = 1. This restriction is relaxed

and we choose the prior λ21 ∼ N (1, 0.025
2). Instead of using a model-based prior for

the reduced form parameter matrices Φ0,Φ1,Φ2, and Σu, that shrinks the estimates

toward the DSGE model restrictions (see Ingram and Whiteman (1994)), we con-

struct a data-based prior conditional on λ21 from training-sample OLS estimates.

Details are provided in Appendix C. The prior for α is the same as in the DSGE

model analysis (Table 1). The prior distributions of the VAR and DSGE model

parameters induce prior distributions for the variance decompositions, which will

be discussed together with the posterior estimates in Section 5.4.

9Posterior odds were used to select the lag-length p = 2.
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5.2 Parameter Estimation

Since the VAR parameter estimates themselves are not of primary interest in our

empirical analysis we focus on the DSGE model estimates. The estimates of market

labor share, discount factor, productivity growth, and depreciation are similar to

those reported in previous studies. Posterior means and standard errors of all pa-

rameters are reported in columns 6 and 7 of Table 1.10 The substitution elasticity

between market goods and home goods υ is 2.249. This is slightly higher than the

estimates of Rupert, Rogerson and Wright (1995) and McGrattan, Rogerson and

Wright (1997). The substitution elasticity between capital and labor in home pro-

duction τ is 2.381 implying that goods and time are substitutes in home production

activity. The labor share in home technology ψ is 0.757 which is slightly higher

than that in the market technology. Hours spent on home production activity Lh

is 0.170. The temporary home production shock is somewhat more persistent than

the market shock: ρ̂a = 0.767 and ρ̂b = 0.859. The nature of stochastic variation

of home technology Xh,t, in particular, its relative magnitude and correlation with

market productivity shock Xm,t, is important for business-cycle analysis. Once we

identify the underlying innovation to three structural shocks, conditional on time

t−1 information, the correlation between the market and home productivity lnXm,t

and lnXh,t can be obtained:

corrt−1[lnXm,t, lnXh,t] =

(

[1 + (σa/σz)
2][1 + (σb/σz)

2]

)−1/2

. (28)

The posterior mean correlation between innovations to market and home productiv-

ity lnXm,t and lnXh,t is 0.27. The 90-percent posterior confidence interval ranges

from 0.18 to 0.37. The estimates are somewhat lower than the values that have been

10While McGrattan, Rogerson and Wright (1997) also estimate home production models based

on aggregate time series, our analysis distinguishes itself from theirs in several dimensions. First, we

focus on variance decompositions and a comparison to results obtained from a structural VAR anal-

ysis. Second, microeconomic evidence is incorporated through prior distributions in our Bayesian

estimation. Third, we are able to uncover the comovement of innovations to market and home

productivity.
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used in the literature. Finally, the adjustment cost parameter η is 24.58 implying a

small adjustment cost in capital accumulation.

5.3 Time Series Fit

To assess the relative time series fit of the VAR and the DSGE model we compute

posterior model probabilities πi,T =
πi,0p(YT |Mi)

∑

i=0,1 πi,0p(YT |Mi)
conditional on the training

sample 1955:I to 1959:IV. The marginal data densities are given by p(YT |Mi) =
∫

p(YT |θ(i), α,Mi)p(θ(i), α|Mi)d(θ(i), α).
11 The log-marginal data density can be

interpreted as a measure of one-step-ahead predictive performance ln p(YT |Mi) =
∑T

t=T∗
p(yt|Yt,Mi). The values are ln p(YT |M0) = 1409 for the VAR and ln p(YT |M1) =

1308 for the DSGE model, which implies that the posterior probability of the DSGE

model is essentially zero. To shed more light on the poor time series fit of the DSGE

model, we also computed in-sample root-mean-squared-errors (RMSE) at the poste-

rior mode estimates. While the RMSE’s for the growth rates of output and consumer

durable expenditures are very similar for the two models, the RMSE of hours is sub-

stantially higher for the DSGE model: 0.0076 versus 0.0057 for the DSGE model.

5.4 Variance Decompositions

Our main interest is to unveil the sources of cyclical variation in hours and output.

Table 2 presents the variance decomposition of hours, from both VAR and DSGE

model, into three structural innovations εz,t, εa,t, and εb,t. It contains prior and

posterior means for the decomposition of the unconditional variance and the variance

at two business cycle frequencies: 1/32, and 1/12 cycles per quarter.

The common practice of excluding labor supply shocks in business cycle analysis

may suggest that many researchers regard them as fairly unimportant. Our prior

mean is by and large consistent with this view, as the temporary labor-supply shifts

explain only a small fraction of the output variation (about 7 to 12 percent) and

11To compute p(YT |Mi) we use a numerical approximation, known as modified harmonic mean

estimator, proposed by Geweke (1999).
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roughly a quarter of the variation in hours worked. The time series data, however,

lead to a revision of this view. According to both VAR and DSGE model based

decompositions, the labor-supply shifts play a much more important role for fluctu-

ation of hours. The εb shock accounts for more than 45 percent of the fluctuation

in hours according to the VAR and more than half according to the DSGE model.

With respect to output, however, the contribution of the labor-supply shocks is

modest as they account for less than 15 percent of the variation.

Most fluctuations of output are due to either permanent (εz) or temporary (εa)

shifts in labor demand. One interesting observation is that while permanent shifts in

technology are important for output variation, their ability to generate movements

in hours is limited in the DSGE model. εz accounts for less than 3 percent of hours

variation. This is due to the so-called balanced growth property of this class of

models. Common technology shocks tend to shift both labor demand and supply

in a similar magnitude leaving hours almost unaffected.12 Our decompositions are

fairly robust across various business-cycle frequencies, beyond the ones reported in

Table 2.

A shortcoming of Table 2 is that it does not reflect the uncertainty associ-

ated with the decompositions. Figures 2 and 3 visualize the entire distributions

for decompositions at frequency 1/20. Since the sum of the shares is always one,

the variance decompositions can be depicted in two-dimensional triangular shaped

subspaces (simplex) of IR3. The three corners z, a, b of the simplex correspond to

decompositions that assign 100 percent of the variation to one shock, and 0 per-

cent to the other two shocks. Each dot corresponds to one draw from the prior or

posterior distribution. Clusters of dots indicate regions of high density.

The VAR-based decompositions are depicted in Figure 2. The first row of plots

visualizes the decomposition of hours. As we move from prior to posterior, a sub-

stantial fraction of the probability mass shifts toward the b corner, indicating a

12The same is true for the model with conventional utility that supports balanced growth path

where income and substitution effect are likely to offset each other in response to a permanent

increase in productivity.
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more important role for the labor supply shocks. The plots also indicate that there

is little evidence in the data that helps distinguishing between permanent (εz) and

temporary (εa) productivity shocks. As pointed out by Faust and Leeper (1997)

decompositions based on long-run restrictions are associated with a high degree of

uncertainty. The role of labor-supply shocks in the output decomposition, depicted

in the second row of plots in Figure 2 becomes slightly more important as we move

from prior to posterior. Fewer draws appear near the bottom edge of the simplex.

The DSGE model-based decomposition in Figure 3 shows a sharp distinction

between prior and posterior.13 The overidentifying restrictions embodied in the

DSGE model lead to precise estimates of its structural parameters and hence to

a very concentrated posterior distribution of variance shares. Unlike the VAR, the

DSGE model is able to separate the effects of permanent and temporary productivity

shocks. For instance, the contribution of εz to the variation in hours is now with

high probability less than 5 percent.

The variance decompositions are function ϕi(θ(i), α). The VAR posterior means

reported in Table 2 were computed by integrating out the reduced form parameters

θ(0) with respect to the posterior p̃(θ(0)|YT ,M0) and the parameter α with respect to

the prior density p(α). Since the data provide no information about α, the inference

is potentially sensitive to the choice of the prior p(α). Moreover, our identifying

assumption for labor supply shocks exploits the notion that the production capacity

is fixed in the short run. Allowing for time-varying utilization could undermine

this assumption. In Appendix A we show that if the cost of intensive utilization of

capital results in a faster depreciation of capital, our identifying restriction is still

valid. The linear relation between labor productivity and hours still exists but one

needs to use a higher value for α.

To assess the robustness of our conclusions Figure 4 shows the posterior expected

13As we set ν = 1 and τ = 1 for our prior means, market consumption and home consumption

become separable in logs, which makes our prior mean of DSGE model essentially identical to

standard one-sector model. Thus, Figure 3 also shows the home production model’s ability to

transmitting the home productivity shocks to market decisions.
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contribution of the labor supply shock to the variation in hours and output as a

function of α between 0.3 and 0.9. The share of εb lies between 25 and 55 percent

for hours and 5 to 25 percent for output. As we move to higher values of α, which

is likely the case as we allow for varying capital utilization, the importance of labor

supply shock is reinforced.

Overall, both VAR and DSGE model analysis document that labor supply shocks

plays a very important role as a source of economic fluctuations, especially in hours.

Our findings are comparable to the work by Shapiro and Watson (1988) where 60

percent of cyclical variation in hours is due to the stochastic trend component in

labor supply, and the one by Hall (1997) where almost entire cyclical variation of

hours is attributed to preference shocks. However, the fairly concentrated DSGE

model based posteriors have to be interpreted with caution, since the weak time

series fit of the DSGE model, as documented in Section 5.3, indicates that some of

its restrictions are misspecified.

5.5 Impulse Response Functions

We compare the impulse response functions to see if the structural shocks identified

from the VAR conform to our economic intuition. Figure 5 depicts one-standard-

deviation impulse responses of labor productivity, consumer durable goods (invest-

ment in home capital) and market hours to three structural shocks. It shows the

DSGE model responses (solid line) and those from the VAR along with the 90

percent confidence interval (dotted lines). Looking at first row, in response to a

permanent shock, labor productivity both in the model and data approach the new

steady state at a similar pace. Spending on consumer durables also approaches a

new steady state. Hours in the market increase immediately in the model, whereas

they exhibit somewhat delayed responses, especially for hours, in the VAR. Model

responses to a temporary market productivity increase closely trace those from the

VAR confirming our interpretation of temporary labor-demand shifts. The response

of hours in the VAR is again delayed for about 2 quarters. Finally, in response to a

temporary increase in home productivity, while the responses of labor productivity
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is within the 90 percent confidence interval, it shows a very persistent response in

the data, whereas it decays rapidly in the model. Home investment initially de-

creases and moves above the steady state after 12 quarters in the data, whereas it

increases immediately and decays at a much higher pace in the model. Again, hours

exhibits somewhat delayed response in the data. Overall, the model, by and large,

reproduces the impulse response in the VAR. Yet the response of hours is delayed

for about 2-3 quarters in the data suggesting frictions in the labor market.

5.6 Evolution of Latent Technology Processes

According to the home production model, recessions may occur because agents find

it optimal to allocate more time in non-market activities. In our DSGE model the

attractiveness of non-market activity, or labor-supply shifts in general, is measured

by the home technology process. We plot three technology index in Figure 6 together

with the NBER business cycle peaks and troughs.14

All six recessions during the sample period are associated with low levels of

market productivity. Two business cycle troughs, in March 1975 and November

1982, coincide with unusually high productivity of non-market activities. The strong

interpretation of this finding is that unusually high productivity or preference shift

has contributed to low market employment and output in those recessions. A weaker

interpretation is, that in March 1975 and November 1982 the economic downturn

cannot solely be explained by an adverse technology shock in the market. The other

four recessions are associated with low productivity in both market and home sector.

5.7 Alternative Interpretations of the VAR Identification

In this section, we provide a couple of caveats regarding our identifying restriction.

We exploit the competitive labor market equilibrium in identifying temporary shocks

14For each draw from the posterior distribution of DSGE model parameters [θ′(1), α]
′ a smoothing

algorithm is applied to compute expected values for the technology sequences {at}
T
t=1, {bt}

T
t=1, and

{zt}
T
t=1 conditional onM1 and the sample of observations YT . These sequences of expected values

are averaged across the parameter draws and plotted in Figure 6.
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to labor demand and supply. While our DSGE model interprets them, respectively,

as shifts in market and home technology, the proposed identification scheme is more

general and allows an alternative interpretation. In fact, our identification distin-

guishes between the shift of and movement along the marginal product of labor, as

Equation (4) essentially captures the movement of the economy along the marginal

product labor curve.

As an illustrative example, consider a model economy with sticky prices where

firms have to produce goods to meet its demand. In this economy, the labor demand

is no longer a simple reflection of the marginal product of labor. It is instead jointly

determined by the demand for goods and the output-labor elasticity from production

technology. Suppose now there is an increase in the demand for goods that is not

caused by a productivity shift. This will lead to an increase in the demand for labor

at a given level of production capacity. The joint behavior of labor productivity and

hours is still dictated by the production function with a downward sloping marginal

product of labor. Thus, the same restriction can be used to capture such shocks.15

Our DSGE model interprets the movement along the marginal product of labor as

a shift in labor supply curve caused by a shift in home technology.

Finally, according to Gali (1999) and Basu, Fernald and Kimball (1998), a per-

manent increase in productivity could lead to a decrease in hours at least during the

first few years. This implies that temporary (market) productivity shocks may also

generate a negative correlation between labor productivity, which potentially makes

our identifying restriction vulnerable. However, according to our VAR estimation

result, which exploits a cointegration relationship as well as the stationarity of hours

in identifying permanent components, we did not find such a negative response of

hours in response to a permanent productivity shock.

15In this event, the real wage will increase given the upward sloping labor supply curve. However,

labor productivity falls as employed hours increases, and this further justifies our use of labor

productivity instead of wage series under the alternative interpretation.
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6 Conclusion

We investigate the sources of economic fluctuations in the context of a dynamic

general equilibrium. A new VAR identification scheme is proposed that identifies

three types of underlying disturbances in the aggregate labor market equilibrium:

temporary labor-supply shifts, temporary labor demand shifts, and permanent pro-

ductivity shocks that eventually move both demand and supply. According to the

variance decomposition from the VAR, the labor-supply shifts are an important

driving force of the cyclical fluctuation of hours, as they account for about half the

variation. However, for output fluctuations, the role of labor-supply shifts is modest.

Either permanent or temporary shifts in labor demand, interpreted, respectively, as

permanent and temporary productivity shifts, explain more than 80 percent of the

variation in output.

To assess the role of labor-supply shifts in an equilibrium model, a home pro-

duction model with stochastic variation in non-market technology is estimated, and

its predictions are compared to those from the VAR. When the equilibrium model

is estimated with the same set of structural shocks, again, about half the variation

of hours is still attributed to the temporary labor-supply shifts.

In order to make the VAR and DSGE model analysis comparable, it is desirable

to use an identification scheme for the VAR that correctly identifies the structural

shocks, if the data were in fact generated from the DSGE model. However, for

many DSGE models the correct identification cannot be achieved based on simple

“zero-restrictions” (Canova and Pina, 2000). To overcome this problem, the DSGE

model could be re-specified to make it consistent with the “zero-restrictions”, e.g.,

Rotemberg and Woodford (1998). On the other hand, one could employ an identi-

fication scheme that does not solely rely on these “zero-restrictions”. We followed

the second path. Unlike in recent papers by Canova and DeNicolo (1998) and Uh-

lig (1997), who achieve identification based on inequality restrictions, we develop a

scheme conditional on one non-identifiable parameter. For our analysis, we find it

justifiable to specify a tight prior on this non-identifiable parameter. We view this
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approach as a promising alternative that has potentially a wide application in both

macroeconomics and time series analysis.
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A Labor Demand with Variable Capital Utilization

Consider a Cobb-Douglas production function with inputs in capital services and

hours:

Yt = (utKm,t)
1−α(Xm,tLm,t)

α, (29)

where ut represents the utilization of the capital stock. Suppose the intensive use

of capital results in a fast depreciation. At the cost of a more complicated notation,

we could work with an alternative decentralization scheme in which firms makes

decisions on accumulation. However, since both decentralizations are essentially

identical, as in the main text, suppose the firm rents the capital from households.

Yet the firm has to compensate households for faster depreciation when the capital

is utilized more intensively:

max
Lm,t,Km,t,ut

(utKm,t)
1−α(Xm,tLm,t)

α −WtLm,t − (Rt + δ(ut))Km,t. (30)

For illustrative purposes, assume that the elasticity of depreciation is constant:

δ(ut) = δ0
uλ+1t

λ+1 , where λ > 0. As λ → ∞, the utilization is held constant and

the depreciation rate is fixed. The first order conditions of the profit maximization

problem with respect to Lm,t and ut imply that the inverse labor demand schedule

still depends on the predetermined capital stock and the market productivity shocks

only. However, its slope changes:

∂ lnWt

∂εb,t
= µ(α− 1)

∂ lnLm,t

∂εb,t
, µ =

λ

λ+ α
≤ 1. (31)

Therefore, the proposed identification scheme is still valid but the slope of the labor

demand schedule is smaller than in the constant utilization case, reflecting an extra

margin for the firm to exploit.

B Data Set

The following time series are extracted from DRI: real gross domestic product

(GDPQ), consumption of consumer durables (GCDQ), employed civilian labor force

(LHEM), civilian noninstitutional population 20 years and older (PM20 and PF20).
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Population is defined as POPQ = 1E6 ∗ (PF20 + PM20) and used to convert

GDPQ and GCDQ into real dollar per capita terms. Thus, Yt = GDPQ/POPQ

and Ih,t = GCDQ/POPQ.

¿From the BLS we obtained the series: average weekly hours, private non-

agricultural establishments (EEU00500005). Prior to 1963 the BLS series is an-

nual. We used these annual averages as monthly observations without further mod-

ification. Our measure of annual hours worked at monthly frequency is Lm,t =

52 ∗EEU00500005 ∗LHEM / POPQ. Hours are converted to quarterly frequency

by simple averaging. Our measure of labor productivity is Pt = Yt/Lm,t.

C Vector Autoregression

C.1 Prior

Let ∆YT be the (T −p)×n matrix with rows ∆y
′
t, t = p+1, . . . , T (the first p obser-

vations are used to initialize lags). Let k = 3+np, XT (λ21) be the (T−p)×k matrix

with rows x′t = [1, t, (1,−λ21, 0)yt−1,∆y
′
t−1, . . . ,∆y

′
t−p], UT be the matrix with rows

u′t, and B = [Φ0,Φtr, α,Φ1, . . . ,Φp]
′. We include a deterministic trend with coef-

ficient vector Φtr in the specification of M0 to capture potential long-run shifts

in market hours due to structural changes in labor market participation behavior.

The reference model can be expressed in matrix form as ∆YT = XT (λ21)B + UT .

Conditional on λ21 the prior for B and Σ is constructed from a training sample

t = p+1, . . . , T∗. Let ∆Y∗ and X∗(λ21) be matrices with rows ∆y
′
t and x

′
t as defined

above, t = p+ 1, . . . , T∗. Define

B̂∗ = (X
′
∗X∗)

−1X ′
∗∆Y∗, Σ̂u,∗ = (T∗ − p)

−1(Y∗ −X∗B̂∗)
′(Y∗ −X∗B̂∗). (32)

Then we obtain

λ21 ∼ N (1, 0.0252)

Σu|λ21, Y∗ ∼ IW

(

(T∗ − p)Σ̂u,∗, T∗ − k − p

)

vec(B)|Σu, λ21, Y∗ ∼ N

(

vec(Ĉ∗),Σu ⊗ (X
′
∗X∗)

−1

)

, (33)
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where IW denotes the Inverted Wishart distribution. In our empirical analysis the

size of the training sample is T∗ = 20 and the lag-length is p = 2.

C.2 Posterior Simulation

A Gibbs sampler is used to generate draws from the posterior distribution of the

VAR parameters (B,Σu, λ21). We draw successively from the conditional posteri-

ors p(B,Σu|λ21, YT ,M0) and p(λ21|B,Σu, YT ,M0). The distribution of Σu|λ21, YT

is Inverted Wishart and B|Σu, λ21, YT is multivariate normal. The parametriza-

tion is given by replacing ∆Y∗ and X∗(λ21) with ∆YT and XT in Equations (32)

and (33). To characterize the posterior distribution of λ21, define ∆ỸT with rows

∆ỹ′t = [∆yt−Φ0−Φtrt−µ(1, 0, 0)yt−1−
∑p

i=1Φi∆yt−i]
′ and X̃t with rows x̃

′
t, where

x̃t = µ(0,−1, 0)yt−1. Then one obtains

λ21|B,Σu, YT ∼ N (mλ, vλ), (34)

where v−1λ = 1/0.01 + tr[Σ−1X̃ ′
T X̃T ], mλ = vλ

(

1
0.01 +

tr[Σ−1∆Ỹ ′
T X̃T ]

tr[Σ−1∆X̃′
T
X̃T ]

)

, and tr[.]

denotes the trace operator.
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Table 1: Prior and Posterior Distribution for DSGE Model Parameters

Parameters Prior Posterior

Name Range Density Mean S.E. Mean S.E.

α [0,1] Beta 0.666 0.020 0.741 0.018

β [0,1] Beta 0.993 0.002 0.978 0.003

γ IR Normal 0.004 0.0005 0.004 0.0004

δ [0,1] Beta 0.025 0.002 0.016 0.002

Lm [0,1] Beta 0.330 0.020 0.340 0.020

ρa [0,1] Beta 0.800 0.100 0.767 0.030

ρb [0,1] Beta 0.800 0.100 0.859 0.033

Lh [0,1] Beta 0.250 0.050 0.170 0.045

η IR+ Gamma 100.0 100.0 24.58 3.863

ψ [0,1] Beta 0.666 0.100 0.757 0.081

ν IR+ Gamma 1.000 2.000 2.249 0.318

Ih/Im IR+ Gamma 0.700 0.020 0.685 0.020

τ IR+ Gamma 1.000 2.000 2.381 0.405

ξ1 IR Normal 2.960 1.000 3.150 0.005

ξ2 IR Normal 0.000 0.020 0.005 0.0003

σz IR+ InvGamma 0.01∗ 2.000∗ 0.009 0.0008

σa IR+ InvGamma 0.01∗ 2.000∗ 0.009 0.0009

σb IR+ InvGamma 0.015∗ 2.000∗ 0.023 0.0058

Notes: For the Inverse Gamma (u, s) priors we report the parameters u and s. For

u = 2 the standard error is infinite. The posterior moments are calculated from the

output of the Metropolis algorithm.
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Table 2: Variance Decomposition by Frequency

Variable Cycles Prior Posterior

Per Quarter Shock VAR DSGE VAR DSGE

lnLm,t 1/32 εz 0.336 0.415 0.223 0.029

εa 0.429 0.356 0.318 0.355

εb 0.235 0.229 0.459 0.616

lnLm,t 1/12 εz 0.325 0.331 0.226 0.015

εa 0.455 0.381 0.277 0.457

εb 0.220 0.287 0.497 0.528

lnLm,t Uncond. εz 0.335 0.518 0.205 0.099

Variance εa 0.440 0.282 0.370 0.314

εb 0.225 0.200 0.425 0.587

lnYt 1/32 εz 0.681 0.540 0.467 0.431

εa 0.244 0.388 0.388 0.429

εb 0.075 0.072 0.145 0.140

lnYt 1/12 εz 0.436 0.444 0.505 0.263

εa 0.439 0.456 0.355 0.603

εb 0.125 0.100 0.140 0.134

∆ lnYt Uncond. εz 0.367 0.433 0.565 0.248

Variance εa 0.512 0.454 0.298 0.624

εb 0.121 0.113 0.137 0.128

Notes: Decomposition of unconditional variance and spectral density and for aggre-

gate output lnYt and market hours lnLm,t at 32, and 12 quarters per cycle. The

table reports posterior means.
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Figure 1: Time series of Hours, Labor Productivity, and Expenditures

on Consumer Durables

Notes: Solid vertical lines correspond to business cycle peaks, dashed lines denote

business cycle troughs (NBER Business Cycle Dating).
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Figure 2: Spectral Density Decomposition, VAR

Notes: The frequency is 1/20 cycles per quarter. Dots represent 200 draws from

prior and posterior distributions, respectively.
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Figure 3: Spectral Density Decomposition, DSGE Model

Notes: The frequency is 1/20 cycles per quarter. Dots represent 200 draws from

prior and posterior distributions, respectively.
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Figure 4: Robustness of Variance Decomposition

Notes: Posterior mean for the percentage of variation due to the labor supply shock.

The spectral density is decomposed at 32 and 12 quarters per cycle. For output we

report the decomposition of the unconditional variance of output growth.
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Figure 5: Impulse-response Functions

Notes: Figure depicts VAR posterior mean (solid), 90 percent Bayesian confidence

interval (dotted) based on VAR posterior, and posterior mean responses of home

production model (dashed).
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Figure 6: Filtered technology processes at, bt, and xt

Notes: The posterior mean estimates of the latent technology processes are based

on the DSGE model. Solid vertical lines correspond to business cycle peaks, dashed

lines denote business cycle troughs (NBER Business Cycle Dating).


