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Abstract

Our objective in this paper is to shed light on the economic forces and the specific way
in which they combine to determine the service life, and hence the replacement demand
for durables, in the short run and in the long run. For this purpose the received multi-
period economic replacement model is extended in the light of more recent theoretical
developments and solved for the number and duration of replacements. Owing mainly to
the intuition that the latter decisions are inexplicably related to the owner’s profit horizon,
aside from steady state replacement, the model is shown to yield a range of transitional
and limiting replacement policies that have been largely ignored in the literature. In addi-
tion, the results indicate that : a) the optimal service life is consistently determined by
such conventional forces of short-term variation as utilization, maintenance, operating
safety, interest rate, uncertainty due to technological breakthroughs, the price of new
and used durables,  etc., b) switching among replacement policies produces bursts or
slumps in replacement investment much like the “spikes” discovered recently at the
plant level, and c) in non-stationary economic environments the error from applying
steady state replacement, instead of the more appropriate transitory replacement poli-
cies reported in this paper, may be substantial.
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I. Introduction
The development of a framework to explain the behavior of business firms and

consumers in the replacement of their durables has passed through several phases, not

all of which could be considered successful from an evolutionary point of view. Prein-

reich’s (1940) and Terborgh’s (1949) seminal contributions, seen through Smith’s (1961)

perspective a little over ten years later, constituted the culmination of the first significant

phase which begun in the early 1920’s with the papers of Taylor (1923) and Hotelling

(1925).1 Then, with Jorgenson’s (1963) influential article started a new phase during

which replacement theory all but eclipsed since the great majority of researchers were

content to assume that durables are replaced at a constant rate, proportional to the cor-

responding stocks. This phase peaked at the beginning of the 1970s when a few re-

searchers initially, and many more afterwards, started to question the theoretical and

empirical foundations on which the proportional replacement theory rested.

Wykoff (1970) was the first to raise serious doubts about the validity of the pro-

portionality hypothesis. He found that the resale price of first year automobiles in the

post-war period declined consistently far in excess of what was justified by their physi-

cal deterioration.2 Following that contribution there appeared a barrage of additional

papers by Feldstein and Foot (1971), Feldstein and Rothchild (1972),3 Bitros (1972),

Wykoff (1973), Bitros and Kelejian (1974) and Smith (1974). These papers showed

that the replacement to capital stock ratio varied considerably under the influence of

conventional economic forces. So, even though Jorgenson (1974) forcefully defended

the proportionality hypothesis, by the middle of 1970’s it was clear that the profession

was in search of an economic theory of replacement.

Actually, as evidenced by Naslund (1966), Thompson (1968) and Kamien and

Schwartz (1971),4 the efforts to formulate such a theory while the proportionality hy-

pothesis reigned never stopped.5 But since then the efforts intensified and proceeded in

three directions. More specifically, working in the first direction, Malcomson (1975),

Nickell (1975), Arnott, Davidson, and Pines (1983), Ye (1990), and Mauer and Ott

(1995) presented choice theoretic models highlighting most of the main determinants

of replacement. As a result, now it is widely accepted that the decision to replace a du-

rable depends on its age, technological change, maintenance, product and input mar-

ket conditions, various sources of uncertainty, shocks, etc. The second direction was

followed by researchers such as Smith (1975), Westin (1975), Rust (1987), and Roth-

well and Rust (1997), who theorized about replacement from certain “stylized facts”
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characterizing the data from various durables. Finally, several general equilibrium theo-

rists as, for example, Kydland and Prescott (1982), Cooper and Haltiwanger (1993),

Cooley, Greenwood and Yorukoglu (1997), and Cooper, Haltiwanger and Power

(1999) took the third direction by trying to explain how the decision to replace a piece

of equipment is influenced by the state of the economy.

However, in spite of the advances achieved, the quest for a sufficiently general

theory of replacement remains unabated. One reason for this is that factors identified in

some studies as important determinants of replacement are ignored by others. For ex-

ample, with the exception of Arnott et. al. (1983), there is no account for the ability of

owners to improve their equipment through maintenance. Another reason is that typi-

cally the deterioration of durables is attributed merely to the passage of time, thus lead-

ing to models that prohibit owners from running their durables down faster (slower)

through more (less) intensive utilization. Last, but not least, by assuming that there is no

second hand market, 6 that investment is irreversible, and that technical change proceeds

at a constant rate, researchers obtain replacement models that are overly restrictive.

In view of the above our objective is to expand on the replacement theory that

emanates from the studies in the first tradition so as to derive a model that can explain

all important real capital decisions. To this end, in the present paper, aside from laying

down the foundations for such a model, we obtain several new results. More specifically,

one of them is that, depending on the nature and operating characteristics of the equip-

ment, there emerge several transitional and limiting replacement and scraping policies,

which have been ignored in the relevant literature. Another is that in general transitional

replacement policies give rise to service lives which are higher than those derived from

equidistant steady state replacements, thus raising the possibility for significant errors in

growth accounting, real business cycle studies and others applications. Still another is that

switching among transitional policies produces bursts or slumps in replacement invest-

ment much like the “spikes” discovered recently at the plant level. 7 And last, but not least,

we find that optimal service life is consistently determined by such conventional forces of

short-term variation as utilization, maintenance, operating safety, interest rate, uncertainty

due to technological breakthroughs, the prices of new and used equipment, etc.

Organizationally the paper is structured as follows. In Section II initially we ex-

pand on the received multi-period economic replacement model by allowing explicitly for

the processes of utilization, maintenance and uncertainty, due to technological break-

throughs. Then we provide necessary and nearly sufficient conditions for the existence
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of optimal policies, and lastly we analyze the properties of transitory, limiting and steady

state replacement and scraping policies that emerge. Next, in Section III, we use a sim-

ple example to highlight the implications of our findings for economic theory and policy

and in Section IV we summarize the conclusions. Finally, Appendices A and B provide

certain results that supplement the presentation in important respects.

II. A unified theory of replacement and scraping decisions
Preinreich (1940) showed that the economic life of equipment can not be deter-

mined in isolation from the economic life of each equipment in a chain of replacements

extending as far into the future as the user’s profit horizon. However he did not investigate

the question of how long the user’s profit horizon should be and this led economic theo-

rists writing in his tradition to the simplification that replacements were placed at equally

spaced time intervals over an infinite horizon. As a result they restricted attention exclu-

sively on equidistant steady state replacements. Instead, according to our rehabilitation of

his multi-period model, users of equipment cannot leave the issue of the profit horizon un-

decided. Subject to technical and market conditions, they are free to plan for any number

of replacements and for any sequence of durations, including the one of infinite equidis-

tant replacements. But to realize the benefits of this flexibility at minimum cost to the pres-

ent value of their profits, users must determine from the beginning the number and the du-

ration of each and every future replacement.

By virtue of this conceptualization we are able to map the complete sequence of

transitory and limiting replacement policies under two qualifications. The first of them

concerns the important distinction between owners and lessors. Their difference is that

when owners decide to stop operations they scrap their equipment, whereas lessors are

obliged to replace it. This difference leads to two distinct sets of replacement policies,

i.e. transitory replacements with terminal scrapping and transitory replacements with

terminal replacement. So, even though our model can address the behavior of both us-

ers simultaneously, to keep the analysis simple we shall focus only on the problem

solved owners. As for the second qualification this stems from the observation that over

its lifetime the equipment may change owners through reselling.  Whenever such re-

selling takes place we assume that new owners adopt the optimal policies that were de-

cided by the original owner. Hence, we concentrate on the replacement and scraping

decisions only of the last owner.
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1. The model
When the multi-period replacement model is based on revenue and cost functions

that depend explicitly on time, net profits in any period are inextricably linked to net prof-

its in all future periods, thus leading to solutions that are not manageable from an ana-

lytical point of view. The fundamental source of the difficulty arises from the realization

that it is utterly impossible to know the technology and the market conditions that will

prevail in the distant future. Hence, in order to extract from the model some meaningful

properties, over the decades researchers have adopted various restrictions regarding

the general and the particular characteristics of the functions involved. Keeping with this

tradition below we shall proceed on the assumption that all functions in the model are

time invariant.

To highlight the fundamental implication of this assumption, we note that the owner

may sell his equipment at any time and stop operations or replace it with a new one. This

replacement process can be repeated any number of times, ending with terminal scrap-

ing. Each time a replacement takes place, there starts a new cycle in the life of equip-

ment. We shall refer to these cycles as operating periods or operating intervals. Thus, if

the owner of the equipment chooses to perform ν  replacements, there will be ν  oper-

ating periods with:

0 1 10 += < ⋅ ⋅⋅ < < =ν νt t t t T ,                                              (1)

where  0 0=t  is the date when the equipment is first put into operation, 1+ =νt T  is the

terminal scraping date, and the terminal period may extend to infinity: = ∞T . In this

framework, had we adopted the property of time dependence, as the number of re-

placements ν  increased, we would have to recalculate all revenues and costs from the

beginning because both quantities would be dated to absolute time. On the contrary,

under time invariance only relative time matters and as ν  increases we calculate only

the extra term corresponding to the replacement that is added each time. This implies

that we can solve for each operating period starting at zero time.

With these preliminary remarks in mind, we start now by recalling from previous

studies that maintenance and utilization affect service life through cash flow and salvage

value of equipment. With regard to the first we adopt the view that maintenance and utili-

zation affect cash flow directly, but also indirectly via the quantity and quality of services

extracted from the equipment. Thus, ignoring for simplicity the time indexing of variables,
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the cash flow effects of maintenance and utilization will be modeled by the expressions:8

( , , )=r r K u m                                                           (2)

( , , )= −�K w K u m ,                                                      (3)

( ) :=K K t  Used equipment measured in efficiency units, reflecting its size and age

since first put in operation. New equipment will be denoted by 0K .

/ :=�K dK dt   Net deterioration flow, including aging. Usually negative.

 ( ) :=u u t  Utilization intensity relative to some maximum, with 0 1≤ ≤u .

   ( ) :=m m t  Maintenance intensity expressed as expense relative to some maximum,

with 0 1≤ ≤u 0 1≤ ≤m .

         ( , ) :u m  Operating policy pair, with , u m  piecewise continuous functions of time.

         ( , ) :r w   Operating policy functions.

 As for the salvage value effect, the evidence from second-hand markets reveals

that, ceteris paribus, better maintained and less used pieces of equipment command

higher prices than similar pieces of equipment with poor maintenance and more intensive

utilization. By (3) this effect is incorporated in K , so we adopt the following specification:

0( ) ( )= −C K P S K                                                              (4)

( ) :S K   Resale value of used equipment K . We set 0 0( )=S S K

  0P :  Purchase cost of new equipment 0K .

( ) :C K  Cost for replacing used equipment K  with new equipment 0K . Usually

positive, but it can be also negative, if maintenance is upgrading in the

sense of overbalancing the deterioration of equipment. Moreover, If re-

placement involves scraping with some discount it will hold that

0( ) ( )≤ −C K P S K . To simplify the complications introduced by this possibility,

in this paper we shall ignore all incentives granted my manufacturers to buy-

ers of new equipment. 9 Finally, we define 0 0 0= −C P S  to be the owner’s cost

of holding new equipment. Alternatively, this can be considered as a transac-

tions cost or a second hand discount benefit.
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Turning next to the specification of uncertainty that springs from technological

change, we note that the effect of minor technological advances, which are more or less

predictable, has been accounted for traditionally as a continuous trend incorporated into

the time dependence of the functions involved. But in our case consistency with the as-

sumption of time invariance prohibits the adoption of a similar approach. For this reason

the effect of such changes will be accounted for only to the extent that maintenance of the

upgrading type allows their incorporation into the original design of equipment.  In addition

though we have the possibility of major technological breakthroughs which in its simplest

form may render the equipment totally obsolete, by eliminating all revenue and scrap

value thereafter.10 This corresponds to a non-repairable equipment breakdown, and fol-

lowing Kamien and Schwartz (1971), we shall model it by:

( ) =F t Probability of a breakthrough by time t,                              (5)

with (0) 0=F  and ( ) 1<F t for all t .

Given the above specifications, the problem confronted by owners of equipment

may be expressed as follows:

              Choose the variables [ , ,{ }, ,iT ν t u m ] so as to maximize:

 
ν

ν i i T T
i

Q C Q R P0
1

Π [ ] ,
=

= − + + −∑                                              (6)

     Subject to (3) and the constraints on  the operating policies { , }u m ,

with he following quantities denoting expected values:

    νΠ :  Total net profit with ν  intermediate replacements,

1
( , , ) ( )i

i

t

i t
Q r K u m φ t dt

−

= ∫ : Net operating revenue in the i th−  period:  1, 2,..., ,i ν=

( ) ( )=i i iC φ t C K : Net cost of the i th−  replacement, where ( )=i iK K t ,

   1+=T νQ Q  : Net operating revenue in the terminal period,

   ( ) ( ) :=T TR φ T S K  Revenue from terminal scraping, and

  ( ) [1 ( )] :−= − ρtφ t F t e  Effective discount factor. Assuming a constant discount rate ρ ,

the discount factor would be −ρte . To account for (5) this should

be multiplied by the term [1 ( )]− F t . In keeping with the specification

of time invariance, we will consider only the usual exponential
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case: ( ) 1 −= − θtF t e . By implication, since ( )( ) − += θ ρ tφ t e , the effect

of this type of technological uncertainty is equivalent to the intro-

duction of a revised effective discount rate, expressed by the sum:

= +σ θ ρ

2. Optimality conditions
In solving the problem by optimal control theory, we consider the present value

Hamiltonian:

( , , ) ( , , )σtH e r K u m λw K u m−= −� � ,                                      (7)

where ( )λ λ t=� �  is a co-state variable, denoting the owner’ s present unit price of K. Al-

ternatively, we can use the corresponding current values:

( , , ) ( , , )= = −�σtH e H r K u m λw K u m ,   with  ( ) ( )= = �σtλ λ t e λ t .               (8)

From Leonard and Van Long (1995) and Seierstadt and Sydsaeter (1986) we ob-

tain the following necessary and nearly sufficient conditions for optimality in each period:

For u and m (Maximality Principle):

u,m

u,m

max {H φ(t)r(K,u,m) λw(K,u,m) 0 1,  0 1}

   max {H r(K,u,m) λw(K,u,m) 0 1,  0 1}

u m

u m

⇒ = − ≤ ≤ ≤ ≤

⇒ = − ≤ ≤ ≤ ≤

� �
              (9)

For the time evolution of K:

1 0

( , , )        ( )
    ( )           ( )−

= −
=

�

i

K w K u m i
K t K ii

                                               (10)

For the time evolution of λ :

- -

      /           / ( )             ( )
 ( ) /          ( ) ( )                     ( )

( ) ( )        ( ) ( )                    ( )
i i

T T K T

i K t i K t

λ H K λ H K λ t σ i
λ T R K λ T S K ii

λ t C K λ t C K iii

= −∂ ∂ ⇒ = −∂ ∂ +

′= ∂ ∂ ⇒ =

′ ′= − ⇒ = −

�� � �
�

�
                    (11)

The durations T  and it  are determined by the terminal condition on = −H r λw :
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( ) / 0      ( ) ( )                   ( )
( ) ( ) / 0     ( ) ( ) ( )           ( )

i

T T

i i i t

H T R T H T σS K i

H t H t C t H t H t σC K ii− + − +

+ ∂ ∂ = ⇒ =

− − ∂ ∂ = ⇒ = −i i

                �

�                 (12)

Moreover, the following remarks complement these conditions in certain impor-

tant respects:     

Remark 1
The above conditions apply if the terminal period satisfies  0 < < ∞T .  Hence:
(i). If 0=T , the necessary terminal condition for the Hamiltonian becomes:

 0      / 0  (0) ( ).     T TH R T H σS K+ ∂ ∂ ≤ ⇒ ≤�                         (13)
    Such a solution would occur if it were optimal to scrap the equipment immedi-

ately instead of operating it. But if the time and the initial cost of equipment were
free, the same conditions with the inequality signs reversed would be necessary
for starting operations at 0 0=t  with 0(0) =K K .

(ii). If = ∞T  there is no scrap value to consider and the case needs special treat-
ment.   Assuming that 0→TR , the limiting conditions are usually taken to be:

                    λ=limλ 0    limλK=0      H: limH=0≥� � .                               (14)                          

Remark 2
Nothing in our assumptions prevents K  from rising above the original 0K  through
upgrading maintenance. In this event, replacing K  would entail net profit, because if

0>K K  the cost of replacement C  would be negative. To avoid complications we will
assume that in such cases discounting overbalances any possible upgrading so that
the operating revenue and the scrap revenue functions are bounded.

With their help we seek to determine 1) the optimal number of replacements, 2) the op-

timal duration of each operating period, and 3) the optimal policies  and u m  as func-

tions of time, during each operating period. However, the last question requires more

specifications for the functions involved and will be examined in a separate work. Below

then we will concentrate on the first two questions.

3. Optimal replacement and scraping policies
Since under time invariance maximization in each period starts always at zero

time, it is convenient to reorder the operating periods to start from the last and going

backwards. To this end we introduce the index: 1= + −j ν i . Thus the terminal period is

denoted by the index 0=j , the last replacement period before the last by the index

1=j , and so on. With this rearrangement in mind, we will proceed now to highlight the

properties of the following three policies: 1) transitory replacements with terminal scrap-

ing, 2) limiting replacement policies, and 3) equidistant steady state replacements.
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3.1 Transitory replacements with terminal scraping
The profit function for the operating period [0, ]T  with final scraping is given by:

           0( ) ( ) ( ( ))σTA T Q T e R K T P−= + −                                           (15)

Next, taking the −T derivative from (15), we obtain

( ) ( ) ( ) [ ( ) ( )]σT σT
T TA T H T σe S K e H T σS K− −′ = − = −� ,                            (16)

and define the current value of the final profit rate:

( ) ( ) ( ) ( )
       ( )          : 

σT
T

T T T T

α T A T e H T σS K
r λ w σS K final profit rate,

′= = −

= − −
                             (17)

where Tλ satisfies conditions (11). In the limit 0→T  we will have also 0( ) →K T K .

Hence, we obtain the special short duration owner’s unit price of K : 0 0( )′= Kλ S K ,

whereas the maximality principle determines the short duration optimal policies:

 0 0 0 0 0 0 0 0 0 0 0 0 0 0{ , } ( , , ) ( , , ) λ⇒ = ⇒ = ⇒ = −u m r r u m K w w u m K H r w                (18)

with the corresponding profit rate:

0 0 0

0 0 0 0

(0) (0) ( ) ( )
                   λ ( )   : .    

= − = −

= − −

α H σS K H σS K
r w σS K  Short duration  profit rate

            (19)

In light of the above, we assume that by solving the optimality conditions we can

find for each 0>T , the −T optimal solution for the specified period.  We will call termi-

nal or scraping period optimal duration 0T  the first local maximum of ( )A T . The cor-

responding maximal profit will be denoted by:

 0 0 0Π ( )= =A A T .                                                              (20)

We will say that the equipment is profitable if 0Π 0> .

Now, for any backward sequence of operating durations: 0 1{ , , }"T T , the total

profit with ν  intermediate replacements will be given by the expression:

1( )
1 0 1Π Π− − + + −
− −= + + + = +""ν ν νσT σ T T σT

ν ν ν ν νA e A e A A e , where  0 0Π = A .       (21)
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Assuming that 0Π 0> , we consider the last replacement period before the

scraping period, and the corresponding 1− replacement total profit function:

1
1 1 0Π( ) ( ) Π −= + σTT A T e  .                                                (22)

The optimal 1− replacement duration 1T  will be defined as the first local maximum of

1Π( )T  and the corresponding maximal profit will be denoted by:

1
1 1 0Π Π−= + σTA e .                                                      (23)

We will say that the equipment is 1− replaceable, if:

1
1 0 1 0Π Π (1 )Π−> ⇒ > − σTA e .                                            (24)

More generally, assuming that the equipment is ( 1)− −j replaceable with total

profit 1Π −j , we consider the −j replacement total profit function:

1Π ( ) ( ) ΠσT
j j jT A T e−

−= + .                                              (25)

The optimal −j replacement duration jT will be defined as the first local maximum of

Π ( )j T  and the corresponding maximal profit will be denoted by:

1Π Π−
−= + jσT

j j jA e                                                      (26)

We will say that the equipment is or −j replaceable, if:

1 1Π Π (1 )ΠjσT
j j j jA e−

− −> ⇒ > − .                                      (27)

Finally, taking the −T derivative from the one period profit function (15), in con-

junction with the current value of the terminal profit rate  (17), we note that in general:

1 1Π ( ) ( ) Π [ ( ) Π ] − −
− −′ ′= − = −jσT σT

j j j jT A T σe e α T σ .                           (28)

From the interpretation of the above we conclude the following:

Proposition 1
We assume that for each given 0≥T  we can find the −T optimal solution as indicated
above and that the function ( )H T  is continuous.
(i).      If (0) 0<α , then we say that the equipment is initially unprofitable. In this case:

• If the stationary duration exists then it is unprofitable, but the equipment may be
eventually profitable.
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• If the stationary duration does not exist then the equipment is unprofitable.
(ii).  If (0) 0>α 0 0/⇒ <σ H S , then we say that the equipment is initially profitable. In

this case the optimal scraping duration 0T  is given by the smallest stationary solution:
                                              ( ) 0 ( ) ( )= ⇒ = Tα T H T σS K .

    If it does not exist then the equipment is scraping durable: 0T = ∞ .
(iii). If the equipment is profitable, and in addition it satisfies:

                                        0(0) Π>α σ 0 0 0/( Π )σ H S⇒ < + ,
        then we say that  it is initially 1− replaceable. In this case the optimal

1− replacement duration  1T  is given by the smallest stationary solution:
                                   0( ) Π=α T σ 0( ) [ ( ) Π ]⇒ = +TH T σ S K  .

(iv). In general, if the equipment is 1−j  replaceable, and in addition it satisfies:
                                   1(0) Π −> jα σ 0 0 1/( Π )−⇒ < + jσ H S ,

then we say that it is initially −j replaceable. In this case the optimal
−j replacement duration jT  is given by the smallest stationary solution:

                              1( ) Π −= jα T σ 1( ) [ ( ) Π ]−⇒ = +T jH T σ S K .
(v). The replacements, when defined, have successively strictly decreasing durations and

strictly decreasing period profits:
                                 0 1 2> > >"T T T  and 0 1 2> > >"A A A

Remark 3
(i).   Concerning the continuity of ( ) ( ) ( ) ( )= −H T r T λ T w T , we note that because of the op-

timization procedure the rate functions ( ) ( ( ), ( ), ( ))=r T r u T m T K T  and
( ) ( ( ), ( ), ( ))=w T w u T m T K T  can be considered continuous, even though the control

functions ( )=u u T , ( )=m m T  themselves may exhibit discontinuities if we have line-
arities. However if, as is often the case, the equipment is subject to operating under
safety or other regulatory and more general operating restrictions of the type: ( ) ≥K T J ,
then the continuity of the inner value ( )λ T  has to be examined as in Leonard and Van
Long (1995, pp. 332-342), and Seierstadt & Sydsaeter (1986, pp. 313-356). Also in this
case the profit function ( )A T  may be defined only in a bounded time interval, in which
case the maximization procedure will be restricted to this interval.

(ii). The optimal durations are actually given by the first stationary duration provided that
stationarity implies optimality, i.e. if the rate function ( )α T  does not have local mini-
mum at the particular level: 0 1{ Π , Π , }"σ σ . This is a reasonable assumption given the
discreteness of the values. In any case the optimal duration is given by the first such
value that is not local minimum.

(iii). With regard to proposition 1.iv, we note first that by their definition the successive
total profits are increasing and hence the durations are decreasing. Then the period
profits are decreasing because ( )jA T  is increasing until 0T .

3.2 Limiting and steady state replacements
In Proposition 1 we introduced the distinction between initial profitability and

profitability. This distinction arises only if we have transaction costs: 0 0 0 0= − >C P S  and
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in general if 0C  is very large or if jT  is very small. Under the later circumstances the dis-

tinction becomes more crucial, because as the number of replacements increases the

replacement durations decrease. For simplicity, below we will start by assuming that

0 0=C  and then consider separately the effect of 0 0>C  if 0→jT .

Assuming initial profitability, we will say that the equipment is scraping finite

−N replaceable with total profit ΠN , if we have only N  profitable replacements, i.e.

1 0 0 10 , 0 0 0  N N NT T T  with   Π ... Π α( ) / σ   &   Π α( ) / σ−< < < < ≤ ∞ < < < < >" .  (29)

In particular, if 0=N , then we will say that the equipment is scraping non-replaceable.
Otherwise, because of the monotonicities involved, we will have a limit:

0,   0,   Π Π (0) /j j jT T A A  α σ∞ ∞ ∞↓ ≥ ↓ ≥ ↑ ≤ ,                       (30)

where the relations are all either equalities or strict inequalities. If in (30) we have

equalities we will say that the equipment is scraping strongly replaceable, in par-

ticular 0∞ =T .

Drawing on the above we conclude the following:

Proposition 2 Ŧ
With 0 0=C  a profitable equipment is either scraping finite −N replaceable for some

0≥N , or else it is scraping strongly replaceable. Also:
(i). If (0) min{ ( )}=α α T , then the equipment is scraping durable: 0T = ∞ , and scraping

non-replaceable: 0N = .
(ii) If (0) max{ ( )}=α α T , then the equipment is scraping strongly replaceable: 0T∞ = .

Independently of the above limiting procedure, steady state solutions can be studied

also directly. One such solution that has received overwhelming attention in the literature

provides for infinite replacements at equally spaced time intervals.11 In particular, if this

uniform duration is T , the steady state total profit would be given by:

                           
0

( )Π ( ) ( )
1

∞
∗ −

−
=

= =
−∑ νσT

σT
ν

A TT e A T
e

,                                             (31)

where for each given T , the −T optimal steady state solution is the same as the

−T optimal solution since it involves maximizing ( )A T  for fixed T . We define the

steady state optimal duration ∗T  as the first local maximum of Π ( )∗ T  and denote the cor-



15

responding steady state maximal profit by Π∗ .  Assuming that the equipment is initially

profitable, we will say that it is steady state: Durable if ∗ = ∞T , and Replaceable if

0 ∗≤ < ∞T . In the latter case it will be called steady state: Weakly replaceable if

0 T ∗< < ∞ , and Strongly replaceable if 0T ∗ = .

In order to characterize the steady state optimal solutions we take the time de-

rivative of the steady state profit function:

2
( )[1 ] ( )Π ( ) [ ( ) Π ( )]

[1 ] 1

σT σT σT

σT σT
A T e σA T e eT α T σ T

e e

− − −
∗ ∗

− −

′ − −′ = = −
− −

               (32)

The stationary steady state duration will be defined as the smallest solution

0>T  of the stationarity equation:

[ ( ) ( )]Π ( ) 0 ( ) Π ( ) ( )
1

T
σT

σ Q T C KT α T σ T H T
e

∗ ∗
−

−′ = ⇒ = ⇒ =
−

.                   (33)

For small T  the properties of the function Π ( )∗ T  depend very strongly on the value of

0C . So continuing with the assumption 0 0=C  we observe from (32) that Π ( )∗ T  is in-

creasing when ( )α T  is higher, and decreasing when it is lower. In particular a local extre-

mum of Π ( )∗ T  is preceded by a similar local extremum of ( )α T .  Also, in view of the as-

sumption 0 0=C  we have 0(0) 0= − =A C  and by applying L’ Hopital rule we find: 12

0

0 0

Π(0) (0) / ,      (0) (0) ( )
 Π (0) (0) / 2 ,   (0) (0) . ( )

α σ where α H σS i
α σ where α H σλ w ii

= = −
′ ′ ′ ′= = +

           
    

                    (34)

Taking into account these relations we distinguish basically three types of equipment as

shown in Figure 1 below.  We conclude the following:
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Proposition 3 Ŧ

 With 0 0=C , and assuming initial profitability: (0) 0>α , we distinguish the following
types of equipment:
Type I.    If (0) 0′ >α  0 0(0) 0′⇒ + >H σλw , and the steady state stationary duration

does not exist, then the equipment is steady state durable. It is also scraping
durable and scraping non-replaceable, with 0

∗ = = ∞T T , 0Π Π ( )∗ = = ∞A ,
0N = .

Type II.    If (0) 0′ >α  0 0(0) 0′⇒ + >H σλw , and the steady state stationary duration
exists, then in general it is equal to the steady state optimal duration, and the
equipment is steady state weakly replaceable. It is also scraping finite

−N replaceable, satisfying: 0 ∗ ∗< < < Nτ T T  & (0) / {Π ,Π } /∗ ∗< <Nα σ α σ ,
where ∗τ  is the first local maximum of ( )α T  and max{ ( )}∗ =α α T  is the
global maximum of ( )α T . We may have 0=N , and/or 0 = ∞T

Type III. If (0) 0′ <α  0 0(0) 0′⇒ + <H σλw  then the equipment is steady state strongly
replaceable. It is also scraping strongly replaceable, with 0T T∗

∞= =  and

Π Π (0)/α σ∗
∞= = .

Remark 4
The types of equipment defined above are local types, in the sense that they depend on the
operating properties of the equipment only up to the first maximum of Π j  or Π∗ , respectively.
In other words, we assume an impatience or caution on the part of the owner the moment
he sees his profits falling.  However, if ( )α T  has these characteristics throughout, i.e. if it is
quasiconcave being monotonous or having at most two monotonous pieces, then these
properties will be global, and we will have global types.

Finally, turning to the case 0 0>C , in the steady state policy we can separate the

part of the profit containing the transaction cost term as follows:

0 0( )Π ( ) [ ] [ ] Π ( ) ( )
1 1

∗ ∗ ∗
− −

+
= − = −

− −σT σT
A T C CT V T C T

e e
                         (35)

The variable part Π∗V  corresponds to the case 0 0=C . The correction ( )∗C T  given by

the fixed cost part is monotonically decreasing in T , from (0)∗ = ∞C  to ( ) 0∗ ∞ =C . Since

( )α T  remains the same we find that as 0C  increases the steady state duration in-

creases and the steady state profit falls, as indicated by the broken lines in the diagrams

in Figure 2. Equipment of Type I is not affected except for the reduction in profit,

whereas the effect regarding finite replacement policies is similar.
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Proposition 4 Ŧ
As 0C  increases then all durations increase, except for the scraping duration 0T , which
remains invariant. Also all profits decrease, as follows:
(i).    For steady state policy: Π∗ ∗= −d dC , / ( )∗ ∗ ∗′=dT σdC α T , where

                         0 /(1 )
∗∗ −= − σTdC dC e 2

0[1 ]
∗ ∗− −= + + +"σT σTdC e e .

        In particular if it is steady state strongly replaceable: 0∗ =T , 0 0=dC C , then

0Π 2 (0) /∗ ′= − −d C α σ , 02 / (0)∗ ∗ ′= = −T dT C α                             (36)
(ii).  For finite replacement policy:

                            Π = −j jd dC , / ( )′=j j jdT σdC α T ,                                          (37)

    where   1( )
0 1 0[1 ]− − − + +

−= + = + + + ""j j jσT σT σ T T
j jdC dC e dC dC e e

Remark 5
The reduction of the profit is more pronounced in the steady state policy. However the ef-
fect on the duration may be counterbalanced by the size of ( )′α T . We note that by their
definition we have: ( ) 0∗′ <α T , ( ) 0′ <jα T . Also since ( )α T  is not affected by 0C , in the
finite replacement policy the profit reduction may cause an increase in the number of re-
placements if 0C  is sufficiently large. Finally we note that if the equipment is strongly re-
placeable then the replacements with terminal scraping will stop when they cease being
profitable: 1Π Π− <N N .

III. Implications for economic theory and policy
Our analysis showed that the multi-period replacement model yields several

transitory and limiting replacement policies that have been ignored in the literature.

So the question is why they may be useful. The best way to answer it is by reference

to a simple example.

1. Example
Consider a problem in which the various functions involved take the forms: 13
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0 0 0 0 0,   ,    ,    ,    0εr qK w sK S pK P pK C P S= = = = = − = .                    (38)

The solutions depend crucially on the properties of the operating rate functions:

( , )=q q u m  and ( , )=s s u m . In particular, they depend on how flexible is the equipment

in allowing varying utilization and maintenance policies, and on whether it allows up-

grading policies of the investment or antiques type: 0<s . We will examine only the

simplest case of equipment, which is:

1. Wear regular, in the sense that it allows only downgrading operating poli-
cies: 0>s ,

2. Very rigid, in the sense that it affords only fixed operating policies with
constant q  and s , and

3. Characterized by decreasing returns to scale, in the sense that 1<ε .
Thus while the scrap value decreases at the rate s , the revenue declines
at the smaller rate εs .

From the above we compute the relevant quantities as follows:

− − − + −

− + − +

− −

= = = − =
+

= − + − ⇒ ∞ = −
+ +

′= = − + ⇒ =

( )0
0 0 0

( ) ( )0 0
0 0 0

0 0 0

,   ,   [1 ],                           ( )

( ) [1 ]  ( )                ( )

( ) ( ) ( )    (0)

st εst εs σ t st

εs σ T s σ T

σT εsT sT

rK K e r r e Q e S S e i
εs σ

r rA T e S e P A P ii
εs σ εs σ

α T e A T r e s σ S e α r

−

− +

′ ′= − − + ⇒ = − − +

0

-
0 0 0 0

( )             ( )

( ) [ ( ) ]            (0) [ ( ) ].   ( )εsT st

s σ S iii

α T s εr e s σ S e α s εr s σ S iv

      (39)

Depending on the parameter values we have two possibilities: one for (0) 0′ <α  and an-

other for (0) 0′ >α . The profit rate functions to which they correspond are exhibited in

Figure 3 below. Thus, assuming that 0 0 0 0 00 0α( ) : r (s σ )S σ r / S s> > + ⇒ < − , we find

that the equipment is:
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0 0 0 0 0

0
1 0 0 0 0

1
2

0

3

-εsT sT

but allways
 if : 

with

.
.  
α( ) σΠ : εr (εs σ )S σ ε( r / S s),

rT : α(T ) σΠ r e S (s σ )e σ[ P ],
εs σ

.

−

> > + ⇒ < −

= ⇒ − + = −
+

Scraping durable steady state replaceable, 
replaceable

Steady state we

  
Scraping 

      

     

 
0 0 0 0

0

0

0 0
10

1
4  

NT T:

, and if :
with

* *

 and 

α ( ) : εr (s σ )S σ εr / S s,
εrα (T ) ln T* T ,

( ε )s (s σ )S
.

⇒

−
′ > < + ⇒ > −

′ = = < <
− +

akly replaceable   scraping finite N replaceable 

Steady state strongly replaceable scraping strongly

      

      

0 0 0 00 0
if  :

α ( ) : εr (s σ )S σ εr / S s.′ < > + ⇒ < −
 replaceable 

     

         (40)

2. Nature of the solution

Let 0 0(0) 0 ( )α r s σ S< ⇒ < + . By Proposition 1  the equipment would be  ini-

tially and in this case always unprofitable. Consequently, if it is in use its owner

ought to scrap it immediately. In this event we would observe scraping without cor-

responding replacement and the capital stock of the firm or the economy modeled

would decline. If the equipment is not in use, it would not be worth purchasing un-

less some changes in the parameters reversed the inequality, thus rendering the

equipment initially profitable, (0) 0α > .

Assuming the latter to be the case, then under steady state replacement policy

we have two options.  If (0) 0′ <α , the owner would be expected to set * 0=T  and treat

his equipment as steady state strongly replaceable (Equipment Type III in Figure 3

and expression (40.4)).  In fact the same solution would be adopted under the terminal

scraping policy.  Otherwise, if (0) 0′ >α , he would be expected to treat his equipment as

steady state weakly replaceable (Equipment Type II in Figure 3 and expression

(40.3)), and set the duration of replacements equal to T ∗ . However in this case the

scraping solution gives alternative replacement policies. Thus if 0(0) Πα σ<  then by

(40.2) the appropriate policy is that of treating the equipment as scraping durable and

non-replaceable. Otherwise, if 0(0) Πα σ>  then the equipment would be treated as

scraping durable and replaceable with 1T  given by relation (40.2).  The number of prof-

itable replacements increases as σ  decreases. From this we observe that, depending on

the particulars of the case under consideration, the policies that emerge under terminal

scraping policy may be mixed in the sense that they consist of two phases. A transitory
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one, during which the owner switches from less to more profitable replacement policies,

and another terminal, during which the owner applies the same policy to the end of the

service life of his equipment.

Thus concerning solution (40.3) the owner has two choices. Namely, he can ap-

ply either steady state replacements with durations set equal to T ∗  or he can apply

−N replacements with service lives set equal to the sequence of jT . The question is

which one he might choose. The answer depends on the preferences of the owner. If he

prefers profitability to flexibility he will choose steady state replacements because these

give the highest profit. Otherwise, he will choose −N replacements. In any case the

steady state policy binds him to undertaking an infinite number of replacements with

small profit in each replacement period which in fact is realized only at the end of each

period. On the contrary the terminal scraping policy in general allows him to realize al-

most the same total profit with few or even without any replacements, as confirmed by

the following two numerical examples:

2.1 Numerical solutions

Case 1

                           0 2 0 1 0 06 0 4
0 0 67 1 25 8

   { q . , s . , σ . , ε . }
α( ) / σ . ,  α / σ . , τ∗ ∗

= = = =

⇒ = = =
 

* *T ,    Π 0 0T ,    Π 1 1T ,    Π T ,    Π2 2 3 3T ,    Π

21,   1.1 ∞ ,   1 25,   1.1 22,   1.1 21,   1.1

                                      00,  1N Π⇒ = =

Case 2

                       0 2 0 1 0 03 0 4
0 2 33 2 89 11 5

   { q . , s . , σ . , ε . }
α( ) / σ . ,  α / σ . ,  τ .∗ ∗

= = = =

⇒ = = =

 
T ,    Π∗ ∗ T Π0 0,    T Π1 1,    2 2T ,    Π 3 3T ,    Π

14,   2.8 ∞ ,   1.8 29,   2.3 22,    2.5 19,    2.6

                                    22,  2.5N Π⇒ = =

In the first calculation the steady state policy total profit 1.1*Π =  is realized with replace-
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ment period T ∗ = 21, while the scraping policy total profit 0 1Π =  is realized without any

replacements. The equipment is scraping durable non-replaceable because the scrap-

ing period profit 0 1Π =  is higher than the critical value ⇒ =α( ) / σ .0 0 67 . In fact, by one

more replacement with period 1 25T = , which, however, is not initially profitable, we re-

cover most of the remaining profit 1.1 1 0.1− = .

In the second calculation we half the discount rate and we note that the same

equipment becomes scraping durable 2 − replaceable.  Now the steady state policy to-

tal profit 2.8*Π =  is realized with replacement period T ∗ = 14, while the scraping policy

total profit 2 2.5Π =  is realized with two replacements of duration T =2 29  and T =1 22 .

The 3d replacement is not initially profitable.

3. Implications
Drawing on the above, we may proceed now to demonstrate the usefulness of

the proposed rehabilitation of the scraping replacement model. To this effect, assume

that the economy under consideration is in long-term equilibrium with capital stock K*. If

the effective discount rate σ  increases so that the equilibrium capital stock declines to

K**, the question that would arise is how K* might adjust to the lower K**? Under the

standard model of steady state replacements, where the units of capital are replaced in

equal time intervals, the economy would adjust by prolonging the duration of replace-

ment periods. This would occur because the representative firm would find it profitable,

on the hand, to postpone replacement at the higher interest cost, and on the other, to

apply operating policies with less wear of the equipment. Consequently, along this slow

adjustment path we would observe more worn-out capital remaining in operation. On the

contrary, under the proposed rehabilitation of the economic replacement model, the rep-

resentative firm would switch immediately to a pure scraping policy, i.e. scraping without

replacement, and at the same time it would stretch out the service life of capital by fol-

lowing suitable utilization and maintenance policies. As a result, this path would be

faster and the capital remaining in operation would be less worn-out.

In addition the newly identified replacement and scraping policies raise some

questions concerning the validity of research efforts that are based on the assumption of

equidistant steady state replacements. To highlight the source of the problem, suppose

that the equipment under consideration is of Type II and that its owner prefers some

flexibility to maximum profitability.  Following (40.3) he would opt to treat it as scraping
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finite -N replaceable by setting its service life equal to N NT T T−< < <1 0" . In standard

practice though researchers assume that economic agents decide invariably as profit

maximizers by committing to an infinite horizon. Accordingly the owner would be ex-

pected to treat his equipment as steady state weakly replaceable, thus equating its

service life to *T .  But then, given from Proposition 3 that NT T<* , the service life of

equipment will be consistently underestimated. For this reason the results from past

studies of replacement and scrappage should be interpreted with caution as they may

involve upward biases of unknown dimensions.

Another feature distinguishing the two policies is the following. As the parameters

change the replacement duration also changes. In the steady state policy this change is

smooth throughout except at the non-profitability threshold where all activity ceases.

However in the case of scraping policy except for this smooth change we have also sud-

den changes when the parameters cross certain bifurcation values where an additional

replacement policy becomes profitable or ceases to be so as indicated by  (40.2) and

(40.3). Thus at some changes of parameter values we would observe a burst or a slump

in the demand for replacement investment much like the “spikes” discovered in recent

years by researchers studying investment at the plant level.

To highlight a particular instance of this feature, assume that the owner of equip-

ment applies the policy of 1= −N replacement with scraping. Also, let σ  decline in unison

with the interest rate. How would the demand for replacement investment be affected?

Taking the derivative from (40.2) let the interest rate be such that 1 0T σ∂ ∂ < .  From this it

turns out that a small decline in the interest rate would be expected to increase 1T  and

hence to decrease the demand for replacement investment. But if the decline in σ  were

large so that 1 0T σ∂ ∂ > , the owner might be lured to switch to, say, a policy of

2= −N replacements with scraping. Then he would apply service life 2T , which by

Proposition 1  is sharply lower than 1T . Thus a large decline in the interest rate would be

expected to increase the demand for replacement investment. Consequently, by exploit-

ing the asymmetry of these two effects we may be able to discriminate among regular pe-

riods and exceptional ones that coincide with switches in replacement policies.

Still another notable feature emanates from the structure of replacement and

scraping policies themselves. Looking for example at (40.2) we see that the policy of

1= −N replacement with scraping is expressed in terms of such variables as: the rates
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of interest and technological uncertainty, the rates of utilization and maintenance, and

the prices of new and used equipment. In addition, under more general specifications of

the functions 0 0,  ,  ,  , and  r w S P C  we could allow for product and input prices, the

nature of safety constraints, disposal costs, etc. But these are exactly the determinants

of short-term variation that a researcher would need for the study of replacement in-

vestment and scrappage over the business cycle. Therefore, by confronting the criticism

levelled by Feldstein and Foot (1971, p.50) that: “…previous studies of optimal steady

state service life were of limited use because they lacked certain crucial determinants of

short-term variation of replacement,” the proposed rehabilitation of the established re-

placement model gains significantly in empirical relevance.

Next, consider the implications regarding second-hand markets. The literature

dealing with the questions why such markets exist and what factors determine their

breath and depth has developed along two strands. More specifically, the one (e.g.

Bond (1983)) stresses the heterogeneity of firms in terms of their input prices and vari-

ous operating conditions, whereas the other emphasizes the presence of transaction

costs (e.g. Sandfort (1999)). In the note in Appendix B we establish that both these

strands can be analyzed in a unified framework and in the process gain valuable in-

sights as to the relative magnitude and direction of influences exercised by the determi-

nants of replacement durations. For as we argue, the shorter the replacement durations

are, the more intensive the economic activity that takes place in both the primary and the

secondary equipment markets.

Finally, the proposed rehabilitation of the established replacement model pro-

vides a framework of analysis, which is amenable to several generalizations and exten-

sions. For example, one would be to allow explicitly for the structure of the market in

which the services of the equipment are sold so as to trace the impact of output prices

on service life decisions. Another would be to introduce investment and thus turn the

model into a general framework for the analysis of all real capital related decisions. Still

another would be to address the safety of equipment and other regulatory concerns. In

particular, depending on the objectives the respective authorities pursue, this could be

accomplished by making the parameter J  in Remark 3.(i) a function of, say, the previ-

ous accident records, or the pollutants emitted in the environment.14  Moreover, while it

would be a rather straightforward task to incorporate taxes and tax incentives, the speci-

fication of  (3) as a stochastic differential equation would be more demanding.
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IV. Summary and conclusions
Despite the advances made during the last six decades, the quest for a suffi-

ciently general theory of replacement investment remains unabated. So, in order to con-

tribute towards this objective, drawing on Preinreich’s (1940) theorem, we proposed an

improved specification of the established multi-period replacement model and solved it

for the owner’s profit horizon. By virtue of this new conceptualization, apart from tradi-

tional steady state replacement, we were able to derive a whole range of transitory re-

placement policies.

 Since these policies have been ignored in the literature, we then proceeded to

highlight their implications for economic theory and policy by reference to a simple ex-

ample. From this analysis we obtained the following main results. The replacement

policies reported in the paper explain the transition from any initial position of a firm or an

economy up to steady state replacement. Switching among replacement policies pro-

duces bursts or slumps in replacement investment much like the “spikes” discovered re-

cently at the plant level. Applying steady state replacement in non-stationary economic

environments leads to underestimation of service lives, and hence to overestimation of

replacement demand for investment.  The optimal service life of equipment is consistently

determined by such conventional forces of short-term variation as utilization, mainte-

nance, interest rate, uncertainty due to technological breakthroughs, the price of new

and used equipment, transaction costs, etc. And last, but not least, the estimates from

econometric studies of replacement and scrappage, particularly when they use time se-

ries data covering periods with unknown switches in replacement policies, may be seri-

ously biased.

In addition, we highlighted the reasons for the existence of second-hand markets

for equipment and suggested several generalizations and extensions of the model. But

before embarking on any of these endeavors, the immediate task is to analyze utilization

and maintenance policies. To this we shall turn in our next paper.
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Appendix A
Proofs

Proof  of of equation (34):

( ) ( ) ( )= − Tα T H T σS K ,  ( ) ( ) ( ) ( ) ( ) ( )′ ′ ′ ′= − = +�
T Tα T H T σS K K H T σλ T w T

1. 0
0 ( ) (0)Π (0)
0 (1 )

∗
=−

′
= =

′−
∼ TσT

A T α
e σ

2. 0
( ) Π ( ) (0) Π (0)Π (0)
(1 )

∗ ∗
∗

=−

′ ′′ ′− −′ = =
′− TσT

α T σ T α σ
e σ

  ⇒   (0)Π (0)
2

∗ ′′ =
α
σ

Proof  of Proposition 2:

Assume 0∞↓ >jT T . Then

( )∞ ∞↓ =jA A A T , ( ) ( )∞ ∞↑ =jα T α α T , Π Π Π∞−
∞ ∞ ∞↑ = + σT

j A e , with Π∞ ∞=α σ .
From the definition of the optimal durations it follows that ( )α T  can not have strictly
smaller values to the left of ∞T , i.e. we have: ( ) ( )∞≥α T α T  for ∞≤T T .  Hence:

                   
0 0

( ) ( ) (1 ) /∞ ∞
∞−

∞ ∞′= = ≥ −∫ ∫
T T σTσTA A T dT e α T dT α e σ , 

with equality only if ( )α T  is constant for ∞≤T T . Substituting we obtain:
         Π Π∞−

∞ ∞ ∞= + σTA e  (1 ) / /∞ ∞−
∞ ∞> − +σT σTα e σ e α σ    Π /∞ ∞⇒ > α σ

a contradiction, unless ( )α T  is constant for ∞≤T T  in which case we can apply any
smaller replacement duration without affecting the total profit, i.e. we have again

0→jT .
   (i).  We have ( ) ( ) (0) 0− −′ = ≥ >σT σTA T e α T e α  and therefore the equipment is scraping

durable. Also the assumption implies 0Π ( ) (0) /= ∞ ≥A α σ , with equality only if
( )α T  is constant in which case the replacement durations are indeterminate with-

out increasing the total profit, and hence the equipment can again be considered
as non-replaceable.

 (ii). As above the assumption gives Π (0) /≤j α σ , with equality only if we have
( ) (0)=α T α  for ≤ jT T . As above we conclude that all replacements are profitable,

with 0→jT .

Proof  of Proposition 3:
(I). If Π ( )∗ T is strictly increasing then so is ( ) (1 )Π ( )− ∗= − σTA T e T . Hence it is scraping

durable. Also by (37) we will have ( ) Π ( ) Π (0) (0)∗ ∗> > =α T σ T σ α , and by
Proposition 2 it is scraping durable non-replaceable.

(II). The equipment is not strongly scraping replaceable because by assumption
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( )α T  is initially rising and hence (0)α  can not be approached by lower values
from the right. Hence it is finite −N replaceable for some 0≥N . Also ( )α T  is
higher then Π ( )∗σ T  until ∗T , because in this interval Π ( )∗σ T  is rising. Also we
have 1Π (0) Π∗

− < <Nσ α σ , and therefore ( )α T  meets first the level Π∗σ  and later
on the level 1Π −Nσ . Hence, we have ∗ < NT T . Also ( )α T  has a local maximum at
some ∗τ  before ∗T , because it is initially rising but then falling when it crosses the
level Π∗σ . Hence ∗ ∗<τ T  and Π∗ ∗<σ α .  Concerning ΠN , we have:

          1 1Π ( ) [ ( ) Π ] ( Π )− − ∗
− −

′ = − ≤ −σT σT
N N NT e α T σ e α σ

             1 1 10
Π Π (0) ( Π ) (0) Π (1 )( Π ) /−− ∗ ∗

− − −⇒ ≤ + − = + + − −∫
N

N
T σTσT

N N N N Ne α σ dT A e α σ σ

              1/ ( Π ) / /−∗ ∗ ∗
−= − − <NσT

Nα σ e α σ α σ                                                

(III). It follows from the definition.

Proof  of Proposition 4:
Concerning the profits it is a direct consequence of the envelope theorem ap-

plied on the functions:
                             Π ( ) ( ) /(1 )∗ −= − σTT A T e , 1Π ( ) ( ) Π−

−= + jσT
j jT A T e .

With regard to the durations we use the relations:
                                              ( ) Π ( )∗=α T σ T ,  ( ) Π= jα T σ .

For the case of strong replaceability, we can use the linear approximation at
0∗ =T :

   (0) [ Π (0) ]∗ ∗= −dα σ dV dC 01(0) (0)
2

∗ ∗
∗

′ ′⇒ = −
Cα T α T
T 02 / (0)∗ ′⇒ = −T C α .
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Appendix B

A note on second-hand markets
Using a simple example in which equipment was assumed to be wear regular

and totally rigid with decreasing returns to scale, we investigated two types of re-
placement policies:
           A. Infinite steady state replacements of equal durations, and
           B. Finite replacements of varying durations with terminal scraping.
Replacement durations T  were analyzed with respect to the following fixed parameters:
r : net revenue flow, s: rate of change of scrap value, ε : coefficient of revenue change to
scrap value change, σ : effective discount rate, S : scrap or second hand price, 0P :
purchase price of new equipment, and 0C : owner’s fixed cost or second hand dis-
count benefit.

We can associate the scrap price with a second-hand or secondary market,
where of course the conditions of operating the equipment are different than those per-
taining in the new equipment or primary market. Short replacement durations indicate
strong primary and secondary market activity. In the simple model presented in the text,
we distinguished for both replacement policies two regimes, which are characterized by
the following relations:

> = −

< = −

0
0

0

0
0

0

1.  : 

:  

rσ σ s high discount, low net revenue/scrap price, high wear,
S
r2. σ σ s low discount, high net revenue/scrap price, low wear,
S

        (B.1)

where 0σ  stands for a threshold effective discount rate defining the switching value of
profitability.

If 0>σ σ , the equipment is not profitable, and hence, we have economic activity
neither in the primary nor in the secondary equipment market. On the contrary, if 0<σ σ ,
we observe economic activity. We note now the following distinctive difference between
the two types of policies. In the steady state policy model both markets, primary and
secondary appear simultaneously. On the contrary in the case of scraping policy model
and for the case examined, at first we have only primary activity since the equipment be-
comes scraping durable non-replaceable. However, as the interest rate declines,
there appears another interest threshold:

= −1 0 0( / )σ ε r S s ,                                                                                               (B.2)
below which the equipment becomes replaceable, indicating the emergence of second
hand activity. In fact, there follows a sequence of such interest bifurcation values

> >"2 3{ }σ σ  leading to abrupt changes in the replacement durations and a consequent
sharp increase in primary and secondary market activity.

Finally, we should like to point out that the above results could be generalized by
altering the specification of the functions involved. For example, by setting 0<s  we can
analyze the case of antiques or other special equipment that upgrades in time. By set-
ting = ≥  for 1εr qK ε  in addition to decreasing returns to scale ( 1)<ε , we can ana-
lyze the cases of constant or increasing returns to scale ( 1)≥ε . And, of course, by
allowing the operating policies  and mu  to vary we can analyze more flexible  types of
equipment than the one considered in the example in the text.
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1  Where the state-of-the-art was back in the late 1950’s may be easily ascertained from Dean’s (1962)
extensive survey of the literature.

2    In fairness to historical accuracy it should be stressed that the first researcher who reported this finding
was O’Herlihy (1965). Nevertheless, as his results had appeared in a rather obscure journal, they did
not get the attention they deserved.

3   It may be of some interest to note that this paper is the same as the one that appeared in 1974 under
the same title in Econometrica, Vol. 42, pp. 393-423.

4   As well as the work of a few isolated researchers, such as, for example, Eilon, King and Hutchinson
(1966), who, defying the new trend, continued to contribute in the earlier tradition.

5   It may be of some interest to mention that during the same period Jorgenson, McCall, and Radner
(1967) contributed significantly in the earlier tradition. They did so by helping us understand how the re-
placement decision is related to the processes of regular maintenance, as prescribed in the service
manuals that accompany all durables, and preventive periodic and opportunistic maintenance, in order
to forestall the costs of a serious, and sometimes catastrophic, breakdown.

6    Admittedly in this paper we are making only a modest effort to include the impact of a second hand
market on the replacement decision. But in the light of the significant contributions by Rust (1983) and
Sandfort (1999) this issue cannot be ignored, as most of the literature has done so far.

7    Dunne (1994), Abel and Eberly (1996), Caballero, Engel and Haltiwanger (1995), Cooper, Haltiwanger
and Power (1999), and others, have discovered in recent years that  “spiked” patterns of investment at
the firm level are more likely to occur the older is the existing capital stock. Overhauling of plants may
be as liable for this finding as technological progress.

8   For an alternative approach to modelling the implications of utilization in the replacement of durables,
see Jin and Kite-Powell (1999).

9  To drive a wedge between new and used equipment prices that manufacturers offer to initial buyers of their
equipment various extra enticements. Such enticements take the form of warranties, guarantees, free
service and repairs for so many years, free optional accessories, low or even zero interest loans, etc.

10 Clearly, this is an extreme assumption because in the great majority of actual cases technological
breakthroughs do not render older equipment worthless at the time of their appearance. However, since
modelling the case where the breakthrough reduces the earning power and the salvage value of the
equipment by a certain percentage would be quite straightforward, we chose this specification in order
to keep the analysis as simple as possible.

11  For necessary and sufficient conditions establishing the optimality of equidistant steady state replace-
ments in the presence of linear technological change, see Elton and Gruber (1976) and Van Halten
(1991).

12  The proof for the following equation as well as the propositions marked by the symbol Ŧ are furnished  in
Appendix A

13 To drive a wedge between new and used equipment prices without further complications, the assump-
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tion that p0>p should be construed to reflect the extra enticements that manufacturers offer to initial
buyers of their equipment. Such enticements take the form of warranties, guarantees, free service and
repairs for so many years, free optional accessories, low or even zero interest loans, etc.

14 Extensions along these lines would provide ample theoretical support for models testing the effective-
ness of incentives to accelerate automobile scrappage rates for emissions control.


