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Abstract

If firm pricing is state, rather than time-dependent, firms are more likely to change prices whenever aggregate

and idiosyncratic shocks reinforce each other and trigger desired price changes in the same direction. The distribution

of idiosyncratic shocks across adjusting firms therefore varies over time in response to economy-wide disturbances: in

times of, say, monetary expansions, the fraction of adjusting firms that have negative idiosyncratic technology shocks

should increase. Using measures of technology shocks derived from production function estimates for four-digit US

manufacturing industries, we find that sectoral inflation rates are more responsive to negative, as opposed to positive

technology disturbances in periods of higher economy-wide inflation, commodity price increases and expansionary

monetary policy shocks. We argue, using a quantitative state-dependent sticky price model calibrated to match key

features of the US micro-price data, that these results suggest that pricing is state-dependent in US manufacturing.
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1. Introduction

Money and real activity are strongly correlated at business cycle frequencies. The strength of this

correlation has led the profession to a widespread use of models employing nominal rigidities in an attempt to

explain salient macroeconomic phenomena. Two distinct approaches to modeling nominal rigidities have been

used in earlier work. The first approach, exemplified by the work of Fisher (1977) and Taylor (1980), assumes

that the timing of price changes is independent of shocks affecting the firm in each period. Institutional

restrictions or information-gathering costs prevent firms from meeting too often and instead, firms have

predetermined schedules of price adjustment. These are the so-called time-dependent models, which, because

of their computational tractability, have received most of the profession’s attention in the last two decades.

The second tradition, dating back to Sheshinski and Weiss (1977), assumes that observing the state of the

world is inexpensive, but that firms incur fixed physical costs of price adjustment every time they undergo a

new price change. This second generation of models, the so-called state-dependent models, are grounded in

solid micro-foundations as they explicitly model the source of nominal rigidities, but have been, with a few

notable exceptions, neglected by the profession because of their computational complexity.

Despite the fact that most policy-oriented macroeconomic models use the time-dependent assumption

of an exogenous timing of price changes, the distinction between state and time-dependent sticky price models

is not innocuous. Caplin and Spulber (1987) show that under special assumptions about the distribution of

firm prices and the stochastic process of the money supply, a monetary expansion has no effect on output:

although few firms adjust in response to the shock, the firms that do adjust are those that need the largest

changes in their nominal prices and the aggregate price level in their economy grows at the same rate as

the money supply. Recent research, grounded in explicit household and firm maximization, and using more

realistic stochastic forcing processes calibrated from the US data, has overturned this neutrality result, but

nevertheless reaches the conclusion that state-dependent pricing models generate smaller real effects from

monetary shocks. In Dotsey, King and Wolman (1999), firms synchronize prices in response to aggregate

disturbances, and increase price in tandem in response to large aggregate disturbances. Golosov and Lucas

(2004) solve a state-dependent pricing model in which firms are subject to marginal cost shocks and find that

the model, calibrated to match microeconomic data on the size and frequency of price changes, generates
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very little output volatility.

Given that time and state-dependent sticky price models produce different implications regarding the

ability of nominal disturbances to explain business cycle fluctuations, an important question that, with a

few exceptions, has received little attention is: is firm pricing state or time-dependent? Time-dependent

rules are optimal if firms incur information-gathering costs that prevent them from observing the state of

the world each period1. On the other hand, firms follow state-dependent rules if fixed physical costs of price

changes are mainly responsible for nominal rigidities. Recent evidence suggests that time-dependent rules

are the rule, rather than exception. Zbaracki et. al. (2004) study the price adjustment practices of a large

US manufacturing firm. The firm under consideration revises prices infrequently, once every year, during a

“pricing season”, which generally occurs at the same time during the year, from August to November. Blinder

et. al. (1998) use survey evidence collected from a national, multi-industry sample of 200 CEOs and find

that time-dependent rules of price adjustment are twice as common as state-dependent rules. Klenow and

Kryvtsov (2004) draw a similar conclusion by calibrating a state-dependent model to match the fact that

firms do not synchronize their price changes in response to aggregate shocks in the US economy. They find

that a state-dependent model can be made consistent with this finding if the distribution of menu costs a firm

faces each period is (close to) degenerate at two mass points and firms face either zero or very large menu

costs, which leads them to behave similarly to firms in a Calvo-type environment in which the timing of price

adjustment is exogenous2. A final piece of evidence is the work of Cecchetti (1986) and Kashyap (1995) who

study newspaper and catalogue prices, respectively, and find that the frequency of price changes increases

during periods of higher overall inflation. This evidence alone cannot however distinguish between time

and state-dependent pricing models. Although simple time-dependent models indeed postulate an exogenous

frequency of price changes, firms that face information-gathering costs and behave in a time-dependent fashion

would choose to increase the frequency of price changes in environments of higher inflation if the source of

nominal rigidities were explicitly modeled.

In this paper we use indirect evidence based on sectoral inflation rates in 450 SIC four-digit manufac-

1See for example Bonomo and Cavalho (2004).
2Although, as Golosov and Lucas (2004) show, a state-dependent model in which firms face volatile marginal cost shocks can

also generate little synchronization of firms in response to economy-wide disturbances even if menu costs are time-invariant.
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turing sectors in order to test whether firm pricing is time or state-dependent. Unlike earlier, survey-based

studies, we rely on a larger sample of firms, spanning 40 years of data and a large subset of the US economy

in order to conduct inference. Our tests are based on the following premise. If firm pricing is state-dependent,

the firm’s decision to adjust is based on not only their idiosyncratic but also the aggregate shock in the econ-

omy. The firms for which the two types of disturbances reinforce each other and trigger desired price changes

in the same direction are more likely to adjust and pay the menu costs. Consider for example an environ-

ment in which firms face idiosyncratic technological disturbances as well as aggregate, monetary shocks. In

periods of monetary expansions, firms are more likely to adjust if idiosyncratic shocks reinforce the incentive

to increase prices arising from the monetary disturbance. Most of adjusting firms in such periods should

then be firms with negative technological shocks. In contrast, if pricing is time-dependent, the distribution

of technology shocks among adjusting firms should be irresponsive to economy-wide disturbances.

A direct test of this implication of state-dependent models requires firm-level data on actual prices

and technology (or other marginal cost) disturbances, data generally unavailable for a large segment of the

economy. We rely instead on sectoral price, input and output data available from the NBER Manufacturing

Productivity Database. We use this data to calculate a measure of technological disturbances based on sectoral

production function estimates that explicitly allow for increasing returns, imperfect competition and variable

capacity and labor utilization, using the approach of Basu and Kimball (1997). We use these measures of

technology shocks to ask whether economy-wide disturbances alter the responsiveness of sectoral inflation

rates to negative, relative to positive technology disturbances. We find that they do: sectoral inflation rates

are much more responsive to negative, as opposed to positive technology shocks in periods with greater than

average aggregate inflation, larger changes in commodity prices and monetary policy shocks. This evidence

strongly supports the state-dependent hypothesis, as it implies that the timing of price changes is endogenous,

and responds to both aggregate and idiosyncratic (sectoral) shocks.

This paper is related to the work of Ball and Mankiw (1994,1995), Danziger (1999), as well as Golosov

and Lucas (2004). Ball and Mankiw (1994) show that in the presence of non-stochastic trend inflation,

an increase in the volatility of idiosyncratic shocks is inflationary, as most of the firms that adjust in an

environment with positive trend inflation and menu costs of price changes are firms that desire price increases.
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Similarly, changes in the skewness of the distribution of idiosyncratic shocks can also cause movements in

the aggregate price level if pricing is state-dependent, as in Ball and Mankiw (1995). In contrast, this paper

studies a different implication of state-dependent models, generated again by the endogenous timing of price

changes: we ask whether the distribution of idiosyncratic shocks, conditional on adjustment, varies over

time in response to monetary and other types of aggregate disturbances. Danziger (1999) and Golosov and

Lucas (2004) study the general equilibrium implications of models with state-dependent pricing, idiosyncratic

technology shocks and aggregate monetary disturbances. An implication of these models is that money is

close to neutral, despite nominal rigidities at the firm level, a result arising from the asymmetric response of

firms hit by negative versus positive technology shocks to a monetary expansion3. An increase in the money

supply forces adjustment by mostly negative-shock firms and acts as an adverse “supply” shock that offsets

the expansionary effect of the increase in real balances.

The rest of this paper is organized as follows. Section 2 presents a partial equilibrium model in which

menu costs of price changes lead firms to follow state-dependent rules of price adjustment. We use the model

in order to validate our empirical approach: we use it to derive a proxy for the distribution of idiosyncratic

shocks conditional on adjustment. In Section 3 we discuss the data we use in this paper and the methodology

used to calculate measures of technology shocks. Section 4 tests the state-dependent pricing model. The final

section concludes.

2. A test of State-Dependent Pricing Models

In this section we discuss one source of asymmetry implied by the endogenous timing of firm price

adjustments in menu-cost models, an asymmetry that we explore in our empirical work in the next section.

To fix ideas, we first discuss the source of asymmetry heuristically, and illustrate how the distribution of

idiosyncratic shocks among adjusting firms fluctuates in response to economy-wide shocks. We then formally

solve a partial equilibrium problem in which a continuum of firms face idiosyncratic and sectoral technology

shocks, as well as monetary policy shocks and illustrate the role of the asymmetries quantitatively.

3Midrigan (2005) shows that 80% of the variability of inflation in a general equilibrium model with idiosyncratic and aggregate
shocks, calibrated to match key features of the US micro-price data, is due to the endogenous variation of the identity of adjusting
firms in response to aggregate shocks.
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A. Heuristic Example

The logic behind out test of whether pricing is state or time-dependent is simple. Consider an industry

j, in which a continuum of firms, indexed by i, faces menu costs of changing their prices. We assume, to

build intuition, that firms follow simple, symmetric S-s pricing rules of price adjustment:

πijt = π∗ijt if π
∗
ijt /∈ [−s, s] (1)

πijt = 0, otherwise,

π∗ijt = uijt + εjt + gt,

where π∗ijt is the firm’s desired price change in a frictionless world, πijt is the actual price change, s is the

maximum deviation of its price from the optimum that the firm tolerates, gt is an aggregate disturbance, εjt

an industry-wide shock, and uijt a firm-specific disturbance that captures both contemporaneous shocks to

the firm’s desired price, but also the history of all shocks since the previous price adjustment. As long as uijt

are centered around 0, and not too dispersed to drive most of the adjustment, firms in sectors in which the

sectoral εjt and aggregate shocks gt are of the same sign are more willing to change prices than sectors in

which the two shocks cancel each other out.

Letting Θ(εjt, gt) = {uijt|uijt ≤ −s− (gt + εjt) or uijt > s− (gt + εjt)} denote the firm’s adjustment

region, the probability that a firm adjusts (which, invoking a law of large numbers, is also the fraction of firms

that adjust in a given sector) Fr(εjt, gt) = Prob[uijt ∈ Θ(εjt, gt)] , increases if gt + εjt is large in absolute

value.

This observation suggests a way of testing whether firm pricing is state or time-dependent. What

differentiates the two approaches to modelling nominal rigidities is the fact that the timing of price changes is

exogenous in time-dependent models and thus unresponsive to idiosyncratic or aggregate disturbances. In the

language of the example above, the probability that a firm adjusts is independent of gt and εjt. In contrast,

state-dependent firms are more likely to adjust in a given period if gt + εjt has a large absolute value, i.e.,

the aggregate and sectoral shock trigger desired price changes in the same direction.

To test the prediction above using data available for the US economy, we need a proxy for the fraction
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of adjusting firms in a given sector. We use the fact that, in a sticky price model, sectoral inflation rates are

more responsive to sectoral and aggregate shocks the larger the fraction of firms adjusting in this sector. To

see this, let πjt =
1
N

PN
i=1 πijt be the inflation rate of sector j. Substituting the policy rule assumed above

into this expression yields

πjt = Fr(εjt, gt) (εjt + gt) +
1

N

NX
i=1

uijtI(uijt ∈ Θ(εjt, gt)), (2)

where I is an indicator function. The first term in this expression is the fraction of adjusters times the

desired price change arising from aggregate or sectoral disturbances. The second term is a “selection bias”

term: firms are more likely to adjust if their idiosyncratic shocks are aligned with εjt and gt. We will employ

a regression of sectoral inflation rates on aggregate and sectoral disturbances:

πjt = Γ (εjt, gt) (εjt + gt) + errorjt, (3)

where Γ (εjt, gt) is a non-linear function of the two disturbances, in order to test the state-dependent model.

Although Γ (εjt, gt) in such a regression provides an estimate of Fr(εjt, gt) that is upward biased, because of

the selection term in (2) above, note that we are not interested in the fraction of adjusters itself, but rather

in the properties of the set Θ(εjt, gt). If pricing is indeed state-dependent, and aggregate and sectoral shocks

reinforce each other, a sector’s responsiveness to observable disturbances, Γ (εjt, gt) , increases both because

the fraction of adjusters in the industry increases, but also because the firms that do adjust are those whose

idiosyncratic shocks, uijt, trigger desired price changes in the same direction as sectoral and aggregate shocks.

In contrast, if the timing of price changes is exogenous, Γ (εjt, gt) is constant in its two arguments.

Our empirical approach is therefore based on estimating elasticities that capture the responsiveness

of sectoral inflation rates to sectoral technology shocks and aggregate monetary disturbances, and testing

whether these elasticities are a non-linear function of the two types of shocks. Our null hypothesis is that

the inflation rates in equation (3) are a linear function of disturbances, i.e., that firms change prices in a

time-dependent fashion. Non-linearities in the responsiveness of firms to shocks can arise however even if the

timing of price changes is exogenous, but price functions, conditional on adjustment, are non-linear, contrary
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to what we have assumed in (1) above. The model of the next subsection provides a formal justification for

the empirical approach in this paper. In particular, we solve two sticky price models, one in which firms

set prices in a Calvo (1983) fashion, and another one, in which menu costs of price changes are responsible

for nominal rigidities. We solve the two models using projection-based functional approximation techniques

that explicitly allow for non-linearities and calibrate the models in order to allow them to match important

features of the micro-price data, stressed by Klenow and Kryvtsov (2004) and Golosov and Lucas (2004). We

find that non-linearities in the pricing function of a Calvo-type firm are absent, which implies that an estimate

of equation (3) using data generated by a simulation of a time-dependent model contains no non-linear terms.

In contrast, non-linearities are evident in a state-dependent setup, suggesting that the intuition developed

above holds in a more realistic class of models than the simple illustrative example considered above.

B. A Partial Equilibrium Model

Our model is similar to the partial equilibrium problem studied by Sheshinski and Weiss (1977). We

allow however the general price level to grow at a stochastic, possibly negative, rate and assume that in

addition to aggregate shocks, firms face idiosyncratic and aggregate disturbances to their marginal costs. Let

p̄t be the general price level in the economy, assumed to evolve exogenously, according to p̄t = p̄t−1e
gt , where

the growth rate of the price level is driven by gt = α + δgt−1 + ηt, with ηt ∼ N(0,σ2η). We interpret ηt as

monetary policy shocks. Letting zt =
pt
p̄t
, where pt is the firm’s nominal price and zt its real price, we assume

constant elasticity demand functions: qt = z
−θ
t .

The firm’s real profits in period t are: Π(zt) = z−θt

³
zt − c

at

´
, where c

at
is the (real) marginal cost

of production, and at is the firm’s technology
4. The firm’s technology is the product of an idiosyncratic

and sectoral component: at = ψtφt, which evolve according to log(ψt) = ρ log(ψt−1) + εt and log(φt) =

ρ log(φt−1) + ut, where εt is a sectoral and ut a firm-specific technology shock. We assume for simplicity

that the two components of a firm’s technology have the same degree of serial correlation, and the shocks are

drawn from a Gaussian distribution with mean 0 and variance σ2ε and σ2u , respectively.

4We supress the sector and firm subscripts to conserve notation and revert to them below when needed.
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State-Dependent Pricing

In this setup firms face costs of adjusting nominal prices. Specifically, a firm incurs cost ξ5 every

period in which pt 6= pt−1. The firm’s problem is to

max
zt
E0

∞X
t=0

βt
h
Π(zt)− ξI

³
zt 6=

zt−1
egt

´i
, (4)

where I() is an indicator function.

Let V a(z−1,ψ,φ, g), V
n(z−1,ψ,φ, g) denote the firm’s value of adjusting and not adjusting its nominal

price, respectively, where z−1 is the firm’s last period’s relative price: pt−1/p̄t−1. Let V = max(V a, V n)

denote the firm’s value function and st = (zt−1,ψt,φt, gt) collect the state variables. The solution to the

firm’s problem satisfies the following system of functional equations:

V a(s) = max
z

⎡⎣z−θ µz − c

ψφ

¶
− ξ + β

Z
ε×u×η

V (s0 (z, s, ε, u, η)) dF (ε, u, η)

⎤⎦ , (5)

V n(s) =

⎡⎣³z−1
eg

´−θ µz−1
eg
− c

ψφ

¶
+ β

Z
ε×u×η

V
³
s0
³z−1
eg
, s, ε, u, η

´´
dF (ε, u, η)

⎤⎦ ,
where F () is the joint cdf of the three shocks, and s0() is the law of motion for the state variables. The real

price the firm faces at the start of the next period is equal to either z0−1 = z if the firm adjusts the nominal

price and pays the menu cost, or eroded by the growth rate of the general price level and equal to z0−1 =
z−1
eg .

Calvo Time-Dependent Pricing

In this exercise we assume that firms have no control over the timing of their price changes. Rather,

the probability that a firm adjusts in a given period is constant, and equal to λ. The two functional equations

5We interpret menu costs as costs of physically changing the price and transmitting the information about the price change
to the consumer. Zbaracki et. al (2004) find that these costs are non-trivial. For example, costs of transmitting the information
regarding price changes to consumers constitute 0.4% and 1.8% of total revenues and operating expenses, respectively, for the
firm in their study.
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characterizing the firm’s problem in this setup are:

V a(s) = max
z

⎡⎣z−θ µz − c

ψφ

¶
+ β

Z
ε×u×η

V (s0 (z, s, ε, u, η)) dF (ε, u, η)

⎤⎦ ,

V n(s) =

⎡⎣³z−1
eg

´−θ µz−1
eg
− c

ψφ

¶
+ β

Z
ε×u×η

V
³
s0
³z−1
eg
, s, ε, u, η

´´
dF (ε, u, η)

⎤⎦ ,
where V (s) = λV a(s) + (1− λ)V n(s).

To solve these problems, we employ collocation, a functional approximation technique. The idea

behind this method is to approximate the two value functions with a linear combination of orthogonal (we

employ Chebyshev) polynomials and solve for the unknown coefficients by requiring that the two equations

are satisfied exactly at a number of nodes along the state-space. A technical appendix discusses the solution

method and its accuracy in more detail.

We assign the model parameter values to ensure that the predictions of the state-dependent model

match certain features of the US economy. The length of the period is a month. We interpret shocks to

the growth rate of the price level as monetary shocks and calibrate this process by estimating an AR(1)

process for the monthly growth rate of the US money supply6. The elasticity of demand, θ, is chosen so that

the steady-state markup is equal to 25%7. We assume that idiosyncratic and sectoral technology shocks are

equally volatile8, and calibrate the size of the menu costs ξ and the volatility of technology shocks to ensure

that firms adjust on average every five months and, when they do so, change prices by ±10.5% on average9.

We set ρ = 0.8 for the experiments reported in this paper, but our results are robust to alternative choices of

the degree of serial correlation in technology. In particular, we have also experimented with iid and unit-root

6M1data, 1959 to 2004. There is substantial noise in the growth rate of the money supply at the monthly frequency, which
biases downward the AR(1) coefficient of the growth rate of the money supply. Results are robust however in simulations of
the model using different degrees of serial correlation in gt, or a more appropriate ARMA(1,1) process for gt. We have also
experimented with an AR(1) process for the growth rate of the US CPI and obtained similar results to those reported below.

7This number is in line with elasticity of substitution estimates in earlier work, which range from θ = 3 to θ = 6. See Obstfeld
and Rogoff (2000) for a brief survey.

8We have redone our work by assuming that idiosyncratic shocks are five times more volatile than sectoral shocks. In this
case the results discussed below are weaker (because the importance of the “selection bias” term associated with firm-specific (as
opposed to aggregate or sectoral) shocks increases), but still statistically significant. In a sense, the empirical approach of this
paper tests the joint hypothesis that pricing is state-dependent and that sectoral shocks sufficiently large relative to idiosyncratic
shocks for us to be able to discern the non-linearities implied by state-dependent pricing rules.

9These numbers are similar to those reported by Bils and Klenow (2002) and Klenow and Kryvtsov (2004), based on two
large datasets of consumer prices made available by BLS.
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technology processes and found similar results. The probability that a Calvo firm adjusts in a given period

is chosen so that the state and time-dependent models predict the same frequency of price changes: λ = .2.

The table below summarizes the parameter values we use. The menu cost, ξ, is equal to 0.0132c, that

is, 1.32% of the firm’s steady-state total cost of production.

β α δ σ2η ρ σ2ε,σ
2
η ξ θ

.997 1.9×10−3 0.55 2.75×10−5 0.8 1.1×10−3 0.0132c 5

We start by discussing the price functions that solve the firm’s problem. Figure 1 plots the optimal

price (conditional on adjustment) of a firm, expressed as the log-deviation of the firm’s real price from its

steady-state optimum: log(zt/(
θ

θ−1c)), as a function of the firm’s technology, for two values of the growth rate

of the price level. Note two differences in the pricing functions of a Calvo and state-dependent firm. First,

a state-dependent firm responds more strongly to a technology shock (the elasticity is close to -1, similar to

what it would be in a flexible price model in which prices are a constant markup over marginal cost) than

Calvo firms do (the elasticity is close to -.5). Second, Calvo firms respond more aggressively to an increase

in the growth rate of the price level than state-dependent firms do. These differences in price functions arise

because of the type of nominal frictions Calvo and menu cost firms are subject to. If a Calvo firm finds itself

with a suboptimal price in a given period in the future, it pays dearly: given that it will not re-adjust its

price for an average of 5 months, it will incur losses from the suboptimal price for a number of periods to

come. In contrast, a state-dependent firm can always choose to pay the menu cost and reprice: its losses

from having a suboptimal price in future periods are smaller than those of a time-dependent firm. This in

turn implies that a Calvo firm has a stronger incentive to offset future expected changes in its marginal cost

every time it adjusts than a state-dependent firm does. Calvo firms therefore respond less aggressively to a

technology shock (as the level of technology, by assumption, reverts to its mean), and more aggressively to

a shock to the growth rate of the price level (because the price level growth rate is serially correlated and

a high inflation rate today predicts higher than average inflation in future periods). We illustrate this idea

graphically in Figure 2: a firm’s value of inaction is much more responsive to deviation of its past price from

the optimum if a firm is subject to Calvo-type frictions than menu costs of adjusting prices. For this reason,

state-dependent firms behave as if they discount the future less than Calvo firms do and set a price that
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resembles the price they would charge in a flexible price world.

The most important lesson to be learned from the discussion above is that in both Calvo and state-

dependent pricing models, a firm that decides to adjust its price responds in a linear fashion to aggregate

and sectoral disturbances. As Figure 1 indicates, the slope of the firm’s optimal price in its technology level

is constant, and moreover, unaffected by the size of the aggregate disturbance. Non-linearities in the sector’s

responsiveness to sectoral and aggregate shocks may only arise, then, if the fraction of adjusting firms and

their identity varies endogenously, as in a state-dependent model10.

Figure 3 plots the fraction of adjusters Fr(εjt, gt) in a sector hit by a technology shock εjt
11, as a

function of the growth rate of the general price level, for the state-dependent pricing model. Consider first

sectors subject to negative technology disturbances (ε = −.07 and ε = −.04). Firms in these sectors desire,

on average, to increase their prices in order to respond to the higher marginal costs of production. This

incentive to change prices is reinforced if the economy-wide nominal shock is also positive. For this reason,

the fraction of firms that adjusts in sectors with negative technology shocks increases in g, the growth rate

of the general price level. Note also the difference in the slope of Fr(): an increase in g has a stronger effect

on the fraction of adjusters in sectors subject to more negative technology disturbances.

In contrast, firms in sectors with positive technology shocks see their marginal cost falling and desire

price decreases. Their desire to decrease real prices is automatically satisfied if the aggregate price level

increases, thereby eroding the firm’s real price. The fraction of firms that adjusts in sectors with positive

technology disturbances therefore decreases as the growth rate of the economy-wide price level rises. Note

again the difference in slopes: the larger the sector’s technology shock is, the larger the effect aggregate

disturbances will have on the fraction of adjusters in this particular industry.

The results presented in Figure 3 are not useful for empirical purposes, as we do not directly observe the

fraction of firms that adjust in a given sector. We therefore estimate elasticities that capture the responsiveness

of sectoral inflation rates to shocks and ask whether these elasticities vary in the data in a non-linear fashion.

10Asymmetries in a state-dependent model can arise for reasons other than fluctuations in the fraction and identity of adjusters
in response to aggregate disturbances. For example, more productive firms are more willing to adjust prices as they prefer to
“make hay while the sun is shining” — see the discussion in Golosov and Lucas (2004). These asymmetries are however absent
in time-dependent models, which is the null hypothesis maintained in this paper.
11To calculate this statistic, we initialize the economy at its non-stochastic steady-state and integrate the decision rules of the

firms in the industry by employing a Monte-Carlo simulation in which firm-specific shocks are drawn from N(0,σ2u).
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We use model-simulated data and estimate a panel regression of sectoral inflation rates against technology

shocks and aggregate disturbances, a regression in which we allow elasticities to differ across observations

with negative and positive sectoral technology shocks, and also according to whether the growth rate of the

price level belongs to one of the 6 quantiles of its distribution.

πit = γ(ε, g)εit + βgt + uit (6)

where γ(ε, g) takes on 12 different values depending on the whether ε is positive or negative, and the quantile

of the distribution g belongs to12. Figure 4 plots the absolute values of the estimated elasticities on technology

shocks, γ(ε, g), in the g space, for both the state and time-dependent models. Note in the left panel of the

figure that, when the growth rate of the price level is low, the estimated elasticity is 0.64 in absolute value for

sectors subject to negative technology disturbances, and 0.78 for sectors with positive technology shocks. As

the growth rate of the price level increases, firms in sectors with ε < 0 are more willing to adjust prices and

the elasticity increases to 0.82. In contrast, the fraction of firms that adjust in positive shock sectors falls with

the growth rate of prices, and their elasticity drops to 0.60 when aggregate shocks are in the upper quantile of

their distribution. Note in the right panel of the figure that these elasticities are, given the exogenous timing

of price changes and lack of non-linearities in the price function, constant in the time-dependent model. They

are also much smaller, both because of the disincentive of Calvo firms to respond to shocks that are expected

to mean-revert, but also because of the lack of a selection bias in a time-dependent model.

A more compact way to summarize the effect of aggregate and sectoral shocks on the responsiveness of

sectoral inflation to disturbances is to simply look at the difference between the elasticities of sectoral inflation

with respect to technology shocks in sectors with negative and positive technology shocks, as a function of

the aggregate disturbance. To this end, we estimate the following period-by-period regressions:

πit = c+ γNt εitI(εit<0) + γPt εitI(εit>0) + uit (7)

12One can also allow the responsiveness to aggregate shocks, gt, to vary non-linearly as well, but the fact that technology shocks,
in both the model and the data, are much more volatile than nominal disturbances makes them a more suitable candidate for
identifying the fraction and identity of firms that adjust in a given sector.
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where γNt and γPt are the elasticities of sectoral inflation rates to positive and negative technology shocks in

each period and I an indicator function. Figure 5 presents a scatter plot of γPt − γNt as a function of the

growth rate of the general price level in each period. Note that the difference in elasticities increases in the

price level growth rate in the state-dependent model (the difference in the absolute value of elasticities falls

as firms in sectors with positive technology disturbances adjust less willingly), while it is flat in the Calvo

model.

Finally, we can allow the responsiveness of sectoral inflation rates to technology shocks to vary more

continuously with the size of the sectoral technology shock and aggregate disturbances. Let

πit = γ0 + Γ (εit, gt) (−εit) + γ3gt + uit, (8)

where Γ(ε, g) is a function that captures the responsiveness of a sector’s inflation rate to aggregate and

sectoral shocks due to changes in the fraction of adjusters, but also their identity, in response to disturbances.

As shown above, the state-dependent model predicts that

∂2Γ(ε, g)

∂ε∂g
< 0,

as firms are more willing to change prices if sectoral technology shocks and aggregate disturbances reinforce

each other and trigger desired price changes in the same direction. To capture this cross-partial derivative,

we parameterize Γ(ε, g) = γ1 − γ2 (ε× g), where γ2 is expected to have a positive sign if pricing is state-

dependent. Our test of state-dependent pricing can be based on the following regression:

πit = γ0 + γ1(−εit) + γ2
¡
ε2it × gt

¢
+ γ3gt + uit (9)
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3. Measures of technology shocks
A. Data

We test the predictions of the state-dependent pricing model using annual data from 1958 to 1996 for

446 4-digit SIC industries from the NBER Manufacturing Productivity Database13. The data is derived from

various government sources, notably the Census Bureau’s Annual Survey of Manufacturing, and contains

information on total shipments, materials expenditure, investment, capital stock, number of production and

non-production workers, payroll, production worker hours and wages, as well as price deflators for shipments,

materials etc. for each industry. Material expenditures include expenditure on energy, and the deflator for

materials accounts for movements in the price of energy. Bils and Chang (1999) is a recent example that

uses this dataset in order to ask how industry prices respond to variations in costs and production, although,

given our focus on asymmetries in response to purely technological shocks, our approach differs from theirs

along several dimensions. We use this data in order to conduct our empirical exercises as discussed below.

B. Measuring technology shocks

Our measures of technology shocks are Solow (1957) residuals estimated using the methodology devel-

oped by Hall (1990) and Basu and Kimball (1997) in order to account for the possibility of increasing returns,

imperfect competition and variable input utilization, respectively.

We assume a differentiable production function in which firms produce output Y , using capital services

K̃, labor services L̃, intermediate inputs of materials and energy M according to:

Y = F (K̃, L̃,M,A)

Capital services depend on the stock of capital K, but also capital utilization Z : K̃ = ZK, while labor

services depend on the number of workers N , hours worked per employee H and each worker’s effort level

E : L̃ = ENH. Taking logarithms of this production function, totally differentiating, and invoking cost

13The data is available at http://www.nber.org/nberces/nbprod96.htm and is discussed extensively in Bartelsman and Gray
(1996). The industries are those defined in the 1972 Standard Industrial Classification. We drop two industries that have missing
observations for several years.
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minimization, one obtains:

dy = µ [skdk + sL(dn+ dh) + smdm] + µ [skdz + sLde] + da

where lower case letters denote logs, sj is the share of factor j in total revenue and µ is the markup . The

difficulty in estimating this equation directly is that effort and capital utilization are not observed. We

follow Basu and Kimball (1997) and proxy the unobserved input utilization with hours per worker dh14. The

justification for this approach is that firms operate along all margins simultaneously, and given convex costs of

changing hours worked, effort and capital utilization, will choose to change them simultaneously in response

to a shock. Changes in hours worked are therefore correlated with unobserved capital utilization and effort.

More formally, Basu and Fernald (2000) solve a dynamic cost minimization problem of a firm subject to

costs of changing employment levels, hours worked and capital utilization, and show that as long as capital’s

depreciation rate does not depend on its utilization level and the production function is Cobb-Douglas, a

log-linear approximation to the firm’s optimality conditions implies that dz and de depend on dh only15. We

therefore estimate

∆yit = ci + µ∆xit + γ∆hit + ε̃it (10)

where ∆yit is the change in the log output of industry i, ∆xit is the share-weighted sum of the growth rate

of real inputs (labor, capital, materials and energy). We calculate total output as shipments plus change in

end-of-period inventories and deflate it using the price deflator for shipments. The Productivity Database

distinguishes between production and non-production workers in reporting industry employment, and only

reports hours data for production workers. We use the two as separate inputs in the production function and

assume that hours per worker are time-invariant for non-production workers. Our results are robust to an

14Conley and Dupor (1999) use an alternative proxy for capital utilization, one based on electricity consumption. Electricity
data is not available however at the 4-digit level of disaggregation.
15Allowing for depreciation rates to increase with capital utilization, as in Basu and Kimball (1997) complicates the problem

as utilization will depend on material inputs, capital stock, investment and the relative price of materials and investment:
dz = A(d(pm − pI) + dm − dk) + B(di − dk). where pm −pI is the relative price of materials and investment, i and k are
investment and the stock of capital, respectively, A and B are constants. We have used this alternative proxy for capital
utilization and found results to be very similar to those reported in text.
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alternative measure of inputs that includes only production workers. Our proxy for variable input utilization,

∆hi, is the log-difference in hours per worker reported for production workers.

We calculate the share of each factor of production as the time-series average of total payments to

each factor divided by total revenues in each industry. One could in principle depart from this Cobb-Douglas

assumption of constant shares and allow shares to vary over time, but, as Basu and Fernald (2000) argue,

this approach increases the likelihood of misspecification because observed factor prices are not allocative

period-by-period in a world with implicit contracts or quasi-fixity16. To calculate payments to capital, we

first calculate the user cost of capital, R, according to17:

R = (r + δ)
1− ITC − τd

1− τ

where r is the required rate of return on capital (we follow Hall (1990) and assume it equal to the S&P

500 dividend yield), δ is the depreciation rate, ITC is the investment tax credit, d is the present-value of

depreciation allowances and τ is the corporate income tax rate. Jorgenson and Yun (1991) provide data

on ITC, d and δ for 53 types of capital goods, while the tax data is provided by the Bureau of Economic

Analysis at the 2-digit level of disaggregation. We calculate the user cost of capital for each asset and a

weighted average over the different types of assets for each SIC 2 industry in the dataset, with the weights

reflecting the relative importance of each type of asset in each industry. We judge the relative importance

of the different types of assets in each industry by using Bureau of Economic Analysis data on the 1982

Distribution of New Structures and Equipment to using industries. The required payment to capital is finally

calculated as RPkK where PkK is the current-dollar value of the industry’s stock of capital18. Given that

the Database only reports wage and salary costs of labor, we follow Bils and Chang (1999) and magnify both

production and non-production labor costs to account for employer pension payments and compensation

benefits. This data is again based on information available in the underlying NIPA tables at the 2-digit level

of disaggregation. In addition, we magnify total labor costs (for both production and non-production workers)

16Our results are robust however to an alternative specification in which factor shares vary over time and are equal to average
shares in adjacent periods.
17See Hall and Jorgenson (1967).
18We also follow Bils and Chang (1999) and, given the low level of profits in manufacturing, calculate capital’s share residually,

assuming that the shares of all inputs sum to one. Results are robust to this alternative assumption.
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by 9% to account for the database’s exclusion of payments to auxiliary and support personnel. Bartelsman

and Gray (1996) report that these costs account for 7.9% and 10.7% of total payroll in manufacturing in 1972

and 1986 respectively.

OLS estimates of (10) are likely to be biased because of the correlation between technology shocks

and input choices. We therefore instrument the right-hand side variables using current and one period lags of

deflated oil price changes, changes in government spending, changes in the US effective nominal exchange rate

and monetary policy shocks estimated using a 7-variable VAR according to the Christiano, Eichenbaum and

Evans (1999) block-recursive identification procedure19. Our instruments are similar to those used by Basu

and Kimball (1997), to which we add a measure of changes in nominal exchange rates of US against its trading

partners. Given the exchange rate disconnect puzzle documented in open-economy macroeconomics20, it is

unlikely that sectoral technology shocks are correlated with this variable21.

The relatively short span of time-series observations renders industry by industry estimates of the

coefficients in (10) rather imprecise. We therefore pool 2-digit industries together and estimate (10) using a

panel (fixed-effects) 2SLS estimator for each SIC 2 industry22.

C. Relationship with other evidence

In this subsection we briefly discuss our measure of sectoral technology shocks and relate our results

to those in earlier work. In Table 1 we report the time-series standard deviation (averaged across all sectors)

of two measures of technology shocks. The first measure we report is the change in the TFP series reported

in the NBER Productivity database. This TFP measure assumes perfect competition and constant returns

to scale and simply subtracts the share-weighted sum of the growth rates of inputs from the growth rate

of real output. The other measure are the purified Solow residuals whose construction is discussed above:

εit = ε̃it + ci. Note that technology shocks are very volatile at this level of disaggregation, with a standard

deviation of 0.076 for the traditional Solow residuals and 0.063 for the technology shocks purified of imperfect

19We measure the stance of monetary policy by the size of non-borrowed reserves and assume that the Fed’s information set
includes current and four lagged values of real GDP, CPI, an index of commodity prices, as well as four lags of the Federal funds
rate, total reserves, non-borrowed reserves and the M1 money stock. Monetary policy shocks are estimated using quarterly data.
Our measure of annual shocks is the sum of four quarterly shocks.
20e.g, Obstfeld and Rogoff (1996)
21Our results are robust to excluding nominal exchange rate variables as an instrument for input growth.
22Our results are robust however to estimating technology shocks using separate industry-by-industry regressions.
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competition, increasing returns and variable input utilization. In contrast, Basu and Fernald (2000) estimate

that technology shocks in the entire manufacturing sector are almost twice less volatile: the standard deviation

of the Solow residual is 0.035 and that of the purified series is 0.028 according to their estimates.

In Table 2 we compare our estimates of decreasing returns to scale implied by our estimates of (10)

to those in Basu, Fernald and Kimball (2004) who use the Jorgenson dataset of 29 industries (including 21

industries at (roughly) the SIC 2 level) from 1949 to 199623. Their estimation strategy differs slightly from

ours as they restrict the coefficient on the proxy for input utilization to be constant across industries, but,

despite the differences in the level of aggregation underlying the two sets of estimates, our results and theirs

are not too dissimilar. For durable goods, the median returns to scale estimate is 1.11, compared to 1.07 in

their work, with a correlation of 0.71 across coefficient estimates in the different industries. Our results differ

somewhat for non-durable goods, but the low correlation between the two sets of estimates (0.41) is misleading

as it is driven by two estimates of returns to scale that are insignificant (0.32 for Food in our sample and

0.11 for Leather in their work). The correlation between these elasticities for all other non-durable sectors

is much higher, around 0.77. There is a significant difference between the median degree of returns to scale

in our work: 1.07 and theirs: 0.89 for non-durable firms24, but our results are in the range of those obtained

using other sets of data or instrument sets25.

4. Testing the State-Dependent Pricing Model
A. Empirical Results

Before we discuss our empirical approach, we first use our estimates of technology shocks εit = ε̃it+ ci

constructed above26, to estimate

23BFK(2004) estimate elasticities separately for SIC 371 and all other SIC 37 sectors. We calculate a weighted average of their
two estimates for the SIC37 division: Transportation Equipment.
24Conley and Dupor (1999) find similar return to scale estimates to those in BFK (2004) (1.06 for durables and 0.91 for non-

durables) using a spatial GMM estimator that models the covariance of technology shocks across industries non-parametrically
as a function of economic distances for SIC 2 manufacturing industries using a set of instrument similar to ours.
25eg., Burnside, Eichenbaum and Rebelo (1995) find returns to scale in non-durable manufacturing equal to 1.13
26Throughout this paper, our definition of a sector’s technology shock is the sum of the “purified Solow” residuals in equation

(10) plus the fixed-effect term that captures the long-run rate of growth of an industry’s technology. We choose this definition
because in the model, both expected and unexpected changes in an industry’s technology level affect the firms’ desired prices and
their responsiveness to shocks. It turns our however that variability in the fixed effect terms (ci) is much smaller than period-
by-period shocks to a sector’s technology level (ε̃it). All our results therefore change little if we use the residuals themselves as
a measure of technology shocks.
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πit = γNt εitIεit<0 + γpt εitIεit>0 + uit (11)

for each time-period using ordinary least squares, where πit are sectoral inflation rates. On average, the

elasticities on negative and positive shocks are equal to each other over time (-.30 for negative, and -.31 for

positive shocks), but vary substantially across periods. In Figure 6 we present a scatter plot of the difference

in elasticities γPt − γNt against shocks to aggregate inflation, measured by the change in the CPI inflation

rate ∆πt (left panel) as well as against changes in a measure of commodity prices
27. Consistent with the

implications of the state-dependent pricing model, periods in which aggregate shocks increase the average

firm’s desired prices, either because of shocks to inflation or to commodity prices, are periods in which γPt −γNt

is larger (
¯̄
γPt
¯̄
−
¯̄
γNt
¯̄
is smaller), i.e., the responsiveness of sectoral inflation rates to technology shocks is

larger in sectors in which the shocks are negative. Unless there are non-linearities in the adjusting firm’s

optimal pricing functions (in Section 2 we have shown that this is not the case) that cause firms to respond

stronger to negative technology shocks in times of higher inflation, these figures are evidence that firms that

adjust in times of higher than average inflation are more likely to be firms that experience negative technology

shocks. This in turn suggests that a given firm’s decision to adjust is state-dependent.

Note that we use changes in economy-wide CPI inflation, ∆πt, as opposed to the level of inflation

as a measure of nominal disturbances. We do so because several structural breaks characterize the process

for the US inflation rate over the sample considered in our empirical work. Structural breaks can affect our

results for two reasons. First, firms are more likely to adjust prices in high-inflation environments, as in the

1970s and 1980s: the fraction of adjusting firms can increase in all sectors of the economy, regardless of the

sector’s technology disturbance. Second, structural breaks affect the firm’s pricing functions and their inaction

regions. For example, in periods of high inflation firms front-load and over-adjust prices in anticipation of

expected future increases in the general price level. Moreover, they are more willing to tolerate prices that

are above the optimum, as a rise in the aggregate price level is expected to erode the firm’s real price in

the future. If a structural break occurs, and inflation rates fall to a lower level, albeit a positive one, some

firms would find themselves with prices that are too high, relative to what is optimal and acceptable in the

27We use the Commodity Research Bureau Spot Index. The data is available online at
http://www.crbtrader.com/crbindex/charts.xls
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new environment, and would find it optimal to lower prices, and do so more readily if subject to a favorable

technology shock28. We will show below, that although weaker, results of our empirical work are consistent

with the predictions of the state-dependent model even when the level of inflation is used as a measure of

nominal disturbance.

To formally test the significance of the correlation between the difference in the responsiveness of firms

to negative as opposed to positive technology shocks as a function of aggregate disturbances, we assume that

γNt and γpt are linear functions of the aggregate shock St :

γNt = β0 + β1St,

γPt = α0 + α1St,

and estimate the following panel specification:

πit = ξi + γPt I(εit>0)εit + γNt I(εit<0)εit + ρSt + uit,

which, given the parametrization of elasticities above, reduces to

πit = ξi + α0I(εit>0)εit + α1
¡
St × I(εit>0)

¢
εit + β0I(εit<0)εit + β1

¡
St × I(εit<0)

¢
εit + ρSt + uit. (12)

where ξi are sector-specific fixed effects. Given the estimates of β1 and α1, as well as the variance-covariance

matrix of the coefficient estimates above29, Table 3 reports our estimates of α1 − β1, the difference in

elasticities due to a 1% aggregate disturbance for different measures of aggregate shocks.

In Table 3, columns 1 and 2, our estimates of β1 and α1 are based on actual and first-differenced CPI

inflation. Consistent with the evidence in Figure 6, the absolute value of the coefficient on positive technology

shocks decreases relative to the one on negative technology shocks in times of higher inflation (i.e., α1 − β1

increases), suggesting that the fraction of firms who adjust in sectors hit by negative technology shocks is

28See Ahlin and Shintani (2004) for a formal theoretical exposition of this idea.
29Given the two-stage estimation procedure we employ, classical standard errors are downward biased in our example. The

procedure we use to compute correct asymptotic standard errors is discussed in the appendix.
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larger in these periods than the corresponding fraction in industries hit by favorable technology shocks30.

Ball and Mankiw (1995) discuss an alternative source of asymmetries in state-dependent pricing mod-

els. They show that if the distribution of all the firms’ desired prices is, say, positively skewed, then, if the Ss

bands of price adjustment are symmetric, as in a world with no aggregate uncertainty, the fraction of firms

who adjust and increase prices is greater than the fraction of firms who lower prices. Hence, even if the distri-

bution of idiosyncratic shocks is centered at zero in all periods, shocks to the third moment of the distribution

will force an asymmetric adjustment by firms to positive versus negative shocks and generate economy-wide

inflation. The two types of asymmetry differ, as in our model aggregate shocks trigger movements in γpt −γNt ,

while in their model, exogenous shocks to γpt − γNt affect aggregate inflation31. Their analysis does suggest

however, that, if our measures of technology shocks are imperfect, and correlated with, say, changes in energy

prices that affect some sectors at the expense of others, or if the skewness of the distribution of technology

shocks changes over time32, then γpt − γNt movements induced by these changes will on their own generate

economy-wide inflation. In other words, our estimates of β and α could be biased because of endogeneity.

To distinguish between these two sources of asymmetry, we next look at alternative measures of shocks to all

firm’s desired prices, namely, exogenous monetary policy shocks and changes in commodity prices.

The third column of Table 3 relates the difference in elasticities to changes in commodity prices.

Support for the state-dependent pricing model is strong with this measure of aggregate shocks as well. The

coefficient estimate of the effect of an increase in commodity price inflation on the difference in elasticities is

equal to 2.5 with a t-statistic well in excess of 10.

Columns 4-6 of Table 3 asks whether monetary policy shocks affect the responsiveness of firm prices

to negative, as opposed to positive idiosyncratic technology shocks. The lag with which shocks to monetary

policy affect variables in the US economy prompts us to relate the difference in elasticities to current but also

30We report the effect of aggregate shocks on the difference in elasticities, as opposed to elasticities themselves in order to save
space, but also to control for changes in the fraction of all adjusting firms, say due to synchronization, in periods with greater
economy-wide disturbances. The distinction turns out to play little role. For most measures of aggregate disturbances we use,
β1 are negative and α1 are positive, and highly significant. The only exception arises in the case of aggregate inflation, πt,: α1 is
negative (although smaller than β1 in absolute value), contrary to what the model predicts, suggesting that in periods of higher
aggregate inflation the fraction of firms that adjusts increases in all sectors, although much more so in sectors with negative
technology shocks, as predicted by the state-dependent model.
31Similarly, exogenous increases in the volatility of sectoral shocks will generate aggregate inflation in a model with constant

trend money growth, as in Ball and Mankiw (1994).
32Although, including the skeweness of technology shocks in each period as an additional right-hand side variables does not

alter our results.
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several lags of past monetary shocks. We use three measures of shifts in the stance of monetary policy. Our

first measure of shocks is estimated using the Christiano, Eichenbaum and Evans (1999) recursive identifica-

tion assumption, with non-borrowed reserves as the postulated instrument. A second measure we use are the

dates identified by Romer and Romer (1994) using the narrative approach, dates on which the Fed announced

an intent to reduce inflation by pursuing a contractionary monetary policy33. Although this measure does

not constitute an exogenous shift in monetary policy, it represents a measure of aggregate disturbances that

do not arise due to shifts in the responsiveness of firms to positive as opposed to negative technology shocks.

Our third measure of shocks is due to Romer and Romer (2004). To arrive at a measure of exogenous shifts

in monetary policy, Romer and Romer (2004) first construct a series of intended changes in the federal funds

target rate around the FOMC meetings using both the narrative approach as well as information on the

Federal Fund’s expected rate based on internal Fed memos. This series of intended policy actions is then

purged of changes that arise in response to anticipated macroeconomic conditions by regressing it against

“Greenbook” forecasts of future inflation, real output growth and the unemployment rate.

As the lower panel of Table 3 indicate, results based on the alternative measures of monetary distur-

bances are remarkably robust. Consistent with the evidence documented in earlier work, monetary policy

shocks affect inflation rates only with a lag. The effect of an expansionary shock in the first year is to decrease

the willingness of firms to respond to negative technology shock, a result inconsistent with the predictions of

the model and related to the “price puzzle” documented in earlier work. The response of elasticities to lags

of monetary policy shocks is however in line with the predictions of the model: following a lag, monetary

policy shocks increase the willingness of firms to increase prices, but do so asymmetrically: firms in sectors

with negative technology shocks adjust more readily. The maximal impact of the monetary shocks occurs

with a lag of two/three years and is significantly different from zero (t-ratios are in excess of 5) in all cases.

We have established above the statistical significance of state-dependent pricing terms in explaining

fluctuations in sectoral inflation rates. We next ask whether their effect is economically significant as well.

We use our estimates of equation (12) and calculate, in Table 4, the effect of a one standard deviation

33Five Romer-Romer dates lie in the period we consider: 68/12, 74/04, 78/08, 79/09, 88/12. Given that our data is yearly,
our measure of shocks are dummies for 69,74,79,80,89.
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nominal disturbance on the elasticity of sectoral inflation to negative/positive technology shocks. We first

calculate what the elasticities γNt and γPt would be in the absence of economy-wide disturbances, when the

aggregate variables are at their time-series means: these are the estimates of α0 + α1µ(S) and β0 + β1µ(S)

in equation (12), where µ(S) is the time-series mean of S. The four different sets of estimates in Table 4

correspond to different specifications of the aggregate disturbance in Table 3. Note first that on average

firms are more willing to increase prices in response to adverse technology disturbances than lower prices in

response to favorable shocks: the elasticity on positive shocks is close to -0.2, while that on negative shocks is

close to -0.4 when the aggregate variables are at their steady-state means. We thus corroborate, although in a

different environment, the results of Peltzman (2000) who finds that output prices are more likely to respond

to cost increases, rather than decreases. We next compute the effect of a one standard deviation aggregate

shock on the elasticities γNt and γPt (e.g., α0 + α1 × [µ(S) + σ(S)]), where σ is the standard deviation of the

aggregate disturbance, S). Notice that for all measures of aggregate disturbances, with the exception of CPI

inflation rates, an increase in the size of the nominal disturbances reduces the elasticity of sectoral inflation

to positive technology shocks by around 40% (e.g., from -0.21 to -0.12 for changes in CPI inflation), while

increasing that on negative technology shocks by 30% (e.g., from -0.42 to -.55 for changes in CPI inflation).

An increase in the inflation rate itself increases the responsiveness to technology shocks of all sectors in the

economy, although much stronger for sectors with negative technology shocks, as predicted by the model.

How important are these changes in elasticities quantitatively? To answer this question, we resort to

the following experiment. Note in equation 12 that the response of sectoral inflation rates to an aggregate

shock is ∂πit
∂St

= ρ + α1εit if εit > 0 and ∂πit
∂St

= ρ + β1εit if εit < 0 . We compute these derivatives for

all periods/sectors in our sample for the Christiano, Eichenbaum and Evans (1999) measure of monetary

policy shocks, and average them across periods/sectors for a measure of how the aggregate manufacturing

industry responds to an expansionary nominal disturbance. We also calculate what these “impulse responses”

would be in the absence of state-dependent terms by imposing α1 = β1 = 0. As the table below
34 indicates,

state-dependent terms increase the responsiveness of inflation rates to monetary shocks by almost 50% in the

second and third year following a shock, suggesting that endogenous variation in the identity and fraction

34Standard errors are reported in parantheses.
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of adjusting firms is an important source of movements in the overall inflation rate of the US manufacturing

sector.

∂πt
∂st

∂πt
∂st−1

∂πt
∂st−2

∂πt
∂st−3

No SDP terms
0.008

(0.012)

0.058

(0.013)

0.148

(0.013)

0.167

(0.012)

With SDP terms
-0.014

(0.009)

0.091

(0.016)

0.222

(0.016)

0.173

(0.016)

B. Robustness Checks

We have performed several checks to ensure the robustness of our results.

Continuous parametrization of non-linearities

We first ask whether we can find evidence of non-linearities in the sectoral inflation rates response to

aggregate and sectoral shocks using a continuous parametrization of a sector’s responsiveness to technology

shocks. To this end, we estimate (see the justification for this parametrization in Section 2)

πit = γ0 + γ1εit + γ2
¡
ε2it × gt

¢
+ γ3gt + uit, (13)

where the state-dependent model predicts that γ2 > 0. We again find considerable support for the model,

for all measures of nominal disturbances. As Table 5 indicates, coefficient estimates of γ2 are positive, and

significantly estimated (t-ratios are in excess of 5) for inflation, changes in inflation, as well as commodity

price changes. Moreover, after a one-year lag, expansionary monetary policy shocks also cause a larger

responsiveness to technology shocks in sectors that are hit by more negative technological disturbances.

Technology shocks estimated using long-run identification restrictions

We have redone all our work using an alternative measure of technology shocks, one based on long-run

identification restrictions, in the spirit of Blanchard and Quah (1989) and Gali (1999). Specifications in which

24



labor hours enter in levels, but also in differences produce similar results to those reported above. Results

are available from the author upon request.

Time Aggregation

An additional concern is the time-aggregation of the data we use to test the state-dependent pricing

model. It can be shown that the state-dependent pricing model still predicts a non-linear relationship between

sectoral inflation rates and aggregate and sectoral shocks, even if the data used to estimate these non-linearities

is sampled less frequently than the frequency with which prices change in the model. The importance of non-

linearities falls as the degree of time-aggregation increases, which suggests that our results provide a lower

bound of the quantitative importance of state-dependent pricing rules in the data.

Counter-cyclical markups

The model of Rotemberg and Saloner (1986) predicts that periods of higher demand are periods in

which colluding firms are likely to behave more competitively. An extension of their model to incorporate

sectoral shocks would imply that markups fall during booms, and more so for firms in sectors with positive

technology shocks. Our finding above that the elasticity in response to negative technology shocks rises

during periods of economy-wide disturbances can then be driven by industrial organization considerations,

rather than costs of price adjustment. We tested this hypothesis by asking whether the asymmetry we find in

our estimates of equation (12) is robust to including a measure of the degree of market concentration in the

industries we study. Let HHi be the Herfindhal-Herschmann index, available for four-digit industries from

the Census Bureau35. We allow the responsiveness of sectoral inflation rates to depend on both the size of

aggregate disturbances, but also the degree of the industry’s market concentration:

γNt = β0 + β1St + β2 (HH × St) , and

γPt = α0 + α1St + α2 (HH × St) ,

35For each industry we calculate the average of the index over three years for which data is available: 1982, 1987 and 1992.
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and estimate the following equation:

πit = ξi + α0ε
+
it + α1

¡
St × ε+it

¢
+ α2

¡
HHi × St × ε+it

¢
+ β0ε

−
it + β1

¡
St × ε−it

¢
+ β2

¡
HHi × St × ε−it

¢
+ ρSt + uit.

(14)

If the results reported in the previous section are solely driven by the inability of oligopolistically

competitive firms to collude in booming periods, we should observe no asymmetries in industries with a large

number of small firms,where HH is close to 0, and large asymmetries in industries with a few dominant firms

and a high HH index. In Table 6 we report α1−β1, i.e., the difference in elasticities to positive and negative

technology shocks for sectors with a zero concentration ratio. Our results are similar to those reported earlier

and we once again strongly reject the null of time-dependent pricing36.

Sectoral Heterogeneity

As Bils and Klenow (2004) have documented, there is a large dispersion in the frequency of price

changes in the US economy. Differences in the frequency of price changes, as well as other sources of het-

erogeneity (e.g., variability of shocks) will lead to differences in the responsiveness of sectoral inflation rates

to sectoral and aggregate disturbances. One additional concern is therefore that the non-linearities identified

above are spurious, and simply reflect the fact that we do not allow for a differential response to sectoral and

aggregate shocks across sectors. We address this concern by allowing the elasticities to technology shocks, as

well as aggregate disturbances, to differ across the 446 4-digit sectors in our analysis. We estimate

πit = ξi +
446X
i=1

γiεitDi +
446X
i=1

ρiStDi + β0εitI(εit>0) + α1
¡
St × I(εit>0)

¢
εit + β1

¡
St × I(εit<0)

¢
εit + uit (15)

where Di is a dummy for each SIC-4 sector, and report the results in Table 7. Note that heterogeneity

across sectors is indeed responsible for some of the non-linearities we have found above in the responsiveness

of sectoral inflation rates to nominal disturbances: the coefficient estimates of α1 − β1 decline by almost

two-thirds when changes in inflation and commodity price changes are used as a measure of aggregate shocks

36We only report results based on three measures of nominal disturbances: CPI inflation, commodity price inflation, as well
as changes in CPI inflation for this and the subsequent robustness checks in order to conserve space.
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(although they decrease by much less when CPI inflation itself is employed). The statistical significance of

these estimates is not affected, and we again find significant non-linearities in the data, non-linearities that

cannot arise in time-dependent models.

Sub-sample Stability

We finally ask whether our results are robust across sub-samples, and in particular, before and after

the Volcker disinflation. We estimate equation (12) separately, using observations for the years 1961-1981

and 1982-1996. As Table 8 indicates, results are robust across sub-samples, although, not surprisingly, non-

linearities are easier to identify during the pre-Volcker era of higher and more volatile inflation rates.

5. Conclusion

If pricing is state-dependent, firms are more likely to pay the adjustment costs and change prices if

idiosyncratic and aggregate shocks reinforce each other and trigger desired price changes in the same direction.

The state-dependent model therefore predicts that the distribution of idiosyncratic shocks, conditional on

adjustment, varies endogenously in response to aggregate disturbances. This paper explores this asymmetry

in order to test whether pricing in the US economy is state or time-dependent. Using highly disaggregated

four-digit data on sectoral input, output and inflation rates in the US manufacturing sector, we find that

sectors that are hit by negative technology shocks adjust more readily in times of greater inflation, increases

in commodity prices and larger monetary policy shocks. These results suggest that the timing of firm price

adjustments is indeed endogenous, as in state-dependent pricing models.
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Table 1: Two measures of technology shocks

Standard 
Deviation Correlation

NBER MP Database TFP growth 0.076 0.63
Purified Solow residuals 0.063

Table 2: Comparison with Basu Fernald and Kimball (2004)
Degree of increasing returns

    Durable   Non-durable

our estimates BFK estimates our estimates BFK estimates
Lumber 0.84 0.51 Food 0.46 0.84
Furniture 1.05 0.92 Tobacco 0.84 0.90
Stone, Clay & Glass 1.32 1.08 Textiles 1.09 0.64
Primary Metal 0.95 0.96 Apparel 1.07 0.70
Fabricated Metal 1.17 1.16 Paper 1.02 1.02
Non-Electric Machinery 1.03 1.16 Printing & Publishing 1.25 0.87
Electrical Machinery 1.34 1.11 Chemicals 1.66 1.83
Transportation Equipment 1.08 1.05 Petroleum Products 0.98 0.91
Instruments 1.15 0.95 Rubber & Plastics 1.25 0.91
Misc. Manufacturing 1.24 1.17 Leather 1.19 0.11

median 1.11 1.07 median 1.08 0.89
correlation 0.71 correlation 0.41

correlation w/o outliers 0.77



Table 3: Effect of Nominal Disturbances on the difference in (+,-) elasticities 

A: Effect of Aggregate Inflation

1 2 3

πt 4.83
(0.64)

∆πt 9.85
( 1.05)

∆Pcomt 2.46
(0.18)

R2 0.37 0.15 0.17
# obs 16056 16056 16056

B: Effect of Monetary Policy Shocks

4 5 6
CEE RR dates RR shocks

shock(t) -0.94 -0.43 -0.08
(0.37) (0.06) (0.03)

shock(t-1) 1.33 0.18 0.08
(0.41) (0.05) (0.03)

shock(t-2) 3.30 0.33 0.15
(0.41) (0.06) (0.03)

shock(t-3) 0.46 0.08 0.25
(0.45) ( 0.05) ( 0.03)

R2 0.17 0.26 0.27
# obs 16056 16056 12488

Notes:
1.  Fixed Effects estimates of α1-β1 in equation (12) reported
2.  Standard errors in parantheses (corrected for bias arising from two-stage estimation)
3.  In (6) we lose eight years of observations because Romer and Romer data is available from 1969
4.  Coefficient estimates on Romer dates and Romer shocks (contractionary shocks) are multiplied by (-1)



 Table 4: Is state-dependent pricing quantitatively important?

Elasticity of sectoral inflation 
to sectoral technology shocks

πt = µ(π) πt =µ(π) + σ(π)

positive shocks -0.245 -0.297
(0.013) (0.016)

(1) πt

negative shocks -0.326 -0.525
(0.012) (0.022)

πt = µ(∆π) πt =µ(∆π) + σ(∆π)

positive shocks -0.209 -0.118
(0.013) (0.016)

(2) ∆πt

negative shocks -0.424 -0.545
(0.015) (0.027)

πt = µ(∆Pcom) πt =µ(∆Pcom) + σ(∆Pcom)

positive shocks -0.225 -0.135
( 0.014) (0.016)

(3) ∆Pcomt 

negative shocks -0.405 -0.595
(0.015) (0.024)

∆shockt-2 = µ(shock) ∆shockt-2 = µ(shock)+σ(shock)

positive shocks -0.216 -0.156
(4) CEE monetary (0.013) (0.017)

shock
(after a 2-year lag)

negative shocks -0.418 -0.547
(0.013) (0.023)

Note: 
           1 .  numbers in parantheses denote the specification used to estimate elasticities
                  and correspond to those in Table 3
          2.    standard errors in parantheses (these ignore uncertainty in our estimates 
                 of the mean and standard deviation of the three aggregate shocks)



Table 5: A Continuous Parametrization of responsiveness to technology shocks
Coefficient estimates of the non-linear term

A: Effect of Aggregate Inflation

1 2 3

πt 4.61
( 0.86)

∆πt 17.62
( 3.97)

∆Pcomt 4.13
(0.64)

R2 0.20 0.14 0.16
# obs 16056 16056 16056

B: Effect of Monetary Policy Shocks

4 5 6
CEE RR dates RR shocks

shock(t) 0.69 -1.01 -0.23
(0.71) ( 0.18) (0.04)

shock(t-1) 3.73 0.43 0.32
(1.08) (0.11) (0.05)

shock(t-2) 6.85 0.45 0.29
(1.05) (0.12) (0.07)

shock(t-3) 1.31 -0.17 0.39
(1.21) ( 0.09) ( 0.07)

R2 0.15 0.22 0.26
# obs 16056 16056 12488

Notes:
1.  Fixed Effects estimates of γ2 in equation (13) reported
2.  Standard errors in parantheses (corrected for bias arising from two-stage estimation)
3.  In (6) we lose eight years of observations because Romer and Romer data is available from 1969
4.  Coefficient estimates on Romer dates and Romer shocks (contractionary shocks) are multiplied by (-1)



Table 6: State-Dependent Pricing or Oligopolistic Competition?

1 2 3

πt 3.20
(0.62)

∆πt 9.76
( 1.31)

∆Pcomt 2.16
(0.23)

R2 0.37 0.15 0.17
# obs 16056 16056 16056

Table 7: Sectoral Heterogeneity?

1 2 3

πt 3.82
(0.39)

∆πt 3.44
( 0.66)

∆Pcomt 0.74
(0.13)

R2 0.48 0.30 0.31
# obs 16056 16056 16056

Table 8: Sub-Sample Stability?

1 2 3

1961-81 1982-96 1961-81 1982-96 1961-81 1982-96

πt 4.24 0.22
(0.39) (1.95)

∆πt 10.58 4.58
(1.34) ( 1.25)

∆Pcomt 2.36 1.46
(0.22) (0.28)

R2 0.42 0.11 0.19 0.09 0.21 0.11
# obs 9366 6690 9366 6690 9366 6690
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Appendix 1: Solving the State-Dependent Model

Recall that the firm’s problem is:

V a(s) = max
z

⎡⎣z−θ µz − c

ψφ

¶
+ β

Z
ε×u×η

V (s0 (z, s, ε, u, η)) dF (ε, u, η)

⎤⎦ ,

V n(s) =

⎡⎣³z−1
eg

´−θ µz−1
eg
− c

ψφ

¶
+ β

Z
ε×u×η

V
³
s0
³z−1
eg
, s, ε, u, η

´´
dF (ε, u, η)

⎤⎦ ,
where V = max( V a(s), V n(s)), and s = (z−1,ψ,φ, g).We solve this problem numerically, using collocation.1 We

approximate the two value functions using linear combinations of Chebyshev polynomials:, e.g.,

V a(s) ≈
N1X
i1=1

N2X
i2=1

N3X
i3=1

N4X
i4=1

ci1i2i3i4φi1(z−1)φi2(ψ)φi3(φ)φi4(g),

where φij () is an ij−th degree Chebyshev polynomial evaluated at the respective argument, Nj is the degree

of the approximation along each dimension, and ci1i2i3i4 the unknown coefficients. This approximation reduces

the infinite-dimensional problem of solving the system of two functional equations above to a finite-dimensional

non-linear system of 2N1N2N3N4 equations in the unknown coefficients ci1i2i3i4 . The equations we use to solve

for these unknown coefficients arise from the condition that the system of equations above holds exactly at

N1N2N3N4 nodes along the state-space. A Newton routine is used to solve for the unknown coefficients, as well

as to solve the maximization problem in the right hand-side of the first equation. We use Gaussian quadrature

to form expectations (evaluate the integrals). The essence of this approach is to replace the joint-distribution

of technology and monetary shocks using a discrete distribution with K mass points. The weights and nodes of

the discrete distribution are chosen to ensure that the first 2K moments of the original distribution are equal to

those of the approximant2.

The upper panel of Figure A1 plots the price function in the (z−1, g) as well as (z−1, a) directions, where

1This solution method is extensively discussed in Miranda and Fackler (2002).
2See again Miranda and Fackler (2002).
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a = ψφ is the firm’s technology. Note the region of inaction in which the firm’s nominal price is unchanged (the

center of the two figures), as well as the region in which the firm changes its price. The lower panel of the figure

plots the firm’s value of not changing its price in the (z−1, g) space. The firm’s value declines as g moves away

from 0 and z−1 away from 1. Finally, the lower-right panel of this figure plots the firm’s value (the maximum of

the value of adjustment and non-adjustment) and once again illustrates the region of inaction in which the firm

exercises the option to not change its nominal price.

We gauge the accuracy of the approximants we use by calculating the difference between the right and

left-hand side of the Bellman equations at points other than the nodes used to solve for the unknown coefficients.

The maximum difference is small in absolute value (less than .5×10−4), suggesting the accuracy of the solution

method.

Appendix 2: Standard Errors for Two-Stage Estimates

We test the implication of state-dependent pricing models in two stages with residuals estimated in the

first stage used as a dependent variable in the second-stage estimation. This appendix discusses how we calculate

asymptotic standard errors for our second-stage estimates that take into account the two-stage nature of our

estimation.

In stage 1, we rely on two-stage least squares regressions in which we retrieve residuals (technology shocks)

to be used in the second stage estimation. For each SIC 2-digit industry, we estimate technology shocks as the

residuals from the following Fixed Effects 2SLS regressions. Letting ∆yit be the growth rate of log output of

industry i, ci be industry-specific effects and g0it = [∆xit,∆hit] be the regressors (share-weighted growth rate of

primary inputs), we estimate:

∆yit = g
0
itα+ ci + ε̃it

Let ξit be the instruments we use for g and rewrite the above expression more compactly as

Y = Gα+ (IN ⊗ ιT ) c+ ε

1



where G0 = [g11, ...g1T , ..., gN1, ..., gNT ], Y
0 = [∆y11, ..∆y1T , ...,∆yN1, ...,∆yNT ], c = [c1, ..., cN ] , IN is the identity

matrix, and ιT is a T×1 vector of ones. The Fixed-effects two stage least squares estimate of α is

α̂ =
³
G̃PξG̃

´−1
G̃PξỸ

where G̃ = QG, Ỹ = Qy, Q is the matrix that demeans observations of sector-specific time-series means, and

Pξ = ξ̃
³
ξ̃
0
ξ̃
´
ξ̃
0
,with ξ̃ denoting the demeaned NT × j matrix of stacked instruments. We consider asymptotic

results for the case N −→∞, holding constant T . Under standard regularity conditions:

√
N (α̂− α) =

µ
1

N
G̃PξG̃

¶−1
1√
N
G̃Pξε

d−→ N (0, V1)

Assuming that technology shocks are serially and cross-sectionally independent and homoskedastic, we estimate

V1 using

V̂1 = σ̂2
µ
1

N
G̃PξG̃

¶−1
,where σ2 =

1

N(T − 1)

NX
i=1

TX
t=1

ε̂2it

The technology shocks are therefore εit = ε̂it + ȳi − ḡ0iα̂, where ε̂it are the residuals of the regression above,

and ȳi − ḡ0iα̂ the estimate of the fixed effect term. In the second stage, we construct ε+it = max(εit, 0) and

ε̂−it = min(εit, 0) and estimate

πit = θi + s
0
tδ + γ1ε̂

+
it + γ2ε̂

−
it + ε̂+its

0
tγ3 + ε̂−its

0
tγ4 + uit

where st are aggregate shocks and θi are fixed-effects. Letting β =
£
δ0 γ1 γ2 γ03 γ04

¤0
, xit collect all the

right-hand side covariates and a tilde denote a demeaned variable, the fixed effects estimator is the solution to:

argmin
β

NX
i=1

TX
t=1

(π̃it − x̃0itβ)
2
= argmax

β

NX
i=1

TX
t=1

ψ (zit,β, α̂)

where zit is the data we use in both stages of the estimation procedure and α̂ are the coefficient estimates from

2



the first-stage regressions. To calculate its asymptotic distribution we note that β̂ satisfies:

1√
N

NX
i=1

TX
t=1

∂

∂β
ψ
³
zit, β̂, α̂

´
= 0

A first-order Taylor series expression of this expression around θ and α yields:

0 ≈ 1√
N

PN
i=1

PT
t=1

∂
∂βψ (zit,β,α) +BN

√
N
³
β̂ − β

´
+ JN

√
N (α̂− α) ,

where, BN =
³
1
N

PN
i=1

PT
t=1

∂
∂β

∂
∂β0ψ (zit,β,α)

´
p→ B = E

hPT
t=1

∂
∂β

∂
∂β0ψ (zit,β,α)

i
JN =

³
1
N

PN
i=1

PT
t=1

∂
∂β

∂
∂α0ψ (zit,β,α)

´
p→ J = E

hPT
t=1

∂
∂β

∂
∂α0ψ (zit,β,α)

i

Hence,³
1
N

PN
i=1

PT
t=1

∂
∂β

∂
∂β0ψ (zit,β,α)

´√
N
³
β̂ − β

´
= − [I JN ]

⎡⎢⎢⎣ 1√
N

PN
i=1

PT
t=1

∂
∂βψ (zit,β,α)³

1
N G̃PξG̃

´−1
1√
N
G̃Pξε

⎤⎥⎥⎦ d→ N(0, V2)

where V2 = limT→∞ [I JT ]E

⎡⎢⎢⎣ 1√
N

PN
i=1

PT
t=1

∂
∂βψ (zit,β,α)³

1
N G̃PξG̃

´−1
1√
N
G̃Pξε

⎤⎥⎥⎦
⎡⎢⎢⎣ 1√

N

PN
i=1

PT
t=1

∂
∂βψ (zit,β,α)³

1
N G̃PξG̃

´−1
1√
N
G̃Pξε

⎤⎥⎥⎦
⎡⎢⎢⎣ I

J 0T

⎤⎥⎥⎦ ,
or

V2 = [I J ]

⎡⎢⎢⎣ A11 A12

A12 A22

⎤⎥⎥⎦
0 ⎡⎢⎢⎣ I

J 0

⎤⎥⎥⎦
Note however that ∂

∂βψ (zit,β,α) is proportional to uit, the error term in the second-stage regression, which

is by assumption orthogonal to technology shocks. Therefore, A12 = A21 = 0. A22 is the asymptotic variance of

α̂ in the first-stage regression (V1 above) and V2 = B
−1A11B

−1 + B−1JV1J
0B−1. We report V̂2, as opposed to

B−1A11B
−1 in the text.
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