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Abstract

Investmentdecision-makingis modeledby meansof a Kohonenneural
net,whereneuronsrepresentfirms. This is donein orderto modelinvest-
mentsin novel fieldsof economicactivity, thataccordingto this modelare
carriedoutwhenfirmsrecognizetheemergenceof anew technologicalpat-
tern.Combinationof theequationsof Kohonenmodelneuronwith macroe-
conomicrelationshipsyieldsdisaggregatedacceleratorequationswith flex-
ible coefficients,that in theaggregateandfixed-coefficientscaseboil down
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1 The InvestmentAccelerationPrinciple

Thefirst clueof what laterwasto beknown asinvestmentacceleration principle
canbefound in a work publishedby Albert Aftalion at thebeginningof theXX
century[3]. Aftalion arguedthat,if a temporaryincreaseof thedemandfor final
goodstriggerstheproductionof capitalgoods,andif capitalgoodsbecomeavail-
ableonly whenthe demandfor final goodsis alreadybackat its original level,
thentheeconomyfindsitself with anexcessof productivecapacityanda crisisis
likely to begin.

A few yearslater, Clark [14] addeda distinction betweendemandper unit
time, which he calledspeed, andtheacceleration of this demand.Clark argued
that, sincefirms adjusttheir productive capacityaccordingto variationsof de-
mand,investmentsultimatelydependontheaccelerationof demand.At thattime,
this wasjust a felicitousexpressionwaiting tot betranslatedinto formulas.

In thesubsequentdecades,mathematicalformulationsof theinvestmentaccel-
erationprinciplebecamea maincomponentof businesscycle models.Undoubt-
edly, it wasKaleckiwhoprovidedthemostrefinedmathematicalmodels[27], but
eventuallythe far simplerformulasproposedby Samuelson[39] andHicks [26]
gaineda muchwider acceptance.Accordingto their proposals,aggregateinvest-
mentseitherdependon aggregatevariationof consumption(1) or, alternatively,
on laggedaggregatevariationof income(2):

It � κ
�
Ct � Ct � 1 � (1)

It � λ
�
Yt � 1 � Yt � 2 � (2)

whereI , C andY denoteaggregateinvestments,consumptionandincome,respec-
tively. Coefficientsκ andλ areconstants.1

Behindtheseaggregatemagnitudeshidea largenumberof firmsthatcarryout
their investmentplansindependentlyof oneanother. Firmsinveston innovations
that openup new possibilitiesfor competition,eachfirm hopingto increaseits
own marketshare.Sinceeachfirm seeksto exploit thewholeincreaseof demand,
for any singlefirm it is rational to commit to investmentplansthat aretailored
for a larger market share. However, sincethe (eventually)higherdemandmust
distributeitself amongall firms,mostof themwill endup with anexcessof pro-
ductivecapacity. Ultimately, theinvestmentaccelerationprinciplehasits rootsin

1In order to avoid confusionwith othermagnitudesusedin this paper, constantshave been
denotedby differentlettersfrom thoseusedby SamuelsonandHicks.
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thevery fact thatwhat is rationalfor a singlefirm to do, maynot berationalfor
theeconomicsystemasawhole[36].

Thus,thevery rationaleof the investmentsaccelerationprinciplecanonly be
seenatthemicroeconomiclevel. In fact,it is arationalethatinvolvesexpectations
andconvictions,includingtheideathatvariationof demandis therelevantsignal
for investing.

The economicliteratureprovidesonly oneexampleof an acceleratorwith a
microeconomicfoundation.This is theonethatwecanfind in Lucas’equilibrium
businesscycle model [33], whereeconomicagentsare distributedon ”islands”
thatonly occasionallycommunicate.In thismodel,theacceleratortakestheform
kt � 1 ∝

�
k̂t � kt � , wherekt denotesthelogarithmof aggregatecapitalat time t, and

k̂t is the(correctly)estimatedmeanvalueof thestochasticdistribution of kt over
the”islands”.

Lucascarriedout a thoroughdiscussionof his acceleratorequation,conclud-
ing thatinvestmentaccelerationis pronouncedif economicagents:

i. are responsive to perceived future returnsof physical capital relative to
money capital;

ii. areconvincedthatthecurrentdemandfor physicalcapitalrelativeto money
capitalis agoodindicatorof thefuturereturnof physicalcapital;

iii. areconvincedthat currentpricemovementscontaininformationaboutthe
currentdemandfor physicalcapitalrelative to money capital.

Themostremarkablefeatureof theabove considerationsis thatLucasspoke
of ”perceivedfuture relative returns”,andof being”convincedthat . . . ”. Inter-
estingly, by moving from themacroeconomicto themicroeconomiclevel Lucas
cameto focuson availability of informationandtherelative importanceof differ-
entinformationsourcesto differentdecision-makers.

This articledeepensfurther this line of reasoning.Specifically, it makesuse
of a neuralnet in order to model the formationof expectationsin the mindsof
themanagerswho decideto invest. By proceedingalongthis path,it arrivesat a
generalizationandmicroeconomicfoundationof Goodwin’s”flexible” accelerator
[23]. Namely, Goodwin’s model marked a major cornerstonein the history of
investmentaccelerationequations.

Early empiricalapplicationsof (1) and(2) hadshown that,in orderto fit with
empiricaldata,acceleratorequationsmusttake accountof availablecapitalstock
[12]. Goodwin’s accelerator(3) is a simpletheoreticalmodelwhereinvestments
dependon thedifferencebetweenavailableK anddesiredcapitalξ stock.

3



It is a non-linearacceleratorwhereinvestmentsI switchbetweenK � andK �	�
accordingto thevaluestakenby capitalK:

I � 
�� K � if K � ξ
0 if K � ξ
K �	� if K � ξ

(3)

whereξ denotesdesiredcapitalstock.
SinceGoodwinassumedthat desiredcapitalξ is proportionalto incomeY,

andsincecapital is accumulatedincome,Goodwin’s acceleratorultimately de-
pendson pastincomevariations,just like (2). Rather, its distinguishingfeature
is thataggregateinvestmentsreactdifferentlyto incomevariationsthattakeplace
at differentlevelsof capitalstock. Sincethis is equivalentto having anacceler-
ator with variablecoefficients(e.g. κ or λ in equation(1) or (2), respectively),
Goodwin’shasbeencalleda flexibleaccelerator.

Goodwinintroducedhis flexible acceleratorwith aneye to theupperturning
pointsof businesscycles[23], wherecrisesbegin becauseof shortagesof credit
andlabor force. However, a justificationfor investmentaccelerationto setin at
thelow turningpointsof businesscycleshasalwaysbeenregardedasmoreprob-
lematic.Namely, why shouldfirmsinvestif they still haveanexcessof productive
capacity?

Goodwin’s answerwas that thoseinvestmentsthat take an economyout of
a recessioninvolve machineriesof a novel kind. According to Goodwin, it is
investmentsoninnovationsthattriggereconomicrecovery[24]. However, amod-
elizationof innovationstriggeringinvestmentaccelerationhasnotbeenattempted
hitherto.

This is namelytheaimof themodelpresentedherein,whichemploysaneural
net in orderto reproducefirms’ cognitiveprocesses.However, settingtheinvest-
mentaccelerationprincipleon one’s own researchagendamayberegardedasan
anomaly. In fact, with the notableexceptionof RobertLucas,rationalexpecta-
tionstheoristsrejectedtheinvestmentaccelerationprincipleon thegroundthat it
is not basedon utility optimization. Thus,after Lucas’model[33], accelerators
disappearedfrom theoreticaleconomics.

Nonetheless,empiricalliteraturecontinuedto provide evidencethataccelera-
tor equationsexhibitedamuchbetterpredictivepower thanany competingmodel
[15] [8] [1]. Rationalexpectationstheoristsprovidedtwo justificationsfor this.

Bothof themarebasedontheobservationthatcapitalstocktimeseriesareless
reliablethanincometime series.Thefirst justificationwasprovidedby Sargent,
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whoobservedthatsinceincometimeseriesarelessaffectedby noisethancapital
stocktimeseries,noiseis likely to introduceaspuriouscausalitylink from income
towardscapitalstock[40]. Thesecondjustificationwasprovidedby Acemoglu,
whomaintainedthatfirmsobservestatisticalreportswhenthey makeinvestments
and,sincethey know thatcapitalstocktimeseriesarenotvery reliable,they base
theirdecisionson incometimeseries[2].

However, a secondtide of empirical studiesstressedonceagainthe ability
of acceleratorequationsto track investmentsin the mostdiverseeconomiesand
times,includingMalaysiafrom 1971to 1988[9], Francefrom 1972to 1991[35],
U.S.from 1948to 1985[7], FranceandU.S.from 1968to 1993[34], Cameroon,
Ghana,Kenya andZimbabwefrom 1971to 1995[10] andthe CzechRepublic
from 1992to 1996[32]. Noneof thesestudiesrejectedalternative modelssuch
asTobin’sq, but all of themascribedthelargestexplanatorypower to accelerator
equations.

Notably, the power of acceleratorequationsseemsnot to be affectedby dif-
ferencesin datareliability acrosscountriesandtime. Althoughthis consideration
is far from beinga definitive proof, persistenceof thepredictive power of accel-
eratorequationsvis à vis theenormousimprovementin thequality of economic
datain industrializedcountriesmaycastdoubtson therelevanceof Sargent’s ar-
gumentation.As farasit regardsAcemoglu’sargument,evenif basinginvestment
decisionson statisticaldatahadeverbeena meaningfulstrategy for firms operat-
ing in industrializedeconomies,it is surelyirrelevantin developingandtransition
economies,wherestatisticaldataaregenerallyavailablewith lagsof yearsand
only in averyaggregateform.

On thetheoreticalside,Velupillai observedthatmultiplier-acceleratormodels
actuallydoreflectrationaldecision-makingbecausethey arisefrom decisionrules
that,althougheventuallydifferentfrom utility maximization,arenot necessarily
lessrational. On thecontrary, decisionrulesbasedon proceduralrationality that
includeutility maximizationasa specialcaseareableto generatemorerealistic
andgeneraldynamics,includingdeterministicchaos[45] [46].

The paperis organizedasfollows. Firstly, Section2 introducesa few basic
conceptson cognition andneuralnets. Subsequently, Section3 derivesdisag-
gregatedacceleratorequationsfrom ananalysisof informationflows in anecon-
omy with two productionstages.Thecoreof thepaperis entailedin Section4,
which makesuseof a neuralnet in orderto link the variationof the accelerator
coefficientsto theevolution of thementalcategoriesof themanagerswho make
investmentdecisions.Finally, section5 illustratesthe meaningof the equations
derivedin theprevioussectionsby meansof a numericalexampleandSection6
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concludes.

2 A Few Conceptson Cognition and Neural Nets

In very generalterms,onecanclaim that the messof informationgeneratedby
continuoustechnologicalinnovationconflictswith theboundedrationalityof eco-
nomic agents,who are forced to operatesomesimplification in order to make
senseof it [42]. However, sincehumanreasoningis not quite the sameasex-
ecutingan algorithm, it is not altogethercorrectto liken boundedrationality to
memoryandtimeconstraintsonelectroniccomputers.Rather, humanbeingssim-
plify theenormousamountof informationthat they receive by classifyingit into
amaneageablenumberof mentalcategories.

Interestingly, mentalcategoriesarenotdefinedby pre-specifiedsimilarity cri-
teria that the objectsto be classifiedshouldfulfill. In fact, sincethe qualitative
featuresof objectslike futuregoodsandfuturetechnologiescannotbeknown in
advance,classificationcriteria that are absolutelycorrectcannotexist. Rather,
mentalcategoriesare continuouslyconstructedandmodifiedaccordingto sim-
ilarity of a just-received pieceof information to the piecesof information that
have alreadybeenstoredin existing categories.Storedpiecesof informationthat
becomeguidelinesto subsequentclassificationarecalledprototypes[5] [13] [25].

Notably, it is not evennecessaryto assumethatall itemsclassifiedin a cate-
gorysharecommonfeatures.As anexample,thereaderis invitedto find whatever
featureall humanoccupationshave in common,that aresubsumedby the men-
tal category labelledby theword game: a few minutesreflectionaresufficient to
realizethat this is an impossibletask! On the otherhand,all we needin order
to usethecategory ”game” is thatwe areableto evaluatethesimilarity of a new
gameto someof theitemsalreadystoredin thecategory. Suchitemsareactingas
prototypesfor futureclassification[31] [13].

Neuralnetsareable to reproducethesefeaturesof humancognition. Thus,
neuralnetsmodelboundedrationalityin termsof informationcategorization.

As such,neuralnetscouldpossiblybecomeaviablealternativeto utility max-
imization.A few attemptsto useneuralnetsin orderto modeldecision-makingby
economicagentshavealreadybeenmade[37] [11] [38] [19] [43] [44] [47] [48].

Neural netsfit into the framework of case-baseddecisiontheory [20] [21]
[22], whereindividualsmeasurethesimilarity of a decisionproblemto thesitua-
tionsthatthey encounteredin thepastandtake a courseof actionsthat is similar
to one that in the past,in a situationthat is similar enoughto the presentone,
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hadproducedsatisfactoryresults.In this context, decision-makersdo not neces-
sarily maximizeutility, thoughthey eventuallyapproachtheutility-maximization
solution. Furthermore,in this framework experiencewith novel situationsmay
possiblychangeutility valuesover time.

Thereexist many kinds of artificial neuralnets,that are more or lessclose
to the biological neuralnetsthat inspiredthem. It is of paramountimportance
to distinguishneuralnetswherecategory formationis supervisedby anexternal
operatorfrom Kohonenneuralnets,wherecategory formation is left to the net
itself.

In thefirst case,a neuralnet is only usedafter it underwenta training phase
wheretheexternaloperatorwiresin thecategoriesemployedby thenet. In prac-
tice,a humanoperatorchooseswhichpatternsthenetwill beableto recognize.

In thesecondcase,no trainingphasetakesplaceprior to thenormaloperation
of the net. On the contrary, the net forms andmodifiesits categoriesaccording
to the patternscontainedin the information that it is classifying. Clearly, only
Kohonennetscangiveusaclueof thebehavior of decision-makerswhoarefacing
novel situationsandrequirecontinuousadaptationof theirmentalcategories.

Kohonenneuralnets[29] [30] basetheir flexibility on feed-backand feed-
forward loopsthat allow adaptationto a changingenvironment. In this respect,
Kohonenartificial neuralnetsaremostsimilar to thebiologicalones[16].

Kohonen’s modelneuronproducesan outputy � ℜ by summinginputsx1 �
x2 ������� xN � ℜ by meansof coefficientsa1 � a2 ������� aN:

y � N

∑
i � 1

aixi (4)

Evidently, for any setof coefficientsai thissimpledeviceis ableto distinguish
at leastsomeof thepossibleinputvectorsx from oneanotherby yieldingdifferent
outputsy. In fact,sincethereexist many vectorsx whoseweightedsumyieldsthe
samey, evena singleneuronis ableto classifyinput vectorsinto categories.

The ability of a neuronto adaptthesecategoriesto the patternsof input in-
formationstemsfrom afeed-backfrom outputy anda feed-forwardfrom inputx,
towardscoefficientsai :

dai

dt
� φ

�
a � y� xi � γ

�
a � y� ai � i (5)

whereφ
�
a � y� andγ

�
a � y� maybelinearor non-linearfunctions.
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Equation(5) differentiatesoperator-assistedneuralnetsfrom Kohonenneural
nets. In operator-assistedneuralnets,equation(5) doesnot exist. In fact, co-
efficientsai arefixed during a training phasethat takesplacebefore the normal
operationof thenet.

On thecontrary, by meansof equation(5) a Kohonennetis ableto modify its
own categoriesandlearnsto recognizenovel patterns.Obviously, Kohonennets
paya pricefor this flexibility: they areslower thanoperator-assistedneuralnets.
This is thereasonwhy Kohonennetsareuncommonin commercialapplications,
althoughthey constituteabasicresearchtool in artificial intelligence.

In equation(5), term φ
�
a � y� xi enablesthe neuronto learninput patterns. It

entailsboth a feed-back(from y) and a feed-forward (from xi). This learning
term makesai increasewhenboth y andxi take high values,therebyenhancing
thosecoefficientsthat happenedto yield a high y whena particularxi washigh.
Thus,thestructureof coefficientsvectora ultimatelydependson whichvectorsx
appearedmoreoftenasinput. Thesevectorsaretheprototypesaroundwhich the
netconstructsits categories(remarkthatcategories,in aneuralnet,areembedded
in coefficientsai).

On thecontrary, termγ
�
a � y� ai in equation(5) enablestheneuronto forget in-

putpatterns.It entailsafeed-backfrom outputy and,mostimportantly, coefficient
ai itself. By allowing theneuronto forgetcategoriesthatrefer to patternsthatno
longerappear, this forgettingtermeasesup theformationof novel categoriesthat
allow classificationof novel events.

Simple,but nontrivial examplesof equation(5) are: ȧ � µyx � νa, ȧ � µx �
νya, ȧ � µyx � νya, ȧ � µyx � νy2a, whereµ and ν are constants.Figure (1)
illustratesthefeed-backsand-forwardswithin aKohonenmodelneuron.

In general,anetof neuronsis ableto discriminateinput informationaccording
to muchfiner categoriesthana singleneuroncando. As a rule, the greaterthe
numberof neurons,the finer the categoriesthat the net constructs.However, a
neuralnetis usefulpreciselybecauseit is ableto classifyahugeamountof infor-
mationinto afew broadcategories.If categoriesaresofinethatthey trackexactly
input information,aneuralnetbecomesuseless.Thus,thenumberof neuronsthat
a netshouldpossessdependson thevariability of input informationaswell ason
userneeds.

However, thebehavior of a neuralnetdoesnot only dependon thenumberof
its neuronsbut, to anevenlargerextent,on thestructureof connectionsbetween
them.In fact,just like thecapabilitiesof Kohonenneuronsdependon feed-backs
and-forwards,the capabilitiesof a neuralnet dependon shortcutsthat eventu-
ally enableinformationto circulatealongloopsthat involve several neurons.If
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Figure1: Kohonenmodelneuron.Thefeed-backsand-forwardsareresponsible
for all notablepropertiesof Kohonennets, including the absenceof a training
phase.Actually, a trainingphasecanbeseenasa feed-backand-forwardpassing
throughahumanoperator.

informationloopstakeplace,thenthenetasa wholeacquiresamemory.
It is calledadistributed, associativememory, andit is fundamentallydifferent

in naturefrom the more usual localizedmemories. Localizedmemories,such
asbooks,disks,tapesetc.,storeinformationat a particularpoint in space.This
information can only be retrieved if one knows whereits supportis (e.g. the
positionof a book in a library, or the addressof a memorycell in a computer
disk).

On thecontrary, in aneuralneteachneuronmaybepartof anumberof infor-
mationcircuits whereinformationis ”memorized”aslong asit doesnot stopto
circulate.Althoughthis is amemory, onecannotsaythatinformationis storedin
any particularplace.For this reason,onespeaksof a distributedmemory.

Obviously, informationstoredin a distributedmemorycannotberetrievedby
meansof anaddress.However, apieceof informationflowing in aparticularloop
canberetrievedby someotherpieceof informationthat is flowing closeenough
to it. Thus, in a distributedmemoryinformationcanbe retrieved by meansof
associationsof concepts,with a procedurethat remindsof humancapabilities
suchas ”recognition” or ”intuition” [29] [13]. For this reason,one speaksof
associativememoryaswell.
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The importanceof thecapabilityof a neuralnet to implementanassociative
memorywill becomeclearin thefollowing sections,whereit will beshown that
theKeynesianmultiplier andtheacceleratorariseout of informationcircuitsthat
involvetheoutputsof at leasttwo productionstages.In thelight of theabovecon-
siderations,theability of aneconomyto recognizetheimportanceof innovations
appearsto besimilar in natureto theability of anindividual to recognizepatterns
andtracesimilarities.

3 The DisaggregatedAccelerator

The aim of this sectionis that of deriving disaggregatedacceleratorequations
from ananalysisof thestructureof informationflowswithin aneconomy. For this
limited purpose,andonly in this section,innovationwill beassumedaway.

Theminimaleconomicstructurethatweneedto considerinvolveshouseholds,
firms that producefinal goods(hereafterlabelledfinal goodssector) and firms
thatproducecapitalgoods(hereafterlabelledcapital goodssector). Eventually,
existenceof a bankingsystemmust be assumedin order to allow investments
beyondinternalfinancialresources,but this will notbemodeledexplicitely.

Within this framework, ’investments’arepurchasesof capitalgoodscarried
out by firms that producefinal goods. For simplicity, let us supposea constant
numberof firms in bothsectors.

Therearethreemarketsin thisscheme:themarket for final goods,themarket
for capitalgoodsandthelabormarket. Themarketfor final goodsis assumedto be
in imperfectcompetitionbecauseof qualitative diversityof thegoodsexchaged,
which canbecomplementaryor substitutesof oneanotherin any degree.On the
contrary, it is assumedthat at any point in time only one kind of capital good
canbeproduced.Similarly, only onekind of job is availableat any point in time.
However, understandingwhichfirmswill needwhatamountof capitalgoodin the
next time stepis not a trivial taskso the situationis quite differentfrom perfect
competition.

Informationis freeto circulate,but only within certaininstitutionalchannels.
Theserequire,coherentlywith traditionalassumptionssurroundingtheinvestment
accelerationprinciple[3], thatfirmsin thefinal goodssectoronly observedemand
for final goodsand firms in the capital goodssectoronly observe demandfor
capitalgoods.

Furthermore,let usassumethat:

i. Firmsreactto changingdemandby adjustingquantities,not prices;

10



final goods
   sector

capital goods
     sectorhouseholds

∆ ∆

∆ l’ ∆ l"

kc

Figure2: Thestructureof informationflows in aneconomywith two production
stages.Onefeed-backthroughthe labor market would be sufficient to generate
theKeynesianmultiplier, but atleasttwo feed-backsarenecessaryfor investments
accelerationto takeplace.

ii. Populationdynamics,increaseof productivity andoscillationsof produc-
tion nevercombineto make labora rationedgood.

Thesetwo assumptionsarenot realisticin general,but they arerealisticin the
particularsituationfor which this modelis thought,namelytheonsetof a recov-
ery. In fact, in this situationlabor force is likely to beabundantandinflationary
pressuresarelikely to be low. Furthermore,demandis still increasingat a low
pacesofirmsareableto satisfyall requests.

Note that, underthe above assumptions,information flows are strictly uni-
directional. In fact, increasingdemandfor a certaingood never leadsto price
bargaining(which would imply informationflowing backandforth), but rather
to promptdelivering.Thus,informationsimply flows in theoppositedirectionof
goods.

Ultimately, information conveyed by thesemarkets regard: 1) Final goods
requestedby households;2) Capitalgoodsrequestedby the final goodssector;
3) Labor requestedby the final goodssector;4) Labor requestedby the capital
goodssector. Figure (2) illustratesthe structureof information flows between
thesesectors.

It canbenotedthat,accordingto theschemeof figure(2), firms in thecapital
goodssectorproducecapitalgoodsout of laboronly. This maystrike thereader
asunrealistic,but it is a mereartifactof having condensedall productionstages
into two aggregates.Consequently, thecapitalgoodssectoractuallyencompasses
all productionstagesfrom mining to productionof capitalgoodsfor its own use.

In figure(2), two feed-backloopscanberecognized.Theinneroneis dueto
labor requestedby thefinal goodssector:throughhouseholdsconsumption,this
feed-backis sufficient to generatethe demandmultiplication effect. The outer
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oneis dueto laborrequestedby thecapitalgoodssector:throughhouseholdscon-
sumptionandfirms investments,this feed-backaddstheinvestmentsacceleration
effect.

Let us assumethat both sectorsarecomposedby N firms. The final goods
sectorproducesN differentgoodsfor a demandthat is not disaggregatedacross
consumers.On the contrary, thecapitalgoodsectorproducesonesinglecapital
goodsfor N firms thatit distinguishesfrom oneanother.

Let N-dimensionalvectorsc, k, l � , l �� denoteconsumptionof the N goods,
capitalendowmentsin the N firms of the final goodssectorandemploymentin
the N firms of the final goodsandthe capitalgoodssectors,respectively. Note
that,sincein thisschemehouseholdssavingsdonotexist, aggregateconsumption
coincideswith aggregateincome.Obviously, it mustbec � 0, k � 0, l � � 0, l �� � 0.

Accordingto Bateson[6], information is not carriedby the valuestaken by
physicalmagnitudesbut ratherby their changewith respectto a referencelevel.
For instance,Shannon’s informationtheory[41] takesa messageof equiprobable
charactersasa referencevalueof zeroinformation.

When the investmentaccelerationprinciple statesthat firms reactto varia-
tionsof demand,it implicitely assumesthatdecision-makersconsiderpastvalues
asreferencevaluesfor extractinginformationfrom thesignalsthat they receive.
Pastlevel of demandfor final goodsis regardedasastockvariablerelatedto con-
sumptionof generallyshort-lived goodsthat will have to be purchasedagainat
thenext timestep.Thus,relevantinformationis carriedby variationsof thisstock
variablewith time. By generalizingthis approachwe canstatethat firms in the
capitalgoodssectorreactto requestsof variationsof thestockof capitalgoodsin
thefinal goodssector, aswell asthathouseholdsreactto variationsof employment
levels.

Thus,let usdefinethefollowing informationvectors:

∆c: Theinformationcarriedby variationsof consumptionthat,sinceweassumed
savingsaway, reflectvariationsof income.Sinceaccordingto thehypothe-
sesof the investmentsaccelerationprinciple thereferencelevel of zeroin-
formationis pastdemand,firms thatproducefinal goodsreceive informa-
tion from householdsby meansof ∆ct

� ct � ct � 1. The i-th componentof
this vectorrepresentsthevariationof demandfor the i-th final good.

∆k: The informationcarriedby variationsof thecapitalstock,i.e. investments.
Sincecapitalgoodsby definition last longerthanproductiontime, we can
take the capital stock (integratedby replacementsdue to wear and tear)
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asa referencelevel of zero information. Thus, information is carriedby
variationsof capitalstock∆kt

� kt � kt � 1. Theith componentof thisvector
representsthevariationof demandof theonly capitalgoodby the i-th firm
of thefinal goodssector.

∆l � : Theinformationcarriedby variationsof employmentin thefinal goodssec-
tor. Sinceproductiontime is generallyshorterthanthetime neededto hire
andfire workers,employmentcanbeconsideredasastockvariablejust like
capitalandits pastlevel canbetakenasthereferencelevel of zeroinforma-
tion. Thus,relevant informationfor householdsis carriedby variationsof
employment∆l � t � l � t � l � t � 1. The i-th componentof this vectorrepresents
variationsof employmentof theonly kind of laborin the i-firm of thefinal
goodssector.

∆l �� : The informationcarriedby variationsof employment in the capitalgoods
sector. Justlike in the caseof employmentin the final goodssector, rele-
vant informationfor householdsis carriedby ∆l �� t � l �� t � l �� t � 1. The i-th
componentof this vectorrepresentsvariationsof employmentof the only
kind of laborin the i-firm of thecapitalgoodssector.

Sincewe assumedsavingsaway, theoutcomeof utility maximizationcanbe
subsumedby a linearfunction f thatdependson currentincomeonly:

∆c � f
�
∆l � (6)

where∆l � ∆l ��� ∆l �� .
Likewise, let us assumethat the labor requestedby the final goodssectoris

linkedto theamountof capitalgoodsthatit requestsby meansof a linearfunction
g:

∆l � � g
�
∆k � (7)

whereg ultimatelydependson technicalcoefficientsof capitalandlabor.
Functionsf andg areblack boxesthat hide partsof informationprocessing

anddecision-making.In orderto understandinvestmentacceleration,theseblack
boxescanremainsuch. On the contrary, it is of paramountimportancethat we
model(i) how firms in thefinal goodssectorprocessinformationin orderto make
investmentdecisions,and(ii) how firms in thecapitalgoodssectorprocessinfor-
mationin orderto makeemploymentdecisions.

By assumingconstantreturnsto scalein thefinal goodssectorwe canintro-
duceacoefficientsmatrixA andwrite:

∆kt
� A∆ct � 1 (8)
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whereeachline representsinformationprocessingby a differentfirm in thefinal
goodssector.

In a similar way, by assumingconstantreturnsto scalein the capitalgoods
sectorwecanintroduceacoefficientsmatrixD andwrite:

∆l �� t � D∆kt � 1 (9)

whereeachline representsinformationprocessingby adifferentfirm in thecapital
goodssector.

It is important to stressthat the assumptionof constantreturnsto scaleis
limited to this sectiononly. In theensuingsections,variablereturnsto scalewill
ariseoutof technologicalinnovationsthataffectmatricesA andD.2

MatricesA andD subsumefirms decision-making.In thestaticframework of
this section,we canthink of A andD asarisingfrom maximizationof intertem-
poralprofitsπF

� ∑t pT
c c � pT

k k � ∑t pT
l l � andπK

� pT
k k � ∑t pT

l l �� , respectively.
On the contrary, in the innovation-driven settingof the ensuingsectionA and
D will evolve accordingto entrepreneurs’”animal spirits” concerningthe future
profitability of novel investmentopportunities[28]. Financialconsiderationswill
eventuallyconstraintheevolution of A andD, but they will not identify a unique
pathof development.

Fromobservationof figure (2) andconsiderationof productiontime lagswe
canwrite:

∆kt
� A∆ct � 1 (10)

∆kt
� A f

�
∆l � t � 1 � ∆l �� t � 1 � (11)

∆kt
� A f

�
g
�
∆kt � 1 � � D∆kt � 2 � (12)

Equations(10), (11), (12) aredisaggregatedacceleratorequations,equivalentto
oneanother.

It is easyto show that(10) and(11)aredisaggregatedversionsof (1) and(2),
respectively. In fact, let us make the following positionsin orderto passto the

2Neoclassicaleconomicshasadifferentnotionof increasing(decreasing)returnsto scalethan
the oneemployed herein. Accordingto the hypothesesof neoclassicaleconomics,a setof dif-
ferent technologiesis given andeachof themis appropriateto a particularscaleof production.
Consequently, neoclassicaleconomicsis concernedwith equilibrium arisingout of given tech-
nologies. On the contrary, herethe focusis on recognitionandadoptionof novel technologies.
Consequently, the modelpresentedhereintells storiesaboutstriving to increasereturnsto scale
with novel means.
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macroeconomiclevel:

pT
c ∆ct

� Ct � Ct � 1 (13)

pT
k ∆kt

� It (14)

pT
l ∆lt � Yt � Yt � 1 (15)

whereC, I andY representaggregateconsumption,aggregateinvestmentandag-
gregateincome,respectively. Their aggregationwascarriedout by meansof the
correspondingpricevectorspc, pk andpl , respectively.

If the economyis closeenoughto perfectcompetition,we can write pk �
Apc andpc � f

�
pl � . By combiningtheseequationswith (14), (10) and(11) one

obtains:

I � pT
c ATA∆c (16)

I � f T �
pl � ATA f

�
∆l � (17)

which,keepingin mind equations(13)and(15), in theone-dimensionalcaseboil
down to (1) and(2), respectively.3

Goodwin’s accelerator(3) is more complex than Samuelson’s and Hicks’,
sinceits coefficientsareallowed to changeat the turning pointsof businesscy-
cles. In theensuingsection,we shall interpretthecoefficientsof a disaggregated
acceleratorasthecoefficientsof neuronsthatrepresentdecision-making.

4 The Flexible Accelerator

Let ussupposethatfirms may facesituationsthat they never metbefore,oppor-
tunities that involve producingand commercializingqualitatively novel goods,
which in their turn requirenovel productiontechnologiesandimply novel con-
sumptionhabits.If this is thecase,undertakinganinvestmentdoesnotmeanthat
a firm is makinga plan aboutincreasingits endowmentof givenmachineriesin
orderto increaseits productive capacityof givengoods.Rather, undertakingan
investmentmeansguessingthe mostrecentdevelopmentof consumers’desires,
designingnovel goodsin orderto meetthesedesires,andorderingconstructionof
propermachineriesin orderto producethem.

3Actually, equation(2) dependsonYt � 1 � Yt � 2, whereasthecorrespondingequationthatcanbe
derivedfrom (17)dependsonYt � Yt � 1. However, thisdifferencewould disappearif consumption
wouldnot besupposedto beistantaneous(i.e. if f would introducea timedelay).
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Thus,thecrucial issueis classifyinginformationprovidedby requestsof ex-
isting goodsaswell asby novel techologicalpossibilities. However novel this
informationmight be,a firm mustbeableto form categoriesfor kindsof invest-
ment that can be reasonablydeemedto be more or lesssuccessfulundersev-
eral respects.Remarkably, the crucial stepis not that of attachingprobabilities
of monetaryreturnsto investmentsof differentkinds,but ratherthatof defining
”kinds” thatareabletodistinguishsuccessfulinvestmentsfromunsuccessfulones.
Clearly, categoriesof investmentsareformedby highlightingpatternsin incoming
information,suchaspatternsof requestof goodsthatentailnew technologies.

In this section,the numberof final goodswill be kept fixed to N and the
numberof capitalgoodswill bekeptfixedto one.However, asa consequenceof
technologicalinnovationthequalitative featuresof goodsmaychangewith time.
Informationto beclassifiedregardsboththedirectionof technologicalchangeand
thereceptionof goodsthatentailthemby thepublic.

A Kohonenneuralnetwill beusedin orderto reproduceclassificationof sit-
uationsand investmentdecision-making.Eachneuronwill representdecision-
makingby asinglefirm, sothenetasawholewill representtheproductivesystem.
Notably, in this modelthebehavior of theproductive systemasa wholedepends
on thestructureof theconnectionsbetweenits components.

For eachneuron,thelearningtermin equation(5) hasastraightforwardinter-
pretation.In fact,firmsclassifyinformationinto differentcategoriesaccordingto
themarket in whichthey specialized,wherein its turnfirm specializationdepends
on physicalandhumancapitalaccumulatedasa consequenceof pastinvestment
decisions.This inertial factoris subsumedby φ

�
a � y� xi terms,which actaslocal-

izedmemoriesfor firmsdecision-making.
However, renewal of capitalgoodsis easedby naturalageingof existing ma-

chinery. Similarly, renewal of humancapital is easedby personnelturnover. In
equation(5), forgettingtermsγ

�
a � y� ai expressthis secondeffect. In otherwords,

φ-termsaccountfor biasesposedto decision-makingby theexistingcapitalstock,
whereasγ-termsaccountfor thenew decisionpossibilitiesopenedupby wearand
tear.

Clearly, decision-makingis stronglypath-dependentin this model.Whatpre-
ventsfirms thatoperatee.g. in the furnituremarket from enteringe.g. thecom-
putermarket is simply thefactthatthey neverdid this job: they arenotacquainted
with thecomputermarket, they never developedthecategoriesthatwould enable
themto understandwhich itemsaremostprofitablein thismarket, they own com-
pletelydifferentcapitalgoods.

However, path-dependencedoesnot meanthat the role of eachfirm is fixed
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onceand for all. In fact, firms continuouslyinnovate their productsaswell as
their productiontechniques,andoccasionallyit doeshappenthata technological
breakthroughleadsa firm into a completelydifferentfield of activity. Neverthe-
less,pastexperiencesgenerallyinfluencewhich innovationsare carriedout by
which firms,andevenfirms thatbelongto thesameindustrymayexhibit striking
differencesin their relativeabilitiesto recognizetheprofitability of aninnovation.
Onceagain,this ability dependson thecategoriesemployedby a firm in orderto
classifyinformation.

Let us supposethat the currentstateof technologiesis subsumedby an N-
dimensional,exogenousvectore. The i-th componentof e is the technological
contentof the i-th final good.

Let us assumethat, coherentlywith the assumptionsof the investmentac-
celerationprinciple, managersarereactive to variationsof technologies.Thus,
informationon new technologiesis carriedby a vector∆e, where∆et

� et � et � 1

with a vectorof zerosasinitial conditions.The i-th componentof ∆e represents
theamountof technologicalinnovationthatcanimpactthe i-th final good.

Let usassumethatinformationcarriedby ∆e is freeandavailableto all firms.
Notethatvector∆edoesnot representtechnologicaldetailsthataredevelopedby
firms themselvesandthat arekept strictly privateunlessacquiredunderlicens-
ing agreement.Rather, ∆e representsall publicly availableinformationaboutnew
technologieswhich caninducemanagersto investon a specificfield, eventually
developingprivateinformationasa consequenceof this decision.It includesba-
sic researchmadeavailableby non-profitinstitutions,rumorsaboutcompetitors’
strategies,aswell asinformationthatwasintendedto beprivatebut which is ac-
tually difficult to appropriateand to trade,e.g. becauseof reverseengineering
[4].

Figure(3) illustratestheneuralnetthatrepresentsdecision-makingin thepro-
ductive system.Firms in thefinal goodssectorarerepresentedby thefirst layer
of neurons,the oneon the left side. On the contrary, firms in the capitalgoods
sectorarerepresentedby the secondlayer of neurons,the oneon the right side.
Justlike in figure (2), inner andouterfeed-backsgive rise to the multiplier and
theaccelerator, respectively.

A differencewith the previous Sectionis that now firms in the final goods
sectorreceive exogenousinformationaboutinnovationsbesidesinformationon
consumersdemand.Thus,equations(10), (11),(12)become:

∆kt
� A∆ct � 1 � B∆et � 1 (18)

∆kt
� A f

�
∆l � t � 1 � ∆l �� t � 1 � � B∆et � 1 (19)
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Figure 3: Decision-makingin the productive system,describedby meansof a
neuralnet. Eachneuronrepresentsdecision-makingby onefirm. The left layer
representsfirms thatproducefinal goods,theright layerrepresentsfirmsthatpro-
ducecapitalgoods. Two information feed-backsthroughthe labor market give
riseto themultiplier adtheaccelerator, respectively.
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∆kt
� A f

�
g
�
∆kt � 1 � � D∆kt � 2 � � B∆et � 1 (20)

whereB is theN � N matrix of thecoefficientsby which informationon innova-
tion is processed.

Ultimately, neuronsare devices that operatelinear combinationsof the in-
formationvectorsthat they receive asinput. Thus,matricesA, B andD canbe
interpretedasneuronscoefficients.

In particular, the i-row of thesematricescontainsthe coefficientsof the i-th
neuronof its industrialsector. In particular, therowsof matricesA andB contain
coefficientsof theneuronsin theleft layer(final goodssector),whereastherows
of matrix D containcoefficientsof the neuronsin the right layer (capitalgoods
sector).Note thatneuronsin the left layerhave two setsof coefficients,thefirst
onefor weighinginformationaboutconsimers’demandandthe secondonefor
weighinginformationonnew technologies.

SincematricesA, B, D changewith time accordingto equation(5), equa-
tions(18), (19), (20) now describea flexible accelerator. Notealsothat,sinceA,
B, D havebecomevariables,acceleratorequationsareno longerlinear.

Equation(5) canbe operationalizedin many ways,accordingto the choice
of φ andγ. A simplechoicethat is goodenoughin the early stagesof pattern
recognitionis [29]:

dA
dt

� µ∆k∆cT � νA (21)

dB
dt

� µ∆k∆eT � νB (22)

dD
dt

� µ∆l �� ∆kT � νD (23)

wherematrixderivativeapplieselementby element.
In equations(21), (22), (23) thelearningtermenhancescoefficientsthatyield

a high outputfor a high input. On thecontrary, the forgettingtermscalesdown
coefficientsexponentiallywith time.

MatricesA, B, D specify the structureof informationcircuits that, passing
throughthetwo feed-backscreatedby the labormarket, cantraversetheproduc-
tive systemalonga numberof differentpaths.Eachparticularstructureof these
pathscorrespondsto certainfirms having specializedinto certain technologies
with varyingdegreesof success.Thus,matricesA, B, D specifythedistributed
memoryof the productive system,its collective behavior when it is confronted
with informationon novel technologiesinjectedby ∆e.
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However, a productive systemis likely to learn to dealwith innovationsand
exploit thenovel possibilitiesthatthey openup. Equations(21), (22), (23) tell us
how theproductivesystemcandevelopanew structureby transformingthepaths
of its informationcircuitsandmemorizeanew configuration.

5 A Numerical Example

The acceleratorequationsderived so far aimedat describinginvestmentsat the
very beginning of recovery phases. Thus, they shouldbe evaluatedwhen the
productivesystemreceivesthefirst hintsof thenovel technologiesthatwill trigger
anew phaseof expansion.

Sucha situationis characterizedby the slow emergenceof patternsin a sea
of indistinctchaos.Informationon technologicalpatternsis madeof rumorsand
hints that, for instance,biotechnologiesare going to have a future in the first
decadesof theXXI century. Thus,it makessenseto investthere.

In thesimulationpresentedherein,thestateof technologyis representedby a
sinusoidthatis slowly emerging out of white noise.This sinusoidis definedover
goods,andrepresentstheirdevelopmentpossibilitiesopenedupby new technolo-
giesat eachtime step. Productionof goodsthatarepositively affectedby novel
technologiesis likely to expandandtheirqualitative featuresis likely to change.

During 100 time stepsthis sinusoidspans100 goodswith 5 periodsof 20
goodseach.However, its amplitudeAmin

� 0 at time t � 1 increaseslinearlyupto
Amax

� 2 at time t � 100.Thus,thepatternexpressedby this sinusoidis invisible
at t � 1 andbecomesincreasinglyevidentwith time. Upon this pattern,a noise
generatedby anormaldistributionwith zeromeanrepresentsambiguityregarding
whichgoodswill beblessedby novel technologies.However, thevarianceof this
distribution decreasesfrom Vmax

� 1 at time t � 1 to Vmin
� 0 at time t � 100.

Thus,theoveralleffect is thatof asinusoidalpatternslowly emergingfrom chaos.
Figure(4) illustratesthesequenceof vectorson thestateof technologye that

will be employed in the simulation. Sincea three-dimensionalgraphwould be
difficult to read,this figureshows its horizontalsectionat e � 0. Black areasde-
notethepartsof thethree-dimensionalgraphwheree � 0, whiteareasdenotethe
partsof thethree-dimensionalgraphwheree � 0. Thus,emergenceof a sinusoid
reflectsin theformationof stripesoutof irregularspots.

Information on technologicalnovelties is carriedby ∆e, which is obtained
by differentiationof e. However, sincemanagersarelikely to attachcomparable
importanceto informationoninnovationandinformationstemmingfromdemand,
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Figure4: A sequenceof vectorse fron t � 1 to t � 100, horizontalsectionsat
e � 0. Black areascorrespondto e � 0, white areascorrespondto e � 0. In order
to simplify the imageonly oneout of four firms andoneout of four time steps
havebeenshown, resultingin a25 � 25grid.
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vectors∆e and∆c shouldbe of similar size. Thus,at eachsimulationstepthe
interval spannedby ∆ehasbeenadjustedto theonespannedby ∆c andthemedian
of ∆ehasbeenshiftedto thatof ∆c.

By insertingequations(6), (7) and(9) into (18), it is possibleto obtain in-
vestments∆k from informationon innovation∆e andpreviousvaluesof ∆c, ∆k,
∆l � , ∆l �� . Thus,simulationsbasicallyconsistof feedingtheabove equationswith
aseriesof vectors∆e like theoneillustratedin figure(4) andobservingthecorre-
sponding∆k.

Furthermore,oneshouldconsiderthat decision-makingis rational only if it
is channeledwithin a setof logical constraints[45], [46]. In this model,let the
outcomeof neuronsbeconstrainedby thefollowing two rules:

1. Outputis not allowedto benegative. Thus,in theshortrun capitalequip-
mentcannotbedisinvestedandworkerscannotbefired.

2. Credit exists, but loanscannotbe indefinetly large. Sinceit is likely that
capitalstockservesascollateral,it is assumedthat theoutputof a neuron
cannotbe larger thancumulative output(this rule is not appliedif cumula-
tiveoutputis zero).

Initial conditions,keepingin mind that we aredescribingthe onsetof a re-
covery, areobviously c � 0, k � 0, l � � 0, l �� � 0 and∆c � 0, ∆k � 0, ∆l � � 0,
∆l �� � 0. Learningandforgettingparametershavebeensetatµ � 0 � 1 andν � 0 � 1,
respectively. MatricesA, D andB have beeninitialized by meansof a normal
distributionwith varianceW � 100.

Figure (5) illustratesaggregateinvestmentsduring a hundredtime steps,in
logarithmicscale.Dashedlinesrepresenttheoutcomeof tendifferentsimulations
whereasthethick line resultsfrom theiraverage.

Themostinterestingfeatureof the investmentcurvesillustratedin figure (5)
is thediscontinuitythat they all exhibit betweenthe50th andthe60th time step.
In fact,thispoint in timecorrespondsto theemergenceof apatternin information
oninnovationasit is illustratedin figure(4). It is evidentthatrecognitionof novel
investmentpossibilitiestakesplaceatonce,whenfirmssuddenlyunderstandwhat
apatternis emerging from chaos.

Figure(6) illustratesthreeindicatorsα, β andδ of thevariationof A, B andD,
respectively. Indicatorsα, β andδ have beendefinedasthesumof theabsolute
variationsof all elementsof A, B andD, respectively.

Figure(6) makesclearthatA, B, D behave very similarly to oneanother. In
fact, all threematricesvary accordingto an exponentialpaththat hastwo sharp
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Figure5: Aggregateinvestmentsin logarithmicscale,100 time steps. Dashed
lines illustrate aggregateinvestmentsduring ten simulationruns with the same
parametersset,thethick line resultsfrom theiraverage.In orderto representzero
valueson a logarithmic scale,a one hasbeenaddedto all valuesof aggregate
investments.
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Variation of A, B, D: Average of ten runs
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Figure6: Variationof A, B, D in logarithmicscale.Indicatorsα, β andδ express
the sumof the absolutevariationsof the elementsof A, B andD, respectively.
Valueshavebeenaveragedover tensimulations.

discontinuities,thefirst oneat thevery beginningof thesimulation,whencoeffi-
cientsmove away from initial valuesthathadbeensetat randomandthesecond
onearoundthe 50th time step,whenfirms recognizea novel technologicalpat-
tern.Sinceweareobservingtheinitial phaseof anexponentialdynamicsandnot
a cycle, acceleratorcoefficientsentailedby A, B andD tendto grow indefinetly.
However, by detrendingalongthe growth pathwe would obtainthe valuesof a
fixed-coefficientsacceleratorequationbeforeandafter recognitionof technologi-
cal innovations.

Aggregatedynamicsariseout of microeconomicinvestmentsthat are likely
to be differentacrossfirms. Actually, the rationalefor usinga neuralnet is that
firms specializeinto differentfieldsof activity, thatarelikely to behit by techno-
logical innovationto varyingextentandgenerateinvestmentsin varyingdegrees.
Figure(7) illustratesinvestmentsby eachfirm duringonesimulation.

Figure(7) shows that,althoughall firms behave in phasebecausethey all ac-
cessthesameinformation,differentinitial conditionswith respectto physicaland
humancapitalexpressedby A, B, D at time t � 0 make themgrow accordingto
exponentialpathsthatmayhave verydifferentslopes.In otherwords,depending
on their initial endowmentfirms developidiosyncraticknowledgethat is specific
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Investments by each single firm, One run
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Figure 7: Investmentsby eachsingle firm. This picture illustrates∆ki for i �
1 � 2 ������� 100 along100 time stepsof onesinglesimulation. In orderto represent
zerovaluesona logarithmicscale,aonehasbeenaddedto all componentsof ∆k.

to particularfieldsof activity characterizedby differentgrowth paths.

6 Conclusions

This article presenteda cognitive modelof the very beginningof the processof
investmentsacceleration,aphasethatis crucialto theonsetof economicrecover-
ies.Notably, it is amodelthatoperatesat themicroeconomicandmacroeconomic
level at the sametime. This result could be achieved becausethe structure of
interactionsbetweenindustrialsectorswasdescribed.

Structureembodiesthe distributed knowledgeof an economy, representing
which kindsof technologiesit is ableto exploit andimplement.Ultimately, this
dependson the history of an economyrepresentedby the initial conditionsof
matricesA, B, D andlater on by their evolution with time. Sincethis evolution
dependson thesequenceof exogenousvectors∆e, this modelis definitelypath-
dependentin spirit andpractice.

The modelprove to be quite stablewith respectto parameters,but not with
respectto decisionrules(1) and(2) of Section5. In fact,differentdecisionrules
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implementalternativeproceduralrationalitiesthatultimatelyleadto oppositeout-
comes.In this paper, only verysimpleruleshavebeenused.

MatricesA, B, D link theacceleratorcoefficient to firms’ experiencesembod-
ied in their knowledge,both at the individual andthesystemiclevel. Analytical
treatmentwaskept at a basiclevel, but further investigationsareavailable in a
companionpaper[17].

Possibilitiesfor empiricalapplicationsarehinderedby the evident difficulty
of encodingrumorson technologicalnoveltiesinto stringsof zerosandones,as
vectors∆e are. Note that this is not a difficulty in principle,but it is in practice
becauseit is difficult to think of homogeneousempiricaldocumentationof what
managers,at any precisepoint in time,knew abouttechnologicalperspectives.

However, it is easyto think of anapplicationof areducedversionof themodel
presentedherein,wherethetwo informationfeed-backsarecutandempiricaldata
on demandareused. By doing this, onecanthink of modelingmanagers’rea-
soningin orderto derive disaggregatedinvestmentsfrom disaggregateddemand,
wheretheperformanceof themodelcouldbechackedagainstempiricaldataon
investments.Actually, a first attemptin this directionyieldedvery encouraging
results[18].
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Politique, 22–23:696–706,81–117,201–229,241–259,1908–09.

[4] KennethJ. Arrow. Informationandeconomicbehavior. In CollectedPa-
pers of KennethJ. Arrow, volume4, The Economicsof Information.Basil
Blackwell,Oxford,1984.

[5] LawrenceW. Barsalou.Theinstability of gradedstructure:Implicationsfor
the natureof concepts.In Ulric Neisser, editor, Conceptsand Conceptual
Development:Ecological and IntellectualFactors in Categorization. Cam-
bridgeUniversityPress,Cambridge,1987.

26



[6] Gregory Bateson. Stepsto an Ecology of Mind. BallantineBooks, New
York, 1972.

[7] MarianneBaxter. Are consumerdurablesimportantfor businesscycles?The
Review of EconomicsandStatistics, 78:147–155,1996.

[8] CharlesR. Bean.An econometricmodelof manufacturinginvestmentin the
uk. TheEconomicJournal, 91:106–121,1981.

[9] Gan Wee Beng. Private investment,relative pricesand businesscycle in
malaysia. Rivista Internazionaledi ScienzeEconomiche e Commerciali,
39:753–769,1992.

[10] Arne Bigsten,Paul Collier, Stefan Dercon,BernardGauthier, JanWillem
Gunning,AndersIsaksson,AbenaOduro,RemcoOostendorp,CathyPat-
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mentin franceandtheunitedstates:An explorationof whatwehavelearned
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