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The economic debate on the determinants of the demand for money sparked by 
John Maynard Keynes in “The general theory of employment, interest and money” has 
since then resulted in voluminous literature that explores the issue on both theoretical and 
empirical level. A curious feature of this ongoing research effort is that despite the wide 
variety of often conflicting assumptions, employed in the construction of rivaling 
theoretical models, the overwhelming majority of these models identify a common set of 
macroeconomic variables as the main determinants of the desired holdings of real money 
balances. This set typically includes variables that serve as proxies for the opportunity 
cost and the own rate of return of money, as well as a scale variable measuring the 
volume of transactions financed with money. Often, the functional form of the derived 
relation between the desired real monetary holdings and the indicators described above is 
assumed to be log-linear: 
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 *
tM  - desired nominal money holdings 

 b
tI  - nominal interest rate on bonds 

 m
tI  - nominal interest rate on money 

 tY  - nominal income or wealth 
 tP  - aggregate price level 

 
Expression (1) represents a legitimate demand equation only if the following 

restrictions on its parameters hold: 01 ≥β , 02 ≤β , 03 ≥β  (Hendry and Ericson, 1991, 
p.23). 

 
The first empirical studies on the demand for money viewed equation (1) as a 

long-run relation and estimated it with annual data. The implicit assumption was that the 
presence of transactions costs and other market imperfections prevent the continuous 
equality between the actual and desired monetary holdings (Goldfeld,1973, p. 581). 
Subsequent research focused on the short-run performance of the money demand 
equation. Early attempts to obtain OLS estimates of its coefficients with quarterly or 
monthly data were not successful, because of the detected strong positive serial 
correlation between the intertemporal values of real monetary holdings (see Goldfeld 
(1973), p.581 and Rasche et al (1996), p.8). To overcome this problem, researchers 
typically augmented equation (1) by adding the lagged value of real monetary balances in 
the list of explanatory variables. The resulting regression was then evaluated using OLS 
in combination with the Cochrane-Orcutt technique for dealing with first-order serial 
correlation in regression residuals: 
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 tx  - lower case letters denote the natural logarithm of the 
 corresponding variable tX  

 
Chow (1966) showed that a representation such as (2) can be derived from a 

“stock adjustment” model, in which agents face quadratic costs of adjusting their actual 
money holdings to the desired level.1 Despite the economic appeal and relatively good fit 
of the data, partial adjustment models based on (2) superfluously impose severe 
restrictions on the dynamic interactions between the variables entering the money 
demand function. To see this, following Hamilton (1994, p.324) we rewrite the above 
system of equations in a single expression: 
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It is obvious that equation (3) is a restricted version of a general “autoregressive-

distributed lag model of the variables in levels” (Hendry and Ericson, 1991, p.23): 
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The more recent contributions to the literature on money demand reject such a 

priori imposition of restrictions on the dynamics of the estimated relation in favor of 
more general specifications in the spirit of (4). There is also a growing consensus among 
economists that none of the variables entering (4) are covariance-stationary. Hoffman and 
Rasche (1991) show with monthly data that the 3 months Treasury Bill rate and the real 
Personal Income are both integrated of order one, while Mehra (1996) obtains the same 
result for the real M2 and its own rate of return. Therefore, regression (4) needs to be 
reparameterized to account for non-stationarity and possible cointegration between 
regressors, before being evaluated with OLS. A standard approach to this problem in the 
literature is to apply the Granger Representation Theorem (Hamilton, 1994, p. 580). 
Because all of the variables in (4) are integrated of order one, if there exists a linear 
combination of them that is stationary (which is implied by the existence of a long-run 
money demand function2), then regression (4) can be represented in an error-correction 
form. To derive the latter, we first write down the two equations specifying respectively 
the long-run and the short-run dynamics of the relation between monetary holdings and 
its determinants: 
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1 See Rasche, 1996, pp. 5-16 for a review of the early empirical literature. 
2 Residual in (1) should be a white noise for it to be interpretable as a long-run money demand function. 
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The simultaneous existence of the two specifications imply that the long-run 
elasticities of money demand in respect to real income, treasury bill rate and own rate of 
return of money, derived from each of these equations should be pairwise equal: 
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The error correction representation of (4) can then be obtained by explicitly 

embedding the above coefficient restrictions in it. To this end, we first add and subtract 
the following terms from the RHS of (4): 
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Then, we form and group the current and lagged first-differences of all regressors 

and construct the error correction term ( 1. −tuλ ): 
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Where, 
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The error-correction representation (7) “…generalizes the conventional partial-

adjustment model, allowing separate reaction speeds to the different determinants of 
money demand …, yet via the error correction mechanism ensures that long-run targets 
are achieved …”(Hendry and Ericson, 1991, p.23). Regressions based on (7) can not be 
estimated by OLS, because of simultaneous equations bias. There are two alternative 
solutions to this problem: the use of instrumental variables (Mehra, 1996, p.30) or the 
estimation of  (7) as part of a bigger and more comprehensive vector error-correction 
model (Johansen and Juselius, 1990). The vector error-correction model (VECM) is a 
logical extension of the line of reasoning behind the error-correction representation of the 
money demand function. In VECM, all variables appearing in (4) are treated as 
endogenous and their short-run dynamic adjustments are explicitly modeled as linear 
functions of their own lags and the lagged values of the remaining variables, subject to 
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the coefficient restrictions imposed by the long-run cointegrating relation (6). Thus, 
instead of having only one error-correction representation as in (6), the VECM associated 
with (4) consists of a system of four error-correction representations: 
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The main purpose of this paper is to apply the vector error-correction model 

presented above in the estimation of a money demand function for M2 in the U.S.A with 
monthly data for the period 1959:01 – 1996:12. To get a feel of the data used in this 
paper,  in Figures 1a to 1d we plot respectively the log levels of real M2, real Personal 
Income, 3 months Treasury Bill rate and the own rate of return of M2. 
 
 

Figure 1a 

 
 
 
 
 
 

 
 

 
 
 

7.0

7.2

7.4

7.6

7.8

8.0

8.2

60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96

Log Real M2 



- 6 - 

 

Figure 1b 

 
 
 
 

Figure 1c 
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Figure 1d 

 
 

The visual inspection of Figures 1a to 1d convincingly shows that all of the series 
are non-stationary. Consequently, any further statistical use of the data should be 
preceded by a test for the existence of unit-roots. Figures 2a to 2d present the results from 
the conducted Augmented Dickey-Fuller tests for unit roots in the log levels of real M2, 
real Personal Income, 3 months Treasury Bill rate and the own rate of return of M2. The 
null hypothesis under the Augmented Dickey-Fuller (ADF) test is that the time series are 
generated by unit root processes. “The null hypothesis of a unit root is rejected against 
the one-sided alternative if the t-statistic is less than (lies to the left of) the critical value.” 
(Eviews 3 User’s Guide, 1997, p.333). Figures 2a to 2d show the 5% critical value of the 
asymptotic ADF t-statistic under the null hypothesis and plots of its estimated values, 
obtained from an iterative procedure using a rolling sample3 of 240 monthly observations 
for each of the four series. All ADF tests were conducted with the least restrictive 
specification, which allows for the presence of a constant and a trend in the estimated 
equation, as well as serial correlation in its residuals up to a lag length of twelve.  
 

                                                 

3 We start with a sample of the first 240 observations (1959:01 – 1978:12) and compute the value of the 
ADF test statistic. Then on the second step of the iterative procedure, we add one additional observation at 
the front-end of the sample (1979:01) and drop one observation from the back-end of the sample (1959:01). 
We continue in this fashion until we reach the end of the original data sample (1996:12). 
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Figure 2a: Log Levels of Real M2 

 
 

 
 

Figure 2b: Log Levels of Real Personal Income  
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Figure 2c: Log Levels of 3 Month Treasury Bill Rate 
 

 
 

 
 

Figure 2d: Log Levels of Own Rate of Return of M2 
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A major advantage of the iterative research technique used in the construction of 
the above plots is that it provides a ready test of the structural stability of the tested 
relation. If the rolling ADF tests consistently accept the null hypothesis of an unit-root in 
the data over a large number of subsets of the full sample, we can be pretty sure that the 
obtained results do not hinge on a few outliers or on other peculiarities of the data. 
Figures 2a to 2d strongly support the empirical observation that all of the tested series are 
non-stationary and that their log levels contain unit-roots. 

 
Next, we test for the order of integration4 of the four series by conducting a 

rolling ADF tests on sub-samples of 240 observations of their first differences. If the 
series are integrated of order one, their first differences should be stationary and the 
estimated values of the ADF t-statistic in Figures 3a to 3d should be smaller (bigger in 
absolute value) than the 5% critical value under the null hypothesis. 
 
 

Figure 3a: Log Difference of Real M2 

 
 
 
 
 
 
 
 
 
 

                                                 

4 “A series is said to be cointegrated of order d, or I(d) if it requires to be differenced d times to yield a 
stationary, invertible, non-deterministic ARMA representation.” (Muscatelli and Hurn, 1992, p.2). 
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Figure 3b: Log Difference of Real Personal Income 

 
 
 
 

Figure 3c: Log Difference of 3 Month Treasury Bill Rate 
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Figure 3d: Log Difference of Own Rate of Return on M2 

 
 

The above plots clearly show that except for the real Personal Income, all 
scrutinized variables are consistently integrated of order one. In the case of the real 
Personal Income, the rolling ADF test indicates that the series was integrated of higher 
order in samples with a starting date prior to 1971:10 and has become consistently 
integrated of order one since then. Because cointegration theory does not provide a clear-
cut solution to the problem of how should one proceed if the variables tested for 
cointegration are integrated of different orders (see Muscatelli and Hurn, 1992, p.12), we 
proceed with the derivation of a VECM using data only from the subsample: 1972:01  – 
1996:12. 

 
The second step in the development of a VECM is to test for the existence and the 

number of cointegrating equations between the log levels of real M2, real Personal 
Income, 3 month Treasury Bill rate and the own rate of return of M2. Before running any 
formal tests of cointegration, it is useful to obtain a visual perspective of the relation 
between the variables under consideration. Figure 3a presents a three-dimensional 
scatterplot of the log levels of real M2 on the left horizontal axis, real Personal Income on 
the right horizontal axis and the 3 month Treasury Bill rate on the vertical axis. Figure 3b 
presents a three-dimensional scatterplot of the log levels of real M2 on the left horizontal 
axis, real Personal Income on the right horizontal axis and the own rate of return of M2 
on the vertical axis. If three integrated of order one series share one unit root5, their joint 
realizations should lie on a plane in a three dimensional graph. In general, if we have n 
variables and h cointegrating relationships, then they have to lie on an (n-h) dimensional 
object in an n dimensional graph. 

                                                 

5 There is only one cointegration relation between them. 

-5.0

-4.5

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

50 100 150 200

ADF t-statistic asymptotic 5% critical value 



- 13 - 

 

Figure 3a: A 3-D Scatterplot of real M2, real Personal Income 
and 3 Month Treasury Bill Rate 

 

 
 
 

Figure 3b: A 3-D Scatterplot of real M2, real Personal Income 
and Own Rate of Return of M2 
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hypothesis of r cointegrating equations against the hypothesis that the series are 
stationary. If the estimated trace statistic exceeds the 5% critical value, we can reject the 
restriction r on the number of cointegrating equations. “To determine the number of 
cointegrating relations r, subject to the assumptions made about the trends in the series, 
we can proceed sequentially from r = 0 to r = k-1 until we fail to reject.” (Eviews 3 
User’s Guide, 1997, p.511). Figure 4a show the 5% critical value of the asymptotic 
Johansen trace statistic and a plot of its estimated values for the hypothesis of zero 
cointegrating equations between the four series. The results are obtained from an iterative 
procedure using a rolling sample6 of 240 monthly observations under the specification of 
no deterministic trend in the data, and an intercept but no trend in the cointegrating 
equation.  
 
 

Figure 4a: Johansen Trace Test of Zero Cointegrating Equations 
 

 
 
The plot of the values obtained from the rolling Johansen trace test of zero 

cointegrating equations shows that with the exception of a small number of subsets, we 
are able to reject the tested hypothesis over the whole range of the data. ). Consequently, 
in Figure 4b we plot the estimated values from a rolling Johansen trace test of the 
hypothesis of one cointegrating equations against the 5% critical value.  
 

                                                 

6 We start with a sample of the first 240 observations (1972:01 – 1991:12) and compute the value of the 
Johansen trace test. Then on the second step of the iterative procedure, we add one additional observation at 
the front-end of the sample (1992:01) and drop one observation from the back-end of the sample (1972:01). 
We continue in this fashion until we reach the end of the original data sample (1996:12). 
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Figure 4b: Johansen Trace Test of One Cointegrating Equations  

 
The plot of the values of the rolling Johansen trace test of one cointegrating 

equation in combination with the results from the preceding test suggest that in the 
majority of subsamples we are not able to reject the restriction that there is only one 
cointegrating equation between the four series. In Figure 4c, we summarize the results 
from the complete sequential Johansen trace test of the number of cointegrating 
equations.  
 
 

Figure 4c: Number of Cointegrating Equations Derived from the Rolling  
Johansen Trace Test 
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Figure 4c confirms our previous finding that except for a few outliers the real M2, 
real Personal Income, 3 month Treasury Bill rate and the own rate of return of M2 
consistently share one unit root throughout the whole sample 1972:01 – 1996:12. It also 
shows that this stable long-run relation temporary broke down in some subsamples with 
starting dates prior to 1974:01. Because of this, we have decided to use the reduced 
sample of observations 1974:01 – 1996:12 in the last step of the construction of the 
vector error correction model (VECM). 

 
In summary, the results from the preliminary analysis of the data used in the 

estimation of a VECM show that the log levels of real M2, real Personal Income, 3 month 
Treasury Bill rate and the own rate of return of M2 are integrated of order one in the 
sample 1972:01  – 1996:12 and stably cointegrated after 1974:01. Now, we are in 
position to obtain the long-run elasticities of money demand, derived from the VECM 
given in (8). In the vector error correction analysis presented below, we use an iterative 
technique similar to the ones used earlier in this paper. On each step of the procedure, we 
estimate a VECM for a rolling sample of 240 observations7. The number of cointegrating 
equations for each subsample is determined from the results of the Johansen trace test 
presented in Figure 4c. All VECMs are estimated under the specification of no 
deterministic trend in the data, and an intercept but no trend in the cointegrating 
equations. We use 12 lags of all participating variables to capture the short-run dynamic 
interactions between them and to assure that the resulting residuals are not serially 
correlated. The resulting OLS estimates of the long-run cointegrating coefficients 
between the four series, as well as the value of the error-correction term in the short-run 
money demand function are presented in Table 1. The coefficient estimates in columns 3, 
4 and 5 are directly interpretable as the long-run elasticities of the demand for real M2 in 
respect to real Personal Income, 3 month Treasury Bill rate and the own rate of return of 
M2 if taken with opposite signs. The numbers below the bolded  entries in the second and 
third columns are asymptotic 5% critical values of the Johansen trace test. The 
corresponding numbers in columns 3 to 6 are the standard errors of the corresponding 
OLS estimates. 

 
In almost all subsamples, the estimated long-run elasticities of real money 

demand are in line with the theoretical requirements 01 ≥β , 02 ≤β , 03 ≥β and are of 
reasonable magnitude. Consequently, we can conclude that throughout the whole period 
1974:01 – 1996:12 there existed a stable long-run money demand function linking real 
M2 with real Personal Income, 3 month Treasury Bill rate and the own rate of return of 
M2. The intertemporal dynamics of the corresponding long-run elasticities of real M2 are 
also quite interesting. In the first 15 subsamples all coefficients are statistically 
insignificant but have the correct signs and expected magnitudes. In the rest of the cases, 
the coefficients are in general significant except in subsamples 26, 27, 28 and 29, in 
which the standard errors of the cointegrating coefficients explode to two and three digit 
                                                 

7 We start with a sample of the first 240 observations (1974:01 – 1993:12) and estimate the VECM. Then 
on the second step of the iterative procedure, we add one additional observation at the front-end of the 
sample (1994:01) and drop one observation from the back-end of the sample (1974:01). We continue in this 
fashion until we reach the end of the original data sample (1996:12). 
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numbers. The estimated short-run speed of adjustment of actual monetary holdings to 
their desired level, which equals one plus the error-correction term (see (7) ) is quite high, 
even though it is also insignificant in the first 15 subsamples. Throughout the whole 
sample, agents consistently adjust their real monetary holdings to eliminate 99% “ of the 
discrepancy between their current desired real balances and their previous real balance 
holdings…” (Hoffman and Rasche, 1996, p.11). The long-run elasticity of M2 in respect 
to real Personal Income is always less than one, pointing at the existence of economies of 
scale of holding money. 

 
The full estimation output of the VECM (8) obtained from the entire sample 

1974:01 – 1996:12 is presented in Appendix 1. The full sample long-run elasticities of 
real M2 in respect to real Personal Income, 3 months Treasury Bill rate and own rate of 
return of M2 are respectively: 0.70, -0.22 and 0.30. All are statistically significant at the 
95 % level of confidence. The estimated short-run speed of adjustment is 99.99%. 
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Table 1: Estimates of Error Correction Parameters from Rolling VECMs 
 

Sample Trace Tests Real 
Personal 
Income 

3 Months 
Treasury Bill 

Rate 

Own Rate of 
Return of M2 

Error 
Correction 

Term 
 r=0 r=1     
1 55.81 34.73 -1.16 -0.75 0.88 0.00166 
 53.12 34.91 0.75 1.01 1.50 0.00179 
2 56.04 34.97 -1.18 -0.75 0.90 0.00176 
 53.12 34.91 0.77 1.01 1.52 0.00179 
3 53.21 33.09 -1.16 -0.78 0.91 0.00164 
 53.12 34.91 0.77 1.07 1.58 0.00173 
4 54.41 32.82 -1.07 -0.79 0.87 0.00126 
 53.12 34.91 0.72 1.15 1.63 0.00165 
5 55.27 32.23 -0.92 -0.57 0.54 0.00104 
 53.12 34.91 0.44 0.67 0.94 0.00217 
6 54.15 29.98 -0.97 -0.68 0.69 0.00136 
 53.12 34.91 0.55 0.90 1.24 0.00190 
7 54.06 29.89 -0.84 -0.51 0.43 0.00070 
 53.12 34.91 0.36 0.58 0.79 0.00232 
8 59.54 30.55 -0.79 -0.51 0.41 0.00042 
 53.12 34.91 0.36 0.63 0.83 0.00219 
9 57.01 30.56 -0.72 -0.48 0.34 -0.00010 
 53.12 34.91 0.33 0.62 0.78 0.00214 

10 59.57 30.85 -0.66 -0.46 0.28 -0.00001 
 53.12 34.91 0.32 0.61 0.75 0.00216 

11 64.41 31.28 -0.45 -0.55 0.28 -0.00029 
 53.12 34.91 0.54 1.06 1.11 0.00151 

12 68.94 31.79 -0.42 -0.54 0.25 -0.00049 
 53.12 34.91 0.58 1.06 1.09 0.00146 

13 72.77 30.81 -0.52 0.13 -0.45 -0.00029 
 53.12 34.91 0.70 1.57 1.61 0.00119 

14 54.84 31.95 -0.37 1.53 -2.16 -0.00055 
 53.12 34.91 1.19 4.71 5.93 0.00074 

15 55.02 32.08 -0.55 0.50 -0.90 -0.00109 
 53.12 34.91 0.34 0.52 0.73 0.00209 

16 57.34 32.51 -0.42 0.26 -0.69 -0.01230 
 53.12 34.91 0.15 0.10 0.20 0.00568 

17 58.67 33.10 -0.52 0.31 -0.70 -0.00250 
 53.12 34.91 0.22 0.20 0.34 0.00357 
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Sample 

Johansen 
Trace Tests 

Real 
Personal 
Income 

3 Months 
Treasury Bill 

Rate 

Own Rate of 
Return of M2 

Error 
Correction 

Term 
 r=0 r=1     

18 59.91 32.45 0.13 1.75 -2.84 -0.00054 
 53.12 34.91 2.91 6.18 9.24 0.00070 

19 59.63 31.95 -0.35 0.22 -0.70 -0.02047 
 53.12 34.91 0.14 0.07 0.16 0.00739 

20 60.82 32.13 -0.37 0.25 -0.73 -0.01368 
 53.12 34.91 0.16 0.09 0.20 0.00646 

21 63.61 33.17 -0.18 0.26 -0.89 -0.01379 
 53.12 34.91 0.24 0.10 0.28 0.00573 

22 70.80 33.00 -0.36 0.20 -0.70 -0.01142 
 53.12 34.91 0.15 0.07 0.18 0.00700 

23 66.70 32.79 -0.01 0.27 -1.07 -0.00621 
 53.12 34.91 0.37 0.13 0.44 0.00456 

24 66.18 31.90 0.07 0.32 -1.31 0.00116 
 53.12 34.91 0.77 0.28 1.04 0.00249 

25 66.31 32.82 0.79 0.41 -2.12 0.00132 
 53.12 34.91 2.18 0.53 2.74 0.00155 

26 66.10 32.95 2.05 0.69 -3.77 0.00094 
 53.12 34.91 7.98 1.82 10.23 0.00079 

27 63.70 34.10 -8.18 -2.15 10.43 -0.00032 
 53.12 34.91 81.23 24.18 115.56 0.00022 

28 61.07 34.01 -15.68 -4.67 20.76 -0.00015 
 53.12 34.91 267.46 84.65 374.58 0.00013 

29 64.31 34.50 -0.71 0.13 -0.28 -0.00028 
 53.12 34.91 71.84 21.65 96.92 0.00026 

30 63.78 34.53 -0.81 0.12 -0.20 -0.00343 
 53.12 34.91 1.45 0.44 1.98 0.00175 

31 64.66 33.58 -0.78 0.19 -0.29 -0.00657 
 53.12 34.91 0.48 0.16 0.63 0.00334 

32 68.11 35.01 -0.83 0.26 -0.33 NA 
 53.12 34.91     

33 68.64 33.71 -0.78 0.25 -0.35 -0.01241 
 53.12 34.91 0.23 0.08 0.29 0.00492 

34 67.47 34.50 -0.78 0.23 -0.33 -0.01097 
 53.12 34.91 0.27 0.09 0.34 0.00451 

35 67.49 34.77 -0.64 0.23 -0.46 -0.01293 
 53.12 34.91 0.23 0.07 0.27 0.00499 

36 68.11 37.01 -0.61 0.26 -0.53 NA 
 53.12 34.91     

37 68.48 37.30 -0.62 0.23 -0.50 NA 
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Finally, we test the forecasting sharpness of our model, by conducting recursive, 
static, one-period ahead forecasts of real M2. We start with a sample of the first 240 
observations and estimate the parameters of the VECM. Then, we use the obtained 
coefficients of the model to forecast the real M2 in the next period. On the second step of 
the procedure, we add the actual 241-st observations of the four series and reestimate the 
parameters of the model, using the new estimates to forecast the real M2 in 242 period 
from the beginning of the full sample. Figure 5a presents a plot of the actual values and 
the corresponding one-period ahead forecasts of the log of real M2. Figure 5b plots the 
difference between the one-period ahead forecasts and the actual values of M2.  
 
 

Figure 5a: Actual Values and One-Period Ahead Forecasts of Real M2 for the 
Period 1994:01 – 1996:12 
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Figure 5b: Difference Between the One-Period Ahead Forecasts of Real M2 and its 
Actual Values for the Period 1994:01 – 1996:12 

 
 
The visual inspection of Figures 5a and 5b suggest that our VECM has a very 

good predictive power in one-period ahead forecasting of real M2. To get a quantitative 
measure of the forecasting power of the model, we calculate the root mean squared error 
(RMSE) and the mean absolute percentage error (MAPE) associated with this forecasting 
exercise. The RMSE of the one-period ahead recursive forecasts of real M2 for the period 
1994:01 – 1996:12 is 0.002, whereas the MAPE is equal to 0.0002. Both measures have 
extremely small values, indicating that the average difference between the one-period 
ahead forecast and the actual value of real M2 is less than two hundredth of a percent of 
the actual value. 
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Appendix 1: Full Estimation Output from the VECM with the entire sample 
1974:01 – 1996:12 

 
 VECM estimated under the specification of no deterministic trend in the data and 
an intercept, but no trend in the cointegrating equation. Standard errors are in parenthesis. 
 
 

Cointegrating Eq:  CointEq1 
LN_RM2(-1)  1.000000 

  
LN_RINC(-1) -0.698170 

  (0.06165) 
  

LN_TB3M(-1)  0.219772 
  (0.05935) 
  

LN_IM2(-1) -0.304559 
  (0.06714) 
  

C -2.616061 
  (0.49192) 

Error Correction: D(LN_RM2) D(LN_RINC) D(LN_TB3M) D(LN_IM2) 
CointEq1 -9.29E-05 -0.030027  0.148343  0.005008 

  (0.00353)  (0.00807)  (0.07871)  (0.03343) 
     

D(LN_RM2(-1))  0.521595  0.247247  2.860538  0.395379 
  (0.06784)  (0.15496)  (1.51116)  (0.64173) 
     

D(LN_RM2(-2)) -0.038073 -0.291236 -4.030616 -0.616235 
  (0.07689)  (0.17565)  (1.71288)  (0.72739) 
     

D(LN_RM2(-3)) -0.031299  0.318649  2.924974  0.619819 
  (0.07591)  (0.17340)  (1.69100)  (0.71810) 
     

D(LN_RM2(-4))  0.035896  0.347613  1.673768  0.454640 
  (0.07633)  (0.17437)  (1.70040)  (0.72209) 
  (0.47026)  (1.99356)  (0.98434)  (0.62961) 
     

D(LN_RM2(-5))  0.016992 -0.417299 -3.715916 -0.528154 
  (0.07579)  (0.17314)  (1.68842)  (0.71701) 
     

D(LN_RM2(-6))  0.009455  0.236702  3.147256 -0.263304 
  (0.07587)  (0.17332)  (1.69019)  (0.71776) 
     

D(LN_RM2(-7)) -0.010947 -0.049858 -3.587245  0.244375 
  (0.07619)  (0.17405)  (1.69727)  (0.72076) 
     

D(LN_RM2(-8)) -0.051295 -0.113007  2.448257  0.852408 
  (0.07575)  (0.17303)  (1.68736)  (0.71656) 
     

D(LN_RM2(-9))  0.180392  0.191439 -0.566912  1.172586 
  (0.07557)  (0.17262)  (1.68334)  (0.71485) 
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D(LN_RM2(-10)) -0.009069 -0.120981 -1.535977 -1.067887 

  (0.07557)  (0.17263)  (1.68341)  (0.71488) 
     

D(LN_RM2(-11)) -0.050160  0.198991  0.652114  0.291490 
  (0.06220)  (0.14207)  (1.38547)  (0.58835) 

D(LN_RINC(-1))  0.021147 -0.252000  1.452138  0.517584 
  (0.03016)  (0.06890)  (0.67192)  (0.28534) 
     

D(LN_RINC(-2)) -0.001469 -0.068223  1.877751 -0.113360 
  (0.03152)  (0.07201)  (0.70220)  (0.29820) 
     

D(LN_RINC(-3))  0.006734 -0.194249  0.375858  0.038145 
  (0.03117)  (0.07120)  (0.69428)  (0.29483) 
     

D(LN_RINC(-4))  0.010985 -0.052284 -0.708143 -0.129041 
  (0.03149)  (0.07192)  (0.70136)  (0.29784) 
     

D(LN_RINC(-5))  0.077357  0.025311  0.470064 -0.403774 
  (0.03145)  (0.07184)  (0.70057)  (0.29750) 
     

D(LN_RINC(-6)) -0.027376 -0.053925  0.268373 -0.140394 
  (0.03160)  (0.07218)  (0.70384)  (0.29890) 
     

D(LN_RINC(-7))  0.017863  0.053578  0.597090 -0.286051 
  (0.03137)  (0.07166)  (0.69879)  (0.29675) 
     

D(LN_RINC(-8))  0.081960  0.079209  0.304958 -0.169151 
  (0.03093)  (0.07065)  (0.68899)  (0.29259) 
  (2.64990)  (1.12110)  (0.44261) (-0.57812) 
     

D(LN_RINC(-9))  0.044525 -0.103122 -0.216133 -0.456103 
  (0.03047)  (0.06959)  (0.67865)  (0.28820) 
     

D(LN_RINC(-10)) -0.018320  0.063370  0.315768 -0.183970 
  (0.03073)  (0.07021)  (0.68463)  (0.29074) 
     

D(LN_RINC(-11))  0.041701 -0.058779  0.249312  0.119713 
  (0.02938)  (0.06711)  (0.65440)  (0.27790) 
     

D(LN_TB3M(-1)) -0.017226  0.021564  0.420929  0.112462 
  (0.00327)  (0.00746)  (0.07275)  (0.03089) 
     

D(LN_TB3M(-2))  0.002104  0.012668 -0.262981  0.037614 
  (0.00364)  (0.00832)  (0.08117)  (0.03447) 
     

D(LN_TB3M(-3)) -0.013365  0.005329 -0.029802  0.022422 
  (0.00370)  (0.00844)  (0.08235)  (0.03497) 
     

D(LN_TB3M(-4)) -0.007924  0.022169  0.016661  0.091457 
  (0.00371)  (0.00848)  (0.08272)  (0.03513) 
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D(LN_TB3M(-5)) -0.010083 -0.014320  0.070232  0.022091 
  (0.00383)  (0.00876)  (0.08538)  (0.03626) 
     

D(LN_TB3M(-6)) -0.008254  0.012115 -0.221265  0.034056 
  (0.00365)  (0.00833)  (0.08125)  (0.03450) 
     

D(LN_TB3M(-7)) -0.001106  0.001272  0.043222  0.006990 
  (0.00377)  (0.00860)  (0.08387)  (0.03562) 
     

D(LN_TB3M(-8)) -0.004370 -0.003658 -0.032497  0.037905 
  (0.00368)  (0.00841)  (0.08206)  (0.03485) 
     

D(LN_TB3M(-9)) -0.009490  0.011450  0.173174  0.038953 
  (0.00359)  (0.00819)  (0.07990)  (0.03393) 
     

D(LN_TB3M(-10)) -0.000798  0.007896 -0.076644  0.016500 
  (0.00351)  (0.00802)  (0.07825)  (0.03323) 
     

D(LN_TB3M(-11)) -0.005107 -0.007064  0.049345  0.034803 
  (0.00334)  (0.00762)  (0.07433)  (0.03156) 
     

D(LN_IM2(-1))  0.006531 -0.004081  0.073415  0.134362 
  (0.00714)  (0.01632)  (0.15911)  (0.06757) 
     

D(LN_IM2(-2))  0.009381 -0.011706  0.202310  0.034749 
  (0.00716)  (0.01636)  (0.15957)  (0.06776) 
  (1.30956) (-0.71540)  (1.26783)  (0.51279) 
     

D(LN_IM2(-3))  0.016932 -0.002740 -0.084698  0.024503 
  (0.00715)  (0.01632)  (0.15917)  (0.06759) 
     

D(LN_IM2(-4))  0.017146  0.010223  0.009849 -0.017429 
  (0.00707)  (0.01615)  (0.15747)  (0.06687) 
     

D(LN_IM2(-5))  0.016344  0.003100 -0.078577 -0.031094 
  (0.00711)  (0.01625)  (0.15842)  (0.06727) 
     

D(LN_IM2(-6))  0.004136  0.017536  0.194117  0.037252 
  (0.00704)  (0.01608)  (0.15676)  (0.06657) 
     

D(LN_IM2(-7)) -0.003682 -0.016512 -0.018360  0.056938 
  (0.00704)  (0.01608)  (0.15681)  (0.06659) 
     

D(LN_IM2(-8))  0.003919 -0.010221  0.055613  0.141740 
  (0.00694)  (0.01585)  (0.15460)  (0.06565) 
     

D(LN_IM2(-9))  0.008898 -0.010054 -0.205410  0.022629 
  (0.00699)  (0.01598)  (0.15580)  (0.06616) 
     

D(LN_IM2(-10))  5.22E-05 -0.005179 -0.022757 -0.061555 
  (0.00700)  (0.01598)  (0.15586)  (0.06619) 
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D(LN_IM2(-11))  0.006176  0.002420 -0.122187 -0.056636 
  (0.00669)  (0.01528)  (0.14903)  (0.06329) 
     

 R-squared  0.661632  0.239662  0.346663  0.360062 
 Adj. R-squared  0.597180  0.094836  0.222217  0.238169 
 Sum sq. resids  0.001527  0.007966  0.757568  0.136617 
 S.E. equation  0.002571  0.005872  0.057267  0.024319 
 Log likelihood  1278.873  1050.879  422.3028  658.6870 
 Akaike AIC -8.941111 -7.288980 -2.734079 -4.447007 
 Schwarz SC -8.350828 -6.698697 -2.143796 -3.856724 
 Mean dependent  0.001207  0.002082 -0.001511 -0.001046 
 S.D. dependent  0.004051  0.006172  0.064935  0.027862 
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