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Abstract

This paper analyzes a dynamic model in which physical capital can be

accumulated or depleted, and labour supply is endogenous. The distri-

bution of income is then endogenously determined by both technological

parameters of production, and the distribution of agents’ discount para-

meters. Degenerate wealth distributions, in which only the most patient

agents have any wealth, are avoided by having a fraction of the agents die

each period, and bequeath their wealth to descendants with independently

random discount parameters. On average, more patient agents will have

higher wealths and incomes, but in the short run agents’ stocks of wealth

depend on their inherited wealth. If a patient individual lives long enough,

she will retire and live on only investment income, while if an impatient

individual lives long enough, he will deplete all his wealth and live on

only labour earnings. The effects of a general increase in patience are an

increase in the wage rate, a lowering of the return on capital, and general

increases in wealth, income, and utility. Possibilities for engineering such

an increase, by promoting “artificial patience”, could include favourable

taxation of investment income, forced savings such as payroll-tax financed

pension plans, or public subsidies for education and health.
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1 Introduction

Explanations of individuals’ high or low wealths and incomes often focus on
idiosyncratic traits or events: He has a tremendous talent for playing basketball,
he is a career minor-leaguer, she had the look, voice and songs that millions of
people instantly adored, she pays her dues 200 nights a year singing in bars, he
lost his life savings in the Bre-X fiasco, she was abandoned by the father of her
children, he won the lottery, she is the daughter of a billionaire, and so on. Less
often, we hear explanations that involve economic decisions on the part of the
individuals: She went to medical school, he got a Ph. D., she built her small
business into a large one, he mismanaged his small business into bankruptcy,
she saved for her retirement, he relied on his Social Security pension.

The economist has to explain income and wealth distributions in economic
terms, and hope or assume that the idiosyncratic effects will be negligible in the
aggregate. We believe that the non-idiosyncratic variables determining wealth
include investment behaviour of all kinds, and not much else. We include in-
herited wealth as a non-idiosyncratic effect, since it is the legator’s investment
behaviour that determines the size of the bequest, and hence the wealth of the
legatee and the distribution of wealth after the legator’s death.

The economic literature on the measurement of wealth or income distribu-
tions is vast; but there have been very few attempts to build models in which
these distributions are endogenously determined, by preferences and technolo-
gies. It is an old idea that an individual’s wealth depends significantly on her
willingness to invest, or implicitly on the discount the agent applies to future
utilities; see Rae [5]. A formal model with this feature appears in Epstein and
Hynes [3]. In the model, n infinitely-lived agents have heterogeneous discount
parameters β1 < β2 < . . . < βn < 1, and opportunities to accumulate or de-
plete their capital stocks according to kt+1 = (1 − δ + r)kt − ct. An individual
with discount parameter βi chooses to accumulate (kt+1 > kt) if and only if
βi(1 − δ + r) > 1, so in a steady state we must have ki = 0 for i < n, and
βn(1 − δ + r) = 1. The wealth distribution is degenerate, with only the most
patient agent owning any wealth.

The recursive preferences in Lucas and Stokey [4] avoid this degeneracy prob-
lem, with the assumption that agents valuing consumption streams according
to

V (c0, c1, . . .) = W (u(c0), V (c1, c2, . . .))

satisfy “increasing impatience”, in whichW22 < 0. As a special case of recursive
preferences, we could have W (u, V ) = u+βV , leading to the discounted utility
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preference

V (c0, c1, . . .) =
∞∑

j=0

βju(cj);

so the partial W2 (= β, a constant, in the discounted utility case) is a local
or conditional measure of the agent’s patience. If W22 < 0, then agents with
identical preferences, but different initial capital stocks, will at first behave
heterogeneously. The poorer agents will act as if they had higher discount para-
meters, and will accumulate; and the wealthier agents will behave like impatient
agents, with βi(1 − δ + r) < 1, and deplete their capital stocks. In a steady
state, the wealth distribution will be concentrated at a point.

Of the two models, we believe that the first has the less accurate prediction
for aggregate wealth distributions, while the second has the less realistic impli-
cations for individual behaviour. Specifically, there is a significant fraction of
the population having positive amounts of wealth, and not all of these people are
especially patient accumulators; and there seems to be no tendency for people
who have accumulated wealth to accumulate less as they grow wealthier.

In our model we assume that (given a constant interest rate) people can
be classified from birth as “accumulators” or “decumulators”, and that what
prevents the accumulators from accumulating indefinitely is their finite lifespan
(and not our finite limit on this amount, which we impose for purely technical
reasons). A nondegenerate stationary wealth distribution arises from the even-
tual deaths of the accumulators, and their replacement by descendants who are
on average not as patient.

We believe that we can explain any wealth distribution or labour income dis-

tribution, just by adjusting the exogenous distribution of individuals’ patience

parameters. Our computations have shown that we can also fit the outcomes of

the model to reasonable-looking values for wages and rental rates. With more

difficulty we can approximate joint distributions of wealth-income pairs, for our

individuals fall into only four main categories—“retired” or not, and accumu-

lating or decumulating—and the “retired” decumulators are bound to be quite

rare in any equilibrium. When age is taken into account, the model has very

specific predictions for individuals’ behaviour, and therefore cannot be made to

fit arbitrary joint distributions of wealth, labour income, and age.

In the remainder of the paper, we lay out the structure of the model in section

2, derive some aspects of individuals’ behaviour in section 3, and describe the

equilibria that occur in the model, especially its steady states, in section 4. We

develop a parametric example of the economy in section 5, and describe the

computational methods we use in section 6. The general result of the paper,

that general increases in patience cause general increases in wealth, income, and

utility, is not a theorem of the model; but it is well-substantiated by computation

of equilibria as discussed in section 7. Section 8 concludes, with the idea of

artificial patience, meaning the enactment of policies that make agents behave

as if they were generally more patient, and so generate the increases described
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in section 7. Appendices I and II contain, respectively, proofs of the theoretical

results and a summary of the computational results.

2 Assumptions of the model

2.1 Individuals

Time is discrete and denoted by t = 0,1, ...,∞. The economy consists of indi-

viduals with preferences defined over random streams of consumption ct ≥ 0

and leisure lt ≥ 0 that are represented by a discounted expected utility function

Ut = Et



∞∑
j=0

βju(ct+j, �t+j)


 ,

or equivalently by the recursive specification

Ut = u(ct, �t) + β Et [Ut+1] .

The real—valued function u is strictly concave and strictly increasing in each ar-
gument. The discount factor, or patience parameter β varies across individuals,
but is fixed through time for a given individual. Individuals are subject to a con-
stant probability of death 0 < d < 1 in each period. Upon death, an individual
is replaced by a descendant that inherits the family fortune, but not necessarily
the family preferences. Specifically, we assume that each descendant is endowed
with a new patience parameter that is drawn from a fixed distribution function
G(β).

Consumption is bought with labour income and the proceeds of capital
rental, or interest on savings. Physical capital kt is accumulated or depleted
according to

kt+1 = (1− δ)kt + yt − ct,

in which
yt = rtkt + wtnt

is the agent’s total income, from the proceeds of capital rentals and from labour
income. The rental rate rt and the wage rate wt are expressed in units of the
consumption good, and δ is the rate of depreciation. Because of some (for
us) insurmountable technical difficulties, we assume that individuals cannot
accumulate physical capital beyond some finite bound K̄ > 0. Labour supply
and leisure are the only uses for time in this model, so we restrict these amounts
by

nt + �t = 1.
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2.2 Economy-wide variables

Throughout this paper we assume that there is no aggregate uncertainty. Al-
though there is some randomness in the future, from the agents’ point of view,
we assume that in the aggregate, exactly the proportion d of the agents will
die at the end of period t. Moreover, we assume that these fractions of deaths
hold uniformly across the set of possible ordered pairs (k, β). In later analysis,
it helps to assume that these quantities are bounded from below by zero, and
from above by K̄ and B̄ respectively; in particular we need B̄(1− δ) < 1 in the
section to follow.

The economy is completely characterized by the distribution of these para-
meters across individuals; so let Φ denote this distribution or measure, on the
set of individuals’ possible characteristics

C = [0, K̄]× [0, B̄].

We can normalize Φ so that Φ(C) = 1; then, for intervals [k1, k2] and [β1, β2],
Φ{[k1, k2]× [β1, β2]} will be the proportion of individuals with physical capital
stocks between k1 and k2, and patience parameters between β1 and β2. Alter-
natively, this number is the probability that a randomly chosen individual will
have a parameter pair (k,β) lying in this rectangle.

We assume that there is an economy-wide production function F : R2
+ →

R+, defined on aggregate physical capital and aggregate labour. For simplicity
we assume that F is twice continuously differentiable and strictly increasing on
R
2
+, is concave, and exhibits constant returns to scale.
Given a distribution Φt of agents’ characteristics at time t, the aggregate

amount of physical capital is easy to define, by

Kt =

∫
C

kdΦt(k, β).

The aggregate amount of labour supplied is more problematic, since from an
agent’s point of view, labour supply depends on the endogenous wage rate wt
and rental rate rt, as well as on the agent’s state variables k and β. However,
supposing that individuals’ labour supplies are a well-defined function, say n∗,
of k and β, an aggregate measure Nt is well-defined, by

Nt =

∫
C

n∗(k, β)dΦt(k,β).

We assume that the labour and capital inputs are used by a price-taking
profit maximizing firm, or equivalently by a sector of competitive firms, each
with the same linearly homogeneous production function F . In either case
aggregate output is

Yt = f(Kt,Nt),

5



the competitive rental rate and wage rate are

rt = fK(Kt,Nt), wt = fN (Kt, Nt),

and Euler’s theorem then gives

Yt = rtKt + wtNt.

3 Individual agents’ behaviour

From the point of view of an individual agent, present and future factor prices
will form a deterministic sequence. Therefore we begin by studying the behav-
iour of an agent with patience parameter β, endowed with capital k, and given
deterministic sequences w and r of factor prices. Given such a pair of sequences

w = (w0,w1, . . . , wt, . . .) r = (r0, r1, . . . , rt, . . .),

we use the notation

tw = (wt, wt+1, . . .), tr = (rt, rt+1, . . .).

We seek a value function of these variables and streams of ws and rs, say V ,
which must satisfy

V (k,β,w, r) = max u(c, �) + β(1− d)V (k′, β, 1w, 1r)

subject to

k′ = (1− δ)k + r0k + w0n− c ≤ K̄, n+ � ≤ 1,

and nonnegativity. Hence we can rewrite the recursive equation as

T (V )(k,β,w, r) = max
n,c

[u(c, 1− n)

+β(1− d)V ((1− δ)k + r0k +w0n− c, β, 1w, 1r)] ,

where the optimization is now subject only to nonnegativity, n + � ≤ 1, and
(1 − δ)k + r0k + w0n − c ≤ K̄. Standard arguments show that the operator
T : X → X is contractive, with contraction parameter β(1 − d) < 1; here
X is the set of all real-valued continuous functions on C ×R∞+ ×R∞+ , and we
endowX with the uniform (sup-norm) topology. The set X is a complete metric
space, so there is a unique fixed point V ∗ for T . The basic properties of V ∗ are
summarized in

Proposition 1: V ∗ is strictly increasing and strictly concave in k (with β, w,
and r held fixed).
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Moreover, agents’ behaviour given deterministic w and r can be found by
maximizing V ∗, as follows.

Proposition 2: The function of n and c

u(c,1− n)

+β(1− d)V ∗((1− δ)k + r0k +w0n− c, β, 1w, 1r)

is strictly concave. Consequently, the maximizers n∗ and c∗ are unique.
These maximizing values, and hence

k∗ = (1− δ)k + r0k +w0n
∗

− c∗ and �∗ = 1− n∗,

can therefore be written as continuous functions of (w, r, k, β).

We summarize some important properties of individuals’ behaviour in

Proposition 3: The function V ∗ is differentiable with respect to k. The func-
tion k∗(w, r, k, β) is (weakly) increasing in k and in β.

The following proposition is familiar:

Proposition 4: Fix a pair of factor prices w and r, and assume that wt = w

and rt = r for all t. Then

k∗(k,β, w, r) ≥ k

if and only if

β ≥
1

(1− δ + r)(1− d)
= β∗.

4 Equilibrium analysis

4.1 Existence of steady states

We now restrict attention to constant sequences of factor prices (w, r), which
we write into the value function as scalars. That is, we write

V ∗(k, β, w, r) = max
n,c

u(c, 1− n)

+β(1− d)V ∗((1− δ)k + rk + wn− c, β, w, r)

with the understanding that factor prices are constant through time at w and
r. We also view the policy functions n∗ and c∗, and hence k∗, as continuous
functions of the four scalar variables k, β, w, and r.
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Our immediate goal is to analyze the sequence of distributions on C, the
space of agents’ characteristics, that results from agents’ behaviour and our
assumptions on bequests, without worrying about whether or not the aggregate
behaviour is consistent with the marginal product equations

r = fK(Kt, Nt), w = fN (Kt,Nt).

For a fixed pair of factor prices, equilibrium or otherwise, and an initial
distribution Φ0 on C, we generate the sequence of distributions {Φt} that would
follow from our agents’ behaviour. That is, for t ≥ 0, we define the distribution
Φt+1 on C by specifying it on products of intervals, say

Ik × Iβ = [k1, k2]× [β1, β2],

and then extending it to the Borel subsets of C. On the intervals, we have

Φt+1{Ik × Iβ}

= (1− d)Φt { (k,β)|k
∗(k, β,w, r) ∈ Ik, β ∈ Iβ}

+dΦt { (k,β)| k
∗(k,β,w, r) ∈ Ik} ×G(Iβ). (1)

The first term in the sum is the fraction of people who had patience parameters
in [β1, β2], did not die, and found it optimal to accumulate a capital stock in
the range [k1, k2]. In the second term we count the people who died and left
behind capital in the range [k1, k2]. Of these peoples’ descendants, the fraction
G([β1, β2]) will have βs in the required ranges.

In what follows, we assume that the initial marginal distribution of β is just
the distribution G; therefore, the marginal distribution of β will continue to be
G in all future time periods. According to Proposition 4, if factor prices are
fixed, then in order to get nondegenerate equilibrium wealth distributions, we
need to assume that the patience distribution G is not concentrated exclusively
on the “accumulation range” [β∗, 1), or on the “decumulation range” [0, β∗].
For example:

Assumption N1: The distribution G satisfies

G([0, β∗)) > 0 and G((β∗, B̄]) > 0.

Theorem 1: Fix w and r, and assume Assumption N1. Then there is a unique
distribution Φ

∗
on C such that for any initial distribution Φ0 on C, the

sequence Φt (1) converges weakly to Φ
∗
.

Up to now we have held factor prices fixed, and have not made any require-
ment that the resulting steady state factor supplies

K∗(w, r) =

∫
C

kΦ
∗
(dk, dβ|w, r) =

∫
C

k∗(k, β, w, r)Φ
∗
(dk, dβ|w, r)
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and

N∗(w, r) =

∫
C

n∗(k,β,w, r)Φ
∗
(dk, dβ|w, r)

actually solve

FK(K∗(w, r),N∗(w, r)) = r, FN (K∗(w, r),N∗(w, r)) = w.

However, these factor supplies are bounded, by

0 ≤ K∗(w, r) ≤

∫
C

K̄dΦt(k,β) = K̄, 0 ≤ N∗(w, r) ≤ 1 = N̄,

and marginal products are assumed to be continuous functions of K and N, so
we can restrict w and r by

0 ≤ r ≤ max fK(K,N) = R̄, 0 ≤ w ≤ max fN (K,N) = W̄ ,

where in both maximizations (K,N) is restricted to the compact set [0, K̄] ×
[0, N̄ ]. Then we can specify a function

p : [0, W̄ ]× [0, R̄]→ [0, W̄ ]× [0, R̄]

by setting

p(w, r) = (fK(K∗(w, r), N∗(w, r)), fN (K
∗(w, r), N∗(w, r))) ,

and hope to find equilibria as fixed points of p. In view of Brouwer’s theorem,
and the assumed continuity of fK and fN , it is enough to establish that the
functions K∗(w, r) and N∗(w, r) are continuous, in order to prove:

Theorem 2: There exists at least one steady state (w̄, r̄).

4.2 Uniqueness

We intend to study the effects of changing various policy parameters on the
resulting steady state; however, it makes little sense to speak of such causes and
effects unless the equilibria are always unique. Moreover, for computational
reasons it is useful to know that a unique steady state always exists. However,
we are able to rule out multiple equilbria only by invoking some behavioural
assumptions, rather than imposing conditions directly on the data of the econ-
omy.

In a steady state we have

K∗(w, r) =

∫
C

k∗(k,β, w, r)Φ∗(dk, dβ|w, r)

=

∫
C

[(1− δ + r)k + wn∗(k,β,w, r) − c∗(k, β, w, r)]Φ∗(dk, dβ|w, r)
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= (1− δ + r)K∗(w, r) +wN∗(w, r) −C∗(w, r),

with

C∗(w, r) =

∫
C

c∗(k,β, w, r)Φ∗(dk, dβ|w, r).

It follows that

C∗(w, r) + δK∗(w, r) = rK∗(w, r) +wN∗(w, r) = Y ∗(w, r),

say, which is the steady state amount of output that individuals will buy, if
possible.

We would like to rule out the possibility of two different equilibria, say
(w, r) and (w′, r′); so suppose temporarily that these quantities exist. Because
of the constant returns to scale assumption, any equilibrium pair of factor prices
(w, r) must allow the competitive sector to produce at the normalized unit cost
of output. Thus if

c∗(w, r, Y ) = min[wN + rK] subject to F (K,N) = Y,

then constant returns to scale in production implies that

c∗(w, r, Y ) = Y c∗(w, r, 1) = Y c(w, r);

and any pair of equilibria (w, r) and (w′, r′) must satisfy c(w, r) = c(w′, r′) = 1.
Since c is increasing in both arguments, we must have (without loss of generality)

r′ > r and w′ < w.

Now consider the effects of increasing the rental rate from r to r′ and then
decreasing the wage from w to w′. In production, the capital-labour ratio of the
factor demands will necessarily change according to

K′

N ′
<
K

N
.

But from the individuals’ point of view, the resulting change in factor supplies
is less predictable. If substitution effects dominated income effects, then we
could conclude that K∗(w′, r′) > K∗(w, r) and N∗(w′, r′) < N∗(w, r); and then
the purported pair of equilibria could not exist, and we would have a proof
of uniqueness of steady states. But none of the required comparative statics
derivatives is signable (see [1]); so we merely assume enough here to guarantee
the result we want, and state the resulting uniqueness theorem:

Assumption N2: Steady state factor supplies satisfy:

If
w′

r′
<
w

r
, then

K∗(w′, r′)

N∗(w′, r′)
≤
K∗(w, r)

N∗(w, r)
.
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Theorem 3: Under assumption N2, there is a unique steady state factor price
pair (w̄, r̄). There is a unique distribution Φ∗ on C, such that for any
initial distribution Φ0 on C, the sequence (1) converges weakly to Φ∗.

In numerical examples and simulations, we can verify assumption N2 only
at finitely many pairs of factor prices; but it is reassuring that with natural
specifications for utilities and production functions, no counterexamples to the
assumption have yet been found. However, with some effort and ingenuity one
could construct distinct pairs of equilibrium factor prices, or even a continuum
of such pairs. All that is required is a utility function and a pair of factor
price pairs (w, r) and (w′, r′) violating assumption N2; for then one can build a
production function whose unit isocost passes through both factor price pairs,
and whose partial derivatives at those points are

cw(w, r) =N∗(w, r) cr(w, r) = K∗(w, r)

c
w
(w′, r′) =N∗(w′, r′) c

r
(w′, r′) = K∗(w′, r′).

4.3 Dynamic equilibria

Our primary goal is to explain income distribution, rather than its behaviour
over time, as a function of human preferences, technology, and policy para-
meters. Therefore our main notion of equilibrium, and the endogenous object
whose sensitivities we will try to estimate, is the unique steady state distribu-
tion of characteristics and incomes. It seems only slightly hypocritical to argue
that dynamics matter, in the sense that intertemporal preference parameters
determine the final outcome of interest, but dynamics don’t matter, in the sense
that transitions to steady states are going to be ignored.

Our dynamic equilibrium notion takes as given an initial distribution Φ0

on C, and then requires an entire deterministic sequence of (w, r) pairs, and
a sequence of distributions Φ1, Φ2, . . ., with the property that: If agents are
distributed according to Φt, and optimize with respect to future ws and rs, then
the distribution Φt+1 will follow, and the ws, rs, and aggregate inputs will be
consistent with each other.

Now suppose that in addition to a pair of sequences w and r, we are also
given a sequence of distributions

Φ = (Φ0,Φ1, . . . ,Φt, . . .).

Stack these objects into a sequence of triples

S = (S0, S1, . . . , St, . . .),

where
St = (wt, rt,Φt),
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and write tΦ = (Φt,Φt+1, . . .). We can now seek equilibria as fixed points, of
a function to be specified shortly, in the set of all possible sequences S. The
function must give time t aggregate capital stocks in terms of the distribution Φt,
and aggregate labour supplies as functions of Φt and optimizing behaviour with
respect to ws and rs; it also has to specify next-period distributions in terms
of current distributions, optimizing behaviour, and random deaths. Specifically,
we map a sequence S into another sequence

g(S) = S′ = {(w′

t
, r′
t
,Φ′

t
)| t ≥ 0}

by letting

Kt =

∫
C

k dΦt(k,β), Nt =

∫
C

n∗(tw,t r, k, β) dΦt(k, β)

and then
r′
t
= fK(Kt,Nt) w′

t
= fN (Kt, Nt).

We define Φ′

0 = Φ0; but then we need to introduce some notation to define Φ′

t+1

from Φt and agents’ behaviour. Let

k∗(k,β, tw, tr) = (1− δ)k + rtk + wtn
∗(tw,t r, k, β)− c∗(k,β, tw, tr),

the capital stock accumulated by an agent with characteristics (k, β), who faces
current and future prices tw and tr. To define a distribution on C it is enough
to specify it on rectangles, or sets of the form

Ik × Iβ = [k1, k2]× [β1, β2].

The distribution we need is

Φ′

t+1{[k1, k2]× [β1, β2]}

= (1− d)Φt { (k,β)| k
∗(k,β, tw, tr) ∈ [k1, k2], β ∈ [β1, β2]}

+dΦt { (k, β)| k
∗(k,β, tw, tr) ∈ [k1, k2]} ×G([β1, β2]).

We can now state an equilibrium existence theorem. In what follows, the
notation D(C) refers to the set of all probability measures on the Borel sets in
the characteristics space C, and

S = {S|St = (wt, rt,Φt)} ,

the set of all sequences of the type discussed above. Since aggregate capital and
efficiency units of labour are bounded by

0 ≤ Kt ≤

∫
C

K̄dΦt(k,β) = K̄, 0 ≤Nt ≤ 1 = N̄,
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and marginal products are assumed to be continuous functions of K and N , we
can restrict wt and rt to lie in [0, W̄ ]× [0, R̄], as in the last two subsections.

A topological vector space is a vector space X for which the operations
(x, y) → x+ y and (α, x)→ αx are continuous mappings, say a : X ×X → X

and m : R ×X → X. It is locally convex if for every element x of every open
set O, there is a convex open set U with x ∈ U ⊂ O.

Theorem 4: Endow C with its usual Euclidean topology, D(C) with the closed
convergence topology, and S with the product topology. Then g : S → S

is continuous. The set S is a compact convex subset of a locally convex
topological vector space, so the Fan-Glicksberg Theorem applies and g has
a fixed point.

A fixed point for g is an entire sequence of triples (wt, rt,Φt) that is dynami-
cally consistent with perfect foresight optimizing behaviour and market clearing.
An example of such an equilibrium would be a constant sequence, beginning in
one of the steady states discussed already, and staying there. But if the initial
state S0 is not a steady state, then we have no guarantee that the sequence of
states converges to anything in particular. All we can offer is computational
evidence for the following speculation:

Conjecture: Assume assumption N2, and let Φ0 ∈ D(C). Then there is a
unique sequence S for which g(S) = S and S0 = (w0, r0,Φ0), for some
factor price pair (w0, r0). This dynamic equilibrium sequence satisfies
wt → w̄ and rt → r̄, for the unique steady state factor price pair (w̄, r̄); and
Φt converges weakly to Φ∗, the steady state characteristics distribution.

In various simulations we explore the possibilities of changing the equilibrium
distribution Φ∗ by manipulating some policy parameters that affect the capital
and labour markets. In each case we assume that the economy is initially in
a steady state, followed by a once-and-for all policy change, after which the
economy approaches a new steady state along an equilibrium path of the type
described in the Conjecture.

5 A Parametric Example

We now specify an atemporal utility function, a production function, and a
class of distributions of discount factors that will allow numerical computation
of equilibria and eventually, we hope, shed some light on the likely effects of
some policy changes that are the subject of the last section of the paper. We
parameterize the atemporal utility function first, via

u(c, �) = cα�γ ,
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with α > 0, γ > 0, and α+γ < 1; and before any analysis of production or
patience distributions, we work out some of the details of optimal behaviour
with this utility function, a fixed discount factor β, and fixed factor prices w
and r.

We can maximize
∞∑

t=0

βtu(ct, �t)

subject to
kt+1 = Rkt +wnt − ct, (2)

and
kt ≥ 0, 0 ≤ nt ≤ T, and �t + nt = T for all t, (3)

by separating the temporal from the atemporal, as follows. First, we suppose
that at some time the agent has some fixed amount Y to spend optimally on
consumption and leisure. The indirect utility calculation is

max cα�γ subject to c+w� = Y, c ≥ 0, 0 ≤ � ≤ T,

leading to the choices

� =
γY

w(α+ γ)
c = Y −w� =

αY

α+ γ
,

provided that this choice of � is feasible. If γY
w(α+γ) > T , then we get

� = T c = Y −wT.

The indirect utility function is thus

U(Y ) =

{
Cw

−γ
Y
α+γ

if Y ≤
wT (α+γ)

γ

(Y − wT )αTγ if Y ≥
wT (α+γ)

γ

, (4)

with

C =
ααγγ

(α+ γ)α+γ
.

In (4), the two functions of Y are both increasing and concave, and agree at

the point Y =
wT (α+γ)

γ
. Moreover, the first function lies above the second, for

it is the value of the maximization

max cα�γ subject to c+ w� = Y,

which is less constrained than

max cα�γ subject to c+ w� = Y, 0 ≤ � ≤ T.
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Consequently, the two functions of Y have the same derivative at Y =
wT (α+γ)

γ
,

and U is therefore differentiable.
Our agent is implicitly endowed with the amount wT of labour income in

each period, and has opportunities to accumulate or deplete a stock of capi-
tal. But within each time period, the agents optimization problem is already
solved, once we know how much Y is in the above problem. Thus the original
maximization can be rewritten as

max
∞∑

t=0

βtU(Yt) (5)

subject to Yt = wT − st ≥ 0

kt+1 = Rkt + st

kt ≥ 0, k0 given .

Here st is the amount of savings (positive or negative) that is carried over into
the next period’s capital stock. The problem is now relatively standard, and
has interior solutions characterized by

U ′(Yt) = βRU ′(Yt+1),

or

Yt+1 =

{
Yt(Rβ)

1

1−α−γ

wT + (Yt −wT )(Rβ)
1

1−α

=

{
YtG1 if Yt, Yt+1 ≤

wT (α+γ)
γ

= Y ∗

wT + (Yt −wT )G2 if Yt, Yt+1 ≥ Y ∗

and a more complicated formula, if Yt and Yt+1 are on opposite sides of Y ∗.
The condition

βRα =

(
G2

R

)1−α

< 1,

or equivalently

G2 < R,

is necessary for the maximization problem to have a solution.

We summarize the relevant properties of optimal behaviour, and hence com-

putational aids, as follows:

Proposition 5C: If Rβ = 1, then optimal behaviour is constant, and consists
of setting

st = s0 = (1−R)k0, Yt = Y0 = wT + (R− 1)k0,

and getting

V (k0) =
1

1− β

{
Cw

−γ (wT + (1−R)k0)
α+γ k0 ≤

wTα
γ(R−1)

((R− 1)k0)
αTγ k0 ≥

wTα
γ(R−1)

.
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If Rβ > 1, then it is optimal to accumulate. We distinguish between “accu-
mulating retirees” and “accumulating workers” by the amount of capital they
begin with, as follows:

Proposition 5AR: If

k0 ≥ k∗
0
=

wTRα

(R−G2)γ
,

then the individual sets

�t = T, ct = Gt
2
(1−

G2

R
)k0, kt = Gt

2
k0,

and gets
V (k0) = DTγkα

0
,

with

D = (1−
G2

R
)α−1.

Proposition 5AW: Define

k
∗

−N
=

wT

RN−1

[(
GN

1
−RN

G1 −R

)
(β + γ)

γGN
1

+
β

(R−G2)γ
−

(
1−RN

1−R

)]
,

or

k∗
−N

=
wT

(N +1)RN

[
Rβ

(R−G2)γ

+
N(β + γ)

γ
−R

(
1−RN

1−R

)]

in the case R = G1. If k0 = k∗
−N

≥ 0, then it is optimal to set

Yt = G−N+t
1 Y ∗,

and

kt = k∗
−N+t for 0 ≤ t ≤ N.

In general we have

k∗0 > k∗
−1 > . . . > k∗

−N̄
> 0 > k∗

−(N̄+1)

for some N̄ . If

k∗
−N

< k0 < k∗
−N+1

then in an optimal path

k∗
−N+t < kt < k∗

−N+t+1

and

Yt = Gt

1Y0 for 0 ≤ t < N.
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If Rβ < 1, then it is optimal to decumulate; and again there is a qualitative

difference between those with initial capital above some critical point, and those

with less. That is, those with enough initial capital will not work until they are

poor enough, and then will work longer hours until they have depleted all their

capital.

Proposition 5D: If k0 = 0, then the individual sets

Yt = wT, �t =
γT

α+ γ
, ct =

αwT

α+ γ
, kt = 0

for all t, and gets

V (0) =
1

1− β
CTα+γwα.

Now define

k∗
N

=
wT (1−G1)

G1

[
1

(1− c)(1− d)

+
cN

(d− c)(1− d)
−

dN

(d− c)(1− c)

]
,

where

c =
1

G1

, d =
1

R
.

Assume that N is small enough so that

GN
1
≥

γ

α+ γ
.

If
k0 = k∗N ,

then in an optimal path

kt = k∗N−t, Yt = wTG−N+t
1 ,

ct =
αwTG−N+t

1

α+ γ
,

and

�t =
γTG−N+t

1

α+ γ
,

for 0 ≤ t ≤ N . For t ≥ N , kt = 0 is optimal, and the individual reverts to

the behaviour already described. In general

0 = k∗0 < k∗1 < . . . < k∗
N̄

for some N̄, defined to be the largest N for which GN
1 ≥

γ

α+γ
. If k0 > k∗

N̄
,

then optimal behaviour consists of setting �t = T for 0 ≤ t ≤ T for some

T , setting

k∗
N̄−j

≤ kT+j ≤ k∗
N̄−j+1

for 1 ≤ j ≤ N̄ , and setting kt = 0 for t > T + N̄ .

17



6 Computation

The preceding results allow for exact calculation of the value function at cer-
tain points, namely the amounts k∗

−N and k∗N . For this reason, the iterative
algorithm

V K+1(k, β) = max
n,c

u(c, T − n) + β(1− d)V K(Rk + wn− c, β)

can be started with an especially good trial guess V 0, consisting of linear inter-
polations between the points where V is known exactly. In calculating equilibria
we take as given a factor price pair (w, r) and find the corresponding value func-
tion and policy functions. Only then do we postulate a distribution G for the
patience parameter. For the fixed factor prices we simply iterate the mapping
(1), starting with an initial conditional distribution of capital that is increasing
in β. When the iterates of the mapping seem to have converged, we then finally
calculate a production function whose partials match the given factor prices at
the input values K∗(w, r) and N∗(w, r). Thus calculating an initial equilibrium
does not entail searching for a fixed point of the mapping p; we can set w and
r to plausible values in advance, and fit a production function to those values
last of all. By adjusting the units of measurement, we can even ensure that in
an initial equilibrium, N∗(w, r) also has a plausible value; but because K∗(w, r)
has the same units as output, the capital-output ratio K∗/F (K∗, N∗) will be
meaningful, and not independently variable in the same sense.

In this paper, the comparisons we would like to make all involve shifting
the distribution G to a distribution G′ that is generally more patient, in the
sense that G′ � G. This time we have to repeat the exercise of calculating an
initial equilibrium, all the way back to the calculation of the value functions,
each time we postulate a new factor price pair and check for the closeness of
p(w, r) to (w, r). Various pieces of information enable a reasonably efficient
search procedure.

When we postulate a new factor price pair, close to a previous one, we can
begin our iterations toward the value function V ∗(k,β,w′, r′) by

V 0(k,β,w′, r′)

= V 0(k,β,w′, r′) + V ∗(k, β, w, r)− V 0(k,β, w, r).

Here V 0(k,β,w′, r′) is the initial value function that is known at the points
k∗
±N , and interpolated between them; V 0(k,β,w, r) is the same object with the

earlier factor prices; and V ∗(k,β, w, r) is an adequate approximation to the fixed
point of the value function mapping. Thus the previously calculated V ∗ can be
used as a sort of control variate. In early experiments leading toward a new
equilibrium w and r, we can afford to be rather cavalier about the exactitude of
V ∗(k, β, w′, r′); for all we really need to know about the factor prices is whether
w′/r′ is too high or too low, given the new patience distribution.
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Having calculated V ∗(k,β,w′, r′), at least accurately enough to believe that
it will give the right information on w′/r′, we can start our iterations toward a
new Φ∗ by beginning with the conditional distribution of capital implicit in the
most recent Φ∗. Thus

Φ0(ki, βj ,w
′, r′) = G′(βj)Φ∗(ki|βj,w, r)

= G′(βj)Φ∗(ki, βj, w, r)/G(βj),

in a discretized version of these distributions. In the second and later trials to
determine the new equilibrium w and r, we use another control variate approx-
imation; we predict that Φ0 will be wrong in about the same way as it was in
previous trials, and start with

Φ̃0(ki, βj, w
n+1, rn+1) = G′(βj)Φ∗(ki|βj, w

n, rn)

+α[Φ∗(ki, βj,w
n, rn)− Φ0(ki, βj, w

n, rn)]

with the fraction α chosen by trial and error. The results of these computations
are summarized in the second Appendix.

7 Patience and the distribution of wealth

In our model, a more patient individual will save more and work more, for any
given level of capital, than a less patient individual; that is, both k∗(k,β,w, r)
and n∗(k,β, w, r) are weakly increasing in β. If the more patient person is an
accumulator and lives long enough, then in general that person will retire after
accumulating enough wealth, but continue to accumulate; and if the less patient
person is a decumulator and lives long enough, then this person will eventually
have no capital and consume out of only labour earnings. Thus the long-run

value of n∗ is higher for low values of β than it is for high values of β, even
though in the short run the opposite effects occur. Finally, for any given initial
capital stock and age, the more patient person is wealthier.

What is true for individuals is not always true for societies, but in our
parametric model it does seem to follow that more patient societies are wealthier
than less patient societies. Furthermore, the effects of a general increase in
patience are progressive, in the sense that for a given low level of patience, a
person is better off being born into the more patient society than into the less
patient society. The effect is most pronounced for the poorest and least patient
individuals; for a person with no wealth and no inclination to accumulate any
ranks steady state societies according to their wage levels only.

The long-run effect of an increase in patience is especially favourable to
the least patient individuals because of a strange sort of externality. When
patient individuals accumulate more capital, they increase the marginal product
of labour in two ways. First, there is the a direct effect on FN , owing to the
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fact that FNK > 0 for a concave constant returns to scale production function
with two inputs (differentiate the Euler theorem equation with respect to N).
And second, patient individuals who live long enough eventually retire, causing
a reduction in labour supply and another increase in FN , this time owing to
the fact that FNN < 0. Even though more patient individuals work more, for
given levels of capital, simulations suggest that over an average lifetime they
work less.

We summarize the computational results in

Proposition 6: Let G0 and G1 be two probability distributions of discount
factors, with G1 � G0, and let (w1, r1) and (w0, r0) be the corresponding
equilibrium factor price pairs. Then w1 ≥ w0 and r1 ≤ r0. The equilib-
rium marginal distributions of capital, say M1 and M0, satisfy M1 �M0.
The equilibrium distributions of atemporal utility, say U1 and U0, satisfy
U1 � U0. For any fixed β, the distribution of V (k,β, w1, r1) in the G1

equilibrium dominates the distribution of V (k,β,w0, r0) in the G0 equi-
librium.

Note that there is no claim here, even if it is true, that the individuals’ value
functions V (k,β,w, r) have a dominating distribution in the more patient equi-
librium. Such a claim would involve comparisons between utility levels of indi-
viduals with fundamentally different preferences. In general, the value function
is increasing in β; but we cannot attach any positive or normative significance
to this fact.

8 Conclusion

This last result suggests several avenues of further research, all based on the
idea of artificial patience, in which societies enact policies designed to make
individuals behave as if they were more patient than they really are.

For example, a social planner could force individuals to save more than
they would choose, by taxing labour or investment income and investing the
proceeds in the capital market. Such a tax could be made roughly equivalent
to a government pension plan financed by payroll deductions; and the effect
presumably would be to create a somewhat wealthier society, at least with fixed
factor prices. It would not lead to a Pareto improvement, of course, for from
the impatient individuals’ point of view, the government is reducing current
consumption and increasing future consumption, at rates that the individuals
could have chosen if they wished. From the point of view of sufficiently patient

individuals, these investments on their behalf would be perfect substitues for
their own investments, and would just crowd them out with no effect on these
individuals’ welfare. Any positive welfare effect of the policy would have to rely
on a general equlibrium adjustment in factor prices—in this case, in favour of
labour at the expense of capital. However, once the policy had been in effect

20



for a long time, the short-term sacrifices of the impatient dead would allow for
a wealthier society in the long run, with or without fixed factor prices.

As another example, notice that the effect of lowering the death probability
d is exactly the same as the effect of shifting the entire distribution of β upward,
with the resulting effects detailed in the Proposition. We could interpret such a
change as the result of improved health care, medical advances, more stringent
safety regulations, a less belligerent and warlike foreign policy, clearance of
landmines, or a reduction in violent crime rates. In any of these scenarios
there is the potential for a government, hitherto nonexistent in the model, to
encourage or enforce the reduction in d. The required policies might be costly,
but could be financed in the long run by the resulting increase in wealth.

One can also speculate that differential taxation rates on labour and invest-
ment income could be engineered so as to create a more patient, more wealthy
society, at least in the long run. Suppose we calculate an equilibrium in which
all income is taxed at the rate τ , and then change the rates so that capital
rentals and labour income are taxed at the rates τK < τ < τN . The immediate
effect is to change factor prices faced by individuals from w and r to (1− τN )w
and (1 − τK)r so that, among other things, the new value of β∗ will be lower.
There will be some individuals who used to be decumulators, who will become
accumulators; and in general all individuals will act as if they had become more
patient. In the long run there will be more capital and wealth than before, and
the new equilibrium will be dominance comparable to the old, in the senses of
the Proposition.

Further possibilities arise when we allow individuals to invest in human cap-
ital, with or without a market in physical capital. In the case of human capital,
it seems reasonable to have individuals start their lives without any initial be-
quests from immediate ancestors. Also, the effect of human capital should be
to increase an individual’s wage, through an efficiency-unit-of-labour function;
it could also improve an individual’s ability to enjoy leisure. In either case,
the more patient individuals will become wealthier in both physical and human
capital, and general increases in patience, artificial or not, will lead to general
increases in wealth of all forms. In such a model, favourable tax treatment of
capital investment could take the form of public expenditure on education, or
perhaps subsidies for on-the-job training; and “forced saving” could arise from a
policy of mandatory school attendance. One of the two progressive externality
effects would be missing in this scenario, for the accumulation of human capital
would presumably have a negative effect on the marginal product of “unskilled
labour”, supplied by impatient individuals with minimal human capital.

We also think we can explain the simultaneous existence of unemployment
and “skills shortages” in this human capital framework, even if all individuals
are exactly the same except for their discount factors. (Of course, to have un-
employment at all we will have to introduce some form of nonlabour income
into our model). It could happen that despite extremely high wages in some
occupations, the impatient individuals will prefer not to make the required in-
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vestments in human capital. A long-run self-financing dominance improvement
could arise from the right type of artificial patience.

9 Appendix I

Proof of Proposition 1: For easy reference, here is the transformation T

again:
T (V )(k,β,w, r) = max

n,c

[u(c, 1− n)

+β(1− d)V ((1− δ)k + r0k + w0n− c, β, 1w, 1r)

First, look at what the transformation T does to an initial guess V for the value
function. We show that T maps a weakly increasing, weakly concave function
into another function with the same properties. Since the set X ′ of all V s with
these (weak) properties is a closed set in X, it is also a complete metric space;
and since T is contractive on X′, the fixed point for T must lie in X ′. But then,
if we can show that T maps weakly increasing, weakly concave functions into
strictly increasing, strictly concave functions, then it will follow that the fixed
point for T must have these strict properties as well.

It is fairly easy to show that T maps weakly increasing functions into strictly
increasing functions. Therefore, we prove only that T maps strictly increasing,
weakly concave V s into strictly concave T (V )s. The proposition then follows.

So assume that V is strictly increasing and weakly concave, let k1 and k2
be given, and let nj and cj solve the respective maximization problems. (These
solutions must exist because the right side is a continuous function of these
variables, and the constraint set is compact because 0 ≤ c ≤ (1 − δ)k + r0k +
w0n ≤ (1−δ+r0)K̄+w0). Given the convex combination αk1+(1−α)k2 = kα
of capital, it is easy to show that the convex combinations

(nα, cα) = α(n1, c1) + (1− α)(n2, c2)

are feasible in the maximization problem. Also, if we let

k′

j = (1− δ)kj + r0kj + w0nj − cj ,

then the labour-consumption pair nα, cα gives rise to the future capital stock

k′

α = αk′

1
+ (1−α)k′

2
.

Therefore
T (V )(kα, β, w, r)

≥ u(cα,1− nα)

+β(1− d)V ((1− δ)k′

α + r0k
′

α + w0nα − cα, β, 1w, 1r).
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Since u and V are concave, this quantity is

≥ αu(c1,1− n1) + (1− α)u(c2,1− n2)

+β(1− d) [αV ((1− δ)k1 + r0k1 + w0n1 − c1, β, 1w, 1r)

+ (1− α)V ((1− δ)k2 + r0k2 +w0n2 − c2, β, 1w, 1r)]

= αV (k1, β,w, r) + (1− α)V (k2, β,w, r).

So far we have established only that the fixed point V ∗ for T is weakly
concave; now we have to assume that 0 < α < 1 and k1 �= k2, and consider
various cases to show that strict concavity follows. First, if any of n1 �= n2 or
c1 �= c2 is true, then

u(cα, 1− nα) > αu(c1, 1− n1) + (1−α)u(c2,1− n2)

follows from strict concavity of u, the most recent weak inequality is strict,
and we are finished. So suppose that even though k1 �= k2, there are equal
solutions nj and cj to the two maximization problems. If k1 > k2, then n1 = n2
and c1 = c2 cannot both be true; in particular some c′

1
> c1 will increase the

maximand.
Proof of Proposition 2: Strict concavity of

f(n, c) = u(c,1− n)

+β(1− d)V ∗((1− δ)k + r0k +w0n− c, β, 1w, 1r)

is easy to show. The problem of maximizing f always has a solution because
the constraint set is compact. Berge’s theorem (e.g., [4], p. 62) guarantees
continuity of these maximizers as functions of k and the price sequences.
Proof of Proposition 3: Fix any k0 > 0 and let c0 > 0 and n0 maximize
f(n, c). Then

V ∗(k0, β, w, r) = u(c0, 1− n0)

+β(1− d)V ∗((1− δ + r0)k0 +w0n0 − c0, β, 1w, 1r).

Moreover, for k near k0 we have

V ∗(k,β,w, r) ≥W (k)

= u(c0 + k − k0, 1− n0)

+β(1− d)V ∗((1− δ + r0)k0 +w0n0 − c0, β, 1w, 1r),

for W is the value of simply consuming any extra capital at time 0, or decreasing
time 0 consumption if k < k0. Obviously W is a concave function of k, W is
differentiable at k0, and

V ∗(k0, β,w, r) = W (k0).
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Thus V ∗ and W fit the hypotheses of [2] (see [6], p. 85), and V ∗ is differentiable
at k0. It is possible that c0 = 0, in which case a similar W can be constructed,
based on adjusting n instead of c at time 0, and leaving all future behaviour
unchanged.
Proof of Proposition 4: Differentiating with respect to k the identity

V ∗(k, β)

= u(c∗,1− n∗) + β(1− d)V ∗(k∗, β),

and using the first order condition

u1(c
∗,1− n∗) = β(1− d)(1− δ + r)V ∗

1
(k∗, β),

shows that
V ∗

1
(k,β) = β(1− d)(1− δ + r)V ∗

1
(k∗, β).

Since V ∗

1
is weakly decreasing in its first argument, the proposition follows.

Proof of Theorem 1: We are going to view the distributions Φt as the prob-
ability distributions of the characteristics of randomly sampled individuals at
times t. To study the convergence properties of this sequence of distributions,
we follow the notation and analysis of Stokey and Lucas ([6], henceforth SL).
Construct the transition function P : C ×B → R, where B is the collection of
Borel subsets of C, and for s = (k,β) and A = Ik × Iβ ⊂ C we have

P (s,A) = dI(k∗(s) ∈ Ik)G(Iβ)

+(1− d)I(k∗(s) ∈ Ik, β ∈ Iβ).

Here the notation I(·) refers to the indicator variable that is 1 or 0 depending on
whether or not the given statement is true. For fixed s, P (s, ·) can be extended
to all of B, and will be a probability measure. The N-step transition func-
tions PN (s,A) are defined by P 1(s,A) = P (s,A) and the equivalent alternative
definitions

PN+1(s,A) =

∫
x∈C

P (x,A)PN (s, dx) =

∫
x∈C

PN (x,A)P (s, dx).

In this notation,

Φt(A) =

∫
x∈C

P t(x,A)Φ0(dx).

Associated with P are two transition functions T and T∗, defined by

T (f)(s) =

∫
x∈C

f(x)P (s, dx)

and

T∗(F )(A) =

∫
x∈C

P (x,A)F (dx).
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Here f is supposed to be a bounded function on C, and F is a probability
distribution on C; thus if B(C) is the space of all bounded functions on C

then T : B(C) → B(C) and T∗ : D → D are the domains and ranges of these
transition functions. The transition P has the Feller property if the transition
T maps continuous functions into continuous functions.
Lemma A.1: The transition P has the Feller property.
Proof: Assume that f : C → R is continuous and let

g(k, β) =

∫
C

f(k′, β′)P ((k,β), d(k′, β′)) = T (f)(k, β),

the expected value of f(k′, β′) when (k′, β′) is a random characteristic pair for
the period t+1 individual, who is either an agent with characteristics (k, β) at
t, or is the immediate descendant of such an agent. We can write

g(k, β) = (1− d)f(k∗(k, β), β) + d

∫
B̄

0

f(k∗(k,β), β′)dG(β′),

in which the first term is a continuous function of (k, β), in view of Proposition
2. For continuity of the second term, assume (kn, βn) → (k,β), note that
f(k∗(kn, βn), β

′) converges pointwise to f(k∗(k, β), β′), use compactness of C
and hence boundedness and uniform continuity of f , get an upper bound on
|f(k∗(kn, βn), β

′)|, and finally use dominated convergence.
The claim in the Theorem is equivalent to: For any pair of factor pricesw and

r, there is a unique distribution Φ∗ on C such that for any initial distribution Φ0

on C, T∗n(Φ0) → Φ∗ in the sense of weak convergence. To establish the claim,
we make use of the order properties of C and T , as developed in SL (section
12.4).

The space of characteristics is an interval in R2, in the sense that

C = [a, b] =
{
x ∈ R2

∣∣ a ≤ x ≤ b
}
,

where x ≤ y means xj ≤ yj for all coordinates, and a = (0, 0), b = (K̄, B̄).
In multidimensional settings such as ours, the first-order stochastic dominance
relation, written F1 � F2, is defined to occur if

∫
C

f(x)F1(dx) ≥

∫
C

f(x)F2(dx)

whenever f : R2
→ R is weakly increasing. The mapping T

∗ : D → D is

monotonic if F1 � F2 implies T∗(F1) � T
∗(F2).

Lemma A.2: Our mapping T∗ is monotonic.

Proof: We have to assume that f : C → R is weakly increasing and that

F1 � F2, and show that
∫
C

f(s′)T∗(F1)(ds
′) ≥

∫
C

f(s′)T∗(F2)(ds
′).
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To show this, we view the expectations on the two sides as the outcomes of the
two-stage randomizations
1. Draw a characteristic pair s = (k,β) according to Fj .
2a. With probability d, operate k∗(k, β) to get k′, draw β′ according to G, and
calculate f(k′, β′), and
2b. with probability 1− d, operate k∗(k,β) to get k′, let β′ = β, and calculate
f(k′, β′).
Thus we can write ∫

C

f(s′)T∗(Fj)(ds
′) =

∫
C

[
d

∫
[0,B̄]

f(k∗(k, β), β′)G(dβ′) + (1− d)f(k∗(k, β), β)

]
Fj(ds).

To get the required inequality, we have to show that the square-bracketed func-
tion of s = (k,β) is weakly increasing. By Proposition 2, k∗(k, β) is weakly
increasing, so for fixed β′, f(k∗(k,β), β′) is weakly increasing and so is the inner
integral and the first term. In the second term, k∗(k, β), β, hence f(k∗(k,β), β),
and hence (1− d)f(k∗(k,β), β) are all weakly increasing in s = (k,β).

For monotonic transition functions, sufficient conditions for the required
convergence are the Feller property and (SL, p. 381):
Assumption 12.1: There exist c ∈ C = [a, b], N ≥ 1, and ε > 0 such that:

PN (a, [c, b]) ≥ ε and PN (b, [a, c]) ≥ ε.

Theorem 12.12 (SL): Suppose that T∗ : D[a, b]→D[a, b] is weakly increasing
and the associated transition function has the Feller property; and assume that
Assumption 12.1 holds. Then for all M ∈ D[a, b], the sequence of distributions
{T∗n(M)} converges to the same limit, namely

M∗ = lim
n→∞

T∗n(δa) = lim
n→∞

T∗n(δb).

To verify Assumption 12.1 in our context, the required lower bounds are easiest
to establish if we consider the subset of individuals whose ancestors have all
lived for just one period. There will be dN such individuals at time N ≥ 1. We
denote by QN (k,A) the conditional probability that, if a sequence of individuals
all live for exactly one period, and the first individual in the sequence is born
with physical capital k and a parameter β drawn according to G, then the Nth
individual will have characteristics in the set A. To define QN formally, it is
enough to define Q0 on rectangles, by

Q0(k, Ik × Iβ) = I(k ∈ Ik)G(Iβ),

extend Q0 to all of B, then define

QN (k, Ik × Iβ) =

∫
C

I(k∗(x) ∈ Ik)Q
N−1(k, dx)G(Iβ)
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and finally extend QN (k, ·) to all of B. Obviously, QN (k, ·) is the product of a
marginal distribution, say MN (k) on [0, K̄], with the marginal distribution G

on [0, B̄]. Also, PN and QN are related by

PN (s,A) ≥ dNQN−1(k∗(s),A) = dN
[
M
N−1(k∗(s))×G

]
(A),

where s = (k,β) denotes a typical element of C = [0, K̄]× [0, B̄]. Form the map
T∗

K
: D[0, K̄]→D[0, K̄] by defining

T∗

K
(M)([0, k]) =

∫
C

I(k∗(x,β) ≤ k)M(dx)G(dβ)

=

∫
[0,K̄]

M(x|k∗(x,β) ≤ k)G(dβ).

Verifying Assumption 12.1 for P now consists largely of verifying enough
properties of T∗

K to apply Theorem 12.12 to this marginal-conditional transition
function.
Lemma A.3: T

∗

K
is weakly increasing; that is, if M1 � M2 then T∗

K
(M1) �

T
∗

K
(M2).

Proof: The function k∗(·, β) is weakly increasing; so if M1 � M2, then the
integrand in the second equation defining T∗

K
(M1)([0, k]) is everywhere less

than or equal to the corresponding integrand in T∗

K
(M2)([0, k]). Consequently

T∗

K
(M1) � T∗

K
(M2) for all k, as required.

Lemma A.4: The transition function associated with T∗

K
has the Feller prop-

erty.
Proof: The proof consists of writing out exactly what the required continuous
function is. The transition function associated with T∗

K
takes as input a value

k ∈ [0, K̄] and produces a probability measure on the same set. The condition-
ing assumptions are that all the agents die, a new generation inherits the last
generation’s capital stocks, and both generations’ members all have patience
parameters drawn independently according to G. Thus if k ∈ [0, K̄], then the
transition function, say PK , is defined by

PK(k, [0, k
′]) =

∫
[0,K̄]

I(k∗(k,β) ≤ k′)G(dβ);

and we have to show that if f : [0, K̄] → [0, K̄] is continuous, then so is g :
[0, K̄]→ [0, K̄], defined by

g(k) =

∫
[0,K̄]

f(k∗(k,β), β)G(dβ).

This function is continuous, by the same arguments as used in showing that P
itself has the Feller property.
Lemma A.5: Assumption 12.1 holds for PK .
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Proof: Here we make use of Assumption N for the first time. We have to show
that there exists k̄ ∈ [0, K̄], ε > 0, and n ≥ 1, for which

PN
K
(0, (k̄, K̄]) ≥ ε and PN

K
(K̄, [0, k̄)) ≥ ε,

or equivalently

T∗N

K
(δ0)(k̄, K̄] ≥ ε and T∗N

K
(δ
K̄
)[0, k̄) ≥ ε.

In fact we can let k̄ be any capital stock in (0, K̄), say K̄/2. By Assumption
N1, choose 0 < β1 < β̄ < β2 for which

α = min
[
G[0, β1], G[β2, B̄]

]
> 0.

With probability at least αn, a sequence of descendants of an initial agent (the
0th) with capital stock 0 will have as its nth agent someone with capital stock
at least equal to kn, where

0 < k1 = k∗(0, β2) < k2 = k∗(k1, β2) < . . . < kn = k∗(kn−1, β2);

or possibly the sequence reaches K̄ at some point and stays there. In either
case, this monotonic sequence of capital stocks has a limit k

∞
, which can only

be K̄ because by continuity of k∗ we have k∞ = k∗(k∞, β2). So if n̄1 is the first
n for which kn > k̄, then

Pn
K
(0, (k̄, K̄]) ≥ αn

for all n ≥ n̄1. With probability at least αn, a similar sequence, in which the
0th agent has capital stock K̄, will have as its nth agent someone with capital
stock at most equal to kn, where

K̄ > k1 = k∗(K̄, β1) > k2 = k∗(k1, β1) > . . . > kn = k∗(kn−1, β1);

or possibly this sequence reaches 0 and stays there. In either case, this sequence
has a limit k∞, which must be 0; and if n̄2 is the first n for which kn < k̄, then

Pn
K
(K̄, [0, k̄]) ≥ αn

for all n ≥ n̄2. Now we can let N =max[n̄1, n̄2] and ε = αN .
Lemma A.6: The original transition function P satisfies Assumption 12.1.
Proof: We have to find c ∈ C = [0, (K̄, B̄)], N ≥ 1, and ε > 0 for which
PN (0, [c, (K̄, B̄)]) ≥ ε and PN ((K̄, B̄), [0, c]) ≥ ε. We claim that if β̄ is any
patience parameter between β1 and β2, and

γ = min
[
G([0, β1]), G((β2, B̄])

]
> 0,

then
c = (k̄, β̄),
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and the same N as in the last lemma, will work. We have

PN (s, [c, (K̄, B̄)]) ≥ dNQN−1(k∗(s), [c, (K̄, B̄))

= dN
[
MN−1(k∗(s))×G

]
([c, (K̄, B̄)) ≥ dNαN−1γ,

and
PN (s, [0, c]) ≥ dNQN−1(k∗(s), [0, c])

= dN
[
M
N−1(k∗(s))×G

]
([0, c]) ≥ dNαN−1γ > 0,

so we can take ε to be this last quantity.
Proofs of Theorems 2-4 are mostly contained in the text and are omitted.
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