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Abstract

Economic models are meant to provide a framework to describe real-world economic activities. In
principle, how well a model performs this task can be evaluated by how close the model’s simulated
activities track the observed ones. A necessary first step in simulating a model is to choose values
for the model’s parameters in accordance with actual economic data. A fundamental problem in
economic modelling, however, is that actual economic data are sampled at time intervals that are
typically longer than the decision intervals of actual economic agents.

One popular resolution of this problem is to constrain the length of the decision intervals of
theoretical economic agents to be equal to the length of the actual data-sampling intervals. This
widely adopted approach makes it feasible to directly calibrate theoretical models to the observed
data, but it can introduce substantial biases in the models’ empirical performance, as demonstrated
by recent research that has allowed the decision intervals to be shorter than the data-sampling
intervals. This alternative, high-frequency modelling approach, however, has brought with itself
a fundamental issue that direct calibration of the models’ parameters is no longer feasible. In
response, researchers have employed a simple, yet ad hoc, rule to transform commonly chosen
lower-frequency parameter values (which can be calibrated directly from the available data) to
their high-frequency counterparts.

We show in this paper that this simple transformation rule has three major drawbacks. First,
it produces internal inconsistencies in steady-state equilibrium conditions. Second, it is sometimes
at odds with microeconomic evidence. And third, it can result in inaccurate log-linear approx-
imations to the models’ true equilibrium solutions by worsening the fit of both the transition
dynamic coefficients and the point of approximation itself. We present here an alternative, coher-
ent transformation rule for calibrating high-frequency models that directly addresses these three
shortcomings. We then use our consistent transformation rule to calibrate high-frequency versions
of two well-known economic models and show how it improves these models’ empirical performance.

JEL Codes: C63 and E27
Keywords: High Frequency, Calibration; Transformation Rule; Consistency; Temporal Aggregation



1 Introduction

An economic model is meant to provide a simplified framework to describe real-world economic

activities. A good economic model is one that captures these economic activities in a parsimonious

fashion without relying on overly restrictive simplifying assumptions. In this paper, we focus on

one commonly overlooked assumption that is, at times, unnecessarily restrictive.

The usual practice in economic modelling is to set the length of the decision interval in theoret-

ical models equal to the real-world data-sampling interval. For example, if a modeler is endowed

with quarterly data, then the usual approach is to assume that economic agents in the model make

decisions once per quarter. The quarterly model can then be calibrated by matching the model’s

steady-state values to the historical averages of the actual time series in the quarterly data or by

relying on the embodied microeconomic evidence. The model is then evaluated by comparing its

simulated economic activities with statistics from the actual data. The advantage of this widely

accepted approach of setting the decision interval equal to the constraining data-sampling interval

is that it is (1) feasible to calibrate the model directly to the available data and (2) straightforward

to assess the model’s empirical performance.

A fundamental issue associated with this modelling approach is that, in reality, actual decisions

by economic agents are likely to be made at time intervals that are more frequent than the intervals

at which economic data are sampled. Furthermore, this real-world feature may play an important

role in shaping the observed behaviors of economic variables. Indeed, research has shown that tem-

poral aggregation may alter the time-series patterns of economic data generated by more frequent

decisions (e.g., see Working (1960); Geweke (1982); and Weiss (1984)). Therefore, abstracting from

this feature may subject theoretical models to substantial biases in their empirical performances.

To assess the importance of this issue, several recent studies have chosen to examine high-

frequency models where the decision intervals are shorter than the data-sampling intervals. The

general procedure is to first solve the models, simulate high-frequency artificial data, and then

aggregate the data up to the longer data-sampling intervals following the sampling and temporal

aggregation procedures used in creating the actual data. With the low-frequency artificial data

in hand, one can then compare its statistical properties with the actual dataset (of the same low-

1



frequency) to evaluate the models’ empirical performance. The starting point of this exercise is to

choose values for the parameters in the high-frequency models. Unfortunately, this can no longer

be done by appealing directly to the observed lower-frequency data. Instead, one has to transform

the commonly chosen lower-frequency parameter values, which can be calibrated directly from the

available data, to obtain their high-frequency counterparts.

The “standard” method for calibrating high-frequency models appears to have begun with

Christiano (1989), and has later been followed by Cogley and Nason (1995), Chari, Kehoe and

McGratten (2000), and Aadland (2001), among others. The standard high-frequency calibration

technique uses simple transformation rules to adjust parameter values across frequencies so that

a high-frequency model produces equilibrium dynamics similar to those generated by its lower-

frequency counterpart.

We show in this paper that the standard, simple transformation rule has three major drawbacks.

First, it produces internal inconsistencies in steady-state equilibrium relations across frequencies.

Second, it can be at odds with microeconomic evidence. Third, due to the complexity of mod-

ern economic models, true equilibrium solutions are often non-linear and hard to obtain, and it

has become a useful practice to log-linearize the models’ equilibrium conditions around their steady

states. (This common practice usually provides satisfactory approximations to the true equilibrium

dynamics if the underlying disturbances are small.) The simple, ad hoc transformation rule, how-

ever, can result in inaccurate log-linear approximations to the models’ true equilibrium solutions

by worsening the fit of both the transition dynamic coefficients and the point of approximations

themselves.

To address these issues, we propose a consistent transformation rule for calibrating high-

frequency models that adheres to the principle that economic variables must be consistently aggre-

gated across time in steady-state equilibria. Consistency means that steady-state stock variables

(e.g., capital stock, money supply) must be equal across frequencies, and low-frequency steady-state

flow variables (e.g., output, consumption) must equal the temporal sum of their higher-frequency

counterparts.

Our consistent transformation rule, by design, ensures consistencies in steady-state equilibrium

relations across frequencies. Further, and perhaps more importantly, it possesses other advantages.
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First, it is consistent with the sampling and temporal aggregation procedure used in practice for

creating the actual data. Second, it is sufficiently flexible to incorporate relevant empirical evidence

on high-frequency parameter values. Third, through improving the fit of both the transition dy-

namic coefficients and the point approximations themselves, it leads to better approximations to the

true equilibrium solutions. And finally, besides the consequences merely caused by sampling and

temporal aggregation themselves (see the literature cited above), an improved fit of high-frequency

parameter values and high-frequency point approximations can interact with the temporal aggre-

gation procedure to improve the performance of the time-aggregated lower-frequency dynamics. In

this sense, our consistent transformation rule for calibrating high-frequency models complements

the existing literature on sampling and temporal aggregation.

We provide two examples to illustrate the advantages of our consistent transformation rule over

the simple, ad hoc rule. We do so by calibrating and computing the log-linearized, high-frequency

versions of two well-known economic models, and showing how the models’ empirical performances

are improved under the consistent rule than under the ad hoc rule.

The rest of the paper is organized as follows. Section 2 describes, in general terms, the trans-

formation procedures used in calibrating high-frequency models. It draws special attention to the

principles behind the standard transformation rule and our proposed consistent transformation

method. In Section 3, we calibrate and compute a weekly version of a standard real business cycle

(RBC) model. We show that our consistent transformation method improves the fit of the RBC

model by generating additional volatility in hours worked. This is accomplished without altering

the typically chosen quarterly values of the structural parameters. Instead, we take these common

low-frequency parameter values as given and rely on the principle that variables are consistently

aggregated across frequencies, while incorporating the microeconomic evidence that workers are

more willing to intertemporally substitute their labors at high frequencies than at low frequencies.

In Section 4, we consider a standard consumer-based asset pricing model that is augmented to cap-

ture both the durability of consumption and the existence of habit persistence. Starting with an

annual model that is calibrated so that habit persistence sets in quickly, we then use our consistent

transformation procedure to calibrate and compute a weekly version of the model. We show that

our consistent transformation technique naturally introduces local substitutability in consumption,
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while continuing to maintain long-run habit persistence. As shown by Heaton (1995), the dual

existence of local substitution and long-run habit persistence improves the fit of consumer-based

asset pricing models. Section 5 concludes the paper. The appendix provides some technical details

on the derivation of the consistent, high-frequency relations for our RBC example.

2 Methodologies

In this section, we outline in general terminology the concept of transformation rules for calibrating

high-frequency models and, more specifically, the principles behind the standard transformation rule

and our consistent transformation method. The task of high-frequency calibration is to establish

an isomorphic mapping from low-frequency values of parameters (e.g., quarterly or annual) to

their higher-frequency counterparts (e.g., weekly, daily, hourly, etc.). The issue here is not about

how to choose the low-frequency values per se – they are taken as given for the purpose of this

analysis and are obtained from the routine calibration of low-frequency models based on actual

low-frequency data. Rather, it is about how to derive the high-frequency parameter values from

their commonly accepted low-frequency counterparts. Naturally, one would wish such a mapping

to be consistent with the rules by which actual data are aggregated across time, and with any

available microeconomic evidence.

The standard high-frequency calibration approach, however, is not based on this natural trans-

formation principle. Instead, it relies on ad hoc transformation rules designed to produce dynamic

behavior within the model that is invariant to the choice of the decision intervals. In contrast,

our consistent high-frequency calibration method builds on the natural transformation principle.

It transforms the low-frequency parameter values to a higher-frequency level subject to the con-

straints that (i) the high-frequency steady-state values of economic variables are aggregated across

time up to the low-frequency level in the same manner as the actual data are aggregated, and (ii)

the high-frequency parameter values do not fall outside the admissible ranges suggested by available

microeconomic evidence. In principle, starting with the usual low-frequency parameter values, the

higher-frequency values obtained via the consistent method can differ from the higher-frequency

values derived under the standard approach.
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We now describe the general differences between the two calibration approaches more formally.

To keep track of the decision intervals, let τ index the lower frequency (longer) decision interval.

In many macroeconomic studies, τ indexes quarterly or annual decision intervals. The higher

frequency (shorter) decision interval is indexed by t. We assume that there are n decision intervals

in t-time within each decision interval in τ -time.

Under the standard high-frequency calibration approach, one converts the given lower-frequency

parameter values into the parameter values for the higher-frequency models by simply raising all

parameters explicitly associated with time to the 1/n power (e.g., discount factors, depreciation

rates). Other parameters are either divided by n (e.g., time endowments, means of flow variables)

or are treated as invariant to the changes in the decision intervals (e.g., preference parameters,

production share parameters).

Our consistent high-frequency calibration approach starts with the same lower-frequency para-

meter values as in the standard approach, but by contrast to the standard approach, it insists on the

principle that economic variables be temporally aggregated in the steady states in a manner that

is consistent with how the actual data are constructed in practice. Denote by F∗, S∗, γ∗ the t-time

steady-state values of a flow vector, stock vector, and parameter vector, respectively, and F, S, γ

their τ -time counterparts. Consider a system of steady-state equations in t-time, g(F∗, S∗, γ∗) = 0,

and a corresponding system of steady-state equations in τ -time, g(F, S, γ) = 0. To transform γ into

γ∗, we rely on the time-aggregation principle that Fτ =
Pn−1

i=0 Ft−i for flows and the beginning-of-

period sampling principle that Sτ = St for stocks, which together imply the steady-state constraints

that F = nF∗ and S = S∗, with which the transformation must be consistent. Solving the system

g(F/n, S, γ∗) = g(F, S, γ) then produces an isomorphic correspondence that maps consistently the

low-frequency parameter values one-to-one and onto their high-frequency counterparts according

to γ∗ = γ∗(F,S, γ, n), provided that the system is exactly identified. If the system is overidentified,

then additional parameterizations may be needed and the corresponding parameters may need to

be allowed to vary across frequencies. If the system is underidentified, then additional parame-

ter restrictions may be necessary in order to achieve identification. In this case, the additional

restrictions should be chosen to respect available microeconomic evidence.

Before introducing the economic examples, we note that our consistent high-frequency calibra-

5



tion methodology can be easily extended to handle low-frequency parameters that are econometri-

cally estimated. It is becoming increasingly popular to directly estimate the structural parameters

in macroeconomic models using system estimation techniques such as generalized method of mo-

ments (GMM) and full-information maximum likelihood (FIML), as opposed to relying solely on

long-run historical averages or evidence from microeconomic studies to choose parameter values.

Notable examples of the former include Christiano and Eichenbaum (1992), Ireland (2001), and Kim

(2000). To see how consistent calibration works in this context, begin by letting the low-frequency

estimated parameters be represented by γ̂, with variance-covariance matrix Σ. The consistent high-

frequency parameters, similar to the analysis above, are given by the relation γ̂∗ = γ∗(F, S, γ̂, n).

Furthermore, provided that γ̂ are consistent and γ∗(F,S, γ̂, n) is not a function of the sample size,

Slutsky’s Theorem guarantees that γ̂∗ will be consistent as well (Greene (2003), p.903). One of

the primary attractions of directly estimating the structural parameters with techniques such as

GMM or FIML is that the researcher has an explicit measure of the degree of sampling uncertainty

in the estimated parameters (i.e., Σ). This in turn allows the researcher to form confidence inter-

vals for standard metrics (e.g., standard deviations, cross correlations, impulse response functions,

spectral density functions) and perform Classical hypothesis tests to measure the goodness-of-fit

of the model. In order to perform hypothesis tests for a high-frequency model, it is necessary to

calculate the variance-covariance matrix for γ̂∗, which we denote by Σ∗. Since γ∗(γ̂) is typically a

non-linear function in γ̂, we take a first-order linear approximation to γ∗ around its true population

value γ0∗. The variance of the linearized version of γ̂∗ is then given by

Σ∗ = Γ∗(γ0∗)ΣΓ∗(γ
0
∗)
T , (1)

where Γ∗ indicates the matrix of first partial derivatives of γ∗(γ̂) with respect to each element

in γ̂ and superscript T denotes the transpose operator. This is often referred to as the “delta

method” (Greene (2003), p.913). Lastly, substitution of consistent estimates for γ0∗ into (1) makes

Σ∗ operational and allows one to test various hypotheses regarding the fit of the high-frequency

model. We turn now to our economic examples.
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3 Example #1. Real Business Cycle Theory

If the transformed high-frequency parameter values or the implied behavior of economic variables

were not sensitive to which calibration method is used, then the choice of calibration methods

would not be a serious issue of concern. Unfortunately, this is not typically the case.

For concreteness, let’s now look at a simple RBC example. Consider first the usual version of

the model with the longer decision interval indexed by τ . In this model, a representative agent is

assumed to maximize an expected stream of discounted utility

U(C,L) = Eτ

∞X
s=0

βτ+s
·
log(Cτ+s) +

φ

η
lητ+s

¸
(2)

by choosing consumption and leisure paths in τ -time, where Eτ denotes the mathematical expec-

tations operator conditional on all information dated time τ and earlier, β a subjective discount

factor, Cτ consumption, φ leisure’s weight in total utility, lτ = (N − Lτ )/N the proportion of

endowed time spent toward leisure, N the endowment of time available for leisure and labor, Lτ

labor hours, and 1/(1 − η) the intertemporal elasticity of proportional leisure.1 Consumption is

subject to the resource constraint

Cτ ≤ Yτ − Iτ (1 + 0.5ψq
2
τ ), (3)

where Yτ denotes output, Iτ gross investment into the capital stock Kτ , and 0.5ψq2τ the unit

adjustment cost for investment with qτ = Iτ/Kτ . Capital accumulates according to

Iτ = Kτ+1 − (1− δ)Kτ , (4)

and output is given by the production function

Yτ = (zτLτ )
1−α(nKτ )

α, (5)

1The steady-state intertemporal elasticity of labor is also 1/(1− η) under the assumption that equal proportions
of time are spent in leisure and labor activities.
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where zτ = zτ−1 exp(µ+ τ ) is a stochastic technology process following (in natural logs) a random

walk with drift µ and mean-zero white-noise shock τ . Capital is scaled by n because a given

capital stock (similar to the stock of laborers) provides a stream of services to firms over each

smaller decision interval. Without loss of generality, we have normalized the flow of capital services

to be equal to the capital stock in t-time. Therefore, the τ -time capital stock provides n times the

capital services as that at the higher frequency.

The consumption and labor Euler equations for this problem are

C−1τ = β(1 + 1.5ψq2τ )
−1Eτ

£
C−1τ+1(1 + nrτ+1 − δ + 0.5ψq2τ+1(qτ+1 + 1.5(1− δ))

¤
(6)

wτ = φlη−1τ Cτ/N (7)

where rτ is the rental rate for capital services and wτ the wage rate for labor services:

rτ = α
Yτ
nKτ

(8)

wτ = (1− α)
Yτ
Lτ
. (9)

For the purpose of our analysis, we take as given the parameter values for the low-frequency

RBC model γ = (β, δ, α, η, φ, ψ, µ). In the business-cycle literature, these low-frequency parameter

values are typically chosen so that the model’s steady-state solutions match the historical averages

of the corresponding actual time series, or to be consistent with relevant microeconomic evidence.

Usually this is performed at either a quarterly or annual decision interval. Once γ and the initial

conditions K0 and z0 are chosen, one can compute the model’s equilibrium paths and generate

artificial τ -time data for given realizations of the driving technology process.

Our focus in this paper is instead on how one can calibrate the t-time version of the model from

a given set of τ -time parameter values. Consider first the standard high-frequency calibration

approach which uses the following transformation rule

γ∗(γ) = (β
1/n, 1− (1− δ)1/n, α, η, φ, ψ∗, µ/n). (10)
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The capital adjustment cost parameters ψ and ψ∗, irrespective of the length of the model’s decision

interval, are often chosen such that the ratio of investment volatility to output volatility in the

model equals the ratio observed in the detrended post-war quarterly U.S. data (e.g., Chari et al.

(2000), Huang and Liu (2002)).2 The high-frequency parameter values γ∗ obtained from the

standard calibration approach can then be substituted into the t-time version (thus n = 1) of the

model to simulate high-frequency artificial data. This is the approach taken by Christiano (1989),

Cogley and Nason (1995), Chari et al. (2000), and Aadland (2001).

In transforming the given τ -time parameter values γ (with longer decision interval) into their

t-time counterparts γ∗ (with shorter decision interval), our consistent high-frequency calibration

approach insists on the principle that the steady-state values of economic variables in the model are

consistently aggregated across time. To implement the consistent method, we impose the following

consistency constraints F = nF∗ and S = S∗ on the steady-state versions of equations (3)-(9) and

solves the system jointly with the corresponding steady-state equations in t-time.3 This generates

the following mapping from γ, n, and l to γ∗

β∗ = βneµ/n
³
eµ + β(eµ/nn− eµ)

´−1
(11a)

δ∗ = (δ/n) + (1− eµ/n) + (1/n)(eµ − 1) (11b)

α∗ = α (11c)

η∗ = η + log(φ/φ∗)/ log(l) (11d)

ψ∗ = ψn2 (11e)

µ∗ = µ/n. (11f)

Since γ∗ includes seven elements and (11a - 11f) only involves six equations, the system is underi-

dentified (see equation 11d). To identify the system we impose an additional restriction that η∗ be

consistent with microeconomic evidence on high-frequency intertemporal elasticity of substitution

in labor. Although the microeconomic evidence does not pin down an exact value for η∗, the evi-

2For Hodrick-Prescott detrended quarterly U.S. data over the period 1948 through 1999, this ratio is approximately
2.25.

3Details of this procedure are shown in the appendix.
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dence confirms our expectations that individuals are more willing to substitute labor across shorter

time periods and provides a general guide to the appropriate magnitude for η∗.

There are many studies that have estimated the willingness of workers to substitute labor across

time in response to changes in real wages. Many of these studies are based on life-cycle evidence

of hours worked (intensive margin) by men at annual or even lower frequencies. Pencavel (1986)

summarizes the findings of these surveys and concludes that the intertemporal labor supply elastic-

ity has a “central tendency of 0.20.” Using multi-industry panel or macro-level data sets, several

studies find as Browning, Hansen and Heckman (1999) report on p. 616 that “...time [labor supply]

is more substitutable over shorter intervals than longer ones.” MaCurdy (1983), using monthly

data from the Denver Income Maintenance Experiment, finds (intensive) elasticities in the range

of 0.3 to 0.7. Abowd and Card (1989) report elasticities that increase as one moves from bien-

nial to annual to semi-annual data. Barsky and Miron (1989) provide indirect evidence of larger

intertemporal substitution at higher frequencies by noting that there exists substantial procyclical

seasonal (quarterly) variation in total hours worked (i.e., labor hours and employment are higher

than average during the boom periods of summer and fall and lower than average in the winter

recessions). Hall (1999) states that “the seasonal data suggest reasonable amounts of intertemporal

substitution among the quarters of the year.” Kimmel and Kniesner (1998) using tri-annual micro

panel data of the Survey of Income and Program Participation estimate hours worked elasticities

(intensive margin) of approximately 0.5 and employment elasticities (extensive margin) of approx-

imately 1.5. In addition to this multi-industry evidence, there are several industry-specific studies

that also suggest larger substitutability at higher frequencies (Treble (1986); Carrington (1996);

Oettinger (1999)). Roughly in line with this high-frequency evidence, we choose a conservative

baseline value of η∗ such that the high-frequency intertemporal elasticity of labor is one and a half

times larger than the quarterly elasticity typically applied in business-cycle models. In our opinion,

the research cited above supports choosing even greater substitutability at higher frequencies, but

applying a more conservative estimate of η∗ will keep it from overshadowing the influence of other

high-frequency parameters. Once a value for η∗ is chosen, φ∗ is then pinned down by (11d).

To get a further quantitative feel, we set n = 13 so that τ indexes quarterly decision intervals

and t weekly decision intervals. The first row of Table 1 depicts the commonly accepted quarterly

10



parameter values, which are taken as the starting point for any higher-frequency calibration. The

second and third rows of the table display the implied weekly parameter values under the standard

and consistent high-frequency calibration approaches. According to the table, the differences in the

standard and the consistent weekly parameter values are small for β∗ and δ∗, suggesting that the

standard high-frequency calibration method is providing a good approximation to the consistent

high-frequency calibration for these two parameters.4 As can be seen from the table, however, the

standard and the consistent weekly parameter values for η∗, φ∗ and ψ∗ are substantially different,

reflecting the fundamental differences in the two high-frequency calibration methodologies. Our

consistent approach sets high-frequency parameter values according to steady-state consistency

criteria across frequencies and microeconomic evidence, while the standard approach uses simple

approximating transformations designed to produce dynamics that are invariant across frequencies.

Table 1. Comparison of RBC Parameters Values

Parameter Values

β 1− δ α η φ ψ µ

Commonly Chosen

Quarterly Values
0.9898 0.974 0.34 0 0.883 15.77 0.004

β∗ 1− δ∗ α∗ η∗ φ∗ ψ∗ µ∗

Transformed Weekly Values

(Standard Calibration)
0.99922 0.99798 0.34 0 0.883 3540 0.0003

Transformed Weekly Values

(Consistent Calibration)
0.99921 0.99800 0.34 0.33 1.112 2667 0.0003

The first row of Table 2 depicts common quarterly steady-state values for key economic vari-

4 In other contexts, such as those described by overlapping generations models with unusually long decision intervals
or with less durable capital, the starting low-frequency parameter values for β or 1 − δ may be farther away from
one. As a result, the differences between the standard and the consistently calibrated high-frequency values for the
two parameters will be more stark. For example, if β = 0.5, µ = 0 and n = 4, then the standard high-frequency
calibration approach gives β∗ = 0.84 but the consistent high-frequency calibration approach gives β∗ = 0.80. When
discounting over even relatively shorter time horizons, differences in β∗ of this magnitude can have substantial effects
on economic decisions.
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ables and their ratios. The second and third rows of the table report the quarterly steady-state

values that result from time aggregating the weekly model under the two high-frequency calibration

methods. Notice that under our consistent high-frequency calibration approach, weekly parameters

are selected in order to equate the steady-state values of the time-aggregated weekly model with

those from the model calibrated at the accepted quarterly decision interval. On the other hand,

under the standard high-frequency calibration approach, the weekly parameters are selected in an

ad hoc fashion and therefore the time-aggregated quarterly steady-state values deviate from the

accepted quarterly values. As mentioned above, although the differences between the steady-state

values under consistent and standard calibration are not large, they have an impact on the dynamic

properties of the weekly model both directly (via differences in the fundamental parameters) and

indirectly (via the linear approximation around the steady-state).

Table 2. Comparison of RBC Steady States

Steady-State Values

Y/K C/Y L 0.5ψq2 r w

Quarterly Values

(Quarterly Calibration)
0.11981 0.7478 520 0.00710 0.00313 7.381

Time-Aggregated Quarterly Values

(Standard Weekly Calibration)
0.12093 0.7469 520.26 0.00962 0.00316 7.346

Time-Aggregated Quarterly Values

(Consistent Weekly Calibration)
0.11981 0.7478 520 0.00710 0.00313 7.381

Finally, we turn to the transition dynamics for the RBC model. Figure 1 depicts the responses

of quarterly output, consumption, investment and labor hours to a permanent one-time increase in

productivity — the first column depicts the impulse responses from a quarterly RBC model and the

second column from a time-aggregated weekly RBC model. (Note that output, consumption and

investment are normalized by the technology shock z.) The quarterly dynamics of the RBC model

are familiar. The permanent productivity gain increases real wages and rental rates for capital

services, inducing workers to increase their hours worked and firms to invest more in capital.
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Output increases (recall that although normalized output in Figure 1 is declining, raw output is

increasing) due to the productivity gain itself and the increased labor effort and capital stock.

Since the standard high-frequency calibration approach treats preference parameters as frequency

invariant, it is not surprising that the time-aggregated quarterly dynamics of the system under the

standard calibration approach are similar to the dynamics from the model with a quarterly decision

interval. Our calibration approach, however, relies on fundamental steady-state relationships for

stock and flow variables that should be satisfied across frequencies. Imposing these constraints and

relying on micro studies which indicate that workers are more willing to substitute hours worked

across shorter time periods, imply substantially different weekly transition dynamics. Most notably,

consistent weekly calibration generates a substantially larger response in hours worked.5 Given that

equilibrium business cycle models have historically produced too little volatility in hours worked

(Kydland (1995)), the increased volatility of hours worked in the weekly RBC economy may be an

important avenue for bridging the gap between economic theory and U.S. aggregate data.6

4 Example #2. Local Substitutability and Long-Run Habit Per-

sistence in Consumption Behavior

An ongoing puzzle in macroeconomics and finance is the inability of the standard consumption-

based asset pricing model to match various moment conditions in actual data (Campbell (1999)). A

well-known example is the equity premium puzzle of Mehra and Prescott (1985). One method that

has been proposed for resolving these puzzles is to assume that consumers exhibit habit persistence

such that the level of utility derived from current consumption depends upon an average of past

consumption to which they have grown accustomed (Constantinides (1990)). When consumers

display habit persistence, this tends to increase the volatility of their intertemporal marginal rate

5Weekly consumption dynamics are quite similar across the standard and consistent calibration approaches. We
suspect this independence from differences in labor-market dynamics and adjustment costs across the two calibration
approaches is due to separability between consumption and proportional leisure in the utility function.

6 In an alternative example, we have examined a weekly monetary business cycle model with nominal wage rigidities,
and found again that our consistent high-frequency calibration method helps bring the model’s simulations closer to
the data along a similar dimension. This example is not presented here due to the space limit, but is available from
the authors upon request.
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of substitution, and as a result, standard asset pricing models can be made consistent with observed

equity premiums without having to rely on unrealistically large levels of momentary risk aversion.

One problem with pure models of habit persistence, however, is that they are inconsistent with

the notion that consumption tends to be substitutable over relatively short time horizons (Hindy

and Huang (1992)). Heaton (1995) addresses this inconsistency by building a model that allows

consumers to display both local substitutability in consumption and long-run habit persistence and

shows that, with careful treatment of the temporal aggregation problem, the model satisfies the

Hansen and Jagannathan (1991) volatility bounds and generally improves the fit over either models

of pure substitutability or pure habit persistence.

In this example, we begin with an annual version of the model in Heaton (1995) and use our

consistent calibration technique to evaluate a weekly (n = 52) version of the model. Starting from

an annual model where habit persistence sets in quickly (as one might expect), we show how our

calibration technique naturally captures the notion of increasing local substitutability as one moves

to higher frequencies.

Following Heaton (1995), assume that a representative consumer maximizes the following ex-

pected, discounted stream of utility from consumption services

Eτ

∞X
τ=0

βτ
s
(1−ν)
τ − 1
(1− ν)

(12)

where ν > 0 is the curvature parameter, and τ indexes annual time.7 The representative consumer

maximizes (12) subject to constraints (3) through (5) introduced in example #1. To focus on

consumption behavior, we assume a fixed labor supply and set ϕ = µ = 0. Final consumption

services

sτ = cndτ + π(sdτ − κxτ ) (13)

are the sum of two parts, with π > 0 and 0 ≤ κ ≤ 1. The first, cndτ , measures the flow of

services from time τ non-durable goods. The second, (sdτ − κxτ ), weighted by π, measures the

7Unlike Heaton (1995), we allow for consumption of non-durable goods and services. Not only does this make the
model more realistic but it also provides an additional margin for us to pin down high-frequency calibrated values of
the discount factor β.
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flow of services from durable goods in a manner that can capture both the local substitutability

and long-run complementarity of consumption implied by habit persistence. The term sdτ denotes

the intermediate consumption stock and measures the accumulation of consumption services, cdτ ,

generated by durable goods. The intermediate consumption stock is assumed to follow

sdτ =
∞X
j=0

λj cdτ−j (14)

where 0 ≤ λ < 1 governs the durability of consumer goods, or alternatively the substitutability

of consumption. The term xτ is referred to as the habit stock and allows for complementarity in

consumption over time for positive κ. The habit stock is a weighted average of past intermediate

consumption stocks and obeys

xτ = (1− θ)
∞X
j=0

θjsdτ−1−j (15)

where 0 ≤ θ < 1. Since we treat both sdτ and xτ as stocks, the moving average in (15) is scaled

by (1 − θ). The parameter θ governs the rate of decay of the intermediate consumption stock in

creating the habit stock. The term κxτ can also be interpreted as a subsistence level of services

from durable goods.

To see the implications for consumption behavior over time, begin by substituting (14) and (15)

into (13). Rewriting the resulting expression in lag-operator form produces

sτ = cndτ + π
∞X
j=0

aj c
d
τ−j = cndτ +

π(1− χL)

(1− λL)(1− θL)
cdτ (16)

where χ ≡ θ + κ(1 − θ) and L is the lag operator. At this point, it is instructive to consider

a couple of special cases. First, if λ = 0, then the model is one of pure habit persistence and

aj < 0 for all j > 0. Second, if κ = 0, then the model exclusively captures the durability or

substitutability of consumption and aj > 0 for all j > 0. A third possibility, as noted by Heaton

(1995), is that certain combinations of λ, θ and κ will capture both the notion of long-run habit

persistence and local substitutability so that aj > 0 for small j and aj < 0 for all larger j. In

this sense, the model will capture the notion of local (or adjacent) substitutability and long-run (or
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distant) complementarity (see Ryder and Heal (1973)).

Now turning to calibration, we begin with annual parameter values γ = (β, δ, θ, κ, λ, π), which

are chosen so that the annual model displays habit persistence that sets in quickly, as would be

expected in a low-frequency model. These values are depicted in the first row of table 3.

Table 3. Comparison of Annual and Weekly Parameters Values

Parameter Values

β 1− δ θ κ λ π

Annual Values 0.96 0.9 0.8 0.9 0.1 1.74

β∗ 1− δ∗ θ∗ κ∗ λ∗ π∗

Transformed Weekly Values

(Standard Calibration)
0.99922 0.99798 0.9957 0.9 0.9567 1.74

Transformed Weekly Values

(Consistent Calibration)
0.99921 0.99800 0.8 0.998 0.9827 1.97

The second row of table 3 depicts the transformed weekly parameter values under the standard

approach, which raise parameters associated with time to the (1/n) power while leaving other

parameters (e.g., those associated with preferences) unchanged. The weekly parameter values

under the standard approach are given by γ∗ = (β
1/n, 1− (1− δ)1/n, θ1/n, κ, λ1/n, π).

The transformed weekly parameter values, under our consistent approach, are obtained in a

manner that guarantees that the steady-state relations are consistently aggregated over time and

across frequencies. After substituting out the steady-state habit stock x, there are five equations

which can be used under our consistent calibration approach to identify the high-frequency para-
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meters γ∗ = (β∗, δ∗, θ∗, κ∗, λ∗, π∗):

I/K = δ (17a)

1 = β(r + 1− δ) (17b)

(1− π) = −κ(1− βλ)(1− θ)
∞X
j=1

βj
j−1X
k=0

θj−1−kλk (17c)

(1− λ) = cd/s
d (17d)

s = cnd + π(1− κ)sd. (17e)

The steady-state equations are the (i) capital accumulation equation; (ii) Euler equation for non-

durable goods; (iii) Euler equation for durable goods; (iv) law of motion for the intermediate

consumption stock and (v) law of motion for final consumption services. Clearly, application of our

consistent calibration principle to the steady-state version of (15) does not call for any change in θ

across frequencies nor are we aware of any empirical evidence suggesting that θ should vary across

frequencies. Treating θ as invariant across frequencies, it then follows that equations (17a) through

(17e) produces a system of five equations and five unknowns. Solving these jointly with an analog

system of steady-state equations in t-time produces

γ∗ = (
βn

1 + β(n− 1) ,
δ

n
, θ, κ∗, 1− (1− λ)

n
,
π(1− κ)

n(1− κ∗)
) (18)

where κ∗ is found by substituting the elements of γ∗ into a high-frequency version of (17c) and

numerically solving the resulting expression. The results of this exercise are shown in the third row

of table 3. Notice that the differences between standard and consistent high-frequency calibration

of κ∗ and π∗ are nontrivial.

To examine the annual and weekly predictions for the substitutability and complementarity of

consumption, we plot in figure 2 the distributed-lag coefficients of final consumption services (i.e.,

the aj ’s from equation 16). Recall that positive values for the aj ’s are indicative of the durability of

consumption services, while negative aj ’s indicate a dominance of habit persistence and the com-

plementarity of consumption services. The key result in figure 2 is that, starting from an annual
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model that exhibits global habit persistence, our consistent high-frequency calibration technique

generates a weekly model that displays local substitutability with long-run habit persistence (while

guaranteeing that all steady-state variables are consistently aggregated over time and across fre-

quencies). The dominance of habit persistence effects at quarterly and annual frequencies has been

documented by (Ferson and Constantinides (1991)), while the existence of local substitutability at

higher frequencies has been advocated theoretically by Hindy and Huang (1992) and documented

empirically by (Gallant and Tauchen (1989); Dunn and Singleton (1986)). Furthermore, Heaton

(1995) has shown that the existence of local substitutability with long-run habit persistence can

improve the fit of models of that rely on either pure substitutability or pure habit persistence.

Lastly, note that the standard high-frequency calibration approach also generates local substi-

tutability, but it is implausibly strong with substitution effects dominating habit effects even as

far out as 52 weeks. This appears to be inconsistent with the higher-frequency evidence on con-

sumption substitutability and habit formation. For example, using simulated method of moments,

Heaton (1995) estimates that substitutability dominates until somewhere between 12 and 19 weeks

when complementarity takes over, which is in agreement with our consistent calibration results.

5 Conclusions

We have outlined a new consistent approach for calibrating high-frequency economic models where

agents are allowed to make decisions on a more frequent basis than the data are sampled. This

approach has the advantage that it adheres to consistent aggregation of steady-state stock and

flow variables across time and is sufficiently flexible to incorporate any relevant empirical evidence

on high-frequency parameters. We then show how our high-frequency calibration approach can

improve the fit of a standard RBC model by generating additional volatility in hours worked

and improve the fit of a standard consumption-based asset pricing model by allowing for local

substitutability and long-run habit persistence in consumption.
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6 Appendix

In this appendix, we provide additional details on the derivation of the consistent, high-frequency

relations for our RBC example. Under our consistent high-frequency calibration approach, we

begin by imposing the steady-state constraints F = nF∗ and S = S∗ on the steady-state relations

for the RBC economy. This produces the following steady-state equations in τ -time

β = eµ(1 + 1.5ψn2q2∗)(1 + nαY∗/K∗ − δ + 0.5ψn2q2∗(nq∗ + 1.5(1− δ)))−1 (19)

w = φlη−1∗ C∗/N∗

Y∗ = C∗ +K∗(δ − 1 + eµ)(1 + 0.5ψn2q2∗)/n

nq∗ = eµ − (1− δ)

Y∗ = L1−α∗ Kα
∗

w = (1− α)Y∗/L∗.

The corresponding steady-state equations in t-time are

β∗ = eµ∗(1 + 1.5ψ∗q
2
∗)(1 + α∗Y∗/K∗ − δ∗ + 0.5ψ∗q

2
∗(q∗ + 1.5(1− δ∗))−1 (20)

w∗ = φ∗l
η∗−1∗ C∗/N∗

Y∗ = C∗ +K∗(δ∗ − 1 + eµ∗)(1 + 0.5ψ∗q
2
∗)

q∗ = eµ∗ − (1− δ∗)

Y∗ = L1−α∗∗ Kα∗∗

w∗ = (1− α∗)Y∗/L∗.
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We then solve (19) and (20) jointly for γ∗ in terms of γ, n and l, which generates the following

equations that are reported in the text:

β∗ = βneµ/n
³
eµ + β(eµ/nn− eµ)

´−1
δ∗ = (δ/n) + (1− eµ/n) + (1/n)(eµ − 1)
α∗ = α

η∗ = η + log(φ/φ∗)/ log(l)

ψ∗ = ψn2

µ∗ = µ/n.
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Figure 1. Real Business Cycle Dynamics
Normalized Responses to a One-Time Permanent Productivity Shock
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Figure 2. Final Consumption Services Dynamics
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