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Abstract 
This paper integrates imposing a factor structure on residuals in vector autoregressions 
(VARs) into structural VAR analysis. Identification, estimation and testing procedures are 
discussed. The paper applies this approach to the well-known problem of studying the effects 
of monetary policy in open economy VAR models. The use of factor structure in identifying 
structural shocks is shown to resolve three long-standing puzzles in VAR literature. First, the 
price level does not increase in response to a monetary tightening. Second, the exchange rate 
appreciates on impact and then gradually depreciates. Hence, no price level and exchange rate 
puzzles are found. Third, monetary policy shocks are much less volatile than suggested by 
standard VAR identification schemes. In addition, the paper suggests that the apparent weak 
contemporaneous cross-variable responses and strong own responses in structural VARs can 
be an artifact of identifying assumptions and vanish after imposing a factor structure on the 
shocks.  
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1 Introduction 
Vector autoregressions (VARs) are often used to provide a set of stylized facts about 

responses of macroeconomic variables to structural shocks such as innovations in technology and 

monetary policy. These facts serve as a yardstick in evaluating or calibrating theoretical business 

cycle models (e.g., Rotemberg and Woodford 1997, Woodford 2003, Christiano, Eichenbaum, and 

Evans 2005). However, the mapping from VARs to business cycle models is not straightforward.  

First, in VARs, whether structural or not structural, the number of structural shocks is equal 

to the number of variables. For instance, in VARs with 10 variables there are 10 structural shocks 

while business cycle models tend to have only a few structural shocks such as innovations in 

technology, preferences, or policy. Hence, VARs can produce too many structural shocks to be 

economically meaningful.1 This mismatch in the number of structural shocks is important because 

identification of key structural shocks—that is, shocks that constitute the primary focus of the 

analysis—is sensitive to inclusion of other, possibly less important structural shocks (e.g., Faust 

1998, Faust and Rogers 2003). For every additional variable, it may be increasingly difficult to find 

credible identifying restrictions that differentiate the key structural shocks from other shocks. In fact, 

many VAR models (e.g., Blinder and Bernanke 1992) are silent about unimportant, or “nuisance,” 

structural shocks thus leaving the reader wondering what these shocks are and how they are different 

from the key structural shocks. 

Second, Sims (1998) observes that weak cross-variable responses in VARs are a robust 

stylized fact. Indeed, diagonal entries of the covariance matrix of VAR residuals are typically very 

large relative to off-diagonal entries and VARs tend to have difficulties with matching responses of 

models with large contemporaneous responses to structural shocks. For example, Eichenbaum and 

Evans (1995) find that their identified VARs cannot reproduce exchange rate overshooting predicted 

by the Dornbusch (1976) model. This tendency to find attenuated responses can lead to rejection of 
                                                 
1 Alternatively, business cycle models can have too few shocks to match the data.  
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correct theoretical models with large cross-variable responses, motivate models with significant 

rigidities, and result in the conclusion that the policymaker needs to policy instruments a lot to move 

target variables a little. Whether stickiness is induced by the identification scheme or is a genuine 

regularity in the data remains an open question. A related third problem is the high correlation of 

identified monetary policy shocks with VAR residuals for policy instrument variables such as the fed 

funds rate. Given the noisiness of VAR residuals, this high correlation is puzzling because it 

indicates that policymakers often move instruments by large amounts at random.  

This paper reconciles these facts by identifying and estimating a VAR with the number of 

structural shocks being less than the number of variables in the VAR. The key insight is to treat 

structural shocks as factors so that structural shocks are not contaminated with series-specific noise. 

The proposed method not only determines the number of structural shocks but also uniquely 

identifies these shocks using short- and/or long-run restrictions even when the number of the shocks 

is greater than one. Furthermore, all standard VAR tools are available for dynamic analyses of 

economic models under this identification method—for example, impulse response functions are 

easily constructed. This paper uses the generalized method of moments (GMM) framework to 

provide a unified treatment of the factor structure of innovations in VARs (FSVARs). This paper 

extends FSVAR framework to analyses other than studies of propagation of shocks across regions 

and industries (Norrbin and Schlagenhauf 1988, 1996, Altonji and Ham 1990, Clark and Shin 2000, 

Stock and Watson 2003). Specifically, I argue that series in FSVARs need not have regional or 

sectoral structure and factor structure in VAR residuals can arise naturally in economic problems.  

When compared with structural VARs, FSVARs have several advantages. First, inclusion of 

additional variables in a VAR does not imply the existence of additional structural shocks and, 

hence, identifying restrictions for key structural shocks are not modified to distinguish the key 

structural shocks from other shocks. Second, structural shocks in FSVARs can be directly mapped to 

structural innovations in business cycle models. Third, the volatility of structural shocks is 
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disentangled from the volatility of VAR residuals. I contrast FSVARs with structural VARs and 

show that imposing a factor structure on VAR residuals can resolve the VAR puzzles that I mention 

above.  

This approach is different in several important respects from factor augmented VARs 

(FAVARs) considered in Bernanke and Boivin (2003) and Bernanke, Boivin and Eliasz (2005). 

First, their modification is focused on incorporating large information sets into an otherwise standard 

VAR model, and factors are extracted from a set of auxiliary variables not included in the VAR. 

Second, the number of structural shocks in a FAVAR is equal to the number of variables in the 

FAVAR. Third, factors in FAVARs are identified only up to a rotation and the factors are ordered 

first in recursive identification. As I show below, these differences can have important implications 

for the consistency of estimated contemporaneous responses of variables and, thus, impulse 

responses.2   

To illustrate the method, I apply it to the problem of identifying the effects of monetary 

policy in a model similar to Eichenbaum and Evans (1995). Using US data, I construct impulse 

responses of key macroeconomic variables to a monetary tightening. In contrast to commonly used 

VAR identification schemes, my identification leads to responses of the price level and exchange 

rate consistent with macroeconomic theory. Specifically, in response to policy surprises the price 

level does not rise on impact and then falls gradually and the exchange rate appreciates on impact, 

and then gradually depreciates. In other words, I do not find the price level and exchange rate 

puzzles that have been documented by Sims (1992) and Eichenbaum and Evans (1995). In addition, 

under my identification the policy shocks are less noisy than under other identification schemes. I 

argue that because conventional identification schemes do not distinguish structural shocks from 

                                                 
2 Clark and Shin (2000) and Stock and Watson (2003) contrast FSVARs with dynamic factor models (Geweke 1977, 
Quah and Sargent 1993, Stock and Watson 1998, Forni et al 2000, Forni and Lippi 2001, Giannone, Reichlin, and Sala 
2004, Forni, Lippi and Reichlin 2003). 
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series-specific innovations, the latter can attenuate or even reverse contemporaneous responses of 

macroeconomic variables to innovations in monetary policy.  

The rest of the paper is structured as following. In section 2, I present a unified framework 

for analysis of FSVARs. I discuss identification, estimation, and inference. In section 3, I present an 

empirical application to the analysis of monetary policy and contrast conventional identification 

schemes with the proposed identification scheme. I conclude in section 4.  

2 The Method  

2.1 Setup 
Consider the standard VAR model:  

1

p
t i t i ti −=
= Π +∑X X u  (1) 

where Xt is a vector of q variables, ut is the vector of i.i.d. reduced-form errors, 1,..., pΠ Π  are 

matrices of conformable sizes.3 The bridge between ut and structural shocks tε  is embodied in the 

relationship t tA=u ε  where the matrix A, which is not identified unless one imposes enough 

restrictions on its elements,4 summarizes contemporaneous relationships in the economy. This 

matrix is of central importance in the VAR framework because incorrect identification of A 

invalidates all subsequent economic analyses, including structural impulse response functions and 

associated confidence bounds.  

In contrast to standard structural VARs that postulate the number of structural shocks be 

equal to the number of variables in the VAR (i.e., A is a square matrix), FSVARs assume that 

reduced-form innovations ut are a linear combination of the structural shocks tε  and of series-

specific idiosyncratic noise vt. Specifically, I replace t tA=u ε  by 

                                                 
3 In contrast, FAVARs can be represented ( ) ( )1 1t t t tL L

− −
= Π + ϒ +X X F u  where tF  is a vector of dynamic factors. 

Again, note that factors in these models are identified only up to a rotation and the factors are ordered first in recursive 
identification.  
4 For examples of such restrictions see Christiano, Eichenbaum and Evans (1999).  



 5

1 11 1 1 1

1

...

...

t k t t

t t t

nt n nk kt nt

u a a v
A

u a a v

ε

ε

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = + = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

u ε v , (2) 

where A is an ( )n k×  matrix and  

( ) ( ) ( )0 , , 0t t t k t sE t E I t E s t′ ′= ∀ = ∀ = ∀ ≠ε ε ε ε ε , (3) 

( ) ( ) ( ) ( )2 2 2
1 20 , , ,..., , 0t t t v v vn t sE t E diag t E s tσ σ σ′ ′= ∀ Ψ ≡ = ∀ = ∀ ≠v v v v v , (4) 

( ) 0 ,t sE s t′ = ∀ε v . (5) 

In addition to the standard normalization assumption (3), assumption (4) postulates that 

shocks in vt are contemporaneously and intertemporally uncorrelated and may have different 

variances. Condition (5) requires vt to be uncorrelated with εt at all leads and lags. Representation (2) 

and conditions (3)-(5) essentially replicate assumptions necessary for the existence of a factor 

representation of the series ut (e.g., Anderson and Rubin 1956). Technically, the presence of noise 

shocks guarantees that the matrices ( )t tE ′Ω ≡ u u  and, thus, ( )t tE ′X X  have full rank. Because 

rank(A)<n, I refer to this approach as reduced rank (RR) identification. 

In previous applications of FSVARs (e.g., Altonji and Ham 1990, Stock and Watson 2003), 

tε  is typically interpreted as a global/national/economy-wide shock while vt is understood as a 

collection of country/region/industry-specific shocks. Critically, the noise shock vt does not affect 

the contemporaneous cross-variable responses embodied in the matrix A. In contrast, in standard 

VARs without regional or sectoral patterns, the series-specific shock vt may be a shock induced by 

errors in decision rules arising from expectation errors, partial/incomplete information sets, 

noise/chartist traders, myopic consumers, etc. To see the point, note that solutions to rational 

expectations (RE) models can be generically formulated as follows (e.g., Anderson and Moore 

1985):  

1t t tB A= +D S ε , (6) 

1 2 3t t tB B+ = +S S D , (7) 
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where Dt is a vector of jump (non-predetermined) variables (e.g., consumption, output, asset prices), 

St is a vector of state (predetermined) variables (e.g., capital, habit), tε  is a vector of structural 

innovations (e.g., innovation in technology), A, B1, B2, B3 are matrices of conformable sizes. The 

matrix A embodies contemporaneous responses of variables to structural innovations. Equations in 

(6) summarize decision rules. Equations in (7) capture the evolution of state variables.  

In practice, there can be many forces that prevent agents from acting according to the 

prescribed decision rules. For example, expectations errors, measurement errors, heterogeneous 

information sets (e.g., consumers and the central banker have different information sets), myopia and 

other forms of irrational behavior are possible reasons for why Dt may depart from optimal 

responses prescribed by (6).5 To accommodate these errors, I follow Sims (2002) by augmenting the 

decision rule (6) with shocks tv  so that  

1t t t tB A= + +D S ε v .  (8) 

This recognizes the fact that error terms in equilibrium models are more naturally attached to 

equations than to variables (Sims 2002). After combining (7) and (8), one can find the dynamics of 

Dt: 

( ) ( )1
1 2 3 1 1t t t t t tB I B L B A L−

− −= − + + = Π +D D ε v D u ,  (9) 

where L is the lag operator, ( ) 1
1 2 3B I B L B−−  is approximated with a lag polynomial ( )LΠ  of a 

suitable order, and t t tA≡ +u ε v  is a vector of reduced-form innovations in Dt. In this VAR, the lag 

polynomial ( )LΠ  does not depend on the structure of ut. In Appendix B, I provide a stylized 

economic model with imperfect information in the spirit of Lucas (1972) that generates a factor 

structure in VAR residuals.  

Given (2)-(5), the covariance matrix of ut can be decomposed as: 

                                                 
5 Note that if these errors are correlated across variables then these errors are analogous to genuine structural shocks in 
the sense that multiple variables are affected by these errors. Thus, I distinguish errors that are uncorrelated across 
variables from errors that are correlated across variables. The latter are treated as part of tε . 
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( ) ( )t t t tE A A E AA′ ′ ′ ′Ω = + = + Ψε ε v v , (10) 

where AA′  and Ψ  measure the portions explained by structural and noise shocks, respectively. Note 

that, consistent with (9), decomposition of the covariance matrix Ω  and estimation of 1,..., pΠ Π  are 

disentangled. Thus, in the spirit of Sims (1980) and Bernanke (1986), I use lags to filter the series, 

find reduced-form shocks, impose short run restrictions on the covariance of the reduced-form 

shocks and identify/estimate the matrices A and Ψ  in (10).  

Whenever imposing factor structure on ut is appropriate, it has several advantages relative to 

the standard case with ( ) ( )dim dimt t=ε u  and 0t ≡v . First, specification (2) can have only a few 

structural shocks even in VARs with many variables. In contrast, every additional variable in a VAR 

with a square A requires “inventing” another structural shock to avoid stochastic singularity in Xt.  

Second, the number of structural shocks in VARs with square A can affect identification of 

key structural shocks such as innovations in monetary policy that are the primary focus of the study. 

Indeed, identifying restrictions are designed to distinguish the key structural shocks from nuisance 

structural shocks—i.e., structural shocks that are not the focus of a study—and as the number of 

nuisance structural shocks increases the researcher has to impose restrictions on all structural shocks 

which may be difficult to justify. For example, to achieve identification, Bernanke and Mihov (1998) 

assume that asset prices do not respond contemporaneously to innovations in monetary policy. In 

many cases (e.g., in VARs with a block-recursive A), nuisance structural shocks are not even named 

or interpreted so that it can be unclear if the identifying restrictions can credibly differentiate the key 

structural shocks from nuisance structural shocks. Faust (1998) and Faust and Rogers (2003) 

illustrate this point eloquently. In contrast, FSVARs solve this problem by introducing noise shocks 

vt thus keeping the number of structural shocks as small as necessary.  

Third, it is plausible that reduced-form VAR residuals ut absorb not only structural shocks tε  

but also idiosyncratic innovations in the series vt. For example, financial variables are often found to 

be well-described by factor models (e.g., Bai and Ng 2002). By pooling structural and idiosyncratic 
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shocks, conventional VARs can give a misleading picture about the true responses of the economy to 

structural shocks because these types of shocks have different cross-variable responses (see section 

3). In contrast, specification (2) differentiates tε  and vt explicitly. Furthermore, this distinction 

separates noisiness of VAR residuals from volatility of structural shocks, i.e., changes in a VAR 

residual are not necessarily due to structural shocks.  

2.2 Identification 
The fundamental problem of identifying covariance structure (10) with k≥2 is in the 

rotational equivalence of solutions to (10). Specifically, the classical factor analysis (e.g., Basilevsky 

1994) shows that while the matrix Ψ is uniquely identified, there are infinitely many matrices B and 

orthonormal rotation matrices M such that AA BB′ ′=  with B=AM. To uniquely (up to sign) identify 

A, one has to impose restrictions on A so that there is no orthonormal rotation matrix M (unless M=I) 

such that B=AM satisfies the restrictions imposed on A. I focus on zero restrictions on some entries 

of A.6 In the case of orthogonal structural shocks, the necessary condition to identify A is given by 

Lawley and Maxwell (1974): ( )1
2 1Ar k k≥ − , where rA denotes the number of imposed zero 

restrictions. The model is overidentified if ( ) ( )21 1
2 2 1 0Ad n k n k r k k⎡ ⎤= − − − + − − >⎣ ⎦ , where the 

parameter d denotes degrees of freedom. 

For local identification of ,A Ψ  it is sufficient that the Jacobian of ( )vech AA′ + Ψ  has full 

rank (Bekker, Merkens and Wansbeek 1994, Corollary 4.2.1, p. 78). On the other hand, global 

identification requires proving that the only admissible rotation matrix M is the identity matrix. 

Anderson and Rubin (1956) give sufficient conditions for zero restrictions to uniquely identify A.7 

For the rth column of an ( )n k×  matrix A—i.e., the rth factor—to be uniquely identified three 

requirements must be satisfied: 

                                                 
6 Placing zero restrictions on the entries of the matrix A is often called exploratory, confirmatory or simple structure 
factor analysis. For more details see Lawley and Maxwell (1971) and Basilevsky (1994). 
7 There are other sufficient conditions. See Anderson and Rubin (1956) and Algina (1980). 
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R1) the column must contain at least k-1 zeros; 

R2) the matrix of rows A(r) containing zeros at the rth column with rth column deleted must 

have rank k-1; 

R3) each column of A must contain at least three non-zero entries.8 

Another sufficient condition to identify the matrix A (Anderson 2003, Anderson and Rubin 

1956), which I will call R4, is that rows and columns of the matrix A can be rearranged so that the 

first k rows of the rearranged A form a lower triangular ( )k k×  matrix, which is similar to recursive 

identification in VARs. In previous applications of FSVARs, identification is guaranteed because A 

is lower diagonal (e.g., Stock and Watson 2003) or A has a special structure such as 

( )0 1 1,..., 1q pA A diag a a ×
⎡ ⎤= ⊗⎣ ⎦  where A0 is an ( )1pq×  matrix that embodies responses to national 

shocks, a1,…,aq reflect responses to regional shocks, q is the number of regions, and p is the number 

of industries in a region (e.g., Altonji and Ham 1990).9  

Note that conditions R1-R3 allow partially identified A. In other words, if the researcher is 

interested in identifying the effects of only one factor (i.e., he or she does not need to identify A 

completely), it is enough to identify the column of A corresponding to the factor of interest. In 

practical work, one can put arbitrary constraints on the entries of unidentified columns (e.g., R4 for 

unidentified columns) without affecting the identified factors to reach identification.  

Non-zero restrictions on entries of A can also provide global identification, although 

identification requirements for non-zero restrictions are much stricter (see Algina 1980). For 

instance, long-run restrictions as in Shapiro and Watson (1988) and Blanchard and Quah (1989) or 

                                                 
8 Condition R3 is mandated by the simple fact that any factor is identified only if at least three signals are available, 
otherwise one cannot separate common factor from idiosyncratic noise in the variables. Bekker, Merkens and Wansbeek 
(1994) compare necessary and sufficient conditions for covariance structures with the respective conditions for 
simultaneous equation models.  
9 In the latter case, identification follows from conditions in Algina (1980) because the restrictions are both zero and non-
zero.  
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short run restrictions as in Bernanke and Mihov (1998) require that linear combinations of the entries 

of A are equal to known constants.10  

2.3 Estimation and inference 
To start with a simple case, suppose 1,..., pΠ Π  are known. The goal is to decompose ut into 

factors and uncorrelated errors, i.e., find matrices ,A Ψ  such that AA′Ω = + Ψ . Note that, even in 

VARs including nonstationary variables, ut is stationary so that standard estimation and inference 

techniques can be applied. To simplify notation, define ( ) ( ),t t tF A vech AA′ ′Ψ = − − Ψu u  and note 

that under my assumptions ( ) ( ), 0tE F A vech AA′Ψ = Ω − −Ψ =⎡ ⎤⎣ ⎦ . Using this moment condition, I 

follow Bernanke (1986) and use GMM to estimate ˆ ˆ,A Ψ  as  

( ) ( )11 1
, 1 1

ˆ ˆ, arg min , ,
T T

t tT TA t t

A F A W F A−

Ψ
= =

⎧ ⎫′⎛ ⎞ ⎛ ⎞⎪ ⎪Ψ = Ψ Ψ⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭
∑ ∑ , (11) 

where W is the optimal weighting matrix of conformable size.11,12 The resulting estimates are 

consistent, efficient and asymptotically normally distributed (Anderson 2003). If the model is 

overidentified, one can use the J-statistic, a byproduct of the GMM estimation, to test 

overidentifying restrictions imposed on A and Ψ  (specification test). The J-statistic does not depend 

on whether the model is uniquely identified since all optimal solutions to (11) yield the same 

minimum. I use this fact to determine the rank of A, i.e., the number of factors, even when A is 

partially identified (see Appendix A). 

                                                 
10 It should be noted that it is difficult (if possible) to identify factors in dynamic factor models unless one uses long run 
restrictions like Giannone et al (2004) or has a natural ordering of factors (e.g., global/national/regional/local) like Kose, 
Otrok and Whiteman (2003).  
11 Since (11) entails non-linear optimization in entries of A, numerical optimization of the objective function may require 
checking different starting values to verify that the solution is global optimum. To verify local identification, I suggest 
checking if the Jacobian of the objective function has full rank. 
12 Alternatively, one can use maximum likelihood estimator (MLE) to find A and Ψ . In this case, the solution minimizes 

the following log likelihood: ( )1
2 2

1

1
log logT

T
t tt

L AA AA −

=
′= − + Ψ − ⎡ ⎤′ ′ + Ψ⎣ ⎦∑ u u . Asymptotically, MLE and GMM 

are both consistent and normally distributed under suitable assumptions (Anderson 2003). Although GMM requires less 
structure than MLE, in small samples MLE can perform somewhat better than GMM (see Clark 1996). I suggest using 
GMM to estimate parameters matrices A,Ψ  because it conveniently combines estimation and inference. 
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Of course, { }1 ,..., p≡ Π ΠΠ  is not known in applications and only an OLS estimate Π̂  is 

typically available. Although this does not affect the consistency of ˆ ˆ,A Ψ , one generally needs to 

adjust standard errors of ˆ ˆ,A Ψ  for the uncertainty introduced at the first stage when Π̂  is estimated 

(Pagan 1984). Fortunately, the following proposition shows that the standard errors of ˆ ˆ,A Ψ  need not 

be adjusted for asymptotic inference.  

Proposition 1 

Suppose ,A Ψ  are locally identified (i.e., ( ), ,AE F AΨ⎡ ⎤∇ Ψ⎣ ⎦  has full rank). Then under 

regularity conditions, ( ) ( )ˆ ˆ ˆ ˆ,A⎡ ⎤Ψ⎣ ⎦Π Π  and ( ) ( )ˆ ˆ,A⎡ ⎤Ψ⎣ ⎦Π Π  are asymptotically normal with 

the same covariance matrices.  
Proof: see Appendix C.  

This proposition proves that, while making standard asymptotic inference about A, one can 

ignore the fact that 1
ˆ ˆ,..., pΠ Π  are estimates.13 This greatly simplifies estimation and inference for A 

and Ψ : one only needs to estimate the VAR by LS and in the GMM part treat the estimated 

residuals ˆtu  as population counterparts ut. In Appendix D, I describe the bootstrap method I use to 

compute bias-corrected GMM estimates, to improve the accuracy of inference and, thus, to enhance 

the finite sample properties of the GMM (see Horowitz 1998). To illustrate bootstrap and standard 

asymptotics procedures, I apply both procedures in my empirical example. 

Once parameters are estimated, I can use standard VAR tools to analyze the properties of the 

model. Anderson (2003, Section 14.7) shows that structural shocks can be estimated as 

( ) 1
1 1ˆ ˆ ˆˆ ˆˆt n tI A A A

−
− −′ ′= + Ψ Ψε u , which can be interpreted as the posterior estimate of tε  given VAR 

residuals ut. Variance decomposition and impulse response functions are easily constructed from 

( )MA ∞  representation ( ) ( )t t tL A= +X Θ ε v  where ( )LΘ  is a lag polynomial. Confidence bounds 

                                                 
13 This result cannot be extended to cases that use long-run restrictions to identify structural shocks. In such cases, one 
can use bootstrap to find correct standard errors and confidence intervals.  
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for impulse responses and variance decompositions can be computed using procedures as in Kilian 

(1999) or Inoue and Kilian (2002).14  

The reduced rank (RR) identification possesses useful properties of structural VARs and 

improves upon them in several ways. The RR identification easily links structural shocks in VARs 

with shocks in theoretical business cycle models, permits partial identification of A, and preserves 

simple and computationally undemanding estimation and inference. More importantly, the RR 

identification can rationalize Sims's (1998) “stickiness”, a stylized fact that contemporaneous cross-

variable responses tend to be very weak in conventionally identified VARs. Indeed, the covariance 

matrix of reduced-form VAR residuals Ω  typically has off-diagonal entries small relative to 

diagonal ones and, therefore, popular decompositions of Ω  result in weak cross-variable responses. 

On the other hand, business cycle models tend to produce strong contemporaneous responses thus 

making empirical stickiness a puzzle. In the next section, I use a specific example to demonstrate 

how stickiness can arise in models where innovations have factor structure.  

3 Application: identifying the effects of monetary policy 
I apply the reduced rank (RR) identification to the classical problem of determining the 

effects of unanticipated innovations to monetary policy. The VAR example is based on models used 

by Eichenbaum and Evans (1995) and Kim and Roubini (2000). I compare the RR identification 

with the recursive Cholesky identification as a prototype of all identification schemes.  

Let Y be a vector of macroeconomic variables with sluggish adjustment (e.g., real GDP), V – 

vector of asset prices (e.g., exchange rate) and monetary aggregates, R – vector of policy variables 

(e.g., fed funds rate). Hence, [ ], ,≡X Y V R . In my model, two macroeconomic variables with 

sluggish adjustment are real GDP (RGDP) and GDP deflator (PGDP) so that Y=[RGDP, PGDP]. 

The vector of asset price variables includes the index of commodity prices (CRB) and the real 

exchange rate (EXRUS); hence, V=[CRB, EXRUS]. The set of policy variables is exhausted by the 

                                                 
14 For Bayesian approaches see Sims and Zha (1999).  
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fed funds rate (FFR), i.e., R=[FFR]. I assume that there are two shocks in this economy 

,T P
t t tε ε⎡ ⎤= ⎣ ⎦ε  where P

tε  is an innovation in monetary policy and T
tε  is a technology innovation.15  

To identify the effects of monetary policy, I follow the structural VAR literature (e.g., 

Bernanke and Blinder 1992, Eichenbaum and Evans 1995, Bernanke and Mihov 1998) and assume a 

block recursive structure of the matrix A linking unobserved structural shocks to observed VAR 

residuals.16 My baseline ordering is [RGDP,PGDP,CRB,EXRUS,FFR]. Other orderings, e.g., 

[RGDP,PGDP,FFR,CRB, EXRUS], produce essentially identical results. For concreteness, consider 

the following relationship between reduced-form residuals and structural innovations: 

11 12

21 22 2

31 32 33 34 3

41 42 43 44 4

51 52 53 54 55

0 0 0
0 0 0 0 0
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⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥= = ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

u = ε = ε ,  (12) 

where AYY, for example, indicates contemporaneous interactions among variables in the Y-block and 

ARY indicates the contemporaneous effect of innovations in the Y-block variables on variables in the 

R-block. Since this identification requires equality of the number of shocks and variables, the 

researcher has to introduce, name and interpret “nuisance” structural shocks 2 3 4, ,t t tε ε ε . Since I am 

interested in the effects of monetary policy, I can, without loss of generality, set matrices AYY and 

AVV to be lower triangular.17  

A recursive structure of A has been typically justified by minimum delay restrictions (e.g., 

Bernanke and Blinder 1992). Although no response of the Y-block variables to shocks in the R-block 

variables appears to be a reasonable assumption, the assumption that asset prices do not respond to 

policy changes is dubious. In fact, any block recursiveness of [V,R] sub-block can be disputed 

                                                 
15 Giannone et al (2004) find in the context of factor models that two-structural-shock structure is a good description of 
the US economy.  
16 Relevant non-recursive identifications can be found in Cushman and Zha (1997) and Kim and Roubini (2000).  
17 Many shocks may satisfy identifying restrictions in (12) and thus these shocks have to be grouped under the rubrics 
“monetary policy shock” and “technology shock.” Blanchard and Quah (1989) discuss the implications of such a 
grouping.  
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because the policymaker can readily observe assets prices and react to them while asset prices are 

free to adjust in response to policy changes.  

In contrast, the RR identification imposes the following structure of the matrix A:  

11 1

21 2

31 32 3

41 42 4

51 52 5

0
0 0

RGDP
tt

PGDP
t YYt T

tCRB
t t VY VR t t t tt P

tEXRUS
t RY RRt

FFR
tt

a vu
a v Au
a a v A A Au
a a v A Au
a a vu

ε
ε

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥⎢ ⎥= = + = + = +⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

u ε v ε v , (13) 

where I allow noise vt to be in each equation to keep the specification flexible. The matrix A is 

globally uniquely identified by the condition R4. From (13), one can see that I continue to assume 

that structural policy shocks cannot contemporaneously affect variables in the Y-block. However, in 

contrast to (12), I assume that policy innovations affect variables in the V-block. I also assume that 

there are no structural shocks associated with asset prices. This assumption indicates that asset prices 

respond only to structural innovations (i.e., innovations in policy and technology), idiosyncratic 

innovation in asset prices (e.g., “bubble” component, noise traders), and do not respond to noise 

innovations in other variables.  

Note that a similar structure can be generated by VARs that order the policy block R before 

the asset prices block V. The similarity is, however, superficial. In those VARs, asset prices respond 

to all innovations in Y and R variables. In the RR identification, asset prices respond to innovations 

in policy and technology and do not respond to idiosyncratic noise in Y and R variables. For 

example, asset prices respond to fed funds rate shocks corresponding to “change in policy,” but do 

not respond to fed funds rate shocks corresponding to noise in fed funds rate series. In other words, 

the RR framework separates structural shocks from idiosyncratic noise while conventional 

identification schemes do not.  

To see the importance of this point, consider the model in which structural shocks and VAR 

residuals are linked in population as follows:  
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0Y Y
YT T

R R
RT RP P

V V
VT VP

u a v
u a a v A
u a a v

ε
ε

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥= = + = +⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

u ε v , (14) 

where Y, V and P denote blocks of variables (one variable per block), u are reduced-form VAR 

residuals, ε  are structural shocks with unit variance, and v are idiosyncratic noise in the series with 

the covariance matrix ( )2 2 2, ,Y V Pdiag σ σ σΨ = . I am interested in the contemporaneous response of the 

variables to an innovation in monetary policy.  

By construction, the reduced rank identification has factor structure and, therefore, correctly 

recovers A in (14). Specifically, the contemporaneous responses of the variables to a unit innovation 

in Tε  and Pε  are [ ], ,YT RT VTa a a ′  and [ ]0, ,RP VPa a ′ , respectively. Note that if RP VPa a  is positive 

(negative), series move in the same (opposite) direction in response to a monetary policy shock Pε .  

Now consider the Cholesky decomposition that ignores the factor structure. Denote the 

Cholesky-identified structural shocks with ,T CHε  and ,P CHε . The vector of the contemporaneous 

responses to ,T CHε  is  

( )
( ) ( )
( ) ( )

( )
( )
( )

1/ 2 1/ 22 2

1/ 2 1/ 22 2

1/ 2 1/ 22 2

var

cov , var

cov , var

Y
YT Y

Y R Y
YT RT YT Y

Y V Y
YT VT YT Y

u a

u u u a a a

u u u a a a

σ

σ

σ

− −

− −

⎡ ⎤ ⎡ ⎤+
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⋅ = +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⋅ +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

. 

Clearly, the Cholesky decomposition yields correct contemporaneous responses only if 0Yσ = . 

Since generally 2 0Yσ > , the response of the Y-variable to a unit shock in ,T CHε  is overstated while 

the responses of the R- and V-variables are attenuated towards zero, ceteris paribus. The larger the 

variance 2
Yσ  is, the larger the attenuation is in the cross-variable responses. Hence, the Cholesky 

decomposition is biased to finding little contemporaneous comovement in the series, i.e., stickiness.  
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Because of the ordering, the Cholesky identification correctly requires that the monetary 

policy ,P CHε  be orthogonal to uY. The vector of responses is given by  

( ) ( ) ( )1/ 2 1/ 2
0, var , cov , varR R V Ru u u u

− ′⎡ ⎤⋅⎢ ⎥⎣ ⎦
, (15) 

where the first entry of the vector is zero by the ordering of the variables, ,R Vu u  are found as 

residuals from regressing ,R Vu u  on uY (i.e., partial out the effect of the first structural shock under 

the Cholesky identification), and  

( )
2

2 2cov ,R V Y
RT VT RP VP

YT Y

u u a a a a
a
σ

σ
= +

+
,  (16) 

( ) ( )
( )

2 2 4
2 2

22 2

1
var RT YT YR

RP R

YT Y

a a
u a

a

σ
σ

σ

+
= + +

+
. (17) 

Residuals uY and uR are contaminated with classical measurement errors vY and vR; hence, the 

Cholesky-identified response of the second variable to a unit shock in Pε  is biased up, ceteris 

paribus, relative to the correct response aRP. Because the Cholesky identification finds little 

contemporaneous comovement of the R-variable with variables ordered before it and uR includes the 

noise shock vR, recursively identified structural innovations in monetary policy ,P CHε  are often 

highly correlated with uR, VAR residuals corresponding to the policy variable equation.  

Comovement of responses to ,P CHε  depends on the sign of ( )cov ,R Vu u . If ( )cov , 0R Vu u >  

( ( )cov , 0R Vu u < ), the series respond in the same (opposite) direction to an innovation in ,P CHε . If 

( ) ( )sgn sgnRT VT RP VPa a a a≠ , then ( )cov ,R Vu u  can be approximately zero even when 0RP VPa a ≠ . 

Moreover, it is possible that empirical and theoretical responses have different signs, i.e., 

( )( ) ( )sgn cov , sgnR V
RP VPu u a a≠ . Specifically, the necessary condition for this to happen is that 

variables co-move in response to some structural shocks and move in opposite directions in response 



 17

to other structural shock, i.e., ( ) ( )sgn sgnRT VT RP VPa a a a≠  in my example. Thus, the Cholesky 

identification can produce not only attenuated but also incorrectly signed responses.  

Importantly, the true comovement in the series can be recovered if aVT or, especially, aRT are 

close to zero, that is, asset prices or policy variables do not respond contemporaneously to 

innovations in technology. This can happen if either aVT and aRT are genuinely zero or the researcher 

sets them to zero. Thus, structural VARs with aRT=0 or aVT=0 are likely to find strong cross-variable 

responses. This explains why, for instance, Cushman and Zha (1997) and Kim and Roubini (2000) 

who set aRT to zero in their non-recursive identification schemes do find a strong contemporaneous 

responses of exchange rate to innovations in monetary policy while recursive identification tends to 

produce weak responses.  

Although theoretically possible, it is unlikely that ( ) ( ) 1/ 2
cov , varR V Ru u u

−
⋅ , the estimated 

size of the contemporaneous response of the V-variable to a unit shock in ,P CHε , is greater in 

absolute value than aVP, the true response to a unit shock in monetary policy Pε , because 2 2 2, ,Y R Vσ σ σ  

dominate entries of AA′  in typical applications (that is, diagonal entries of Ω  are considerably larger 

than off-diagonal entries of Ω ). As one moves to variables ordered last the estimated covariances 

become increasingly contaminated with terms like ( )2 2 2
RT VT Y YT Ya a aσ σ+  in (16) and, thus, estimated 

responses can fail to reveal the true comovement of the variables in response to structural shocks if 

the data generating process for ut has a factor structure. This is particularly important if many 

variables are ordered before the R-block, e.g., in cases where the R-block is ordered last.  

Overall, this simple exercise shows that the Cholesky-type identification is likely to find little 

and, possibly, incorrectly signed contemporaneous comovement of the series in response to 

identified structural shocks in a model like (14). Overstated responses to own shocks and understated 

cross-variable responses can results in the wrong conclusion that the policymaker needs to change 

his instruments a lot to move target variables a little. The same conclusion follows for non-
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recursively identified VARs although details depend on specific assumptions about the structure of 

the matrix A. In contrast to conventional identification schemes, the reduced rank identification takes 

out noise from series and, consequently, finds large comovement of series in response to structural 

shocks. Hence, stickiness of responses can be an artifact of applied identification. 

Now I contrast these two approaches to identification in my empirical application. I estimate 

the VAR in levels after taking logs of RGDP, PGDP, CRB, and EXRUS. All series are monthly. 

RGDP and PGDP series are from Bernanke and Mihov (1998). The number of lags in the VAR is 

selected to be 13 to eliminate serial correlation in the residuals and to match lags in Bernanke and 

Mihov (1998). My sample covers 1965-1996 but I exclude 1979-1982 when a different monetary 

regime was in place (Bernanke and Mihov, 1998).  

My AIC selection criterion (see Appendix A) suggests that k=2 is the appropriate number of 

factors. Overidentifying restrictions test cannot reject the hypothesis of two structural shocks at any 

reasonable significance level (p-value is 0.7). Table 1 presents the standard and bias corrected 

estimates of the matrix A in (13), and their asymptotic standard errors and bootstrap confidence 

intervals.18  

The estimated coefficients of the second column of A show the impact responses of CRB, 

EXRUS and FFR variables to a innovation in monetary policy. Note that commodity prices and real 

exchange rate respond to a shock in monetary policy as predicted by macroeconomic theory: 

commodity prices fall on impact (a32<0) while the real exchange rate rises (USD appreciates; a42>0). 

These responses are economically and statistically different from zero. In contrast, the Cholesky 

identification with ordering [RGDP,PGDP,CRB,EXRUS,FFR] implies that CRB and EXRUS do not 

respond contemporaneously. This is, however, not an artifact of ordering. Other orderings in the 

Cholesky identification—e.g., [RGDP,PGDP,FFR,CRB,EXRUS]—produce qualitatively identical 

                                                 
18 I do 2000 bootstrap replications with re-centering bootstrap moments. I use BCα-method to construct confidence 
intervals to have good coverage properties and have transformation respecting confidence intervals (see Efron and 
Tibshirani 1993 for details).  
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results, i.e., on impact CRB and EXRUS respond very weakly to innovations in FFR, thus confirming 

Sims's (1998) stickiness observation.  

Impulse response functions19 (IRFs) for the Cholesky identification and reduced rank 

identification are reported in Figure 1. For each identification scheme, the innovation is a unit shock 

to monetary policy. The time path of FFR is similar for the Cholesky and reduced rank (RR) 

identifications.  

As I have already noted from Table 1, the index of commodity prices (CRB) and the real 

exchange rate (EXRUS) contemporaneously respond to changes in monetary policy under the RR 

identification. The RR identification predicts that the index of commodity prices falls on impact. 

Then the index continues falling, after 20 months it levels off and gradually recovers. In contrast, 

under the Cholesky identification, CRB increases in the first months after the shock and only then it 

starts to fall and generally replicate the shape of the response under the RR identification.  

EXRUS appreciates on impact and then gradually depreciates under the RR identification. 

This response is consistent with the prediction of macroeconomic models with sticky prices (e.g., 

Dornbusch, 1976): tight monetary policy should lead to an appreciation of the real exchange rate on 

impact and its subsequent depreciation. Under the Cholesky identification, EXRUS peaks only after 

30 months and then it starts depreciating. Eichenbaum and Evans (1995) label this dynamics as “the 

exchange rate puzzle.”20 The response does not qualitatively change if I put FFR before asset prices. 

Apparently, the RR identification matches the theoretical responses much better than the Cholesky 

identification.  

 The differences in the response of the price level to changes in monetary policy are of 

special interest. It is a well known observation that in VARs with a block recursive identification the 

price level tends to rise in the first periods after “restrictive” monetary policy shocks and to decrease 

                                                 
19 I focus on point estimates and do not present confidence bounds for the sake of clarity.  
20 Faust and Rogers (2003) find that the exchange rate puzzle can be sensitive to alternative identifications of monetary 
policy shocks, orderings of variables and the size of the VAR model (recall that identification of key structural shocks 
can depend on inclusion of unimportant structural shocks).  
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after 20 or so months. Since there is no theory behind these dynamics, the phenomenon has been 

called “the price level puzzle” (e.g., Sims 1992). Hanson (2004) reports that the price level puzzle 

survives across subsamples and specifications although including information variables such as the 

index of commodity prices attenuates (but does not eliminate) the puzzle. Consistent with previous 

results, my point estimate of the price level response under the Cholesky identification is positive in 

the first 20 months and only after 20 months the price level begins to fall.21 According to the RR 

identification, there is no price level puzzle after a “restrictive” monetary shock. The price level 

remains essentially zero for six months and then it starts to fall.  

The response of GDP is also quite different. In the first months after the shock, the behavior 

of IRFs according to the Cholesky and RR identification is very similar. However, after six months, 

GDP stabilizes in the RR case and continues to fall in the Cholesky case. The RR identification does 

not produce a hump-shaped response typical for recursive identification schemes. A partial answer to 

this is in the behavior of commodity prices and the real exchange rate. In contrast to the impulse 

responses produced by the Cholesky identification, the RR identification has a gradual increase in 

the index of commodity prices and gradual depreciation of the real exchange rate at approximately 

20 months. These two effects move real GDP in different directions: higher commodity prices slow 

the growth of real GDP while the depreciation of the real exchange rate stimulates it.  

The dynamics of real GDP and the price level provide an interesting perspective. On impact, 

the price level is sticky and all adjustment is happening through real quantities. After approximately 

six months, the price level begins to adjust. This is consistent with the New Keynesian explanation 

of how monetary policy affects output and prices.  

Impulse responses produced by the Cholesky and reduced rank identification are strikingly 

different. In my discussion of the conventional and RR identification schemes, I have noted that the 

Cholesky identification tends to produce attenuated and, possibly, incorrectly signed responses to 

                                                 
21 Although consistent with Hanson (2004), 95% confidence intervals for months with positive point estimates include 
zero.  
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structural shocks. Specifically, I have derived that if the pattern of comovement in responses is 

different across structural shocks (i.e., variables co-move in response to some structural shock and 

move in different directions in response to another structural shock), then the Cholesky identification 

can produce incorrectly signed responses. Estimates of the matrix A presented in Table 1 show that 

this is precisely the case. FFR and EXRUS increase on impact in response to Pε  but move in 

opposite directions in response to Tε . FFR and CRB co-move in response to Tε  but move in 

opposite directions in response to Pε . Consistent with my theoretical predictions, the Cholesky 

identification even with ordering [RGDP,PGDP,FFR,CRB,EXRUS] finds 1) a weak response of 

EXRUS to monetary policy shocks ( , 0.381EXRUS FFRa = , s.e.=0.263) and 2) the theoretically wrong 

positive sign for response of CRB to identified shocks to monetary policy ( , 0.979CRB FFRa = , 

s.e.=0.351).22 In summary, because the conventional identification scheme (in contrast to the RR 

identification) does not separate structural shocks from series-specific innovations, the conventional 

scheme finds weak and incorrectly signed contemporaneous responses.  

Moreover, monetary policy shocks under the RR identification are less correlated with 

innovations in FFR than monetary policy shocks under the Cholesky identification.23 The reason is 

that the variances of idiosyncratic errors v dwarf off-diagonal entries of the covariance matrix of 

VAR residuals relative to its diagonal entries and, therefore, the Cholesky identification finds little 

comovement in the series thus implying a high correlation between VAR innovations in FFR and the 

Cholesky-identified monetary policy shocks. Specifically, in the Cholesky identification, almost 

95% of the variance in uFFR is attributed to innovations in monetary policy so that the Cholesky-

identified monetary policy innovations and the estimated residuals in the FFR equation are virtually 

identical. In contrast, the correlation is only 26%= 2 2
52 /

FFRua σ  in the reduced rank case. Hence, the RR 

                                                 
22 The responses of CRB and EXRUS to shocks in FFR are computed after partialing out the effect of innovations in 
RGDP and PGDP.  
23 To emphasize the point, I use the baseline ordering [RGDP,PGDP,CRB,EXRUS,FFR] that minimizes correlation 
between VAR residuals in FFR equation and the Cholesky-identified structural shocks in monetary policy.  
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identification indicates that a large portion of innovation in the FFR is not associated with policy 

changes. This makes sense if the Fed does not move FFR at random. Given the noisiness of the FFR 

residual, the RR identification appears more plausible than the Cholesky identification. 

The Cholesky and RR identification schemes have sharply different predictions about the 

contribution of innovations in monetary policy to variation in the variables (Figure 2). The Cholesky 

identification shows that monetary policy has essentially zero effect on exchange rates at short (1 to 

12 months) horizons and the importance of monetary policy gradually increases for longer horizons. 

On the other hand, the RR identification suggests that monetary policy can explain 10% of variation 

in real exchange rate over short horizons and approximately 13% over long horizons. Again, the RR 

identification is consistent with the overshooting model of Dornbusch (1976) while the Cholesky is 

not. Likewise, the RR identification attributes a significantly larger variation in commodity prices to 

variation in monetary policy.  

Variance decomposition for price level is particularly interesting. The Cholesky 

identification predicts a 2.5% spike at approximately 12 months, then a gradual fall over next 20 

months and afterwards a steady increase to 2% at long horizons. In contrast, the RR assigns 

practically zero contribution for monetary policy in explaining variation in GDP deflator at short (up 

to 12 months) horizons and then the contribution monotonically increases to 6% at 10 years. Thus, 

RR identification attributes a significantly more important role to monetary policy than the Cholesky 

identification does. The shape under the RR identification is consistent with the sticky prices 

hypothesis, while the shape under the Cholesky identification appears to be controversial at best.  

The schemes also differ in explaining the variation in GDP. The Cholesky identification 

produces a hump shape in the importance of the monetary policy, while the RR identification yields 

a monotonic increase. Both schemes produce similar magnitudes of the contribution (10%) at long 

horizons.  
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Finally, the Cholesky identification predicts that variation of the fed funds rate at short 

horizons is almost exclusively determined by innovations in monetary policy. In contrast, the RR 

scheme suggests that at most 30% of the variation at short horizons is attributed to monetary policy 

and the rest is attributed to noise and technology shocks (this includes endogenous responses of the 

policy variable to technology shocks, e.g., the Taylor rule). This is not surprising because the 

Cholesky identification overstates the response of variables to the structural shocks associated with 

these variables. For longer horizons, the contribution of monetary policy to variation in FFR falls to 

20% for the Cholesky identification and to 7% for the RR identification.  

In summary, the reduced rank identification appears to produce more reasonable impulse 

responses and contribution of monetary policy to the variation in the VAR variables than the 

recursive identification. Specifically, the reduced rank identification 1) resolves two well-known 

puzzles, 2) explains why the policy instrument is volatile in the recursive identification schemes, and 

3) addresses stickiness of contemporaneous cross-variable response. The cornerstone of these results 

is the identified factor structure of VAR residuals.  

4 Conclusion 
There is often a disconnection between theoretical business cycle models and empirical VAR 

models as the number of structural shocks in VARs typically is not equal to the number of structural 

shocks (i.e., technology, preferences, policy) in business cycle models. Specifically, identification of 

structural shocks in a VAR is not invariant to the number of variables included in the VAR. This 

paper shows how the reduced rank identification that imposes a factor structure on VAR residuals 

rectifies this problem. Specifically, the reduced rank identification sets the number of structural 

shocks to be less than the number of variables in a VAR and, thus, it does not depend on the number 

of variables in the VAR. This identification, which outgrows from FSVARs, has simple estimation 

and inference and it is no more computationally demanding than typical structural identification 

schemes. The paper also presents formal statistical criteria to determine the number of structural 
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shocks. Importantly, the reduced rank approach uniquely identifies structural innovations and 

therefore it can be used for economic analyses. Finally, the paper suggests that the apparent weak 

contemporaneous cross-variable responses and strong own responses in structural VARs can be an 

artifact induced by the fact that conventional identification schemes do not separate structural shocks 

from series-specific innovations.  This artifact vanishes after imposing a factor structure on the 

shocks as in the reduced rank identification. In a similar vein, the reduced rank identification can 

rationalize noisiness of structural policy shocks regularly found in conventionally identified VARs. 

In my monetary policy example, I show that the reduced rank identification produces results 

qualitatively different from and more theoretically plausible than those of conventional identification 

schemes. In particular, the reduced rank identification finds no price level and exchange rate puzzles, 

the curse of all recursive identification exercises. The reduced rank identification also finds a small 

contribution of policy innovations to the variance of fed funds rate innovations, thus implying that 

the policy is not as noisy as recursive identification schemes often suggest.  
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6 Appendix A. Selection criterion.  
In this appendix, I present a criterion to consistently select the number the number of factors 

in VAR residuals, or equivalently the rank of A. Cragg and Donald (1997) suggest a simple way to 

estimate the rank of A in the framework of GLS estimators. I modify their procedure to paste it into 

my GMM framework. Specifically, the number of factors k can be chosen using the criterion 

suggested in the following proposition.  

Proposition 2 

Define criterion functions ( ) ( ) ( ) ( )1 , ,S k f T J k A g k−= Ψ − , where ( ), ,J k A Ψ  is the J-
statistic for rank k given population parameters A and Ψ , g(k) is a function strictly 
decreasing in k, and f(T) is a function of sample size T such that ( )limT f T→∞ = ∞  and 

( )1lim 0T T f T−
→∞ = . Then k̂  minimizing S(k) is a consistent estimate of the true number of 

factors k0, i.e., ( ) ( )0 0
ˆ ˆlim Pr lim Pr 0T Tk k k k→∞ →∞> = < = .  

Proof: see the Appendix C.  

Note that to determine the number of factors one does not need the uniqueness of A because 

the value of the objective function—and consequently the value of the J-statistic—is the same for 

any rotation of A and, therefore, arbitrary identification constraints can be used to determine k. 

Popular choices of functions f and g are f(N)=1 and g(k)=-2nk, which corresponds to the Akaike 

information criterion (AIC), and f(N)=log(N) and g(k)=nk, which corresponds to the Schwarz 

information criterion (SIC).24 Note that AIC does not satisfy ( )limN f N→∞ = ∞  thus it would tend 

to overestimate rank k. However, Monte Carlo simulations suggest that for moderately large samples 

AIC often outperforms SIC that imposes too heavy a penalty on overfitting.25 Because the 

covariance matrix of the VAR residuals ut is likely to have off-diagonal terms close to zero, the 

eigenvalues of AA' may be relatively small. In such a case, the above criteria can perform poorly 

                                                 
24 The term nk in the penalty function g is different from degrees of freedom or free parameters by a constant 
independent from the number of factors k.  
25 An alternative strategy is to sequentially test if k factors account for observed covariance until the J-test cannot reject 
the null of k-factor structure or d becomes negative. A drawback of such a procedure is that there always is a possibility 
of type I error and it accumulates as k increases. See Cragg and Donald (1997) for details. 
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because the penalty is too heavy (Cragg and Donald 1997). I use Monte Carlo simulations (available 

upon request) to calibrate the penalty functions.  

Alternatively, one can use less formal methods such as scree plots to determine the rank of A. 

 

7 Appendix B. An Economic model with factor structure of 
innovations.  

To illustrate how (9) can arise in economic settings, consider a stylized model with money in 

production function (see Fischer 1974 for a discussion). Suppose that the central banker chooses real 

money balances Mt to provide economy with sufficient liquidity. The production function is 

( ) 1expt t t tY a K Mα α−=  where Yt is output, Kt is capital stock, ( )2~ 0,t aa niid σ  is an exogenously 

given technology shock. The representative consumer sets consumption to track output, that is, 

Ct=Yt. Capital stock Kt evolves according to ( )1 1t t t tK K Y C Iδ+ = − + − +  where I  is autonomous 

non-stochastic investment and δ  is depreciation rate. The model is closed by equilibrium condition 

Mt=Yt.  

The log-linearized model is  

t tc y= , (consumption rule) 

t tm y= , (monetary policy rule) 

( )1t t t ty a k mα α= + + − ,  (production function) 

( )1 1t t t tk k y cδ+ = − + − , (capital accumulation function) 

where small letters denote log deviations of the respective variables from their stochastic steady 

states.  

 I assume that at the time when the consumer and the central banker choose ct and mt they 

observe C C
t t ta a ε= +  and B B

t t ta a ε= + , respectively, with ( )2, ~ 0,C B
t t niid εε ε σ . This is similar to 

information structure in the island model of Lucas (1972). Capital stock is known to both parties 
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when they choose ct and mt. Each party solves the model given his information sets and chooses his 

optimal action. Under these assumptions, ( ) 1 1| C C
t t t t t tc E y a k aα γ α γε− −= = + + , 

( ) 1 1| B B
t t t t t tm E y a k aα γ α γε− −= = + + , ( )( ) ( )1 11 1 B

t t t ty k aα α γ α α α γε− −= + + − + − , where 

( ) 12 2 2
a aεγ σ σ σ

−
= + .  

Now consider an empirical model that includes consumption and output and use (9):  

( )( ) ( )

1 1

1 1

1
11 1

C
t t

t t B
t t

c
k a

y
α γ α γε

α α γ α α α γε

− −

− −

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
= + + =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ + − −⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦

 

( )( ) ( )( ) ( )

1 1
1 1

1 1
1

1 1
1 1

11 1 1

C
t t

t B
t t

c
L a

y
α γ α γε

δ
α α γ α α α γε

− −
− −

− −
−

⎡ ⎤ ⎡ ⎤− ⎡ ⎤⎡ ⎤
= − − + + ≈⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ + −− −⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 

( ) ( )( )
1

1
1

1 1

C
t t

t B
t t

c
L a

y
α γ ε

α α γ α ε

−
−

−
−

⎡ ⎤ ⎡ ⎤⎡ ⎤
≈ Π + +⎢ ⎥ ⎢ ⎥⎢ ⎥ + −⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

, 

where 1C C
t tε α γε−≡  and ( )1 1B B

t tε α α γε−≡ − . Reduced-form residuals in this VAR have a factor 

structure where at is a common factor and ,C B
t tε ε  are idiosyncratic errors. 

 

8 Appendix C. Proofs. 
PROOF OF PROPOSITION 1 (INFERENCE FOR TWO-STEP ESTIMATION) 
The proof follows Wooldridge (2002, Section 12.4). Suppose that ut is a sequence of i.i.d. random 
vectors with finite fourth moments and ( ) 0t t sE −′ =u X  for s>0. The objective function of the GMM 
estimator is  

( ) ( )( ) ( ) ( )11 1

1 1

ˆ ˆ ˆ ˆ, , ,
T T

t tT T
t t

L A F A W F A−

= =

⎧ ⎫′⎛ ⎞ ⎛ ⎞⎪ ⎪Ψ = Ψ Ψ⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭
∑ ∑Π Π  (C.1) 

The score function of (C.1) is  

( ) ( ) ( )1 1
,

1

ˆ ˆ ˆ, , 2 , ,
T

t A t tT
t

s A F A W F A−
Ψ

=

⎛ ⎞Ψ = ∇ Ψ Ψ⎜ ⎟
⎝ ⎠
∑Π   (C.2) 

To show that ( ) ( )ˆ ˆ ˆ ˆ,A⎡ ⎤Ψ⎣ ⎦Π Π  and ( ) ( )ˆ ˆ,A⎡ ⎤Ψ⎣ ⎦Π Π  have the same asymptotic distribution, I 

need to prove that 

( ) ( ) ( )
1 1

1 1ˆ, , , , 1
T T

t t p
t t

s A s A o
T T= =

Ψ = Ψ +∑ ∑Π Π   (C.3) 
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Note that by construction of the moments ( ),
ˆ ,A tF AΨ∇ Ψ  does not depend on tX  and Π . 

Given this observation, I take a mean value expansion of (C.3) around Π : 

( ) ( ) ( )( ) ( ) ( )
1 1

1 1ˆ ˆ, , , , , , 1
T T

t t p
t t

s A s A E s A T vec o
T T= =

Ψ = Ψ + ∇ Ψ − +∑ ∑ ΠΠ Π Π Π Π  

Hence to show equivalency of asymptotic distributions, it is sufficient to show that 

( )( ), , 0E s A∇ Ψ =Π Π . To prove this, plug , ,
1 1

pn

it it s m m t s
m s

u x xπ −
= =

= −∑∑ into (C.2). Because 

( ),
ˆ ,A tF AΨ∇ Ψ  and W do not depend on tX  and Π , observe that for elements of ( ),F A∇ ΨΠ  

corresponding to diagonal elements of Ω  I have: 

 

2
2 21

, ,
1 1 1 1,

1
, , ,

1 1 1
2 0 , , ,

pT n k

it s m m t s vi ijT
t m s js m

pT n

it s m m t s s mT
t m s

E x x a

E x x x s m i

π σ
π

π

−
= = = =

−
= = =

⎡ ⎤⎧ ⎫⎛ ⎞⎛ ⎞∂ ⎪ ⎪⎢ ⎥− − + =⎨ ⎬⎜ ⎟⎜ ⎟∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭⎣ ⎦
⎡ ⎤⎛ ⎞

= − = ∀⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∑ ∑∑ ∑

∑ ∑∑
 

by the condition ( )1 1 ... 0 1,...,t t p t p t kE X X X X k p− − −′⎡ ⎤− Π − −Π = =⎣ ⎦  and the same result holds 

for all off-diagonal entries of Ω . Hence, ( )( ), 0E F A∇ Ψ =Π  implying ( )( ), , 0E s A∇ Ψ =Π Π .  

QED 
 
 
PROOF OF PROPOSITION 2 (CONSITENCY OF THE CRITERION). 

Observe that if 0k̂ k> , then ( ) ( )* 0 * 0:k k S k S k∃ > ≤ . Hence, ( ) ( ) ( )( )
*

0 0
ˆPr Pr

n

k k

k k S k S k
=

> ≤ ≤∑ . 

Note that ( ) ( ) ( ) ( ) ( ) ( ) ( )1
0 * 0 * * 0, , , ,S k S k f T J k A J k A g k g k−− = Ψ − Ψ + −⎡ ⎤⎣ ⎦  and, thus,  

( ) ( )( ) ( ) ( ) ( ) ( )( )* 0 0 0 *Pr Pr , , 0TS k S k J k A f T g k g k →∞≤ ≤ Ψ ≥ − ⎯⎯⎯→⎡ ⎤⎣ ⎦  because 

( ) ( ) ( )* 0,f T g k g k→∞ <  and ( )0 , ,J k A Ψ  is distributed asymptotically as 

( )( )2 1
2 1n n nk kχ + − − . It follows that ( )0

ˆlim Pr 0T k k→∞ > = . For 0k̂ k< , observe that  

( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )1
0 0 0

ˆ ˆ ˆPr Pr , , , , 0 0TS k S k f T J k A J k A g k g k− →∞⎡ ⎤ ⎡ ⎤≤ = Ψ − Ψ − − ≤ ⎯⎯⎯→⎣ ⎦ ⎣ ⎦  

since ( )ˆ, ,J k A Ψ  is bounded away from zero and ( ) ( )0
ˆ 0g k g k⎡ ⎤− <⎣ ⎦ . Thus, ( )0

ˆlim Pr 0T k k→∞ < =  

QED 
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9 Appendix D. Bootstrap procedure. 
Since moment conditions in my application are non-linear, I suggest using the k-step 

bootstrap developed by Davidson and McKinnon (1999) and adapted for testing by Andrews (2002) 

to reduce the computational burden of the bootstrap.26 Although there could be many ways of 

implementing this bootstrap procedure, I suggest that for each bootstrap replication one estimate Π  

first and then estimates A  and Ψ  conditional on Π̂ . This approach performs well in Monte Carlo 

simulations and it is very fast: the first stage is computed by LS and the second stage is computed 

with the k-step bootstrap procedure.27  

In summary, I use the following procedure: 

1. Estimate VAR in (1) by LS and store the estimated residuals 
1

ˆˆ p
t t i t ii −=
= − Π∑u X X . 

2. Estimate the matrices A and Ψ  using the stored residuals ˆtu  and the GMM estimator 

described above. 

3. Resample the residuals ˆtu  (with replacement) and create new series ( )B
tu .28  

4. Create a new series ( )B
tX  using equation (1), Π̂  from step 1 and ( )B

tu  from step 3. 

5. Estimate the VAR using ( )B
tX  and compute the residuals. 

6. Estimate the matrices A and Ψ  using the residuals from step 5.29 

7. Repeat steps 3-6 sufficiently many times to approximate the distribution of the statistic of 

interest. 

Standard asymptotic inference only requires the first two steps.  

                                                 
26 The idea of k-step bootstrap is simple and powerful. Instead of iterating optimization routines (like Gauss-Newton) 
until convergence, one can make only k iterations and incur op(n-k) difference between parameter estimates from 
converged optimization and parameter estimates from k iterations of the optimization routines. The starting values in 
both cases are parameter estimates from initial estimation. The parameter k can be as small as 5 for most applications.  
27 An alternative is to estimate to , ,A ΨΠ  simultaneously by combining LS moments for Π  and GMM moments for 

,A Ψ . Performance of this alternative is poor because too many moments are involved. Results of Monte Carlo 
experiments are available upon request.  
28 Note that VAR of a sufficiently high order makes reduced error term ut approximately serially uncorrelated and, thus, 
one can use the residual-based bootstrap algorithm for stationary (Kilian 1998, 1999) and nonstationary (Inoue and 
Kilian 2002) autoregressions.  
29 If the model is overidentified, bootstrap moments must be re-centered as in Hall and Horowitz (1996).  
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Table 1. Parameter estimates of contemporaneous responses under the reduced rank identification.  

Standard asymptotics Bootstrap 

variable coefficient 
estimate Standard 

error 

Bias 
corrected 
estimate 

95%  
confidence interval 

Technological shock Tε : the first column of A in (13)  
RGDP a11 0.098 0.010 0.105 [0.032, 0.268] 
PGDP a21 0.007 0.001 0.009 [-0.016, 0.032] 
CRB a31 0.511 0.053 0.552 [0.367, 0.660] 

EXRUS a41 -0.136 0.016 -0.150 [-0.331, 0.028] 
FFR a51 0.217 0.022 0.254 [0.186, 0.283] 

Policy shock Pε : the second column of A in (13)  
CRB a32 -0.257 0.043 -0.305 [-0.419, -0.104] 

EXRUS a42 0.369 0.114 0.425 [ 0.222, 0.566] 
FFR a52 0.150 0.062 0.161 [0.096, 0.239] 

 
Note: The table presents estimates of the matrix A in (13). Bootstrap procedure is described in the text. 
BCα bootstrap procedure with re-centering bootstrap moments (2000 replications) is used. See 
Appendix D for details on the bootstrap procedure. RGDP is real GDP, PGDP is GDP deflator, CRB is 
the index of commodity prices, EXRUS is trade-weighted real exchange rate, FFR is fed funds rate.  
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Figure 1. Impulse response functions.  
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Note: The figure presents impulse response functions to a one-standard-deviation structural innovation to monetary policy. Time (the horizontal 
axis) is in months. The ordering in the Cholesky factorization is [RGDP,PGDP,CRB,EXRUS,FFR].  
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Figure 2. Variance decomposition. The contribution of innovations in monetary policy (percent).  

0 20 40 60 80 100 120
0

5

10

15

20

25
Gross Domestic Product, GDP

0 20 40 60 80 100 120
0

2

4

6
GDP deflator, PGDP

0 20 40 60 80 100 120
0

2

4

6

8
Index of commodity prices, CRB

0 20 40 60 80 100 120
0

5

10

15

20
Trade weighted real exchange rate, EXRUS

Months

0 20 40 60 80 100 120
0

20

40

60

80

100
Fed Funds Rate, FFR

Months

Cholesky identification
Reduced rank identification

 
Note: The figure presents the share of variation in indicated variables due to innovations in monetary policy. Time (the horizontal axis) is in 
months. The ordering in the Cholesky factorization is [RGDP,PGDP,CRB,EXRUS,FFR].  
 


