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ABSTRACT 

 

We measure the United States capital stock of money implied by the Divisia monetary aggregate 

service flow, in a manner consistent with the present-value model of economic capital stock.  We permit 

non-martingale expectations and time varying discount rates. Based on Barnett’s (1991) definition of the 

economic stock of money, we compute the U.S. economic stock of money by discounting to present value the 

flow of expected expenditure on the services of monetary assets, where expenditure on monetary services is 

evaluated at the user costs of the monetary components.  As a theoretically consistent measure of money 

stock, our economic stock of money nests Rotemberg, Driscoll, and Poterba’s (1995) currency equivalent 

index as a special case, under the assumption of martingale expectations. To compute the economic stock of 

money without imposing martingale expectations, we use forecasts based on the asymmetric vector 

autoregressive model and the Bayesian vector autoregressive model.  We find the resulting capital-stock 

growth-rate index to be surprisingly robust to the modeling of expectations. 
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1.  Introduction 

 Empirical research in monetary economics commonly has used official central bank measures of 

aggregate money supply. Conventionally, central banks have measured the official monetary aggregates by 

adding up the nominal quantities of components included in the monetary aggregates. The resulting monetary 

aggregate is called the simple sum aggregate or simple sum index (SSI). But the SSI has long been questioned 

as a measure of money stock, because of its disconnect from microeconomic aggregation and index number 

theory.  The simple sum aggregate implicitly assumes that all monetary components are perfect substitutes 

with all monetary components having equal linear weights.  Since monetary assets began yielding interest 

over half a century ago, with different interest rates paid on different monetary assets, perfect substitutability 

among monetary assets with equal weights has become an unrealistic assumption. 

 A theoretically appropriate alternative to the simple sum aggregate is the Divisia monetary 

aggregate derived by Barnett (1980). By taking into account the different user-cost prices of monetary 

components, the Divisia monetary aggregate does not require perfect substitutability among monetary assets 

and reflects the properly weighted contributions of all monetary components to the economy's flow of 

monetary services. However, the Divisia aggregate measures monetary service flows, not monetary stock. 

While most variables in economic theory are flows, monetary stock is needed for some purposes. For 

instance, the wealth variable in intertemporal Fisherine wealth constraints should be entered as money stock.  

Similarly Pigou “real-balance” wealth effects of monetary policy require stock explanatory variables. The 

objective of this paper is to measure money stock in a manner consistent with the aggregation-theoretic 

foundations of the Divisia service-flow aggregate. We compute the first theory-based economic stock of 

money not requiring the assumption of martingale expectations. 

 Barnett (1991) showed that the monetary stock implied by the Divisia flow aggregate is the 

discounted present value of expected monetary-service-flow expenditure, with expenditure on monetary 

services being evaluated at user-cost prices.  Following Barnett, we call the money stock implied by the 

Divisia monetary service flow---the “economic stock of money.”  In addition to its direct derivation from 

microeconomic theory, the economic monetary stock (ESM hereafter) has several attractive properties.  First, 

the ESM is consistent with asset pricing theory.  In particular, the formula for ESM is consistent with 
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valuation of a cash-flow generating asset by discounting the flow to present value.  Second, the economic 

monetary stock provides a general capital stock formula that nests the simple sum index and the currency 

equivalent (CE) index (of Rotemberg (1991) and Rotemberg, Driscoll, and Poterba (1995)) as special cases. 

In particular, under the assumption of martingale expectations, the ESM index reduces to the CE index 

(Barnett (1991)), with the additional assumption of zero return-yield rates for all monetary assets, ESM 

reduces to the simple sum index. 

 The assumptions of zero return-yield rates and of martingale expectations are both highly 

implausible. We make neither of those assumptions.  We compute the ESM using forecasts of the future 

variables in the formula.  Our forecasts are based upon an asymmetric vector autoregressive model (AVAR) 

and a Bayesian vector autoregressive model (BVAR).  For purposes of comparison, we also compute the 

ESM using actual realized future data within sample. This paper compares the estimated ESM with the 

simple sum index (SSI) and the CE index.  We thereby investigate the measurement biases inherent in the SSI 

and the CE index.  Our use of VAR forecasting is part of our measurement procedure, rather than a means of 

judging policy relevancy.  Our approach is aggregation-theoretic rather than policy-focused.  But VAR 

comparisons of Divisia and simple sum monetary aggregation for policy purposes do exist.  See Schunk 

(2001). 

 Use of the economically correct measure for monetary stock can improve the quality of empirical 

research on wealth effects caused by changes in the expected monetary service flow induced by policy shifts.  

2.  Microfoundations of Consumer Demand for Money 

2.1. Overview 

  In this section we review the theoretical foundations for a representative consumer’s money demand 

under risk neutrality in accordance with Barnett (1980). We first define the variables for period s, where t is 

the current period, and  T is the length of the planning horizon for t ≤ s ≤ t+T: 

 

cs = vector of per capita planned consumption of goods and services, 

ps =  vector of goods and services expected prices and of durable goods expected rental prices, 

p *
s = the true cost of living index, 
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ms = vector of planned real balances of monetary assets with components mis  ( i =1, 2,....,n), 

ris =  the expected nominal holding period yield on monetary asset i, 

Ls = planned labor supply, 

ws = the expected wage rate, 

BBs = planned holdings of the benchmark asset, 

Rs = the expected nominal holding-period yield on the benchmark asset, 

Is = all other sources of  income. 

 

 The benchmark asset is defined to be a pure investment asset providing financial yield Rs but no 

liquidity or other services.  A representative economic agent holds the asset solely as a means of 

accumulating and of transferring wealth between periods. Thus under risk neutrality, the benchmark rate Rs 

will be the maximum expected holding-period yield in the economy in period s. 

 During period t, let the representative consumer's intertemporal utility function, Ut, be weakly 

separable in the block of each period's consumption of goods and monetary assets, so that an exact monetary 

aggregator function, u,  exists: 

 Ut = U(u(mt), ut+1(mt+1), … ,ut+T(mt+T); v(ct), vt+1(ct+1), … , vt(ct+T); BBt+T).   (2.1) 

The function u is assumed to be linearly homogeneous, which is a sufficient condition in aggregation theory 

for u to serve simultaneously as the monetary asset category utility function and the monetary asset quantity 

aggregator function.   Dual to the category utility function of non-monetary goods and services, vs(cs), there 

exists true cost of living index,  p * = p (ps
*
s s), which can be used to deflate nominal values to real values during 

period s. 

 Maximization of intertemporal utility is subject to the following budget constraints for s = t,…, t+T: 

 , 1 1 , 1 1 1 1
1
[(1 ) ] [(1 ) ]  

n
s s s i s s i s s is s s s s s s

i
w L r p m p m R p B p B I′ ∗ ∗ ∗

− − − − − −
=

= + + − + + − +∑p cs
∗  (2.2) 

 2.2 User Cost of Money  

 Money is a durable good. The cost of using the services of a durable good or asset during one period 
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is the user cost price or rental price.  Barnett (1978, 1980) derived the user cost price of the services of 

monetary assets by recursively combining the T+1 multi-period budget constraints, (2.2), into the single 

discounted Fisherine wealth constraint, 

 

´
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From that factorization of the intertemporal constraint, we see that the forward user cost of the services of the 

monetary asset mi in period s is  

 
1
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where the discount rate for period s is 
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 As a result, the current period nominal user cost of monetary asset mi is   

 
1

t it
it t

t

R r
p

R
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=
+

,         (2.6)                                           

while the corresponding real user cost of monetary asset mi is /r
it it tpψ ψ ∗= . 

3.  Economic Aggregation and Index Number Theory 

 Let tψ = ( 1tψ ,…, ntψ )′, and define total current period expenditure on monetary services during 

period t to be (TE)t = m*
t, where m*

t is the optimized value of mt′ψ t from maximizing (2.1) subject to (2.2).  

Then the exact monetary aggregate, Mt = u(m*
t ), can be tracked without error by the Divisia index (Barnett, 

1983) in the continuous time analog to ((2.1), (2.2)): 

 
1

log lognt
it

i

d M d m
w
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∗

=
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where ( )
mit it

it TE t
w ψ ∗

=  is the i'th asset's share in expenditure on all monetary assets' service flows at instant of 
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time t.  

 In discrete time, the Törnqvist second order approximation to the Divisia index is 

 1
1

log log (log log )
n

t t i t it i t
i

M M w m m∗ ∗
−

=
− = −∑ , 1− ,         (3.2) 

where , 1 (it it i tw w w −= + ) / 2 .  Equation (3.2) defines the discrete “Divisia monetary aggregate,” which 

measures the aggregate monetary service flow during period t, as appropriate to our discrete time formulation 

of the model.  This Törnqvist approximation, (3.2), to the continuous time Divisia index, (3.1), is in the class 

of superlative index numbers defined by Diewert (1976) to provide a chained quadratic approximation to the 

continuous time index.  

 3.1.  Definition of the Economic Stock of Money 

 The economic stock of money, as defined by Barnett (1991), follows immediately from the manner 

in which monetary assets are found to enter the derived wealth constraint, (2.3).  As a result, the formula for 

the economic stock of money (ESM) is 
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As is evident from (3.3), the economic stock of money is found to be the discounted present value of 

expenditure flow on the services of all monetary assets, with each asset priced at its user cost.  Let  be the 

nominal balance of monetary asset i in period s, so that .  Using definition (2.5), V
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 A mathematically equivalent alternative form of (3.4) can be derived from quantity and user cost 

flow aggregates, discounted to present value.  Dual to any exact quantity flow aggregate, there exists a unique 

price aggregate.  The price aggregate equals the minimum cost of consuming one unit of the quantity 

aggregate.  Let Ψt = Ψ(ψt) be the nominal user cost aggregate that is dual to the exact, real monetary quantity 

aggregate, Mt.  By Fisher’s factor reversal, the product of the quantity and user cost price aggregate must 

equal expenditure on the components.   It follows that 
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where (TE)s  is total nominal expenditure on the monetary services of all monetary components.  

Alternatively, instead of using real quantities and nominal user costs, we can use nominal quantities and real 

user costs to acquire 
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 Note that equation (3.7) provides a connection between the Divisia aggregate flow index, M(ms), 

and the discounted money stock, Vt.   Also observe that the formula contains a time-varying discount rate.  

 3.2.  CE and Simple Sum Indexes as Special Cases of the ESM 

  3.2.1.  The CE Index 

 Rotemberg (1991) and Rotemberg, Dricoll, and Poterba (1995) introduced the currency equivalent 

index (CE index), 

  it
t
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i
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as a flow index under assumptions stronger than needed to derive the Divisia monetary flow index.  But 

Barnett (1991) proved that the CE index can be interpreted to be a stock index, rather than a flow index.  In 

particular, he showed that the CE index is a special case of the ESM under the assumption of martingale 

expectations. 
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  Following Barnett's proof, assume , , and  follow martingale processes.  Then equation 

(3.4) can be written as 
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so that 
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This shows the CE index is a special case of the economic stock of money, when the conditional expectation 

of future values of variables is equal the current value.   

 From equation (3.9) under martingale expectations, we furthermore can show that the CE index is 

proportional to the Divisia current-period monetary flow aggregate, as follows: 
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  3.2.2.  The SSI Index 

 We define the simple sum aggregate, , by SSI
tV
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As a flow index, this index requires that all monetary components are perfect substitutes, so that linear 
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martingale expectations, since it then follows that 
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M is the discounted investment yield part of the simple sum aggregate and VCE  is the 
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discounted monetary service flow part.  

 Hence the simple sum monetary aggregate, treated as a stock index, is the stock of a joint product, 

consisting of a discounted monetary service flow and a discounted investment yield flow.  For the SSI to be a 

valid as money stock measure, all monetary assets must yield no interest.  Clearly investment yield cannot be 

viewed as a monetary service, or the entire capital stock of the country would have to be counted as part of the 

money stock.  The simple sum monetary aggregates confound together the discounted monetary service flow 

and the non-monetary investment-motivated yield.  The simple sum aggregates will overestimate the actual 

monetary stock by the amount of the discounted non-monetary services. Furthermore, the magnitude of the 

simple sum aggregates’ upward bias will increase, as more interest-bearing monetary assets are introduced 

into the monetary aggregates. 

 Under the of martingale expectations and the assumption that all monetary assets yield zero interest, 

it follows that: 

    .                                                                                 (3.14) SSI
t

CE
tt VVV ==

In short, the ESM is the general formula for measuring money stock and fully nests the CE and the SSI as 

special cases. 

 As deregulation of financial intermediation and financial innovation have progressed, the 

assumption that all monetary assets yield zero interest rates has become increasingly unrealistic.   

4.  Measurement of the Economic Stock of Money 

 The previous section showed that the economic monetary stock provides a general capital stock 

formula nesting the currency equivalent (CE) index and the simple sum index as special cases.  Each of these 

results requires martingale expectations, and the simple sum result further requires that every monetary asset 

pay a nominal return of zero. This section shows how the ESM can be computed without making either of 

these restrictive assumptions.  The earlier derivations were produced either under perfect certainty or 

equivalently under risk neutrality, so that random variables are implicitly replaced by their expectations.  

Since we now formally introduce more general expectations forecasting, we introduce the expectations 

operator, Et, to designate expectations conditional upon all information available at current period t. 

 Without martingale expectations, the calculation of 
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is analytically and empirically challenging.  We propose three methods of approximating Vt. The first two 

linearize the function in terms of expected future variables and the third imposes a set of convenient 

covariance restrictions.

 4.1.  Method 1:  Linearizing around Current Values 

 The first method uses a first-order Taylor series expansion of Vt around current values to produce a 

linear approximation in the future benchmark rates, Rs, and future total monetary-services expenditures, (TE)s.  

This procedure converts the non-linear expectations equation into a linear expression that is easier to 

evaluate. 

 First, it is convenient to rewrite Vt as: 
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Then taking the first-order Taylor series expansion around current values of TE and R, we obtain: 
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Linearizing in this fashion is equivalent to approximating Vt around the CE index.  

 This measure of the economic stock of money depends on uncertain future values of the benchmark 

rate and of expenditures on monetary services.  Forecasting models must be used to calculate these future 

values.  Instead of separately forecasting individual components and their respective interest rates, we 

forecast total expenditures on monetary services. This approach reduces the number of variables to forecast 

and reduces the number of parameters in the forecasting models. 

 We use vector autoregression (VAR) models to produce these forecasts.  A VAR with any number of 

lags can be transformed into the VAR(1) form, 1t t−= +y Ay e , by suitably redefining the coefficient matrix, 

A, the residuals, et, and the vector of variables, yt.  In this equation, the vector of variables may include 
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current and lagged variables.  Based on this VAR and the assumption that residuals are not serially correlated, 

the optimal forecast of yt+j, given all information at time t, is .  Then the value of the k-th variable in 

vector y expected to occur j periods into the future is obtained by pre-multiplying  by a selection vector 

having a one in the k-th position and a zero in all other locations.  Define this selection vector as .  If 

 is the first element in Y

j
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And the terms involving the sum of current and expected future benchmark returns are: 
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Combining results from equations (4.3) and (4.4), we obtain the Method 1 solution for Vt: 
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A significant difference from either the simple sum or the CE index is that this measure of Vt depends upon 

past, as well as current, variables and upon coefficients in the forecasting model.

 4.2.  Method 2:  Martingale Expectations for Only the Benchmark Rate 

 Our second method makes the martingale assumption, but only on the benchmark rate, while 

continuing to use VARs to forecast total monetary expenditures.  This approach lies somewhere between 

Method 1, which uses a VAR to forecast both variables, and the CE index, which uses only current values in 

forecasting both variables.  Assuming tst RRE =  for all s t≥  yields: 
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With this formula, V is linear in current and expected future values of TE and is calculated in equation (4.3). 
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Note that Methods 1 and 2 yield essentially the same measure of Vt, if changes in the benchmark rate are 

unforecastable. If, in addition, changes in total monetary expenditures are unforecastable, then the CE index, 

Method 1, and Method 2 all should obtain very similar measures. 

 4.3.  Method 3:  Setting Covariances to Zero 

 In general, the expected value of a nonlinear function of variables is equal to that function evaluated 

at the expected value of each variable plus covariance terms.  Hence, the expected value of a function of 

variables will equal the function evaluated at the expected value of variables if and only if these covariances 

are equal to zero.  Method 3 makes those simplifying assumptions.  Specifically, we assume the covariance 

between ( )sTE  and the benchmark rate at any time is zero and all covariances between benchmark rates at 

different points in time are zero.  Then the expression for Vt becomes: 
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where the last expression is obtained from the VAR forecasts, and where the expected discount factor is 
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 We use a finite approximation to solve the infinite sums in each of the three methods (equations 

(4.3), (4.5), and (4.7)).  For example, the finite sum approximation for Method 3 is 
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for any value of J > t.  Taking the limit as J goes to infinity in equation (4.8) yields equation (4.7).  Having 

expectations in the numerator and denominator rules out a simple closed-form solution.2  An alternative way 

of writing equation (4.8) is 
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t t

J

E TE
V J V J

ρ
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2 Note that we can obtain closed-form expressions for Methods 1 and 2, if all roots of A/(1 + Rt) are outside 
the unit circle.  The finite approximations to infinite sums in the paper also require that condition on roots. 
These finite approximations will be nearly the same as the closed form solutions, because the convergence 
criterion, equation (4.10), is very small. 
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Starting with Vt(0)=(TE)t, this equation builds up the measure of Vt sequentially.  Our approach is to let J 

increase until we get the convergence, ( ) ( 1) 0t tV J V J− − → .  In practice, we require a convergence criterion.  

We choose 

 7( ) ( 1)
10

( 1)
t t

t

V J V J
V J

−− −
<

−
        (4.10) 

as the criterion for determining the value of J at which to stop this iteration. 

5.  Forecasting Models 

 To construct the forecasts needed for calculating each approximation to the ESM, we consider three 

types of vector autoregressions:  unrestricted , asymmetric and Bayesian VAR. 

 5.1  Unrestricted VARs 

 The unrestricted vector autoregressive model (UVAR) pioneered by Sims (1980) is a standard 

model in the literature.  Sims developed the VAR approach as a tool for allowing historical data to summarize 

the dynamic interactions among time series variables.  A hallmark feature of any UVAR is that it has the same 

number of lags of each variable in each equation.  UVARs tend to require estimation of a relatively large 

number of statistically insignificant coefficients.  As a result, there are concerns about forecasting with 

UVAR models.  Various approaches have been proposed for solving this overparameterization problem. 

 5.2.  Asymmetric VARs 

 One way to reduce the number of parameters in the VAR is to eliminate the common lag assumption. 

Keating (1993,2000), for example, developed the asymmetric VAR (AVAR), which is a VAR allowing lag 

lengths to vary across variables in the model.  The AVAR and UVAR models share a common trait:  each 

equation in the model has exactly the same set of explanatory variables.  Consequently, AVARs and UVARs 

are consistently and efficiently estimated by ordinary least squares under standard regularity conditions. 

However, an AVAR model is expected to have fewer insignificant coefficients, and thereby may obtain 

smaller out-of-sample forecast errors than the UVAR.  An AVAR lag specification can be chosen by an 

information criterion or by any other method capable of testing non-nested alternatives. 

 5.3.  Bayesian VARs 

 Another response to overparameterization in UVAR models is the Bayesian approach of Doan, 
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Litterman, and Sims (1984) and Litterman (1986).  A Bayesian VAR (BVAR) model avoids exclusion 

restrictions, such as the different lag lengths permitted under the AVAR approach.  Instead, BVAR models 

assume each VAR coefficient is drawn from a normal distribution and impose restrictions on the mean and 

the variance of each of those distributions.   

 The Minnesota (or Litterman) prior is based on the empirical evidence that most economic variables 

appear to have a unit root. Thus each coefficient is given a prior mean of zero, except for the coefficient on 

the first lag of the dependent variable in each equation.  That coefficient has a mean of one. Coefficients on 

shorter lags are given larger prior variances than the coefficients on longer lags.  This choice of prior 

variances is based on the reasonable assumption that recent data are likely to be more informative than older 

data in explaining current outcomes, so that data should be permitted to dominate prior views regarding short 

lag parameters.  This approach also allows different priors to be imposed on different variables.  For example, 

if a certain variable is thought to have more explanatory power than other variables, the prior variance 

associated with that variable would be made larger than for the other variables to permit the information in 

the data to dominate the prior.  Flat (non-informative) priors are assumed for all deterministic variables. 

6.  Model Specification  

 6.1.  Data Description  

 The models in this paper use U.S. data for total expenditure on monetary services (TE), the 

benchmark interest rate (BENCH), industrial production (INDPRO), and the consumer price index (CPI). 

Relative to the notation in section (2.1), BENCHt = Rt and CPIt = p *
t , although the latter equality is an index 

number theoretic approximation to the exact true cost of living index of economic theory.  Data are monthly 

and seasonally adjusted, covering the period from 1959:1 through 2004:3.  All data were obtained from the 

Federal Reserve Economic Database (FRED), published by the Federal Reserve Bank of St. Louis.3  The 

initial choice of output and price was based on a priori beliefs regarding those variables most likely to help 

                                                           
3 At each level of aggregation, j, total expenditure on the monetary services, ( ) j

tTE , was computed from the 
first equality in equation (3.6).  The data source details and the list of monetary assets included at each level 
of aggregation can be found in our University of Kansas online working paper, Barnett, Chae, and Keating 
(2005).  The working paper contains the details of the design and data, but not the empirical results that are in 
this paper. 
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forecast interest rates and monetary-services expenditures.  Those prior beliefs were then supported by 

statistical tests for marginal predictive content. We also considered other variables in the specification search, 

but those additional variables did not improve the forecasts and are therefore omitted from the final 

equations. 

 The choice of benchmark rate can have important consequences for the economic stock of money or 

the currency equivalent index.  Rotemberg, Driscoll and Poterba (1995) used the commercial paper rate and 

found that their CE index was extremely volatile. Our benchmark rate path is the upper envelope over the 

paths of Moody's BAA bond rate and all the interest rates that go into the calculation of ESM.  The resulting 

benchmark rate is not as volatile as the commercial paper rate. 

 In each VAR , we control for the effects of exogenous oil supply shocks by including dummy 

variables for oil shock dates.  We used the dates identified by Hoover and Perez (1994).4  To model the 

dynamic response of the economy to oil price shocks, the VAR included current and seven lags of the oil 

shock dummy variables. 

 To appropriately specify the forecasting models, we needed answers to several important questions. 

Are the data nonstationary?  How many lags should the VAR models have?  What values should be given to 

the hyperparameters that are used in constructing priors in the BVAR approach? 

 6.2.  Nonstationarity and Data Transformation 

 We use standard unit root tests to answer questions about stationarity.  Table 1 reports ρ-test results 

from augmented Dickey-Fuller regressions along with results from Phillips-Perron (PP) Z-tests. 

Table 1.  Dickey-Fuller Tests (ρ) and Phillips-Perron Tests (Z) for Unit Roots 

            Trend + Constant              Constant Only                          No Constant  
Variable lags  ADF

τρ   ( )PPZ τρ lags  ADF
μρ   ( )PPZ μρ  Lags    ADFρ ( )PPZ ρ   

Log 1( )mTE  2 -5.563 -6.46 2 -1.714 -1.7694 2 0.649 0.643 

Log 2( )mTE  2 -18.236 -8.535 2 -0.445 -1.873 2 1.405 0.676 

Log 3( )mTE  2 -12.683 -8.996 2 0.141 -1.711 2 1.732 0.716 
BENCH 8 -4.57 -5.759 8 -5.422 -6.497 8 -0.399 -0.507 
log CPI 9 -9.657 -0.301 9 -0.666 -0.169 9 0.406 0.418 
log INDPRO 3 -9.984 -7.872 3 -0.966 -1.180 3 0.312 0.329 
Notes: The lag was selected using SIC information criterion. 

                                                           
4 Hoover and Perez’s (1994) shock dates are 1969:3, 1970:12, 1974:1, 1978:3, 1979:9 and 1981:2.  
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In all but one of these cases, the test fails to reject the null hypothesis of unit root at the 10% significance level. 

The exception is the ADF test on total monetary expenditures for M2, but even in this case we fail to reject at 

the 5% level.  Therefore, we conclude that each variable has a unit root.  We take the log transform of all 

variables, except for interest rates.  Based on the unit root evidence, we then take the first difference of each 

transformed series, when estimating UVAR and AVAR models.  The BVAR models are estimated in the log 

levels, because our prior assumptions allow for possible unit roots.  Since the benchmark rate is an interest 

rate, those levels and changes were not transformed by logarithm in any of the models. 

 6.3.  Selection of Lag Length 

 Likelihood ratio tests, modified by the small-sample correction of Sims (1980), are used to select the 

lags in unrestricted VARs.  We used that same lag length for a Bayesian VAR.  We considered a maximum lag 

of 24 and sequentially tested for smaller lags until a test was significant at the 1 percent level.  This procedure 

selected 13 lags.  We used the Akaike (AIC) and Schwarz (SIC) information criteria to select lags in the 

AVAR models, while searching over all models with up to a maximum of 13 lags for each variable.  With 4 

variables and up to 13 lags, there were 134 possible AVAR specifications from which to choose.  For the 

AVAR-M1 model at the M1 level of aggregation, the AIC chose six lags of  three lag of  1log ( ) ,mTEΔ

log INDPROΔ  , six lags of   , and six lags of  CPIlogΔ BENCHΔ  , while for the AVAR-M2 model at the 

M2 level of aggregation and the AVAR-M3 model at the M3 level of aggregation,  AIC selected six lags of  

in the AVAR-M2 model, six lags of  in the AVAR-M3 model, three lags of  2log ( )mTEΔ 3log ( )mTEΔ

log INDPROΔ , six lags of , and seven lags of CPIlogΔ BENCHΔ .  The superscript mj designates level 

of aggregation, Mj, where j = 1, 2, 3.  The SIC chose 1 or 2 month lags for all variables in each model.  Since 

we considered these lag lengths insufficient to capture dynamics, we used only the AVAR models selected by 

the AIC. 

 6.4.  Criterion for Evaluation of Forecasting Performance  

 Forecasts are assessed using the following procedure.  Estimate a VAR with the sample from 1959:1 

to 1990:12 and forecast for each month up to 48 months ahead.  Then add the next month’s data to the sample, 
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estimate a VAR, and forecast up to 48 periods ahead.  Continue adding a month, re-estimating the VAR, and 

forecasting until we can no longer make the 48-month-ahead forecast, at which point we forecast ahead by as 

many observations as remain.  Since our full sample ends in 2004:3, our sequential procedure begins 

forecasting a declining number of periods ahead at 2000:4, until no more forward observations remain within 

the sample for forecasting. 

 Then we use root mean squared error (RMSE) and Theil's U statistic to evaluate forecasting models. 

If  is the value of a variable at t+h and t hy + ˆt hy +  is the forecast of this variable at time t, then  

 1 2

1
ˆ (model) ( )

T
t h t h

t
RMSE T y y−

+ +
=

= −∑    

and  

 
2

1

2

1

ˆ( )
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( )

T
t h t h

t
T

t h t
t

y y
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y y

+ +
=

+
=

∑ −
= =

∑ −

,    (6.1) 

where  is the forecast horizon and T  is the total number of forecasts computed for the forecast horizon h h. 

Theil's U statistic compares the RMSE for a model’s forecast errors with the RMSE from a no-change 

forecast.  When a U statistic is less than one, the model forecasts better than a no-change forecast.  If a U 

statistic exceeds one, the naive no-change forecast outperforms the model.  Note that a no-change forecast is 

analogous to the martingale expectations assumption used by Barnett (1991) to motivate the CE index as a 

stock index.  Thus when U-statistics are less than 1, our approximations are expected to be more accurate 

measures of the ESM than the CE index. 

 6.5.  Specification of Priors 

 In estimating the BVAR, the first step is to search for the Litterman (1986) prior’s hyperparameters, 

γ, d, and W,  that can minimize out-of-sample forecast errors.  The criterion function, U , used in selecting 

the priors is set to be the weighted average of the Theil U statistics  for one month-ahead to 24 months-ahead 

forecasts.  The weights are the number of forecasts for each forecast horizon divided by the total number of 

forecasts for all forecast horizons during a given period.  The hyperparameters are γ = measure of overall 

tightness, d = the lag decay parameter, and W = [wij], where wij = relative tightness, defined to be the tightness 
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on variable j in equation i relative to variable i.  In the literature on this BVAR approach, the parameter γ  is 

usually equal to the standard deviation of the parameter of the first own lag in each equation in the VAR.  The 

parameters γ  and d are scalars that are constant across equations in the specification.  For more formal 

definitions of parameters and details of the BVAR specification, see sections 5.3 and 6.5 of Barnett, Chae, 

and Keating (2005).5

 After many experiments, we decided to estimate two sets of priors by minimizing the criterion 

function over two different periods (1989:1-1990:12, 2000:1-2001:12).   With starting periods in the range 

1991:1 to 2001:12 and 2002:1 to 2004:3, respectively, we applied the priors in generating forecasts for up to 

200 steps ahead.6  The reason we select two sets of priors for two different periods is that the best priors 

selected on the basis of a certain period may not necessarily be optimal for far beyond that period.  Forecast 

performance is sensitive to the priors. The priors were selected by searching over the arguments (γ, W, d) to 

minimize the following objective function: 

 
2 24 2

1 1 1
( , , ) ,h ih i

i h i
Min U d U Uγ α

= = =
= =∑ ∑ ∑W       (6.2) 

where the  i = 1,2 subscript  indexes the two variables, total monetary-services expenditure and benchmark 

rate,  h is forecast step,  is Theil's U statistic for variable i 's -step ahead forecast,ihU h kh
h Kα =  is the 

weight for each forecast step h, and  iU  =  is the weighted average of Theil's U statistics for 

variable i’s 1-month-ahead to 24-months-ahead forecasts during  the evaluation period.

ihh
h

Uα∑
=

24

1

7  The variable kh is 

the number of times that the h -step ahead forecast has been computed during the evaluation period, and 

                                                           
5Alternatively see Littermann (1986) regarding the “Litterman prior.” 
6Although we do not consider more than 48 step-ahead forecasts to be meaningful in comparing models, we 
needed more than 48 step-ahead forecasts to seek convergenece of equation (4.10).  We generated the 200 
step ahead forecasts to assure that we would have enough to attain convergence of (4.10).  But for purposes of 
evaluating forecast performance, we used no more than 48 step-ahead forecasts.  
7In principle, there could be advantages to selecting an objective function that is directly derivable from the 
ESM formula.  But in choosing equation (6.2), we had the more modest objective of minimizing forecast 
errors.  Regarding the limitation to 24 step-ahead forecasts for this purpose, we would have preferred to have 
used 48 step-ahead forecasts, but data limitations prevented us from doing so.  We forecasted 1989:1 - 
1990:12, after using data up to 1988:12 to estimate the priors.  The split of the sample between observations 
needed for estimating the priors and observations used in forecast evaluation prevented forecast evaluation 
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h
h

kK
24

1=
∑=  is the total number of times that all forecasts for 1 to 24 months ahead  have been computed during 

the evaluation period.8  

 The criterion function (6.2) is an average of the accumulated Theil U statistics for all forecasts 

during the evaluation period.  The number of forecasts, kh, at each forecast-step decreases, as the forecast 

steps become longer during the evaluation period.  Hence, the number of forecast statistics for shorter-step 

horizons,  relative to that of all step-horizons, plays a role as a weight, in computing average Theil U statistics 

for all forecast step horizons in the criterion function.  In constructing the criterion function, more weight is 

thereby put on shorter forecast steps than longer ones.  Forecasts of total monetary-services expenditure and 

of the benchmark rate will enter the formula for the discounted economic money stock.   As expected from 

the flow discounting, the weight on shorter forecast steps will be heavier than on longer ones, since forecasts 

for short horizons will have the heaviest impact in determining the discounted economic stock of money. 

 Our criterion function includes U statistics for only total monetary-services expenditure and the 

benchmark rate, instead of considering all variables in the VAR, since we are forecasting only those two 

variables.   We start with a symmetric prior by setting the same values for relative tightness, wij, to all the 

off-diagonal variables of W with the diagonal elements normalized to equal 1.0, and then relax the prior to 

allow for more general interactions among the variables. The search for the optimizing hyperparameters was 

conducted using the genetic algorithm optimization method. 

 For notational convenience, we will name the models according to the level of aggregation: 

UVAR-M1, UVAR-M2, and UVAR-M3 are unrestricted VAR models, with the total expenditure variable 

being on the services of the monetary assets that are included in M1, M2 and M3, respectively.  Analogously   

AVAR-M1, AVAR-M2, and AVAR-M3 are the asymmetric VAR model, with the total expenditure variable 

being on the services of monetary assets that are included in M1, M2 and M3, respectively;  while BVAR-M1, 

BVAR-M2, and BVAR-M3 are the Bayesian VAR model, with total expenditure being on the services of 

monetary assets that are included in M1, M2 and M3, respectively. 

                                                                                                                                                                             
for 48 step-ahead forecasts.  If we had split the sample earlier, there would not have been enough 
observations available for the estimation of priors. 
8  For instance, when h = 1, 2,….,24, and if evaluation period is 24 months, then k1 is 24, k2 is 23,…. , and k24 
is 1. 
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 When we searched for symmetric priors by minimizing the criterion function over two different 

periods (1989:1-1990:12, 2000:1-2001:12), we found no symmetric prior that produced weighted average U 

statistics for the benchmark rate that were less than one in all three BVAR models for the period 

1989:1-1990:12.  Hence, we then searched for general priors to optimize the criterion function.  For total 

monetary-services expenditure and for the benchmark rate, the best general priors9 yield Theil U statistics 

that are less than one for all models.  Tables 2 and 3 show how much the weighted average of Theil's U 

statistics, under the general prior specification, have improved, compared to that under the symmetric prior.  

In the tables, the weighted average iU  has subscript i = 1 for total expenditure and i = 2 for benchmark rate.  

Table 2.  Weighted Average of Theil's U under Symmetric Priors 

BVAR-M1 
     1U  

BVAR-M1 
     2U  

BVAR-M2 
      1U  

BVAR-M2 
     2U  

BVAR-M3 
      1U  

BVAR-M3 
     2U  Period for  

( )Min U     1( )mTE  BENCH     2( )mTE  BENCH     3( )mTE  BENCH 

1989:1-1990:12 0.8405 1.07944 0.950 1.079 0.935 1.079 

2000:1-2001:12 0.8900 0.78016 0.883 0.788 0.891 0.787 

 

Table 3.  Wieghted Average of Theil's U under General Priors 

BVAR-M1 
      1U  

BVAR-M1 
      2U  

BVAR-M2 
       1U  

BVAR-M2 
      2U  

BVAR-M3 
       1U  

BVAR-M3 
      2U  

Period for  
( )Min U   

    1( )mTE  BENCH      2( )mTE  BENCH     3( )mTE   BENCH 

1989:1-1990:12 0.80442 0.89229 0.90 0.898 0.877 0.897 

2000:1-2001:12 0.88178 0.75825 0.798 0.76 0.763 0.772 

 
 

                                                           
9 To save space, we do not report the selected priors here. Interested readers can see the complete set of priors 
in our University of Kansas online working paper, Barnett, Chae, and Keating (2005). 
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7.  Empirical Results: Forecasting Performance and Evaluation 

 We generated forecast using the general priors selected in section 6.5.  The accuracy of 

out-of-sample forecasts for 1991:1-2004:3 was evaluated based on the average of Theil's U statistics for 1 to 

48 month-ahead forecasts.  

 Table 4 reports out-of-sample forecast performance statistics for UVAR and AVAR models.  Those 

performance statistics are based on the average of Theil's U statistics for 1 to 48 step-ahead forecast errors 

over the period 1991:1 to 2004:3.  The results are also reported for sub-samples 1991:1-1995:12, 

1996:1-2001:12, and 2002:1-2004:3, since forecasting performance may depend on sample period.  In all 

three AVARs (AVAR-M1, AVAR-M2, AVAR-M3) and three UVARs (UVAR-M1, UVAR-M2, UVAR-M3), 

the averages of Theil U statistics for    and for the benchmark rate are significantly 

less than one over the full sample periods and over the sub-sample periods. Hence, forecasts of total 

expenditure and benchmark rate based on AVARs and UVARs are more accurate than martingale no-change 

forecasts. 

1( ) ,mTE 2( ) ,mTE 3( )mTE
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Table 4.  Out-of-Sample Forecast Performance Statistics: UVAR and AVAR 

                              UVAR-M2                      AVAR-M2 

                 1U              2U               1U              2U  Evaluation Period 

               2( )mTE        BENCH              2( )mTE       BENCH 

1991:1-2004:3 0.721 0.763 0.716 0.738 

1991:1-1995:12 0.771 0.838 0.7567 0.810 

1996:1-2001:12 0.737 0.762 0.733 0.711 

2002:1-2004:3 0.75 0.768 0.749 0.776 

                               UVAR-M3                        AVAR-M3 

                 1U             2U              1U             2U  Evaluation Period 

                3( )mTE       BENCH           3( )mTE       BENCH 

1991:1-2004:3 0.722 0.765 0.72 0.738 

1991:1-1995:12 0.777 0.837 0.766 0.81 

1996:1-2001:12 0.749 0.763 0.75 0.711 

2002:1-2004:3 0.76 0.78 0.753 0.777 

                               UVAR-M1                         AVAR-M1 

                 1U             2U               1U              2U  Evaluation Period 

              1( )mTE       BENCH             1( )mTE        BENCH 

1991:1-2004:3 0.747 0.767 0.730 0.737 

1991:1-1995:12 0.797 0.839 0.773 0.801 

1996:1-2001:12 0.776 0.769 0.741 0.715 

2002:1-2004:3 0.724 0.769 0.758 0.791 
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Table 5. Out-of Sample Forecast Performance Statistics: BVAR Model 

  BVAR-M1   BVAR-M2                BVAR-M3 

        1U        2U          1U        2U          1U        2U  
   Evaluation 
      Period      1( )mTE   BENCH     2( )mTE   BENCH     3( )mTE  BENCH 

1991:1-2001:12 0.928 0.868 0.936 0.864 0.889 0.862 

1991:1-1995:12 0.759 0.819 1.02 0.815 1.09 0.816 

1996:1-2001:12 0.816 0.859 0.838 0.849 0.741 0.847 

2002:1-2004:3 1.278 0.833 1.189 0.824 1.289 0.844 

 

Table 6. Within-Sample Forecast Performance Statistics: Evaluation Period (1960:2-1990:12) 

                   UVAR-M1                    AVAR-M1                  BVAR-M1 

         (TE) m1       BENCH        (TE) m1      BENCH         (TE) m1    BENCH 

          1U          2U            1U            2U             1U          2U  

0.665 0.650 0.670 0.658 0.694 0.763 

                   UVAR-M2                      AVAR-M2                   BVAR-M2 

       2( )mTE    BENCH         2( )mTE     BENCH          2( )mTE     BENCH 

0.678 0.648 0.684 0.654 0.637 0.758 

                   UVAR-M3                    AVAR-M3                    BVAR-M3 

       3( )mTE     BENCH        3( )mTE      BENCH        3( )mTE     BENCH 

0.681 0.648 0.687 0.655 0.634 0.759 

 

 Comparing performances of AVARs relative to those of  UVARs in forecasting benchmark rate, with 

average Theil statistics of 0.737 for AVAR-M1, 0.738 for AVAR-M2, and 0.738 for AVAR-M3, we find that 

AVARs perform slightly better than the UVARs counterparts over all sample periods except for the third 

sub-period 2002:1-2004:3, during which UVAR-M1 and UVAR-M2 outperform the AVAR counterparts.  In 
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addition, the average Theil's U statistics for  and   from AVARs are also less than 

those from UVARs over most of the sample periods, but are only marginally less. 

1 2( ) , ( ) ,m mTE TE 3( )mTE

 To examine forecasting performance for various forecasting horizons10, we also computed the 

average Theil's U statistics for every additional 6 month horizon. The results indicate that over short horizons, 

AVAR-M models improve relative to the UVAR-M models.  In addition, in both AVARs and UVARs, the 

average Theil's U statistics over the shorter horizons are greater than those over the longer horizons, so that 

forecasting accuracy of AVARs and UVARs improves relative to random walk forecasting model over the 

longer horizons. 

 We also report in-sample forecast statistics over 1960:2-1990:12 in table 6.  In contrast with 

out-of-sample forecast performance, in-sample forecast statistics show that UVARs marginally outperform 

AVARs in terms of average Theil's U statistics for  , and for the benchmark rate.  

These in-sample results are to be expected, since AVAR is nested within UVAR as a special case.  

1 2( ) , ( ) ,m mTE TE 3( )mTE

 Table 5 reports forecast performance for the BVAR models.  We estimate BVARs with two sets of 

general priors for two different periods, 1991:1-2001:12 and 2002:-2004:3, respectively, since the accuracy 

of the forecasts is sensitive to the specification of the priors and the optimal prior is likely to depend on 

sample period. The set of priors obtained by minimizing the weighted average of U values for 1989:1 to 

1990:12 was used to generate forecasts for the period of 1991:1 to 2001:12, and the other set of priors 

obtained from 2000:1 to 2001:12 was applied to compute forecasts for the period of 2002:1 to 2004:3.11

 Over the sample period 1991:1 to 2001:12, forecasts of  ,  and  from 

BVARs are better than the corresponding no-change forecasts.  But forecast performances for  and 

 are unimpressive, since the weighted average U statistics are not considerably less than one.  Over 

1( ) ,mTE 2( )mTE 3( )mTE

1( )mTE

2( )mTE

                                                           
10 We do not report the average Theil's U statistics for every additional 6 month horizon, but interested 
readers can find those statistics in our University of Kansas online working paper, Barnett, Chae, and Keating 
(2005). 
11The time frame is as follows: 
1959:1-1988:12: Initial estimation 
1989:1-1990:12: Specify a set of priors by minimizing criterion function over this period. 
1991:1-2001:12: Generate forecasts and evaluate out-of-sample forecast performance. 
2000:1-2001:12: Specify a set of priors by minimizing criterion function over this period. 
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the period 2002:1 to 2004:3, forecasts of  from the BVAR models are even worse than the no-change 

forecasts, with weighted average U statistics of 1.28, 1.19, and 1.29 for   and , 

respectively.  On the other hand, out-of sample forecasts of the benchmark rate from BVAR-M1, BVAR-M2, 

and BVAR-M3 are consistently and substantially better than the no-change forecast in all sample periods.  

TEs

1( ) ,mTE 2( )mTE ,

                                                                                                                                                                            

3( )mTE

 In the within-sample forecast performances reported in table 6,  the BVARs offer a considerable 

improvement relative to the naive model, with average Theil U statistics of 0.69, 0.63, and 0.63 for  

, and  respectively.  In-sample forecast of the benchmark rate from BVARs is also much 

better than the no-change forecast.  Based on forecast performance results, we chose AVAR and BVAR to 

generate forecasts of total expenditure and benchmark rate.  The reason that we chose AVAR over UVAR is 

that the AVAR models outperformed their UVAR counterparts in out-of-sample forecast.  Although UVAR 

models marginally outperformed their AVAR counterparts at in-sample forecasting, we are more interested in 

out-of-sample forecast performance. 

1( ) ,mTE

2( )mTE 3( )mTE

 It is worthwhile to note the gains from BVAR forecasting. We have estimated BVARs in log level, 

and evaluated forecast performance based on Theil's U statistic.  In computing the ESM, forecasts of 

variables in the ESM formula that outperform no-change forecasts of those variables should permit more 

accurate measures of ESM than available from the martingale forecast assumption implied by the CE index. 

To facilitate direct comparison with the CE index, we therefore compute the economic stock of money using 

BVAR forecasts of total expenditure and the benchmark rate. 

8.  Empirical Results: Estimation of Money Stock 

 8.1.  Economic Stock of Money Computed using Actual Data 

 First, we assume perfect foresight and compute the ESM using actual future data for 

monetary-services expenditure and the benchmark asset's rate of return.  We use the formula for  given by 

equation 3.7.  Although future values cannot be known ahead of time, the ESM computed using actual future 

data provides a useful yardstick in assessing the ESM computed using forecasted values.  With actual data 

tV

 
2002:1-2003:12: Generate forecasts and evaluate out-of-sample forecast performance. 
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available through 2004:3, we were able to compute and display the economic stock of money up to 1991:9.12  

To facilitate comparisons among different money stock measures, all figures contain simple-sum aggregates 

and the CE aggregates, as well as the economic stock aggregates.  For the CE index, we computed not only 

the contemporaneous CE index that uses the current weight, 
t

itt
R

rR − , for each asset, but also the smoothed CE 

index.  In smoothing the volatile contemporaneous CE index, Rotemberg, Driscoll, and Poterba (1995) used 

centered moving averages of the weights.  Following the same smoothing procedure, we computed smoothed 

CE index by replacing weights of monetary assets with 13-month centered moving averages of the weights. 

At the start and end of the sample, when symmetric centered moving averages are not available, asymmetric 

uncentered moving averages of the weights were used.  

 Figures 1, 2, and 3 show ESM1_actual, ESM2_actual, and ESM3_actual, respectively, from 1959:1 

through 1991:9, where ESM1_actual, ESM2_actual, and ESM3_actual denote the ESM computed using 

actual future data at each level of aggregation, while CE_mov13 denotes the CE aggregates computed using 

13-month centered moving averages of the weights.  

Figure 1:  Using Actual Current and Future Data 
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Note:  ESM1_actual: Economic Stock of M1 computed using actual data 
           CEM1_Mov13: smoothed CEM1 in which weights are replaced by 13 month centered moving average 
           CEM1: Contemporaneous CEM1; SSM1: Simple-sum M1 
 

                                                           
12 The stopping point was determined by the convergence criterion in equation (4.10). 
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Figure 2:  Using Actual Current and Future Data 
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Note:  ESM2_actual: Economic Stock of M2 computed using actual data 
           CEM2_Mov13: smoothed CEM2, in which weights are replaced by 13 month centered moving average 
           CEM2: Contemporaneous CEM2; SSM2: Simple-sum M2 

 

Figure 3:  Using Actual Current and Future Data 
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Note:  ESM3_actual: Economic Stock of M3 computed using actual data 
           CEM3_Mov13: smoothed CEM3, in which weights are replaced by 13 month centered moving average. 
           CEM3: Contemporaneous CEM3  
           SSM3: Simple-sum M3 
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Figure 4:  Using Actual Future Data 
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 Note:  Investment share was computed by ((SSI-V)/(SSI))*100 where V is the ESM_actual. 
 
 
 The figures show that the SSIM1, SSIM2, and SSIM3 are always greater than their ESM_actual 

counterparts.  The vertical gap between the ESM and the simple sum index can be viewed as the error in the 

SSI arising from the SSI’s failure to remove the investment motive from the discounted stock of money, as 

shown by equation (3.13).  Figure 4 presents the size of the errors of the SSI aggregates in percent.  The size 

of that error in SSIM1 is relatively small, but the errors increase as the level of money aggregation broadens, 

since the broader aggregates introduce more discounted investment-motivated yield into the simple sum 

stock.  As demonstrated by equation (3.13), the SSI fails to recognize the joint product nature of the money 

stock, when money yields interest. 

 On the other hand, the gap between the ESM and the CE index represents the bias of the CE index 

from its implicit assumption of martingale expectations.  Figure 1, 2, and 3 show that the CE index 

underestimates their ESM counterparts almost always, except for CEM2 and CEM3 during the late 1980s.  

However, the gaps between the CE index and the ESM_actual counterparts are very small, particularly early 

in the sample period.  

 To examine quantitatively the errors in the SSI and the CE index, we decomposed the SSI into its 

monetary services share and non-monetary services (discounted investment yield) share.  We here explicitly 

recognize that interest-bearing monetary assets are joint products that provide both monetary services and 
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investment yield services.  Table 7 reports monetary services share percentage and investment share 

percentage for the SSI relative to the economic money stock and CE aggregate, which remove the investment 

motive from the discounted flow.  We compute the monetary services share as  100ESM
SSI ∗  or 100CE

SSI ∗  and 

the investment share as  100SSI ESM
SSI
− ∗  or 100.SSI CE

SSI
− ∗   The investment share is an error inherent in the SSI, 

which treats interest bearing money as a perfect substitute for non-interest bearing currency. 

Table 7.  Partition of Simple-Sum Aggregates into Monetary Services and Non-Monetary Services 
Share (Investment Share), Sample Period : 1959:1-1991:9 

V          Monetary Share of SSI  Investment Share of SSI 
ESM1_actual 74.68 % 25.32 % 
ESM2_actual 58.7 % 41.3 % 
ESM3_actual 55.14 % 44.86 % 
CEM1 70.32 % 29.68 % 
CEM2 53.98 % 46.02 % 
CEM3 50.56 % 49.44 % 

 
Note:  Sample Period is 1959:1-1991:9.  Money stock  V  was computed using actual data available up to 2004:3. 

Monetary services share and investment share were computed by averaging  100V
SSI ∗  and 100SSI V

SSI
− ∗  over the 

sample period, respectively. 
 

 Over the sample period from 1959:1 to 1991:9, the decomposition relative to the ESM_actual 

suggests that the simple sum M1 index contains non-monetary services share of 25.32%, while the simple 

sum M2 and M3 indexes include non-monetary services of 41.3% and 44.86%, respectively. This clearly 

shows that bias contained in the SSI aggregates grows as the level of aggregation increases.  The 

decomposition of the SSI based on the CE index suggests that, over the same sample period, SSIM1, SSIM2, 

and SSIM3 contain investment shares of 29.68 %, 46.02 %, and 49.44 %, respectively.   These percentages 

are slightly greater than those implied by the ESM_actual data.  We thereby find that when the CE index is 

used as the money stock measure, the CE aggregates underestimate economic money stock by 4.36% of 

SSIM1, 4.72% of SSIM2, and 4.58% of SSIM3.  However, these biases in the CE index are relatively small, 

compared to the biases of 25.32%, 41.3%, and 44.86% contained within SSI index.  

8.2.  Economic Stock of Money Based on BVAR and AVAR Forecasts 

 In the previous section, the ESM was computed assuming perfect knowledge of the future.  In this 
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section, we compute the ESM using forecasts of the benchmark rate and monetary-services expenditure.  The 

forecasts were generated using the BVAR and AVAR models.  The models were first estimated using initial 

data from 1959:1 through 1990:12, and forecasts were then computed for up to 200 steps ahead.   In each 

month from 1991:1 through 2004:3, the coefficients are updated sequentially by adding one more observation.  

Based on the resulting updated coefficients, a series of 200-step-ahead forecasts are computed.  For the 

period 1959:1 to 1990:12 over which we estimated the forecasting models, we generated in-sample forecasts.  

For the period from 1991:1 to 2004:3, we generated out-of-sample forecasts.   

 For the period 2002:1 to 2004:3, the BVAR models produced less accurate forecasts for TEs than a 

naive model.  As a result, for that period we replaced those BVAR total-expenditure forecasts with the 

martingale forecast, comprising  the actual current value.  Even in this case, the ESM should contain less 

error than the CE index, since we use a better forecast of the benchmark rate.  The CE index uses the 

martingale forecast for both the TEs and the benchmark rate.  

 To compute the ESM, we use three methods proposed in equations (4.5), (4.3), and (4.7), which we 

call Methods 1, 2, and 3, respectively.  Method 1 computes the ESM by a linear approximation around current 

values of the future values of monetary-services total expenditure and the benchmark rate.  Method 2 imposes  

the martingale expectation assumption on only the benchmark rate.  Method 3 ignores the effects of all 

covariance terms among benchmark rates in different periods and among benchmark rates and monetary 

services expenditures. The convergence criterion, used with all three methods, is provided by equation (4.10).  

  8.2.1 ESM Computed Using Forecasts from BVAR 

 Figures 5, 6, and 7 present ESM1, ESM2, and ESM3, computed using forecasts from the BVAR 

model with Method 1.  The ESM computed using forecasts from BVAR with Method 1 is denoted by 

ESM_mtd1_BVAR.  Figure 5 shows that ESM1_mtd1_BVAR is very close to ESM1_actual, especially in the 

early sample period. Observing the period after 1980, when the divergence of CEM1 from ESM1_actual 

begins to increase, we can observe that ESM1_mtd1_BVAR deviates less from ESM1_actual than the CEM1 

does.  However, during the same period, ESM2_mtd1_BVAR and ESM3_mtd1_BVAR are not much 

different from CEM2 and CEM3, in terms of their gaps with ESM2_actual and ESM3_actual, respectively. 

 The errors in SSI over time are measured by the investment shares in figure 8.  In comparing 
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ESM_mtd1_BVAR with the SSI index, we can observe the same patterns as those obtained in the previous 

section.  In particular, the simple sum aggregates are biased upward, and the size of the errors in the SSI 

increases as the level of aggregation increases.  As in the previous section, the CE aggregates turned out to be 

almost always biased downward throughout the sample period, but the gap between ESM_mtd1_BVAR and 

the CE index is small.  However, ESM_mtd1_BVAR appears to be more volatile than ESM_actual or 

smoothed CE index. 

 The growing bias of SSI, as the level of aggregation broadens, is clearly evident from table 8. Over 

sample periods ranging from 1960:2 to 2004:3, when the ESM is computed using forecasts from BVAR and 

Method 1, the simple sum M1 contains non-monetary services share of 22.76%, while the simple sum M2 

and M3 indexes include non-monetary service of 37.11% and 41.26%, respectively.  We first focus on the 

period from 1960:2 to 1991:9 during which the ESM, computed using actual future data, is available.  Over 

this sub-sample period in table 9, the ESM, based on forecasts from the BVAR model with Method 1, indicate 

that the simple sum M1 contains non-monetary services share of 26.4%, while the simple sum M2 and M3 

indexes include non-monetary services of 42.12% and 45.63%, respectively.  The sizes of the errors in the 

SSI based on ESM_BVAR are very close to those measured by the gap between the SSI index and the ESM 

using actual data.  In particular, those error measures  are investment shares of  25.17 %, 41.21%, and 44.94%. 

Over the same period, the CE index indicates that SSIM1, SSIM2, and SSIM3 contain investment 

(non-monetary) shares of 29.52 %, 46 %, and 49.53 %.  These error shares are slightly higher than those 

computed based on ESM-BVAR, because the CE index is downward biased. 
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Table 8.  Partition of Simple-Sum Aggregates into Monetary Service and Non-Monetary Services 
Share (Investment Share), Sample Period: 1960:2-2004:3 

             Method 1                  Method 2              Method 3
         V         VS           IS         VS            IS         VS          IS
ESM1-BVAR 77.24 % 22.76 % 79.95 % 20.05 % 77.08 % 22.92 % 
ESM2-BVAR 62.89 % 37.11 % 64.8 % 35.2 % 62.71 % 37.29 % 
ESM3-BVAR 58.74 % 41.26 % 60.41 % 39.59 % 58.12 % 41.88 % 
ESM1-AVAR 76.48 % 23.52 % 78.44 % 21.56 % 76.35 % 23.65 % 
ESM2-AVAR 62.25 % 37.75 % 63.73 % 36.27 % 62.05 % 37.95 % 
ESM3-AVAR 57.88 % 42.12 % 59.32 % 40.68 % 57.67 % 42.33 % 
           V              VS                IS
CEM1 73.97 % 26.03 % 
CEM2 59.5 % 40.5 % 
CEM3 55.06 % 44.94 % 

 

Table 9.  Monetary Services Share and Investment Share, Sample Period: 1960:2-1991:9 

             Method 1                 Method 2                 Method 3
         V        VS        IS        VS         IS          VS          IS
ESM1-BVAR 73.6 % 26.4 % 73.22 % 26.78 % 73.4 % 26.6 % 
ESM2-BVAR 57.88 % 42.12 % 60.82 % 39.18 % 57.53 % 42.47 % 
ESM3-BVAR 54.37 % 45.63 % 56.64 % 43.36 % 53.51 % 46.49 % 
ESM1-AVAR 72.75 % 27.25 % 75.43 % 24.57 % 72.67 % 27.33 % 
ESM2-AVAR 57.02 % 42.98 % 59.08 % 40.92 % 56.65 % 43.35 % 
ESM3-AVAR 53.5 % 46.5 % 55.48 % 44.52 % 53.15 % 46.85 % 
 V    VS      IS
ESM1_actual 74.83 % 25.17 % 
ESM2_actual 58.74 % 41.26 % 
ESM3_actual 55.05 % 44.94 % 

Note: Sample period is 1960:2-1991:9.  Money stock V  was computed using forecasted values. VS  and  are 
monetary services share and investment share, respectively.  Monetary services share and investment share were 
computed by averaging 

IS

100V
SSI ∗  and ( 100)SSI V

SSI
− ∗  over sample period, respectively. 
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Table 10.  Partition of Simple-Sum Aggregates into Monetary Service and Non-Monetary Services 
Share (Investment Share), Sample Period: 1991:1-2004:3 

              Method 1                  Method 2                Method 3
          V       VS        IS         VS           IS         VS        IS
ESM1-BVAR 85.78 % 14.22 % 86.09 % 13.91 % 85.78 % 14.22 % 
ESM2-BVAR 74.81 % 25.19 % 74.03 % 25.97 % 75 % 25.0 % 
ESM3-BVAR 69.16 % 30.84 % 69.24 % 30.76 % 69.14 % 30.86 % 
ESM1-AVAR 85.16 % 14.84 % 85.81 % 14.19 % 85.14 % 14.86 % 
ESM2-AVAR 74.19 % 25.81 % 76 % 24.0 % 75.16 % 24.84 % 
ESM3-AVAR 68.37 % 31.63 % 69.1 % 30.90 % 68.34 % 31.66 % 
           V             VS               IS
CEM1 82.74 % 17.26 % 
CEM2 73.13 % 26.87 % 
CEM3 66.22 % 33.78 % 

 

 Over the second sub-sample period 1991:1-2004:3 reported in table 10, investment shares, 

measured by the difference between SSI and ESM_method1_BVAR, are 14.22 % of SSIM1, 25.19% of 

SSIM2, and 30.84% of SSIM3, while the gaps between SSI and the CE index produce investment shares of 

17.26 %, 26.87%, and 33.78%, respectively.  These results confirm that the CE index underestimates the 

ESM, but not by much, with the errors in the CE index being less than 4 % of the SSI index at all levels of 

aggregation and over all sub-sample periods. The investment shares in the second sub-period are 

substantially lower than those in the first sub-sample period.  Over the period from 1991 to early 1994 and the 

period after 2001:4, there was a strong tendency for investment shares to decline over time, as shown in 

figure 8.  We can infer that during these periods, the own rates of return on monetary assets, relative to the 

benchmark rate, have decreased, so that the investment motive for holding monetary assets declined. 
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Figure 5:  Including Results with BVAR Forecasts 
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Note:  ESM1_actual:  Economic Stock of M2 computed using actual data. 
           ESM1_mtd1_BVAR:  Economic Stock of M1 computed using Method 1 and forecasts from BVAR. 
           CEM1_Mov13:  smoothed CEM1 in which weights are replaced by 13 month centered moving average. 
           SSM1:  Simple-sum M1. 
 

Figure 6:  Including Results with BVAR Forecasts 
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Note:  ESM2_actual:  Economic Stock of M2 computed using actual data. 
           ESM2_mtd1_BVAR:  Economic Stock of M2 computed using Method 1 and forecasts from BVAR. 
            CEM2_Mov13:  smoothed CEM2 in which weights are replaced by 13 month centered moving average. 
            SSM2:  Simple-sum M2. 
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Figure 7:  Including Results with BVAR Forecasts 
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Note:  ESM3_actual: Economic Stock of M3 computed using actual data 
           ESM3_mtd1_BVAR: Economic Stock of M3 computed using Method 1 and forecasts from BVAR 
           CEM3_Mov13: smoothed CEM3 in which weights are replaced by 13 month centered moving average                        
           SSM3:Simple-sum M3 

 

Figure 8:  Using BVAR Method 1 Forecasts 
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Note:  INVSM_MTD1_BVAR is investment share in percentage inherent in SSI and is computed as ((SSI-V)/(SSI))*100  
          where V is ESM_mtd1_BVAR 
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  8.2.2.  ESM Computed Using Forecasts from AVAR13

 We denote ESM, computed using forecasts from the AVAR model with Method 1,  Method 2, and 

Method 3, by ESM_mtd1_AVAR, ESM_mtd2_AVAR, and ESM_mtd3_AVAR, respectively.  ESMs obtained 

by AVAR models displayed much higher volatilities than those displayed by their counterpart ESMs obtained 

by BVAR models.  Nevertheless, ESMs obtained by AVAR models also produce the same patterns as 

ESM_mtd1_BVAR with respect to biases in the SSI and the CE index.  In particular, the simple sum index is 

biased upward substantially, while the CE index is biased downward, but not substantially.  The size of the 

biases in the simple sum aggregates increases with broader aggregates.  In addition, the average levels of 

ESMs obtained by AVAR models are not much different from those of ESMs obtained by BVAR models, as 

shown in Tables 8, 9, and 10  

  8.2.3.  Comparison across Computing Methods 

  When comparing the ESM across computing methods, we find that Method 1 and Method 3 result 

in very similar values of the ESM at all levels of aggregation.  As indicated in tables 8, 9, and 10, the 

difference between these two methods is less than 1%.  This means that covariance terms among expected 

benchmark rates, and covariances between expected benchmark rates and expected monetary-service 

expenditures did not seem greatly to affect measurement of the ESM.  On the other hand, comparing the 

ESMs based on Method 1 and Method 2 over the full sample period, we found that monetary service shares 

estimated by Method 2 were greater than those estimated by Method 1, but the differences between  the two 

methods were less than 3% of the SSI at all levels of aggregation.  This divergence between Methods 1 and 2 

results from the assumption that the benchmark rate follows a martingale process.  Nevertheless, the 

differences in economic money stock across computing methods seem to be negligibly small, relative to the 

overall bias in the SSI. Furthermore, regardless of the forecast models from which forecasts are generated, 

and methods by which ESM is computed, certain patterns are evident. The SSI is biased upward, while the 

bias inherent in the SSI increases as the level of aggregation increases.  The CE is biased downward, on 

average, with bias less than 4 % of SSI. 

                                                           
13 To save space in this paper, we do not present the graphs for the ESMs obtained by AVAR models, nor do 
we present the graphs for the ESMs based on Method 2 and Method 3.  Interested readers can find those 
results in our University of Kansas online working paper, Barnett, Chae, and Keating (2005). 
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9.  Discussion and Conclusion 

 We measure the United States capital stock of money implied by the Divisia monetary-services-flow 

index, in a manner consistent with present-value discounting and time-varying discount rates.  Based on 

Barnett's (1991) definition of the economic capital stock of money, we compute the economic stock of money 

by discounting to present value the expected monetary-services-flow expenditure, with user cost pricing of 

those flows. The economic stock of money nests the currency equivalent (CE) index as a special case under 

the assumption of martingale expectations. While the martingale expectations assumption greatly simplifies 

the present-value discounting, that assumption is very strong and often has produced hesitancy to use the CE 

index as a stock measure.  Instead of assuming martingale expectations, we use forecasts based on 

asymmetric vector autoregression (AVAR) and Bayesian vector autoregression (BVAR).  For comparison, we 

compute the ESM using actual realized future data within our sample. 

 We report the size of biases embedded in the SSI and the CE index.  Those biases can be attributed to 

the two indexes’ implicit assumptions. The ESM computed using BVAR forecasts implies that the simple 

sum index greatly exaggerates money stock through inclusion of substantial non-monetary shares.  Over the 

period 1960:2 to 2004:3, those non-monetary shares comprised 22.76% of the stock at the M1 level, 37.11% 

at the M2 level, and 41.26% at the M3 level of aggregation.  The size of the bias of the SSI increases as the 

breadth of aggregation grows. 

 The CE index almost always underestimated the economic stock of money, but the size of the bias in 

the CE index was less than 4% of the SSI index’s bias at all levels of aggregation.  Although the assumption 

of martingale expectations may be unappealing, the resulting bias of the CE index is very small compared 

with the bias of the SSI index.  A particularly noteworthy conclusion of this research was the robustness of 

our results across forecasting models. 

 Prior concerns about the use of Barnett’s economic capital stock of money have centered on the 

difficulties of discounting expected future flows and on the possible need to use sophisticated approaches of 

forecasting to acquire good results.  We find that robustness to the forecasting method is not only high, but is 

so high that even the simple martingale expectations method implicit in the easily computed CE index may be 

adequate for most purposes, especially when the capital stock of money, computed with various models of 
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expectations formation, is compared with the simple sum index.  In particular, the variation in capital stock 

indexes with different expectations formation models is small relative to the gap between any of their paths 

and that of the simple sum index. 

 To do better than the CE index in measuring the growth rate of the monetary-asset capital stock, one 

can use our BVAR or AVAR model.  They both outperformed the “naive” martingale forecast model implicit 

in the CE index.  But data series that depend on forecasted variables are not likely to be preferred by 

governmental agencies, and we find the gains from forecasting to be small.  Although based upon “naive” 

forecasting, the CE is not atheoretical, unlike the atheoretical simple-sum accounting index.  In addition the 

CE index can easily be computed using data at a single point in time, with moving average smoothing of that 

otherwise highly volatile index. 

 In conclusion, the CE index can be used to measure the stock of money with reasonable accuracy, 

while the official simple-sum aggregate is an inappropriate measure of money stock or monetary-services 

flow.  While the use of BVAR or AVAR forecasting can produce small gains for research purposes, we believe 

that the moving-average-smoothed CE index may be adequate for most policy purposes requiring a money 

stock variable.  We believe using an appropriate measure of money stock can produce advances in 

understanding the wealth effects of policy.  The prior hesitancy to use the theoretical economic capital-stock 

of money formula no longer is justified, since our finding of robustness of that formula to expectations 

formation removes the reason for that concern, when judged relative to the simple sum index.   

 Further improvements could be acquired from an adjustment to the CE index to remove the small 

systematic bias that we identify in that index.  Introduction of risk aversion also merits research, using the 

approach in Barnett and Wu (2005) to risk-adjust the flow that is discounted in the ESM.  Having established 

merits of the asset-pricing capital-stock approach to money measurement, we leave such possible 

refinements to future research.  But it is important to recognize that the large gain in moving from the 

simple-sum index to the ESM, computed with any forecasting procedure, far exceeds the gains from bias 

correction, risk adjustment, or choice among forecasting procedures.    
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